1
|
Mehta D, Saini V, Bajaj A. Recent developments in membrane targeting antifungal agents to mitigate antifungal resistance. RSC Med Chem 2023; 14:1603-1628. [PMID: 37731690 PMCID: PMC10507810 DOI: 10.1039/d3md00151b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/22/2023] [Indexed: 09/22/2023] Open
Abstract
Fungal infections cause severe and life-threatening complications especially in immunocompromised individuals. Antifungals targeting cellular machinery and cell membranes including azoles are used in clinical practice to manage topical to systemic fungal infections. However, continuous exposure to clinically used antifungal agents in managing the fungal infections results in the development of multi-drug resistance via adapting different kinds of intrinsic and extrinsic mechanisms. The unique chemical composition of fungal membranes presents attractive targets for antifungal drug discovery as it is difficult for fungal cells to modify the membrane targets for emergence of drug resistance. Here, we discussed available antifungal drugs with their detailed mechanism of action and described different antifungal resistance mechanisms. We further emphasized structure-activity relationship studies of membrane-targeting antifungal agents, and classified membrane-targeting antifungal agents on the basis of their core scaffold with detailed pharmacological properties. This review aims to pique the interest of potential researchers who could explore this interesting and intricate fungal realm.
Collapse
Affiliation(s)
- Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| |
Collapse
|
2
|
Argüelles A, Sánchez-Fresneda R, Guirao-Abad JP, Lozano JA, Solano F, Argüelles JC. Insight into the Antifungal Effects of Propolis and Carnosic Acid—Extension to the Pathogenic Yeast Candida glabrata: New Propolis Fractionation and Potential Synergistic Applications. J Fungi (Basel) 2023; 9:jof9040442. [PMID: 37108897 PMCID: PMC10143237 DOI: 10.3390/jof9040442] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Fungi have traditionally been considered opportunistic pathogens in primary infections caused by virulent bacteria, protozoan, or viruses. Consequently, antimycotic chemotherapy is clearly less developed in comparison to its bacterial counterpart. Currently, the three main families of antifungals (polyenes, echinocandins, and azoles) are not sufficient to control the enormous increase in life-threatening fungal infections recorded in recent decades. Natural substances harvested from plants have traditionally been utilized as a successful alternative. After a wide screening of natural agents, we have recently obtained promising results with distinct formulations of carnosic acid and propolis on the prevalent fungal pathogens Candida albicans and Cryptococcus neoformans. Here, we extended their use to the treatment against the emerging pathogenic yeast Candida glabrata, which displayed lower susceptibility in comparison to the fungi mentioned above. Taking into account the moderate antifungal activity of both natural agents, the antifungal value of these combinations has been improved through the obtention of the hydroethanolic fractions of propolis. In addition, we have demonstrated the potential clinical application of new therapeutical designs based on sequential pre-treatments with carnosic/propolis mixtures, followed by exposure to amphotericin B. This approach increased the toxic effect induced by this polyene.
Collapse
Affiliation(s)
| | - Ruth Sánchez-Fresneda
- Vitalgaia España S.L., 30005 Murcia, Spain
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain
| | - José P. Guirao-Abad
- Vitalgaia España S.L., 30005 Murcia, Spain
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain
| | - José Antonio Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Medicina, Universidad de Murcia, 30120 Murcia, Spain
| | - Francisco Solano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Medicina, Universidad de Murcia, 30120 Murcia, Spain
| | - Juan-Carlos Argüelles
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain
| |
Collapse
|
3
|
Won T, Mohid SA, Choi J, Kim M, Krishnamoorthy J, Biswas I, Bhunia A, Lee D. The role of hydrophobic patches of de novo designed MSI-78 and VG16KRKP antimicrobial peptides on fragmenting model bilayer membranes. Biophys Chem 2023; 296:106981. [PMID: 36871366 DOI: 10.1016/j.bpc.2023.106981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Antimicrobial peptides (AMPs) with cell membrane lysing capability are considered potential candidates for the development of the next generation of antibiotics. Designing novel AMPs requires an in-depth understanding of the mechanism of action of the peptides. In this work, we used various biophysical techniques including 31P solid-state NMR to examine the interaction of model membranes with amphipathic de novo-designed peptides. Two such peptides, MSI-78 and VG16KRKP, were designed with different hydrophobicity and positive charges. The model lipid membranes were constituted by mixing lipids of varying degrees of 'area per lipid' (APL), which directly affected the packing properties of the membrane. The observed emergence of the isotropic peak in 31P NMR spectra as a function of time is a consequence of the fragmentation of the membrane mediated by the peptide interaction. The factors such as the charges, overall hydrophilicity of the AMPs, as well as lipid membrane packing, contributed to the kinetics of membrane fragmentation. Furthermore, we anticipate the designed AMPs follow the carpet and toroidal pore mechanisms when lysing the cell membrane. This study highlights the significance of the effect of the overall charges and the hydrophobicity of the novel AMPs designed for antimicrobial activity.
Collapse
Affiliation(s)
- TaeJun Won
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Sk Abdul Mohid
- Department of Biophysics, Bose Institute, Unified Academic Campus, Bidhan Nagar EN 80, Kolkata 700 091, India
| | - JiHye Choi
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - MinSoo Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | | | - Indranil Biswas
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Unified Academic Campus, Bidhan Nagar EN 80, Kolkata 700 091, India.
| | - DongKuk Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
4
|
Duan WY, Zhang SB, Lv YY, Zhai HC, Wei S, Ma PA, Cai JP, Hu YS. Inhibitory effect of (E)-2-heptenal on Aspergillus flavus growth revealed by metabolomics and biochemical analyses. Appl Microbiol Biotechnol 2023. [PMID: 36477927 DOI: 10.1016/10.1007/s00253-022-12320-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The prevention of fungal proliferation in postharvest grains is critical for maintaining grain quality and reducing mycotoxin contamination. Fumigation with natural gaseous fungicides is a promising and sustainable approach to protect grains from fungal spoilage. In this study, the antifungal activities of (E)-2-alkenals (C5-C10) on Aspergillus flavus were tested in the vapor phase, and (E)-2-heptenal showed the highest antifungal activity against A. flavus. (E)-2-Heptenal completely inhibited A. flavus growth at 0.0125 µL/mL and 0.2 µL/mL in the vapor phase and liquid contact, respectively. (E)-2-Heptenal can disrupt the plasma membrane integrity of A. flavus via leakage of intracellular electrolytes. Scanning electron microscopy indicated that the mycelial morphology of A. flavus was remarkably affected by (E)-2-heptenal. Metabolomic analyses indicated that 49 metabolites were significantly differentially expressed in A. flavus mycelia exposed to 0.2 µL/mL (E)-2-heptenal; these metabolites were mainly involved in galactose metabolism, starch and sucrose metabolism, the phosphotransferase system, and ATP-binding cassette transporters. ATP production was reduced in (E)-2-heptenal-treated A. flavus, and Janus Green B staining showed reduced cytochrome c oxidase activity. (E)-2-Heptenal treatment induced oxidative stress in A. flavus mycelia with an accumulation of superoxide anions and hydrogen peroxide and increased activities of superoxide dismutase and catalase. Simulated storage experiments showed that fumigation with 400 µL/L of (E)-2-heptenal vapor could completely inhibit A. flavus growth in wheat grains with 20% moisture; this demonstrates its potential use in preventing grain spoilage. This study provides valuable insights into understanding the antifungal effects of (E)-2-heptenal on A. flavus. KEY POINTS : • (E)-2-Heptenal vapor showed the highest antifungal activity against A. flavus among (C5-C10) (E)-2-alkenals. • The antifungal effects of (E)-2-heptenal against A. flavus were determined. • The antifungal actions of (E)-2-heptenal on A. flavus were revealed by metabolomics and biochemical analyses.
Collapse
Affiliation(s)
- Wen-Yan Duan
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuai-Bing Zhang
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Yang-Yong Lv
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Huan-Chen Zhai
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shan Wei
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Ping-An Ma
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Jing-Ping Cai
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yuan-Sen Hu
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| |
Collapse
|
5
|
Kumar P, Kumar P, Singh N, Khajuria S, Patel R, Rajana VK, Mandal D, Velayutham R. Limitations of current chemotherapy and future of nanoformulation-based AmB delivery for visceral leishmaniasis-An updated review. Front Bioeng Biotechnol 2022; 10:1016925. [PMID: 36588956 PMCID: PMC9794769 DOI: 10.3389/fbioe.2022.1016925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022] Open
Abstract
Visceral leishmaniasis (VL) is the most lethal of all leishmaniasis diseasesand the second most common parasiticdisease after malaria and,still, categorized as a neglected tropical disease (NTD). According to the latest WHO study, >20 Leishmania species spread 0.7-1.0 million new cases of leishmaniasis each year. VL is caused by the genus, Leishmania donovani (LD), which affects between 50,000 and 90,000 people worldwide each year. Lack of new drug development, increasing drug resistance, toxicity and high cost even with the first line of treatmentof Amphotericin B (AmB), demands new formulation for treatment of VLFurther the lack of a vaccine, allowedthe researchers to develop nanofomulation-based AmB for improved delivery. The limitation of AmB is its kidney and liver toxicity which forced the development of costly liposomal AmB (AmBisome) nanoformulation. Success of AmBisome have inspired and attracted a wide range of AmB nanoformulations ranging from polymeric, solid lipid, liposomal/micellar, metallic, macrophage receptor-targetednanoparticles (NP) and even with sophisticated carbon/quantum dot-based AmBnano delivery systems. Notably, NP-based AmB delivery has shown increased efficacy due to increased uptake, on-target delivery and synergistic impact of NP and AmB. In this review, we have discussed the different forms of leishmaniasis disease and their current treatment options with limitations. The discovery, mechanism of action of AmB, clinical status of AmB and improvement with AmBisome over fungizone (AmB-deoxycholate)for VL treatment was further discussed. At last, the development of various AmB nanoformulation was discussed along with its adavantages over traditional chemotherapy-based delivery.
Collapse
Affiliation(s)
- Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Pawan Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Nidhi Singh
- National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Salil Khajuria
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Rahul Patel
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Vinod Kumar Rajana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India,*Correspondence: Ravichandiran Velayutham, ; Debabrata Mandal,
| | - Ravichandiran Velayutham
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India,National Institute of Pharmaceutical Education and Research, Kolkata, India,*Correspondence: Ravichandiran Velayutham, ; Debabrata Mandal,
| |
Collapse
|
6
|
Inhibitory effect of (E)-2-heptenal on Aspergillus flavus growth revealed by metabolomics and biochemical analyses. Appl Microbiol Biotechnol 2022; 107:341-354. [DOI: 10.1007/s00253-022-12320-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
|
7
|
Haro-Reyes T, Díaz-Peralta L, Galván-Hernández A, Rodríguez-López A, Rodríguez-Fragoso L, Ortega-Blake I. Polyene Antibiotics Physical Chemistry and Their Effect on Lipid Membranes; Impacting Biological Processes and Medical Applications. MEMBRANES 2022; 12:681. [PMID: 35877884 PMCID: PMC9316096 DOI: 10.3390/membranes12070681] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023]
Abstract
This review examined a collection of studies regarding the molecular properties of some polyene antibiotic molecules as well as their properties in solution and in particular environmental conditions. We also looked into the proposed mechanism of action of polyenes, where membrane properties play a crucial role. Given the interest in polyene antibiotics as therapeutic agents, we looked into alternative ways of reducing their collateral toxicity, including semi-synthesis of derivatives and new formulations. We follow with studies on the role of membrane structure and, finally, recent developments regarding the most important clinical applications of these compounds.
Collapse
Affiliation(s)
- Tammy Haro-Reyes
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Lucero Díaz-Peralta
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Arturo Galván-Hernández
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Anahi Rodríguez-López
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Morelos, Mexico; (A.R.-L.); (L.R.-F.)
| | - Lourdes Rodríguez-Fragoso
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Morelos, Mexico; (A.R.-L.); (L.R.-F.)
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| |
Collapse
|
8
|
Umegawa Y, Yamamoto T, Dixit M, Funahashi K, Seo S, Nakagawa Y, Suzuki T, Matsuoka S, Tsuchikawa H, Hanashima S, Oishi T, Matsumori N, Shinoda W, Murata M. Amphotericin B assembles into seven-molecule ion channels: An NMR and molecular dynamics study. SCIENCE ADVANCES 2022; 8:eabo2658. [PMID: 35714188 PMCID: PMC9205587 DOI: 10.1126/sciadv.abo2658] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/04/2022] [Indexed: 05/30/2023]
Abstract
Amphotericin B, an antifungal drug with a long history of use, forms fungicidal ion-permeable channels across cell membranes. Using solid-state nuclear magnetic resonance spectroscopy and molecular dynamics simulations, we experimentally elucidated the three-dimensional structure of the molecular assemblies formed by this drug in membranes in the presence of the fungal sterol ergosterol. A stable assembly consisting of seven drug molecules was observed to form an ion conductive channel. The structure is somewhat similar to the upper half of the barrel-stave model proposed in the 1970s but substantially different in the number of molecules and in their arrangement. The present structure explains many previous findings, including structure-activity relationships of the drug, which will be useful for improving drug efficacy and reducing adverse effects.
Collapse
Affiliation(s)
- Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Project Research Center for Fundamental Sciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Tomoya Yamamoto
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Mayank Dixit
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Kosuke Funahashi
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Sangjae Seo
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yasuo Nakagawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Taiga Suzuki
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shigeru Matsuoka
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Japan Science and Technology Agency, ERATO, Lipid Active Structure Project, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Tohru Oishi
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
- Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Project Research Center for Fundamental Sciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Japan Science and Technology Agency, ERATO, Lipid Active Structure Project, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
9
|
Yu Y, Chen P, Gao M, Lan W, Sun S, Ma Z, Sultani R, Cui Y, Umar MN, Khan SW, Cai X, Liang Z, Tan H. Amphotericin B Tamed by Salicylic Acid. ACS OMEGA 2022; 7:14690-14696. [PMID: 35557655 PMCID: PMC9088917 DOI: 10.1021/acsomega.1c07201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
Although Amphotericin B (AmB) is considered as the "gold standard" treatment for deep fungal infections, owing to its excellent antifungal effect, it often causes severe hemolytic toxicity and nephrotoxicity, which limits its clinical use. We designed and synthesized AmB derivatives by attaching salicylic acid (SA) to the carboxyl group and confirmed their structures using 1H NMR, 13C NMR, HR-MS, and IR. We evaluated its biological activity in vitro and measured its ultraviolet-visible (UV-vis) absorption spectrum. The AmB-SA conjugates exhibited good antifungal effects against Candida albicans, Candida glabrata, and Cryptococcus neoformans compared with AmB, and the renal cytotoxicity toward HEK 293T cells in vitro was significantly reduced, with almost no nephrotoxicity in the therapeutic window of the drug. At the same time, the hemolytic toxicity was significantly reduced. Therefore, modification of AmB by introducing SA is an effective strategy to maintain the broad antifungal activity of AmB and reduce its cytotoxicity. These AmB derivatives could be applied in clinical therapy in the future.
Collapse
Affiliation(s)
- Yuming Yu
- State
Key Laboratory of Chemistry and Utilization of Carbon-Based Energy
Resources; College of Chemistry, Xinjiang
University, Urumqi 830017, Xinjiang, P. R. China
- Department
of Neurosurgery, The First Affiliated Hospital
of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518026, China
| | - Peng Chen
- State
Key Laboratory of Chemistry and Utilization of Carbon-Based Energy
Resources; College of Chemistry, Xinjiang
University, Urumqi 830017, Xinjiang, P. R. China
| | - Ming Gao
- State
Key Laboratory of Chemistry and Utilization of Carbon-Based Energy
Resources; College of Chemistry, Xinjiang
University, Urumqi 830017, Xinjiang, P. R. China
| | - Wei Lan
- State
Key Laboratory of Chemistry and Utilization of Carbon-Based Energy
Resources; College of Chemistry, Xinjiang
University, Urumqi 830017, Xinjiang, P. R. China
| | - Shijun Sun
- State
Key Laboratory of Chemistry and Utilization of Carbon-Based Energy
Resources; College of Chemistry, Xinjiang
University, Urumqi 830017, Xinjiang, P. R. China
| | - Ziwei Ma
- State
Key Laboratory of Chemistry and Utilization of Carbon-Based Energy
Resources; College of Chemistry, Xinjiang
University, Urumqi 830017, Xinjiang, P. R. China
| | - Rome Sultani
- State
Key Laboratory of Chemistry and Utilization of Carbon-Based Energy
Resources; College of Chemistry, Xinjiang
University, Urumqi 830017, Xinjiang, P. R. China
| | - Yincang Cui
- Physics and
Chemistry Detect Center, Xinjiang University, Urumqi 830017, Xinjiang P. R. China
| | - Muhammad Naveed Umar
- Department
of Chemistry, University of Malakand, Chakdara, Dir (L), Khyber
Pakhtunkhwa 18800, Pakistan
| | - Sher Wali Khan
- Department
of Chemistry, Shaheed Benazir Bhutto University
Sheringal, Dir (U), Khyber Pakhtunkhwa 18800, Pakistan
| | - Xiaodong Cai
- Department
of Neurosurgery, The First Affiliated Hospital
of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518026, China
| | - Zhenjiang Liang
- Pneumology
Department, Shenzhen Children’s Hospital, Shenzhen 518026, China
| | - Hui Tan
- Pneumology
Department, Shenzhen Children’s Hospital, Shenzhen 518026, China
| |
Collapse
|
10
|
Fungicidal amphotericin B sponges are assemblies of staggered asymmetric homodimers encasing large void volumes. Nat Struct Mol Biol 2021; 28:972-981. [PMID: 34887566 PMCID: PMC9336184 DOI: 10.1038/s41594-021-00685-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022]
Abstract
Amphotericin B (AmB) is a powerful but toxic fungicide that operates via enigmatic small molecule-small molecule interactions. This mechanism has challenged the frontiers of structural biology for half a century. We recently showed AmB primarily forms extramembranous aggregates that kill yeast by extracting ergosterol from membranes. Here, we report key structural features of these antifungal 'sponges' illuminated by high-resolution magic-angle spinning solid-state NMR, in concert with simulated annealing and molecular dynamics computations. The minimal unit of assembly is an asymmetric head-to-tail homodimer: one molecule adopts an all-trans C1-C13 motif, the other a C6-C7-gauche conformation. These homodimers are staggered in a clathrate-like lattice with large void volumes similar to the size of sterols. These results illuminate the atomistic interactions that underlie fungicidal assemblies of AmB and suggest this natural product may form biologically active clathrates that host sterol guests.
Collapse
|
11
|
Sawada S, Miyagi-Shiohira C, Kuwae K, Tamaki Y, Nishime K, Sakai-Yonaha M, Yonaha T, Saitoh I, Watanabe M, Noguchi H. Pancreas preservation with amphotericin B deteriorates islet yield for porcine islet isolation. Xenotransplantation 2021; 28:e12690. [PMID: 33811411 DOI: 10.1111/xen.12690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Amphotericin B is a crucial agent in the management of serious systemic fungal infections. It is also known to be cytotoxic. In this study, we evaluated the effect of amphotericin B added to the preservation solution on islet yield during islet isolation. METHODS Porcine pancreata were preserved in the preservation solution with or without amphotericin B (0.25 μg/mL) for approximately 18 hours at 4°C, and then islet isolation was performed. An optimized number (1750 IE) of isolated islets from each group were transplanted into streptozotocin-induced diabetic mice. The culture of isolated islets and acinar tissue with amphotericin B was also evaluated. RESULTS The islet yield before and after purification in the amphotericin B (-) group was significantly higher than that in the amphotericin B (+) group. After islet transplantation into diabetic mice, blood glucose levels reached the normoglycemic range, with 50% and 0% of that of the diabetic mice in the amphotericin B (-) and amphotericin B (+) groups, respectively. In the culture study, amphotericin B was found to be cytotoxic to porcine islets and acinar tissue. CONCLUSIONS Amphotericin B added to the preservation solution deteriorates islet yield during porcine islet isolation. Thus, the use of amphotericin B should be considered carefully for the preservation of the pancreas for islet isolation and islet culture before islet transplantation.
Collapse
Affiliation(s)
- Sayaka Sawada
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Kazuho Kuwae
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Yoshihito Tamaki
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Kai Nishime
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Mayuko Sakai-Yonaha
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Tasuku Yonaha
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| |
Collapse
|
12
|
Cebeci YU, Ceylan S, Demirbas N, Karaoğlu ŞA. Conventional and Microwave-Assisted Synthesis of Novel 1,2,4-Triazole Derivatives Containing Tryptamine Skeleton and Evaluation of Antimicrobial Activity. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617999200721010921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
1,2,4-Triazole-3-one (3) obtained from tryptamine was transformed to the corresponding carbox(
thio)amides via several steps (6a-d). Their reaction with sodium hydroxide performed the 1,2,4-
triazole derivatives (7a-d). Compounds 7a-d treatment by 2-bromo-1-(4-chlorophenyl)ethanoneain an
ambiance with sodium ethoxide afforded the compounds (8a-d). The reduction reaction of 8a-d afforded
1,2,4-triazoles (9a-d). The synthesis of (10a-d), (11a-d) and (12a-d) was afforded treatment of
products 9a-d with 4-chlorobenzyl chloride (for 10a-d) or 2,6-dichlorobenzyl chloride (for 11a-d) or
2,4-dichlorobenzyl chloride (for 12a-d). Besides the improved of entirely novel agents having various
chemical features than those of the existing ones, another aim is to combined two or more groups into a
single hybrid compound. For this reason, a single compound containing more than one group, each
with various modes of effect, could be helpful for the cure of bacterial infections. Microwave-assisted
and conventional techniques were utilized for the syntheses. The structures of recently obtained molecules
were elucidated on the foundation of 1H NMR, <sup>13</sup>C NMR, FT IR, EI MS methods and elemental
analysis. All novel synthesized molecules were investigated for their antimicrobial activity using MIC
(minimum inhibitory concentration) method. The aminoalkylation of triazoles (7a-d) formed products
8a-d which have excellent activity against testing bacteria with values between 0.24 and 125 μg/mL.
Especially compounds 8a and 8d exhibited much better activity against E. coli than ampicillin used as
standard drug. The microwave process ensured a more efficient road to the creation of desired molecules.
The antibacterial examination demonstrated that after the carbonyl group is increased the antibacterial
activity of the compounds is greatly increased. That's why molecules formed as a result of the
alkylation reactions of triazoles has high activity.
Collapse
Affiliation(s)
- Yıldız Uygun Cebeci
- Karadeniz Technical University, Department of Chemistry, 61080, Trabzon,Turkey
| | - Sule Ceylan
- Artvin Coruh University, Department of Occupational Health and Safety, 08000, Artvin,Turkey
| | - Neslihan Demirbas
- Karadeniz Technical University, Department of Chemistry, 61080, Trabzon,Turkey
| | | |
Collapse
|
13
|
Wang R, Tao W, Liu L, Li C, Bai L, Zhao YL, Shi T. Insights into specificity and catalytic mechanism of amphotericin B/nystatin thioesterase. Proteins 2021; 89:558-568. [PMID: 33389775 DOI: 10.1002/prot.26041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/22/2020] [Accepted: 12/27/2020] [Indexed: 11/12/2022]
Abstract
Polyene polyketides amphotericin B (AMB) and nystatin (NYS) are important antifungal drugs. Thioesterases (TEs), located at the last module of PKS, control the release of polyketides by cyclization or hydrolysis. Intrigued by the tiny structural difference between AMB and NYS, as well as the high sequence identity between AMB TE and NYS TE, we constructed four systems to study the structural characteristics, catalytic mechanism, and product release of AMB TE and NYS TE with combined MD simulations and quantum mechanics/molecular mechanics calculations. The results indicated that compared with AMB TE, NYS TE shows higher specificity on its natural substrate and R26 as well as D186 were proposed to a key role in substrate recognition. The energy barrier of macrocyclization in AMB-TE-Amb and AMB-TE-Nys systems were calculated to be 14.0 and 22.7 kcal/mol, while in NYS-TE-Nys and NYS-TE-Amb systems, their energy barriers were 17.5 and 25.7 kcal/mol, suggesting the cyclization with their natural substrates were more favorable than that with exchanged substrates. At last, the binding free energy obtained with the MM-PBSA.py program suggested that it was easier for natural products to leave TE enzymes after cyclization. And key residues to the departure of polyketide product from the active site were highlighted. We provided a catalytic overview of AMB TE and NYS TE including substrate recognition, catalytic mechanism and product release. These will improve the comprehension of polyene polyketide TEs and benefit for broadening the substrate flexibility of polyketide TEs.
Collapse
Affiliation(s)
- Rufan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wentao Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Dong PT, Zong C, Dagher Z, Hui J, Li J, Zhan Y, Zhang M, Mansour MK, Cheng JX. Polarization-sensitive stimulated Raman scattering imaging resolves amphotericin B orientation in Candida membrane. SCIENCE ADVANCES 2021; 7:eabd5230. [PMID: 33523971 PMCID: PMC7787481 DOI: 10.1126/sciadv.abd5230] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/11/2020] [Indexed: 05/10/2023]
Abstract
Ergosterol-targeting amphotericin B (AmB) is the first line of defense for life-threatening fungal infections. Two models have been proposed to illustrate AmB assembly in the cell membrane; one is the classical ion channel model in which AmB vertically forms transmembrane tunnel and the other is a recently proposed sterol sponge model where AmB is laterally adsorbed onto the membrane surface. To address this controversy, we use polarization-sensitive stimulated Raman scattering from fingerprint C═C stretching vibration to visualize AmB, ergosterol, and lipid in single fungal cells. Intracellular lipid droplet accumulation in response to AmB treatment is found. AmB is located in membrane and intracellular droplets. In the 16 strains studied, AmB residing inside cell membrane was highly ordered, and its orientation is primarily parallel to phospholipid acyl chains, supporting the ion channel model. Label-free imaging of AmB and chemical contents offers an analytical platform for developing low-toxicity, resistance-refractory antifungal agents.
Collapse
Affiliation(s)
- Pu-Ting Dong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Cheng Zong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Zeina Dagher
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Jie Hui
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Junjie Li
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Yuewei Zhan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Meng Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Michael K Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
15
|
Zhang J, Xu H, Dong Y, Chen M, Zhang Y, Shangguan W, Zhao W, Feng J. Design, synthesis and biological evaluation of a novel N-aminoacyl derivative of amphotericin B methyl ester as an antifungal agent. Eur J Med Chem 2020; 211:113104. [PMID: 33360798 DOI: 10.1016/j.ejmech.2020.113104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Jinhua Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Hongjiang Xu
- China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Yuanzhen Dong
- Shanghai Duomirui Biotechnology Ltd., Shanghai, China
| | - Minwei Chen
- Shanghai Duomirui Biotechnology Ltd., Shanghai, China
| | - You Zhang
- China State Institute of Pharmaceutical Industry, Shanghai, China
| | | | - Wenjie Zhao
- China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Jun Feng
- China State Institute of Pharmaceutical Industry, Shanghai, China; Shanghai Duomirui Biotechnology Ltd., Shanghai, China.
| |
Collapse
|
16
|
The Antifungal Mechanism of Amphotericin B Elucidated in Ergosterol and Cholesterol-Containing Membranes Using Neutron Reflectometry. NANOMATERIALS 2020; 10:nano10122439. [PMID: 33291326 PMCID: PMC7762259 DOI: 10.3390/nano10122439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022]
Abstract
We have characterized and compared the structures of ergosterol- and cholesterol-containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes before and after interaction with the amphiphilic antifungal drug amphotericin B (AmB) using neutron reflection. AmB inserts into both pure POPC and sterol-containing membranes in the lipid chain region and does not significantly perturb the structure of pure POPC membranes. By selective per-deuteration of the lipids/sterols, we show that AmB extracts ergosterol but not cholesterol from the bilayers and inserts to a much higher degree in the cholesterol-containing membranes. Ergosterol extraction by AmB is accompanied by membrane thinning. Our results provide new insights into the mechanism and antifungal effect of AmB in these simple models of fungal and mammalian membranes and help understand the molecular origin of its selectivity and toxic side effects.
Collapse
|
17
|
Medina ME, Meza‐Menchaca T, Trigos Á. Insight on the pro‐oxidant capability of amphotericin B in lipid media: A theoretical study. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Manuel E. Medina
- Centro de Investigación en Micología Aplicada Universidad Veracruzana Médicos 4, Unidad del Bosque Xalapa Veracruz 91010 México
| | - Thuluz Meza‐Menchaca
- Facultad de Medicina, Laboratorio de Genómica Humana Universidad Veracruzana Médicos y Odontólogos, Unidad del Bosque Xalapa Veracruz 91010 México
| | - Ángel Trigos
- Centro de Investigación en Micología Aplicada Universidad Veracruzana Médicos 4, Unidad del Bosque Xalapa Veracruz 91010 México
| |
Collapse
|
18
|
Tevyashova AN, Bychkova EN, Solovieva SE, Zatonsky GV, Grammatikova NE, Isakova EB, Mirchink EP, Treshchalin ID, Pereverzeva ER, Bykov EE, Efimova SS, Ostroumova OS, Shchekotikhin AE. Discovery of Amphamide, a Drug Candidate for the Second Generation of Polyene Antibiotics. ACS Infect Dis 2020; 6:2029-2044. [PMID: 32598131 DOI: 10.1021/acsinfecdis.0c00068] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amphotericin B (AmB, 1) is the drug of choice for treating the most serious systemic fungal or protozoan infections. Nevertheless, its application is limited by low solubility in aqueous media and serious side effects such as infusion-related reactions, hemolytic toxicity, and nephrotoxicity. Owing to these limitations, it is essential to search for the polyene derivatives with better chemotherapeutic properties. With the objective of obtaining AmB derivatives with lower self-aggregation and improved solubility, we synthesized a series of amides of AmB bearing an additional basic group in the introduced residue. The screening of antifungal activity in vitro revealed that N-(2-aminoethyl)amide of AmB (amphamide, 6) had superior antifungal activity compared to that of the paternal AmB. Preclinical studies in mice confirmed that compound 6 had a much lower acute toxicity and higher antifungal efficacy in the model of mice candidosis sepsis compared with that of AmB (1). Thus, the discovered amphamide is a promising drug candidate for the second generation of polyene antibiotics and is also prospective for in-depth preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Anna N. Tevyashova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
- D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow, 125047, Russia
| | - Elena N. Bychkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | | | - George V. Zatonsky
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | | | - Elena B. Isakova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | - Elena P. Mirchink
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | - Ivan D. Treshchalin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | | | - Evgeny E. Bykov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | - Svetlana S. Efimova
- Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg, 194064, Russia
| | - Olga S. Ostroumova
- Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg, 194064, Russia
| | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
- D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow, 125047, Russia
| |
Collapse
|
19
|
Zakharova AA, Efimova SS, Yuskovets VN, Yakovlev IP, Sarkisyan ZM, Ostroumova OS. 1,3-Thiazine, 1,2,3,4-Dithiadiazole, and Thiohydrazide Derivatives Affect Lipid Bilayer Properties and Ion-Permeable Pores Induced by Antifungals. Front Cell Dev Biol 2020; 8:535. [PMID: 32695784 PMCID: PMC7339130 DOI: 10.3389/fcell.2020.00535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/08/2020] [Indexed: 12/02/2022] Open
Abstract
Over the past decade, thiazines, thiadiazoles, and thiohydrazides have attracted increasing attention due to their sedative, antimicrobial, antiviral, antifungal, and antitumor activities. The clinical efficacy of such drugs, as well as the possibility of developing resistance to antimicrobials, will depend on addressing a number of fundamental problems, including the role of membrane lipids during their interaction with plasma membranes. The effects of the eight 1,3- thiazine-, 1,2,3,4- dithiadiazole-, and thiohydrazide-related compounds on the physical properties of model lipid membranes and the effects on reconstituted ion channels induced by the polyene macrolide antimycotic nystatin and antifungal cyclic lipopeptides syringomycin E and fengycin were observed. We found that among the tested agents, the fluorine-containing compound N′-(3,5-difluorophenyl)-benzenecarbothiohydrazide (C6) was the most effective at increasing the electric barrier for anion permeation into the hydrophobic region of the membrane and reducing the conductance of anion-permeable syringomycin pores. A decrease in the membrane boundary potential with C6 adsorption also facilitated the immersion of positively charged syringomycin molecules into the lipid bilayer and increases the pore-forming ability of the lipopeptide. Using differential scanning microcalorimetry, we showed that C6 led to disordering of membrane lipids, possibly by potentiating positive curvature stress. Therefore, we used C6 as an agonist of antifungals forming the pores that are sensitive to membrane curvature stress and lipid packing, i.e., nystatin and fengycin. The dramatic increase in transmembrane current induced by syringomycin E, nystatin, and fengycin upon C6 treatment suggests its potential in combination therapy for treating invasive fungal infections.
Collapse
Affiliation(s)
- Anastasiia A Zakharova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Svetlana S Efimova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Valeriy N Yuskovets
- Department of Organic Chemistry, Saint-Petersburg State Chemical Pharmaceutical University, Saint Petersburg, Russia
| | - Igor P Yakovlev
- Department of Organic Chemistry, Saint-Petersburg State Chemical Pharmaceutical University, Saint Petersburg, Russia
| | - Zara M Sarkisyan
- Department of General and Medical Chemistry, Saint-Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - Olga S Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
20
|
Wu A, Grela E, Wójtowicz K, Filipczak N, Hamon Y, Luchowski R, Grudziński W, Raducka-Jaszul O, Gagoś M, Szczepaniak A, Chimini G, Gruszecki WI, Trombik T. ABCA1 transporter reduces amphotericin B cytotoxicity in mammalian cells. Cell Mol Life Sci 2019; 76:4979-4994. [PMID: 31134303 PMCID: PMC6881254 DOI: 10.1007/s00018-019-03154-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/07/2019] [Accepted: 05/16/2019] [Indexed: 01/20/2023]
Abstract
Amphotericin B (AmB) belongs to a group of polyene antibiotics commonly used in the treatment of systemic mycotic infections. A widely accepted mechanism of action of AmB is based on the formation of an oligomeric pore structure within the plasma membrane (PM) by interaction with membrane sterols. Although AmB binds preferentially to ergosterol, it can also bind to cholesterol in the mammalian PM and cause severe cellular toxicity. The lipid content and its lateral organization at the cell PM appear to be significant for AmB binding. Several ATP-binding cassette (ABC) transporters, including ABCA1, play a crucial role in lipid translocation, cholesterol redistribution and efflux. Here, we demonstrate that cells expressing ABCA1 are more resistant to AmB treatment, while cells lacking ABCA1 expression or expressing non-active ABCA1MM mutant display increased sensitivity. Further, a FLIM analysis of AmB-treated cells reveals a fraction of the antibiotic molecules, characterized by relatively high fluorescence lifetimes (> 6 ns), involved in formation of bulk cholesterol-AmB structures at the surface of ABCA1-expressing cells. Finally, lowering the cellular cholesterol content abolishes resistance of ABCA1-expressing cells to AmB. Therefore, we propose that ABCA1-mediated cholesterol efflux from cells induces formation of bulk cholesterol-AmB structures at the cell surface, preventing AmB cytotoxicity.
Collapse
Affiliation(s)
- A Wu
- Faculty of Biotechnology, University of Wroclaw, 50-383, Wrocław, Poland
| | - E Grela
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031, Lublin, Poland
| | - K Wójtowicz
- Faculty of Biotechnology, University of Wroclaw, 50-383, Wrocław, Poland
| | - N Filipczak
- Faculty of Biotechnology, University of Wroclaw, 50-383, Wrocław, Poland
| | - Y Hamon
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - R Luchowski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031, Lublin, Poland
| | - W Grudziński
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031, Lublin, Poland
| | - O Raducka-Jaszul
- Faculty of Biotechnology, University of Wroclaw, 50-383, Wrocław, Poland
| | - M Gagoś
- Department of Cell Biology, Maria Curie-Skłodowska University, 20-033, Lublin, Poland
| | - A Szczepaniak
- Faculty of Biotechnology, University of Wroclaw, 50-383, Wrocław, Poland
| | - G Chimini
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - W I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031, Lublin, Poland
| | - T Trombik
- Faculty of Biotechnology, University of Wroclaw, 50-383, Wrocław, Poland.
| |
Collapse
|
21
|
Chudzik B, Bonio K, Dabrowski W, Pietrzak D, Niewiadomy A, Olender A, Malodobry K, Gagoś M. Synergistic antifungal interactions of amphotericin B with 4-(5-methyl-1,3,4-thiadiazole-2-yl) benzene-1,3-diol. Sci Rep 2019; 9:12945. [PMID: 31506532 PMCID: PMC6737028 DOI: 10.1038/s41598-019-49425-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/22/2019] [Indexed: 01/16/2023] Open
Abstract
Amphotericin B (AmB) is a very potent antifungal drug with very rare resistance among clinical isolates. Treatment with the AmB formulations available currently is associated with severe side effects. A promising strategy to minimize the toxicity of AmB is reducing its dose by combination therapy with other antifungals, showing synergistic interactions. Therefore, substances that display synergistic interactions with AmB are still being searched for. Screening tests carried out on several dozen of synthetic 1,3,4-thiadiazole derivatives allowed selection of a compound called 4-(5-methyl-1,3,4-thiadiazole-2-yl) benzene-1,3-diol (abbreviated as C1), which shows strong synergistic interaction with AmB and low toxicity towards human cells. The aim of the present study was to investigate the type of in vitro antifungal interactions of the C1 compound with AmB against fungal clinical isolates differing in susceptibility. The results presented in the present paper indicate that the C1 derivative shows strong synergistic interaction with AmB, which allows the use of a dozen to several dozen times lower AmB concentration necessary for 100% inhibition of the growth of pathogenic fungi in vitro. Synergistic interactions were noted for all tested strains, including strains with reduced sensitivity to AmB and azole-resistant isolates. These observations give hope for the possibility of application of the AmB - C1 combinatory therapy in the treatment of fungal infections.
Collapse
Affiliation(s)
- Barbara Chudzik
- Department of Cell Biology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Katarzyna Bonio
- Department of Cell Biology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Therapy Medical University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland.
| | - Daniel Pietrzak
- Department of Anaesthesiology and Intensive Therapy Medical University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland
| | - Andrzej Niewiadomy
- Institute of Industrial Organic Chemistry, Annopol 6, 03-236, Warsaw, Poland.,Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland
| | - Alina Olender
- Chair and Department of Medical Microbiology, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Katarzyna Malodobry
- Department of Nurse and Health Science, Medical Division in University of Rzeszów, Al. Rejtana 16A, 35-310, Rzeszów, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
22
|
Fischer D, Gessner G, Fill TP, Barnett R, Tron K, Dornblut K, Kloss F, Stallforth P, Hube B, Heinemann SH, Hertweck C, Scherlach K, Brunke S. Disruption of Membrane Integrity by the Bacterium-Derived Antifungal Jagaricin. Antimicrob Agents Chemother 2019; 63:e00707-19. [PMID: 31235622 PMCID: PMC6709453 DOI: 10.1128/aac.00707-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/14/2019] [Indexed: 01/05/2023] Open
Abstract
Jagaricin is a lipopeptide produced by the bacterial mushroom pathogen Janthinobacterium agaricidamnosum, the causative agent of mushroom soft rot disease. Apart from causing lesions in mushrooms, jagaricin is a potent antifungal active against human-pathogenic fungi. We show that jagaricin acts by impairing membrane integrity, resulting in a rapid flux of ions, including Ca2+, into susceptible target cells. Accordingly, the calcineurin pathway is required for jagaricin tolerance in the fungal pathogen Candida albicans Transcriptional profiling of pathogenic yeasts further revealed that jagaricin triggers cell wall strengthening, general shutdown of membrane potential-driven transport, and the upregulation of lipid transporters, linking cell envelope integrity to jagaricin action and resistance. Whereas jagaricin shows hemolytic effects, it exhibited either no or low plant toxicity at concentrations at which the growth of prevalent phytopathogenic fungi is inhibited. Therefore, jagaricin may have potential for agricultural applications. The action of jagaricin as a membrane-disrupting antifungal is promising but would require modifications for use in humans.
Collapse
Affiliation(s)
- Daniel Fischer
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Guido Gessner
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Taicia Pacheco Fill
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Robert Barnett
- Junior Research Group Chemistry of Microbial Communication, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Kyrylo Tron
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Katharina Dornblut
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Florian Kloss
- Transfer Group Antiinfectives, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Pierre Stallforth
- Junior Research Group Chemistry of Microbial Communication, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| |
Collapse
|
23
|
Wu HC, Yoshioka T, Nakagawa K, Shintani T, Saeki D, Matsuyama H. Molecular simulation of a modified amphotericin B-Ergosterol artificial water channel to evaluate structure and water molecule transport performance. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Kristanc L, Božič B, Jokhadar ŠZ, Dolenc MS, Gomišček G. The pore-forming action of polyenes: From model membranes to living organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:418-430. [DOI: 10.1016/j.bbamem.2018.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/04/2018] [Accepted: 11/14/2018] [Indexed: 01/05/2023]
|
25
|
Mukherjee S, Xu W, Hsu FF, Patel J, Huang J, Zhang K. Sterol methyltransferase is required for optimal mitochondrial function and virulence in Leishmania major. Mol Microbiol 2019; 111:65-81. [PMID: 30260041 PMCID: PMC6351164 DOI: 10.1111/mmi.14139] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2018] [Indexed: 12/24/2022]
Abstract
Limited knowledge on the exact functions of ergostane-based sterols has hampered the application of sterol synthesis inhibitors against trypanosomatid parasites. Sterol methyltransferase (SMT) is directly involved in the synthesis of parasite-specific C24-methylated sterols, including ergosterol and 5-dehydroepisterol. While pharmacological studies hint at its potential as a drug target against trypanosomatids, direct evidence for the cellular function and essentiality of SMT is lacking. Here, we characterized the SMT knockout mutants and their complemented strains in Leishmania major, the causative agent for cutaneous leishmaniasis. Deletion of SMT alleles led to a complete loss of C24-methylated sterols, which were replaced by cholestane-based sterols. SMT-null mutants were fully viable and replicative in culture but showed increased sensitivity to sphingolipid synthesis inhibition. They were not particularly vulnerable to heat, acidic pH, nitrosative or oxidative stress, yet exhibited high mitochondrial membrane potential and increased superoxide generation indicating altered physiology of the mitochondria. Despite possessing high levels of GPI-anchored glycoconjugates, SMT-null mutants showed significantly attenuated virulence in mice. In total, our study reveals that the biosynthesis of ergostane-based sterols is crucial for the proper function of mitochondria and the proliferation of Leishmania parasites in mammals.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Wei Xu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Current address: Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jigesh Patel
- Department of Physics, Texas Tech University, Lubbock, TX 79409, USA
| | - Juyang Huang
- Department of Physics, Texas Tech University, Lubbock, TX 79409, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
26
|
Posch W, Blatzer M, Wilflingseder D, Lass-Flörl C. Aspergillus terreus: Novel lessons learned on amphotericin B resistance. Med Mycol 2018. [PMID: 29538736 DOI: 10.1093/mmy/myx119] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The polyene antifungal amphotericin B (AmB) exerts a powerful and broad activity against a vast array of fungi and in general displays a remarkably low rate of antimicrobial resistance. Aspergillus terreus holds an exceptional position among the Aspergilli due to its intrinsic AmB resistance, in vivo and in vitro. Until now, the underlying mechanisms of polyene resistance were not well understood. This review will highlight the molecular basis of A. terreus and AmB resistance recently gained and will display novel data on the mode of action of AmB. A main focus is set on fundamental stress response pathways covering the heat shock proteins (Hsp) 90/Hsp70 axis, as well as reactive oxygen species detoxifying enzymes in response to AmB. The effect on main cellular functions such as fungal respiration will be addressed in detail and resistance mechanisms will be highlighted. Based on these novel findings we will discuss new molecular targets for alternative options in the treatment of invasive infections due to A. terreus.
Collapse
Affiliation(s)
- Wilfried Posch
- Medical University of Innsbruck, Division of Hygiene and Medical Microbiology, Schöpfstrasse 41, A- 6020 Innsbruck, Austria
| | - Michael Blatzer
- Medical University of Innsbruck, Division of Hygiene and Medical Microbiology, Schöpfstrasse 41, A- 6020 Innsbruck, Austria
| | - Doris Wilflingseder
- Medical University of Innsbruck, Division of Hygiene and Medical Microbiology, Schöpfstrasse 41, A- 6020 Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Medical University of Innsbruck, Division of Hygiene and Medical Microbiology, Schöpfstrasse 41, A- 6020 Innsbruck, Austria.,ISHAM Aspergillus terreus Working Group
| |
Collapse
|
27
|
Tsuchikawa H, Umegawa Y, Murata M, Oishi T. A Synthetic Approach to the Channel Complex Structure of Antibiotic in a Membrane: Backbone <sup>19</sup>F-Labeled Amphotericin B for Solid-State NMR Analysis. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.1197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Tohru Oishi
- Department of Chemistry, Graduate School of Science, Kyushu University
| |
Collapse
|
28
|
Kintali S, Kishor Varshney G, Das K. Interaction of Amphotericin B with Ergosterol/Cholesterol-Containing POPG Liposomes Studied by Absorption, Fluorescence and Second Harmonic Spectroscopy. ChemistrySelect 2018. [DOI: 10.1002/slct.201801924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Srinivasarao Kintali
- Photochem. &Photophys. Appl. Lab, Laser Bio-Medical Applications Section; Raja Ramanna Centre for Advanced Technology; Indore 452013, M.P. India
- HomiBhabha National Institute; Training School Complex, Anushakti Nagar; Mumbai 400094 India
| | - Gopal Kishor Varshney
- Photochem. &Photophys. Appl. Lab, Laser Bio-Medical Applications Section; Raja Ramanna Centre for Advanced Technology; Indore 452013, M.P. India
- HomiBhabha National Institute; Training School Complex, Anushakti Nagar; Mumbai 400094 India
| | - Kaustuv Das
- Photochem. &Photophys. Appl. Lab, Laser Bio-Medical Applications Section; Raja Ramanna Centre for Advanced Technology; Indore 452013, M.P. India
- HomiBhabha National Institute; Training School Complex, Anushakti Nagar; Mumbai 400094 India
| |
Collapse
|
29
|
Rongai D, Sabatini N, Pulcini P, Di Marco C, Storchi L, Marrone A. Effect of pomegranate peel extract on shelf life of strawberries: computational chemistry approaches to assess antifungal mechanisms involved. Journal of Food Science and Technology 2018; 55:2702-2711. [PMID: 30042586 DOI: 10.1007/s13197-018-3192-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/11/2018] [Accepted: 04/23/2018] [Indexed: 11/24/2022]
Abstract
In Italy Botrytis cinerea represents the most significant disease in strawberry crops and causes major quality and quantity losses in postharvest storage. An alternative strategy to the synthetic fungicides in crop defence could be the use of bioactive compounds with high antifungal activity. This research regards the use of Punica granatum peel extract to extend the shelf life of strawberry and the proposal of a possible mechanism for its antifungal activity. In vitro and in vivo tests showed the ability of pomegranate peel extract to control strawberry gray mould. Fourier transform near infrared spectroscopy showed a high correlation between spectra and disease severity then, a putative molecular mechanism for the interaction of punicalagin on ergosterol of fungal membrane was described by means of computational chemistry approaches. Molecular dynamics simulations were performed by using Gromacs to gain multiconformational representations of either punicalagin and an antifungal compound of clinical relevance, i.e. amphotericin B. The use of grid-based procedures, allowed to shed some light on the molecular mechanism featuring the antifungal activity of punicalagin.
Collapse
Affiliation(s)
- D Rongai
- CREA Research Centre for Plant Protection and Certification, via C.G Bertero, 22, 00156 Rome, Italy
| | - N Sabatini
- CREA Research Centre for Engineering and Agro-Food Processing, via L. Petruzzi 75, 65013 Città Sant'Angelo, Italy
| | - P Pulcini
- CREA Research Centre for Plant Protection and Certification, via C.G Bertero, 22, 00156 Rome, Italy
| | - C Di Marco
- CREA Research Centre for Engineering and Agro-Food Processing, via L. Petruzzi 75, 65013 Città Sant'Angelo, Italy
| | - L Storchi
- 3(UNI-CH) Università degli Studi G. D'Annunzio Chieti-Pescara, via Vestini 31, 66100 Chieti, Italy.,4Molecular Discovery Limited, Middlesex, London, UK
| | - A Marrone
- 3(UNI-CH) Università degli Studi G. D'Annunzio Chieti-Pescara, via Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
30
|
Wu HC, Yoshioka T, Nakagawa K, Shintani T, Tsuru T, Saeki D, Shaikh AR, Matsuyama H. Preparation of Amphotericin B-Ergosterol structures and molecular simulation of water adsorption and diffusion. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
31
|
Efimova SS, Tevyashova AN, Olsufyeva EN, Bykov EE, Ostroumova OS. Pore-forming activity of new conjugate antibiotics based on amphotericin B. PLoS One 2017; 12:e0188573. [PMID: 29186162 PMCID: PMC5706719 DOI: 10.1371/journal.pone.0188573] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/09/2017] [Indexed: 01/02/2023] Open
Abstract
A series of amides of the antifungal antibiotic amphotericin B (AmB) and its conjugates with benzoxaboroles was tested to determine whether they form pores in lipid bilayers and to compare their channel characteristics. The tested derivatives produced pores of larger amplitude and shorter lifetime than those of the parent antibiotic. The pore conductance was related to changes in the partial charge of the hydrogens of the hydroxyl groups in the lactone ring that determined the anion coordination in the channel. Neutralization of one of the polar group charges in the AmB head during chemical modification produced a pronounced effect by diminishing the dwell time of the polyene channel compared to modification of both groups. In this study, compounds that had a modification of one carboxyl or amino group were less effective in initializing phase separation in POPC-membranes compared to derivatives that had modifications of both polar groups as well as the parent antibiotic. The effects were attributed to the restriction of the aggregation process by electrical repulsion between charged derivatives in contrast to neutral compounds. The significant correlation between the ability of derivatives to increase the permeability of model membranes—causing the appearance of single channels in lipid bilayers or inducing calcein leakage from unilamellar vesicles—and the minimal inhibitory concentration indicated that the antifungal effect of the conjugates was due to pore formation in the membranes of target cells.
Collapse
Affiliation(s)
- Svetlana S. Efimova
- Group of Ion Channel Modeling, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
- * E-mail:
| | - Anna N. Tevyashova
- Laboratory of Chemical Transformation of Antibiotics, Gause Institute of New Antibiotics of the Russian Academy of Medical Sciences, Moscow, Russia
- D.I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Evgenia N. Olsufyeva
- Laboratory of Chemical Transformation of Antibiotics, Gause Institute of New Antibiotics of the Russian Academy of Medical Sciences, Moscow, Russia
| | - Evgeny E. Bykov
- Laboratory of Chemical Transformation of Antibiotics, Gause Institute of New Antibiotics of the Russian Academy of Medical Sciences, Moscow, Russia
| | - Olga S. Ostroumova
- Group of Ion Channel Modeling, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
32
|
Combination treatment of ergosterol followed by amphotericin B induces necrotic cell death in human hepatocellular carcinoma cells. Oncotarget 2017; 8:72727-72738. [PMID: 29069821 PMCID: PMC5641164 DOI: 10.18632/oncotarget.20285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/25/2017] [Indexed: 12/22/2022] Open
Abstract
The incidence of liver cancer, the second leading cause of cancer-related deaths has increased over the past few decades. Although recent treatments such as sorafenib are promising in patients with advanced hepatocellular carcinoma (HCC), the response rates remain poor thereby warranting the identification of novel therapeutic agents against liver cancer. Herein, we investigated the anti-cancer effect of ergosterol (a secondary metabolite in medicinal fungus) pretreatment followed by amphotericin B (AmB) treatment on liver cancer cell lines. We demonstrated that pretreatment with a nontoxic dose of ergosterol synergistically enhanced the cytotoxicity of AmB in both Hep3B and HepJ5 cells. The combination treatment-mediated suppression of cancer cell viability occurred through necrosis characterized by disrupted cell membrane and significant amounts of debris accumulation. In addition, we also observed a concomitant increase in reactive oxygen species (ROS) and LC3-II levels in HepJ5 cells treated with ergosterol and AmB. Our results suggest that ergosterol-AmB combination treatment effectively induced necrotic cell death in cancer cells, and deserves further evaluation for development as an anti-cancer agent.
Collapse
|
33
|
Falcón-González JM, Jiménez-Domínguez G, Ortega-Blake I, Carrillo-Tripp M. Multi-Phase Solvation Model for Biological Membranes: Molecular Action Mechanism of Amphotericin B. J Chem Theory Comput 2017; 13:3388-3397. [DOI: 10.1021/acs.jctc.7b00337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. M. Falcón-González
- Laboratorio
de la Diversidad Biomolecular, Centro de Investigación y de Estudios Avanzados Unidad Monterrey, Vía del Conocimiento 201,
Parque PIIT, C.P. 66600, Apodaca, Nuevo León, México
- Unidad
Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, Av. Mineral de Valenciana No. 200,
Col. Fraccionamiento Industrial Puerto Interior, C.P. 36275, Silao de la Victoria, Guanajuato, México
| | - G. Jiménez-Domínguez
- Laboratorio
de la Diversidad Biomolecular, Centro de Investigación y de Estudios Avanzados Unidad Monterrey, Vía del Conocimiento 201,
Parque PIIT, C.P. 66600, Apodaca, Nuevo León, México
| | - I. Ortega-Blake
- Instituto
de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, C.P. 62251, Cuernavaca, Morelos, México
| | - M. Carrillo-Tripp
- Laboratorio
de la Diversidad Biomolecular, Centro de Investigación y de Estudios Avanzados Unidad Monterrey, Vía del Conocimiento 201,
Parque PIIT, C.P. 66600, Apodaca, Nuevo León, México
| |
Collapse
|
34
|
Debouzy J, Mehenni L, Crouzier D, Lahiani-Skiba M, Nugue G, Skiba M. NMR and ESR study of amphotericin B interactions with various binary phosphatidylcholine/phosphatidylglycerol membranes. Int J Pharm 2017; 521:384-394. [DOI: 10.1016/j.ijpharm.2017.02.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
|
35
|
Aversa F, Busca A, Candoni A, Cesaro S, Girmenia C, Luppi M, Nosari AM, Pagano L, Romani L, Rossi G, Venditti A, Novelli A. Liposomal amphotericin B (AmBisome®) at beginning of its third decade of clinical use. J Chemother 2017; 29:131-143. [DOI: 10.1080/1120009x.2017.1306183] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Franco Aversa
- Department of Clinical and Experimental Medicine, Hematology and BMT Unit, University of Parma, Parma, Italy
| | - Alessandro Busca
- Department of Oncology and Hematology, BMT Unit, A.O. Citta’ della Salute e della Scienza di Torino, Torino, Italy
| | - Anna Candoni
- Hematology and Center for Stem Cell Transplantation and Cell Therapy, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Simone Cesaro
- Pediatric Hematology Oncology, G.B. Rossi Hosptial, Verona, Italy
| | | | - Mario Luppi
- Department of Medical and Surgical Sciences UNIMORE, Division of Hematology AOU Policlinico, Modena, Italy
| | - Anna Maria Nosari
- Dipartimento di Ematologia ed Oncologia, Niguarda Cancer Centre ASST Grande Ospedale Metropolitano Niguarda Piazza Ospedale, Milano, Italy
| | - Livio Pagano
- Hematology Unit, Catholic University Holy Hearth, Roma, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giuseppe Rossi
- Ematologia e Dipartimento di Oncologia Clinica, A.O. Spedali Civili, Brescia, Italy
| | | | - Andrea Novelli
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| |
Collapse
|
36
|
Lopes D, Jakobtorweihen S, Nunes C, Sarmento B, Reis S. Shedding light on the puzzle of drug-membrane interactions: Experimental techniques and molecular dynamics simulations. Prog Lipid Res 2017; 65:24-44. [DOI: 10.1016/j.plipres.2016.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/30/2016] [Accepted: 12/03/2016] [Indexed: 12/20/2022]
|
37
|
Al Khamici H, Hossain KR, Cornell BA, Valenzuela SM. Investigating Sterol and Redox Regulation of the Ion Channel Activity of CLIC1 Using Tethered Bilayer Membranes. MEMBRANES 2016; 6:membranes6040051. [PMID: 27941637 PMCID: PMC5192407 DOI: 10.3390/membranes6040051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 12/03/2022]
Abstract
The Chloride Intracellular Ion Channel (CLIC) family consists of six conserved proteins in humans. These are a group of enigmatic proteins, which adopt both a soluble and membrane bound form. CLIC1 was found to be a metamorphic protein, where under specific environmental triggers it adopts more than one stable reversible soluble structural conformation. CLIC1 was found to spontaneously insert into cell membranes and form chloride ion channels. However, factors that control the structural transition of CLIC1 from being an aqueous soluble protein into a membrane bound protein have yet to be adequately described. Using tethered bilayer lipid membranes and electrical impedance spectroscopy system, herein we demonstrate that CLIC1 ion channel activity is dependent on the type and concentration of sterols in bilayer membranes. These findings suggest that membrane sterols play an essential role in CLIC1’s acrobatic switching from a globular soluble form to an integral membrane form, promoting greater ion channel conductance in membranes. What remains unclear is the precise nature of this regulation involving membrane sterols and ultimately determining CLIC1’s membrane structure and function as an ion channel. Furthermore, our impedance spectroscopy results obtained using CLIC1 mutants, suggest that the residue Cys24 is not essential for CLIC1’s ion channel function. However Cys24 does appear important for optimal ion channel activity. We also observe differences in conductance between CLIC1 reduced and oxidized forms when added to our tethered membranes. Therefore, we conclude that both membrane sterols and redox play a role in the ion channel activity of CLIC1.
Collapse
Affiliation(s)
- Heba Al Khamici
- School of Life Sciences, University of Technology Sydney, Sydney 2007, Australia.
| | - Khondher R Hossain
- School of Life Sciences, University of Technology Sydney, Sydney 2007, Australia.
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), NSW 2234, Australia.
| | | | - Stella M Valenzuela
- School of Life Sciences, University of Technology Sydney, Sydney 2007, Australia.
| |
Collapse
|
38
|
Chudzik B, Czernel G, Miaskowski A, Gagoś M. Amphotericin B-copper(II) complex shows improved therapeutic index in vitro. Eur J Pharm Sci 2016; 97:9-21. [PMID: 27816628 DOI: 10.1016/j.ejps.2016.10.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 10/20/2022]
Abstract
The AmB-Cu(II) complex has recently been reported as an antifungal agent with reduced aggregation of AmB in aqueous solutions, increased anti C. albicans activity and lower toxicity against human cells in vitro. In the present work, investigations of the activity of the AmB-Cu (II) complex against fungal pathogens with varying susceptibility, including C. albicans and C. parapsilosis strains and intrinsically resistant A. niger, and cytotoxicity in normal human dermal fibroblasts (NHDF) in vitro were performed. For better understanding of the mechanism of reduced cytotoxicity and increased fungicidal activity, the influence of the AmB-Cu (II) complex on membrane integrity and accumulation of cellular reactive oxygen species (ROS) and mitochondrial superoxide was compared with that of conventional AmB. In the sensitive C. albicans and C. parapsilosis strains, the AmB-Cu(II) complex showed higher fungicidal activity (the MIC value was 0.35-0.7μg/ml for the AmB-Cu (II) complex, and 0.45-0.9μg/ml for Fungizone) due to increased induction of oxidative damage with rapid inhibition of the ability to reduce tetrazolium dye (MTT). In the NHDF cell line, the CC50 value was 30.13±1.53μg/ml for the AmB-Cu(II) complex and 17.46±1.24μg/ml for (Fungizone), therefore, the therapeutic index (CC50/MIC90) determined in vitro was 86.09-43.04 for the AmB-Cu(II) complex and 38.80-19.40 for Fungizone. The lower cytotoxicity of the AmB-Cu(II) complex in human cells resulted from lower accumulation of cellular and mitochondrial reactive oxygen species. This phenomenon was probably caused by the induction of successful antioxidant defense of the cells. The mechanism of the reduced cytotoxicity of the AmB-Cu(II) complex needs further investigation, but the preliminary results are very promising.
Collapse
Affiliation(s)
- Barbara Chudzik
- Department of Cell Biology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, 20-033 Lublin, Poland.
| | - Grzegorz Czernel
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Arkadiusz Miaskowski
- Department of Applied Mathematics and Computer Science, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, 20-033 Lublin, Poland.
| |
Collapse
|
39
|
Grudzinski W, Sagan J, Welc R, Luchowski R, Gruszecki WI. Molecular organization, localization and orientation of antifungal antibiotic amphotericin B in a single lipid bilayer. Sci Rep 2016; 6:32780. [PMID: 27620838 PMCID: PMC5020354 DOI: 10.1038/srep32780] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/15/2016] [Indexed: 01/29/2023] Open
Abstract
Amphotericin B is a popular antifungal antibiotic, a gold standard in treatment of systemic mycotic infections, due to its high effectiveness. On the other hand, applicability of the drug is limited by its considerable toxicity to patients. Biomembranes are a primary target of physiological activity of amphotericin B and both the pharmacologically desired and toxic side effects of the drug relay on its molecular organization in the lipid phase. In the present work, molecular organization, localization and orientation of amphotericin B, in a single lipid bilayer system, was analysed simultaneously, thanks to application of a confocal fluorescence lifetime imaging microscopy of giant unilamellar vesicles. The results show that the presence of sterols, in the lipid phase, promotes formation of supramolecular structures of amphotericin B and their penetration into the membrane hydrophobic core. The fact that such an effect is substantially less pronounced in the case of cholesterol than ergosterol, the sterol of fungal membranes, provides molecular insight into the selectivity of the drug.
Collapse
Affiliation(s)
- Wojciech Grudzinski
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Joanna Sagan
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Renata Welc
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Rafal Luchowski
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Wieslaw I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
40
|
Ciesielski F, Griffin DC, Loraine J, Rittig M, Delves-Broughton J, Bonev BB. Recognition of Membrane Sterols by Polyene Antifungals Amphotericin B and Natamycin, A (13)C MAS NMR Study. Front Cell Dev Biol 2016; 4:57. [PMID: 27379235 PMCID: PMC4911417 DOI: 10.3389/fcell.2016.00057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/30/2016] [Indexed: 01/30/2023] Open
Abstract
The molecular action of polyene macrolides with antifungal activity, amphotericin B and natamycin, involves recognition of sterols in membranes. Physicochemical and functional studies have contributed details to understanding the interactions between amphotericin B and ergosterol and, to a lesser extent, with cholesterol. Fewer molecular details are available on interactions between natamycin with sterols. We use solid state (13)C MAS NMR to characterize the impact of amphotericin B and natamycin on mixed lipid membranes of DOPC/cholesterol or DOPC/ergosterol. In cholesterol-containing membranes, amphotericin B addition resulted in marked increase in both DOPC and cholesterol (13)C MAS NMR linewidth, reflecting membrane insertion and cooperative perturbation of the bilayer. By contrast, natamycin affects little either DOPC or cholesterol linewidth but attenuates cholesterol resonance intensity preferentially for sterol core with lesser impact on the chain. Ergosterol resonances, attenuated by amphotericin B, reveal specific interactions in the sterol core and chain base. Natamycin addition selectively augmented ergosterol resonances from sterol core ring one and, at the same time, from the end of the chain. This puts forward an interaction model similar to the head-to-tail model for amphotericin B/ergosterol pairing but with docking on opposite sterol faces. Low toxicity of natamycin is attributed to selective, non-cooperative sterol engagement compared to cooperative membrane perturbation by amphotericin B.
Collapse
Affiliation(s)
- Filip Ciesielski
- School of Life Sciences, Queen's Medical Centre, University of Nottingham Nottingham, UK
| | - David C Griffin
- School of Life Sciences, Queen's Medical Centre, University of Nottingham Nottingham, UK
| | - Jessica Loraine
- School of Life Sciences, Queen's Medical Centre, University of Nottingham Nottingham, UK
| | - Michael Rittig
- School of Life Sciences, Queen's Medical Centre, University of Nottingham Nottingham, UK
| | | | - Boyan B Bonev
- School of Life Sciences, Queen's Medical Centre, University of Nottingham Nottingham, UK
| |
Collapse
|
41
|
Mobasheri M, Attar H, Rezayat Sorkhabadi SM, Khamesipour A, Jaafari MR. Solubilization Behavior of Polyene Antibiotics in Nanomicellar System: Insights from Molecular Dynamics Simulation of the Amphotericin B and Nystatin Interactions with Polysorbate 80. Molecules 2015; 21:E6. [PMID: 26712721 PMCID: PMC6273564 DOI: 10.3390/molecules21010006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 01/23/2023] Open
Abstract
Amphotericin B (AmB) and Nystatin (Nys) are the drugs of choice for treatment of systemic and superficial mycotic infections, respectively, with their full clinical potential unrealized due to the lack of high therapeutic index formulations for their solubilized delivery. In the present study, using a coarse-grained (CG) molecular dynamics (MD) simulation approach, we investigated the interaction of AmB and Nys with Polysorbate 80 (P80) to gain insight into the behavior of these polyene antibiotics (PAs) in nanomicellar solution and derive potential implications for their formulation development. While the encapsulation process was predominantly governed by hydrophobic forces, the dynamics, hydration, localization, orientation, and solvation of PAs in the micelle were largely controlled by hydrophilic interactions. Simulation results rationalized the experimentally observed capability of P80 in solubilizing PAs by indicating (i) the dominant kinetics of drugs encapsulation over self-association; (ii) significantly lower hydration of the drugs at encapsulated state compared with aggregated state; (iii) monomeric solubilization of the drugs; (iv) contribution of drug-micelle interactions to the solubilization; (v) suppressed diffusivity of the encapsulated drugs; (vi) high loading capacity of the micelle; and (vii) the structural robustness of the micelle against drug loading. Supported from the experimental data, our simulations determined the preferred location of PAs to be the core-shell interface at the relatively shallow depth of 75% of micelle radius. Deeper penetration of PAs was impeded by the synergistic effects of (i) limited diffusion of water; and (ii) perpendicular orientation of these drug molecules with respect to the micelle radius. PAs were solvated almost exclusively in the aqueous poly-oxyethylene (POE) medium due to the distance-related lack of interaction with the core, explaining the documented insensitivity of Nys solubilization to drug-core compatibility in detergent micelles. Based on the obtained results, the dearth of water at interior sites of micelle and the large lateral occupation space of PAs lead to shallow insertion, broad radial distribution, and lack of core interactions of the amphiphilic drugs. Hence, controlled promotion of micelle permeability and optimization of chain crowding in palisade layer may help to achieve more efficient solubilization of the PAs.
Collapse
Affiliation(s)
- Meysam Mobasheri
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran.
| | - Hossein Attar
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran.
- Tofigh Daru Research and Engineering Company (TODACO), Tehran 1397116359, Iran.
| | - Seyed Mehdi Rezayat Sorkhabadi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417755469, Iran.
- Department of Toxicology and Pharmacology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran 193956466, Iran.
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran 1416613675, Iran.
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, P. O. Box: 91775-1365, Mashhad 917751365, Iran.
| |
Collapse
|
42
|
Boukari K, Balme S, Janot JM, Picaud F. Towards New Insights in the Sterol/Amphotericin Nanochannels Formation: A Molecular Dynamic Simulation Study. J Membr Biol 2015; 249:261-70. [PMID: 26700625 DOI: 10.1007/s00232-015-9865-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
Amphotericin B (AmB) is a well-known polyene which self-organizes into membrane cell in order to cause the cell death. Its specific action towards fungal cell is not fully understood but was proved to become from sterol composition. The mechanism was shown experimentally to require the formation of stable sterol/polyene couples which could then organize in a nanochannel. This would allow the leakage of ions responsible for the death of fungal cells, only. In this present study, we investigate the arrangement of AmB/sterols in biological membrane using molecular dynamic simulations in order to understand the role of the sterol structure on the antifungal action of the polyene. We show in particular that the nanochannels tend to close up when cell was composed with cholesterol (animal cell) due to strong interaction between amphotericin and sterol. On the other side, with ergosterol (fungal cell) the largest interactions between amphotericin and lipid membrane lead to the appearance of large hole that could favor the important leakage of ions and thus, the fungal cell death. This work appears as a good complement in the extensive studies linked to the understanding of the antifungal molecules in membrane cells.
Collapse
Affiliation(s)
- Khaoula Boukari
- Laboratoire de Nanomédecine, Imagerie et Thérapeutique, EA 4662, Université Franche-Comté, Centre Hospitalier Universitaire de Besançon, UFR ST, 16 route de Gray, 25030, Besançon Cedex, France
| | - Sébastien Balme
- Institut Européen des Membranes, UMR5635 CNRS-UM2-ENSCM, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Jean-Marc Janot
- Institut Européen des Membranes, UMR5635 CNRS-UM2-ENSCM, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Fabien Picaud
- Laboratoire de Nanomédecine, Imagerie et Thérapeutique, EA 4662, Université Franche-Comté, Centre Hospitalier Universitaire de Besançon, UFR ST, 16 route de Gray, 25030, Besançon Cedex, France.
| |
Collapse
|
43
|
Medina ME, Iuga C, Trigos Á. Mechanism and kinetics of the oxidative damage to ergosterol induced by peroxyl radicals in lipid media: a theoretical quantum chemistry study. J PHYS ORG CHEM 2015. [DOI: 10.1002/poc.3520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Manuel E. Medina
- Centro de Investigaciones Biomédicas; Universidad Veracruzana; Av. Luis Castelazo s/n, Col. Industrial Animas Xalapa Veracruz 91190 Mexico
| | - Cristina Iuga
- Departamento de Sistemas Biológicos; Universidad Autónoma Metropolitana-Xochimilco; Calzada del Hueso 1100 México D.F. 04960 Mexico
| | - Ángel Trigos
- Laboratorio de Alta Tecnología de Xalapa; Universidad Veracruzana; Calle Médicos No. 5, Col. Unidad del Bosque Xalapa Veracruz 91010 Mexico
| |
Collapse
|
44
|
Davis SA, Della Ripa LA, Hu L, Cioffi AG, Pogorelov TV, Rienstra CM, Burke MD. C3-OH of Amphotericin B Plays an Important Role in Ion Conductance. J Am Chem Soc 2015; 137:15102-4. [PMID: 26580003 DOI: 10.1021/jacs.5b05766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amphotericin B (AmB) is the archetype for small molecules that form ion channels in living systems and has recently been shown to replace a missing protein ion transporter and thereby restore physiology in yeast. Molecular modeling studies predict that AmB self-assembles in lipid membranes with the polyol region lining a channel interior that funnels to its narrowest region at the C3-hydroxyl group. This model predicts that modification of this functional group would alter conductance of the AmB ion channel. To test this hypothesis, the C3-hydroxyl group was synthetically deleted, and the resulting derivative, C3deoxyAmB (C3deOAmB), was characterized using multidimensional NMR experiments and single ion channel electrophysiology recordings. C3deOAmB possesses the same macrocycle conformation as AmB and retains the capacity to form transmembrane ion channels, yet the conductance of the C3deOAmB channels is 3-fold lower than that of AmB channels. Thus, the C3-hydroxyl group plays an important role in AmB ion channel conductance, and synthetic modifications at this position may provide an opportunity for further tuning of channel functions.
Collapse
Affiliation(s)
- Stephen A Davis
- Howard Hughes Medical Institute, ‡Department of Chemistry, §Department of Biochemistry, ∥School of Chemical Sciences, ⊥National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Lisa A Della Ripa
- Howard Hughes Medical Institute, ‡Department of Chemistry, §Department of Biochemistry, ∥School of Chemical Sciences, ⊥National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Lingbowei Hu
- Howard Hughes Medical Institute, ‡Department of Chemistry, §Department of Biochemistry, ∥School of Chemical Sciences, ⊥National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Alexander G Cioffi
- Howard Hughes Medical Institute, ‡Department of Chemistry, §Department of Biochemistry, ∥School of Chemical Sciences, ⊥National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Taras V Pogorelov
- Howard Hughes Medical Institute, ‡Department of Chemistry, §Department of Biochemistry, ∥School of Chemical Sciences, ⊥National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Chad M Rienstra
- Howard Hughes Medical Institute, ‡Department of Chemistry, §Department of Biochemistry, ∥School of Chemical Sciences, ⊥National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Martin D Burke
- Howard Hughes Medical Institute, ‡Department of Chemistry, §Department of Biochemistry, ∥School of Chemical Sciences, ⊥National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
45
|
Ho LK, Nodwell JR. David and Goliath: chemical perturbation of eukaryotes by bacteria. J Ind Microbiol Biotechnol 2015; 43:233-48. [PMID: 26433385 PMCID: PMC4752587 DOI: 10.1007/s10295-015-1686-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/09/2015] [Indexed: 12/20/2022]
Abstract
Environmental microbes produce biologically active small molecules that have been mined extensively as antibiotics and a smaller number of drugs that act on eukaryotic cells. It is known that there are additional bioactives to be discovered from this source. While the discovery of new antibiotics is challenged by the frequent discovery of known compounds, we contend that the eukaryote-active compounds may be less saturated. Indeed, despite there being far fewer eukaryotic-active natural products these molecules interact with a far richer diversity of molecular and cellular targets.
Collapse
Affiliation(s)
- Louis K Ho
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
46
|
Tutaj K, Szlazak R, Starzyk J, Wasko P, Grudzinski W, Gruszecki WI, Luchowski R. The orientation of the transition dipole moments of a polyene antibiotic Amphotericin B under UV–VIS studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015. [DOI: 10.1016/j.jphotobiol.2015.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Yamamoto T, Umegawa Y, Tsuchikawa H, Matsumori N, Hanashima S, Murata M, Haser R, Rawlings BJ, Caffrey P. Role of polyol moiety of amphotericin B in ion channel formation and sterol selectivity in bilayer membrane. Bioorg Med Chem 2015. [PMID: 26209267 DOI: 10.1016/j.bmc.2015.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Amphotericin B (AmB) is a polyene macrolide antibiotic widely used to treat mycotic infections. In this paper, we focus on the role of the polyol moiety of AmB in sterol selectivity using 7-oxo-AmB, 7α-OH-AmB, and 7β-OH-AmB. The 7-OH analogs were prepared from 7-oxo-AmB. Their K(+) flux activity in liposomes showed that introduction of an additional ketone or hydroxy group on the polyol moiety reduces the original activity. Conformational analyses of these derivatives indicated that intramolecular hydrogen-bonding network possibly influenced the conformational rigidity of the macrolactone ring, and stabilized the active conformation in the membrane. Additionally, the flexible polyol leads to destabilization of the whole macrolactone ring conformation, resulting in a loss of sterol selectivity.
Collapse
Affiliation(s)
- Tomoya Yamamoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; JST, ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuichi Umegawa
- JST, ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; JST, ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Resul Haser
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, England, United Kingdom
| | - Bernard J Rawlings
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, England, United Kingdom
| | - Patrick Caffrey
- School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
48
|
Szwarc K, Szczeblewski P, Sowiński P, Borowski E, Pawlak J. The structure, including stereochemistry, of levorin A1. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:479-484. [PMID: 25773336 DOI: 10.1002/mrc.4229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/09/2015] [Accepted: 01/30/2015] [Indexed: 06/04/2023]
Affiliation(s)
- Katarzyna Szwarc
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, Narutowicza St. 11/12, 80233, Gdańsk, Poland
| | - Paweł Szczeblewski
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, Narutowicza St. 11/12, 80233, Gdańsk, Poland
| | - Paweł Sowiński
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, Narutowicza St. 11/12, 80233, Gdańsk, Poland
| | - Edward Borowski
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, Narutowicza St. 11/12, 80233, Gdańsk, Poland
| | - Jan Pawlak
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, Narutowicza St. 11/12, 80233, Gdańsk, Poland
| |
Collapse
|
49
|
Engineered biosynthesis of pimaricin derivatives with improved antifungal activity and reduced cytotoxicity. Appl Microbiol Biotechnol 2015; 99:6745-52. [PMID: 25952111 DOI: 10.1007/s00253-015-6635-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/19/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
Abstract
Pimaricin is an important antifungal antibiotic for antifungal therapy and prevention of mould contamination in the food industry. In this study, three new pimaricin derivatives, 12-decarboxy-12-methyl pimaricin (1), 4,5-desepoxy-12-decarboxy-12-methyl pimaricin (2), and 2-hydro-3-hydroxy-4,5-desepoxy-12-decarboxy-12-methyl pimaricin (3), were generated through the inactivation of P450 monooxygenase gene scnG in Streptomyces chattanoogensis L10. Compared with pimaricin, 1 displayed a twofold increase in antifungal activity against Candida albicans ATCC 14053 and a 4.5-fold decrease in cytotoxicity with erythrocytes, and 2 had comparable antifungal activity and reduced cytotoxicity, whereas 3 showed nearly no antifungal and hemolytic activities. Genetic and biochemical analyses proved that 1 is converted from 2 by P450 monooxygenase ScnD. Therefore, the overexpression of scnD in scnG-null strain eliminated the accumulation of 2 and improved the yield of 1 by 20 %. Conversely, scnG/scnD double mutation abolished the production of 1 and improved the yield of 2 to 2.3-fold. These results indicate that the pimaricin derivatives with improved pharmacological properties obtained by genetic engineering can be further developed into antifungal agents for potential clinical application.
Collapse
|
50
|
Liu SP, Yuan PH, Wang YY, Liu XF, Zhou ZX, Bu QT, Yu P, Jiang H, Li YQ. Generation of the natamycin analogs by gene engineering of natamycin biosynthetic genes in Streptomyces chattanoogensis L10. Microbiol Res 2015; 173:25-33. [DOI: 10.1016/j.micres.2015.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/27/2015] [Accepted: 01/31/2015] [Indexed: 12/16/2022]
|