1
|
Wang H, Wang Z, Zhang Z, Liu J, Hong L. β-Sitosterol as a Promising Anticancer Agent for Chemoprevention and Chemotherapy: Mechanisms of Action and Future Prospects. Adv Nutr 2023; 14:1085-1110. [PMID: 37247842 PMCID: PMC10509430 DOI: 10.1016/j.advnut.2023.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023] Open
Abstract
Cancer is one of the primary causes of death worldwide, and its incidence continues to increase yearly. Despite significant advances in research, the search for effective and nontoxic preventive and therapeutic agents remains greatly important. Cancer is a multimodal disease, where various mechanisms play significant roles in its occurrence and progression. This highlights the need for multitargeted approaches that are not only safe and inexpensive but also provide effective alternatives for current therapeutic regimens. β-Sitosterol (SIT), the most abundant phytosterol found in various plant foods, represents such an option. Preclinical evidence over the past few decades has overwhelmingly shown that SIT exhibits multiple anticancer activities against varied cancers, such as liver, cervical, colon, stomach, breast, lung, pancreatic, and prostate cancers, in addition to leukemia, multiple myeloma, melanoma, and fibrosarcoma. In this article, we present the latest advances and perspectives on SIT-systematically summarizing its antitumor mechanisms of action into 7 main sections and combining current challenges and prospects-for its use as a promising agent for cancer prevention and treatment. In particular, SIT plays a role in cancer prevention and treatment mainly by enhancing apoptosis, inducing cell cycle arrest, bidirectionally regulating oxidative stress, improving metabolic reprogramming, inhibiting invasion and metastasis, modulating immunity and inflammation, and combating drug resistance. Although SIT holds such great promise, the poor aqueous solubility and bioavailability coupled with low targeting efficacy limit its therapeutic efficacy and clinical application. Further research on novel drug delivery systems may improve these deficiencies. Overall, through complex and pleiotropic mechanisms, SIT has good potential for tumor chemoprevention and chemotherapy. However, no clinical trials have yet proven this potential. This review provides theoretical basis and rationality for the further design and conduct of clinical trials to confirm the anticancer activity of SIT.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zihui Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingchun Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Hegyi Z, Hegedűs T, Homolya L. The Reentry Helix Is Potentially Involved in Cholesterol Sensing of the ABCG1 Transporter Protein. Int J Mol Sci 2022; 23:ijms232213744. [PMID: 36430223 PMCID: PMC9698493 DOI: 10.3390/ijms232213744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
ABCG1 has been proposed to play a role in HDL-dependent cellular sterol regulation; however, details of the interaction between the transporter and its potential sterol substrates have not been revealed. In the present work, we explored the effect of numerous sterol compounds on the two isoforms of ABCG1 and ABCG4 and made efforts to identify the molecular motifs in ABCG1 that are involved in the interaction with cholesterol. The functional readouts used include ABCG1-mediated ATPase activity and ABCG1-induced apoptosis. We found that both ABCG1 isoforms and ABCG4 interact with several sterol compounds; however, they have selective sensitivities to sterols. Mutational analysis of potential cholesterol-interacting motifs in ABCG1 revealed altered ABCG1 functions when F571, L626, or Y586 were mutated. L430A and Y660A substitutions had no functional consequence, whereas Y655A completely abolished the ABCG1-mediated functions. Detailed structural analysis of ABCG1 demonstrated that the mutations modulating ABCG1 functions are positioned either in the so-called reentry helix (G-loop/TM5b,c) (Y586) or in its close proximity (F571 and L626). Cholesterol molecules resolved in the structure of ABCG1 are also located close to Y586. Based on the experimental observations and structural considerations, we propose an essential role for the reentry helix in cholesterol sensing in ABCG1.
Collapse
Affiliation(s)
- Zoltán Hegyi
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary
- ELKH-SE Biophysical Virology Research Group, Eötvös Loránd Research Network, H-1094 Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-3826608
| |
Collapse
|
3
|
Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and Function of Hepatobiliary ATP Binding Cassette Transporters. Chem Rev 2020; 121:5240-5288. [PMID: 33201677 DOI: 10.1021/acs.chemrev.0c00659] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver is beyond any doubt the most important metabolic organ of the human body. This function requires an intensive crosstalk within liver cellular structures, but also with other organs. Membrane transport proteins are therefore of upmost importance as they represent the sensors and mediators that shuttle signals from outside to the inside of liver cells and/or vice versa. In this review, we summarize the known literature of liver transport proteins with a clear emphasis on functional and structural information on ATP binding cassette (ABC) transporters, which are expressed in the human liver. These primary active membrane transporters form one of the largest families of membrane proteins. In the liver, they play an essential role in for example bile formation or xenobiotic export. Our review provides a state of the art and comprehensive summary of the current knowledge of hepatobiliary ABC transporters. Clearly, our knowledge has improved with a breath-taking speed over the last few years and will expand further. Thus, this review will provide the status quo and will lay the foundation for new and exciting avenues in liver membrane transporter research.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin Prescher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
SAKUTA Y, TAKEHARA I, TSUNODA KI, SATO K. Development of a Microfluidic System Comprising Dialysis and Secretion Components for a Bioassay of Renal Clearance. ANAL SCI 2018; 34:1073-1078. [DOI: 10.2116/analsci.18p141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yu SAKUTA
- School of Science and Technology, Gunma University
| | | | | | - Kiichi SATO
- School of Science and Technology, Gunma University
| |
Collapse
|
5
|
Current and new insights on phytosterol oxides in plant sterol-enriched food. Chem Phys Lipids 2011; 164:607-24. [PMID: 21699886 DOI: 10.1016/j.chemphyslip.2011.06.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/05/2011] [Accepted: 06/06/2011] [Indexed: 02/07/2023]
Abstract
Over the past 15 years, plant sterol-enriched foods have faced a great increase in the market, due to the asserted cholesterol-lowering effect of plant sterols. However, owing to their chemical structures, plant sterols can oxidize and produce a wide variety of oxidation products with controversial biological effects. Although oxyphytosterols can derive from dietary sources and endogenous formation, their single contribution should be better defined. The following review provides an overall and critical picture on the current knowledge and future perspectives of plant sterols-enriched food, particularly focused on occurrence of plant sterol oxidation products and their biological effects. The final objective of this overview is to evince the different aspects of plant sterols-enriched food that require further research, for a better understanding of the influence of plant sterols and their oxides on consumers' health.
Collapse
|
6
|
Nabekura T, Yamaki T, Ueno K, Kitagawa S. Effects of plant sterols on human multidrug transporters ABCB1 and ABCC1. Biochem Biophys Res Commun 2008; 369:363-8. [DOI: 10.1016/j.bbrc.2008.02.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 02/06/2008] [Indexed: 11/16/2022]
|
7
|
Velamakanni S, Wei SL, Janvilisri T, van Veen HW. ABCG transporters: structure, substrate specificities and physiological roles : a brief overview. J Bioenerg Biomembr 2008; 39:465-71. [PMID: 17990087 DOI: 10.1007/s10863-007-9122-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ATP-binding cassette (ABC) transporter superfamily is one of the largest protein families with representatives in all kingdoms of life. Members of this superfamily are involved in a wide variety of transport processes with substrates ranging from small ions to relatively large polypeptides and polysaccharides. The G subfamily of ABC transporters consists of half-transporters, which oligomerise to form the functional transporter. While ABCG1, ABCG4 and ABCG5/8 are involved in the ATP-dependent translocation of steroids and, possibly, other lipids, ABCG2 (also termed the breast cancer resistance protein) has been identified as a multidrug transporter that confers resistance on tumor cells. Evidence will be summarized suggesting that ABCG2 can also mediate the binding/transport of non-drug substrates, including free and conjugated steroids. The characterization of the substrate specificities of ABCG proteins at a molecular level might provide further clues about their potential physiological role(s), and create new opportunities for the modulation of their activities in relation to human disease.
Collapse
Affiliation(s)
- Saroj Velamakanni
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | | | | | | |
Collapse
|
8
|
Kim WS, Weickert CS, Garner B. Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem 2008; 104:1145-66. [DOI: 10.1111/j.1471-4159.2007.05099.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Sabeva NS, Rouse EJ, Graf GA. Defects in the Leptin Axis Reduce Abundance of the ABCG5-ABCG8 Sterol Transporter in Liver. J Biol Chem 2007; 282:22397-405. [PMID: 17561514 DOI: 10.1074/jbc.m702236200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ABGG5 (G5) and ABCG8 (G8) are ABC half-transporters that dimerize within the endoplasmic reticulum, traffic to the cell surface, and mediate cholesterol excretion into bile. Mice harboring defects in the leptin axis (db/db and ob/ob) have reduced biliary cholesterol concentrations. Rapid weight loss brought about by administration of leptin or dietary restriction increases biliary cholesterol excretion. We hypothesized that the reduction in biliary cholesterol in mice harboring defects in the leptin axis is associated with a reduction in G5G8 transporters and that levels of the transporter would increase with leptin administration and dietary restriction. We examined mRNA and protein levels for G5 and G8 in db/db and ob/ob mice. In both models G5 and G8 protein levels were reduced. In ob/ob mice, both leptin administration and dietary restriction increased G5 and G8 protein and biliary cholesterol concentrations. Finally, we examined the effects of tauroursodeoxycholate, which has been shown to increase biliary cholesterol excretion and function as a molecular chaperone. Tauroursodeoxycholate increased G5 and G8 protein and biliary cholesterol concentrations in both wild-type and db/db mice. Our results indicate that the mechanism for reduced biliary cholesterol excretion in db/db and ob/ob mice involves reductions in G5 and G8 protein levels and that this may occur at the level of G5G8 heterodimer assembly within the endoplasmic reticulum.
Collapse
Affiliation(s)
- Nadezhda S Sabeva
- Department of Pharmaceutical Sciences and Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
10
|
Stieger B, Meier Y, Meier PJ. The bile salt export pump. Pflugers Arch 2006; 453:611-20. [PMID: 17051391 DOI: 10.1007/s00424-006-0152-8] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 08/08/2006] [Indexed: 12/20/2022]
Abstract
Canalicular secretion of bile salts mediated by the bile salt export pump Bsep constitutes the major driving force for the generation of bile flow. Bsep is a member of the B-family of the super family of ATP-binding cassette transporters and is classified as ABCB11. Bsep has a narrow substrate specificity, which is largely restricted to bile salts. Bsep is extensively regulated at the transcriptional and posttranscriptional level, which directly modulates canalicular bile formation. Pathophysiological alterations of Bsep by either inherited mutations or acquired processes such as inhibition by drugs or disease-related down regulation may lead to a wide spectrum of mild to severe forms of liver disease. Furthermore, many genetic variants of Bsep are known, some of which potentially render individuals susceptible to acquired forms of liver disease.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Medicine, Institute of Clinical Pharmacology and Toxicology, University Hospital, Zürich, Switzerland.
| | | | | |
Collapse
|
11
|
Wang J, Sun F, Zhang DW, Ma Y, Xu F, Belani JD, Cohen JC, Hobbs HH, Xie XS. Sterol transfer by ABCG5 and ABCG8: in vitro assay and reconstitution. J Biol Chem 2006; 281:27894-904. [PMID: 16867993 PMCID: PMC4527585 DOI: 10.1074/jbc.m605603200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-binding cassette transporters G5 and G8 are half-transporters expressed on the apical membranes of enterocytes and hepatocytes that limit intestinal uptake and promote secretion of neutral sterols. Genetic defects that inactivate either half-transporter cause accumulation of cholesterol and plant sterols, resulting in premature coronary atherosclerosis. These observations suggest that G5 and G8 promote the translocation of sterols across membranes, but the primary transport substrate of the G5G8 complex has not been directly determined. Here we report the development of a sterol transfer assay using "inside-out" membrane vesicles from Sf9 cells expressing recombinant mouse G5 and G8. Radiolabeled cholesterol or sitosterol was transferred from donor liposomes to G5- and G8-containing membrane vesicles in an ATP-dependent and vanadate-sensitive manner; net transfer of cholesterol was associated with an increase in vesicular cholesterol mass. CTP, GTP, and UTP, as well as ATP, supported transfer but with lesser efficiency (ATP >> CTP > GTP > UTP). Transfer was specific for sterols and was stereoselective; minimal ATP-dependent and vanadate-sensitive transfer of cholesteryl oleate, phosphatidylcholine, or enantiomeric cholesterol was observed. These studies indicate that G5 and G8 are sufficient for reconstitution of sterol transfer activity in vitro and provide the first demonstration that sterols are direct transport substrates of the G5 and G8 heterodimer.
Collapse
Affiliation(s)
- Jin Wang
- Eugene McDermott Center for Human Growth and Development, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
| | - Fang Sun
- Eugene McDermott Center for Human Growth and Development, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
| | - Da-wei Zhang
- Eugene McDermott Center for Human Growth and Development, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
| | - Yongming Ma
- Eugene McDermott Center for Human Growth and Development, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
| | - Fang Xu
- Center of Human Nutrition, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
| | - Jitendra D. Belani
- Department of Chemistry, University of California, Irvine, California 92697-2025
| | - Jonathan C. Cohen
- Eugene McDermott Center for Human Growth and Development, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
- Center of Human Nutrition, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
- Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
| | - Helen H. Hobbs
- Eugene McDermott Center for Human Growth and Development, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
- Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
- Howard Hughes Medical Institute and Department of Molecular Genetics, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
| | - Xiao-Song Xie
- Eugene McDermott Center for Human Growth and Development, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
- Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
- To whom correspondence should be addressed. Tel.: 214-648-7700; Fax: 214-648-7720;
| |
Collapse
|
12
|
Rozner S, Garti N. The activity and absorption relationship of cholesterol and phytosterols. Colloids Surf A Physicochem Eng Asp 2006. [DOI: 10.1016/j.colsurfa.2005.12.032] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Fernandez ML, Vega-López S. Efficacy and safety of sitosterol in the management of blood cholesterol levels. ACTA ACUST UNITED AC 2005; 23:57-70. [PMID: 15867948 DOI: 10.1111/j.1527-3466.2005.tb00157.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Elevated levels of plasma LDL cholesterol (LDL-C) represent a major risk factor for cardiovascular disease. Treatments aimed at reducing levels of circulating LDL are regarded, therefore, as cardioprotective. The cholesterol lowering properties of plant sterols have been known for some time and many clinical studies have confirmed the efficacy of sitosterol in lowering plasma LDL-C concentrations. Animal studies have also shown reductions in LDL by sitosterol. The use of animal models has been useful in facilitating the elucidation of specific mechanisms by which this sterol exerts its hypocholesterolemic action. It is well known that plant sterols compete with cholesterol for space within bile salt micelles in the intestinal lumen thereby reducing cholesterol absorption. The understanding of the function of plant sterols in impeding cholesterol absorption has been clarified with the discovery of the adenosine binding cassette transporters, ABCG5/8, involved in the regulation of sterol absorption and secretion into the enterocyte and hepatocyte. Compared to cholesterol and other sterols, sitosterol is preferentially pumped out to the intestinal lumen by the ABCG5/8 transporters. This selective binding of sitosterol to the transporters ultimately results in significant lowering of plasma cholesterol. However, some findings support the hypothesis that plant sterols might be an additional risk factor for coronary heart disease. From the review of these studies, it is apparent that sitosterol is a useful dietary supplement for the lowering of plasma cholesterol. Nevertheless, this plant sterol should be used with caution in certain individuals who have a higher absorption rate of sitosterol.
Collapse
Affiliation(s)
- Maria Luz Fernandez
- University of Connecticut, Department of Nutritional Sciences, 3624 Horsebarn Road Ext., U 4017 Storrs, CT 06269, USA.
| | | |
Collapse
|
14
|
Pohl A, Devaux PF, Herrmann A. Function of prokaryotic and eukaryotic ABC proteins in lipid transport. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1733:29-52. [PMID: 15749056 DOI: 10.1016/j.bbalip.2004.12.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 11/08/2004] [Accepted: 12/16/2004] [Indexed: 12/23/2022]
Abstract
ATP binding cassette (ABC) proteins of both eukaryotic and prokaryotic origins are implicated in the transport of lipids. In humans, members of the ABC protein families A, B, C, D and G are mutated in a number of lipid transport and metabolism disorders, such as Tangier disease, Stargardt syndrome, progressive familial intrahepatic cholestasis, pseudoxanthoma elasticum, adrenoleukodystrophy or sitosterolemia. Studies employing transfection, overexpression, reconstitution, deletion and inhibition indicate the transbilayer transport of endogenous lipids and their analogs by some of these proteins, modulating lipid transbilayer asymmetry. Other proteins appear to be involved in the exposure of specific lipids on the exoplasmic leaflet, allowing their uptake by acceptors and further transport to specific sites. Additionally, lipid transport by ABC proteins is currently being studied in non-human eukaryotes, e.g. in sea urchin, trypanosomatides, arabidopsis and yeast, as well as in prokaryotes such as Escherichia coli and Lactococcus lactis. Here, we review current information about the (putative) role of both pro- and eukaryotic ABC proteins in the various phenomena associated with lipid transport. Besides providing a better understanding of phenomena like lipid metabolism, circulation, multidrug resistance, hormonal processes, fertilization, vision and signalling, studies on pro- and eukaryotic ABC proteins might eventually enable us to put a name on some of the proteins mediating transbilayer lipid transport in various membranes of cells and organelles. It must be emphasized, however, that there are still many uncertainties concerning the functions and mechanisms of ABC proteins interacting with lipids. In particular, further purification and reconstitution experiments with an unambiguous role of ATP hydrolysis are needed to demonstrate a clear involvement of ABC proteins in lipid transbilayer asymmetry.
Collapse
Affiliation(s)
- Antje Pohl
- Humboldt-University Berlin, Institute of Biology, Invalidenstr. 42, D-10115 Berlin, Germany.
| | | | | |
Collapse
|
15
|
Pullinger CR, Kane JP, Malloy MJ. Primary hypercholesterolemia: genetic causes and treatment of five monogenic disorders. Expert Rev Cardiovasc Ther 2004; 1:107-19. [PMID: 15030301 DOI: 10.1586/14779072.1.1.107] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Coronary heart disease is a major cause of death in Europe and the USA. Insudation of atherogenic lipoproteins, including low-density lipoprotein (LDL), into the artery wall is integral to atherosclerosis. It is clear that numerous genetic loci contribute to increased plasma levels of LDL. However, five specific monogenic disorders, three of which have been reported recently, are known to increase LDL. These are familial hypercholesterolemia (LDL receptor gene: LDLR); familial ligand-defective apoB- 100 (apoB gene: APOB); autosomal recessive hypercholesterolemia (ARH gene); sitosterolemia (ABCG5 or ABCG8 genes) and cholesterol 7alpha-hydroxylase deficiency (CYP7A1 gene). This review relates the mechanisms underlying these five disorders with specific therapeutic interventions.
Collapse
Affiliation(s)
- Clive R Pullinger
- Cardiovascular Research Institute, University of California, San Francisco, USA.
| | | | | |
Collapse
|
16
|
Abstract
Gallbladder epithelial cells (GBEC) are exposed to high biliary cholesterol concentrations on their apical (AP) surface. The mechanisms of cholesterol absorption and efflux by these cells are not known. We hypothesized that ABCG5 and ABCG8 are expressed in GBEC and mediate AP cholesterol efflux. Human gallbladder cDNA expressed message for ABCG5 and ABCG8. Cultured murine GBEC also expressed abcg5 and abcg8 mRNA and protein, as did cultured canine GBEC. Interestingly, treatment with model bile containing supersaturating concentrations of cholesterol, or treatment with LXRalpha/RXR ligands, did not lead to differences in expression of ABCG5 or ABCG8 in the murine or the canine cells. The subcellular localization of ABCG5 and ABCG8 did show alterations, with predominantly intracellular localization at baseline and predominantly AP localization following treatment with model bile or LXRalpha ligand. GBEC therefore express ABCG5 and ABCG8; these sterol transporters may play a role in mediating AP cholesterol efflux in the gallbladder epithelium.
Collapse
Affiliation(s)
- Aimee Tauscher
- Division of Gastroenterology, University of Washington School of Medicine, Box 356424, 1959 NE Pacific St., Seattle, WA 98195, USA
| | | |
Collapse
|
17
|
Janvilisri T, Venter H, Shahi S, Reuter G, Balakrishnan L, van Veen HW. Sterol transport by the human breast cancer resistance protein (ABCG2) expressed in Lactococcus lactis. J Biol Chem 2003; 278:20645-51. [PMID: 12668685 DOI: 10.1074/jbc.m301358200] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human breast cancer resistance protein (BCRP, also know as ABCG2, MXR, or ABCP) is one of the more recently discovered ATP-binding cassette (ABC) transporters that confer resistance on cancer cells by mediating multidrug efflux. In the present study, we have obtained functional expression of human BCRP in the Gram-positive bacterium Lactococcus lactis. BCRP expression conferred multidrug resistance on the lactococcal cells, which was based on ATP-dependent drug extrusion. BCRP-mediated ATPase and drug transport activities were inhibited by the BCRP-specific modulator fumitremorgin C. To our knowledge these data represent the first example of the functional expression of a mammalian ABC half-transporter in bacteria. Although members of the ABCG subfamily (such as ABCG1 and ABCG5/8) have been implicated in the transport of sterols, such a role has not yet been established for BCRP. Interestingly, the BCRP-associated ATPase activity in L. lactis was significantly stimulated by (i) sterols including cholesterol and estradiol, (ii) natural steroids such as progesterone and testosterone, and (iii) the anti-estrogen anticancer drug tamoxifen. In addition, BCRP mediated the efflux of [3H]estradiol from lactococcal cells. Our findings suggest that BCRP may play a role in the transport of sterols in human, in addition to its ability to transport multiple drugs and toxins.
Collapse
Affiliation(s)
- Tavan Janvilisri
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
ABCG2 (BCRP) is a member of the ATP-binding cassette (ABC) family of cell surface transport proteins. ABCG2 expression occurs in a variety of normal tissues, and is relatively limited to primitive stem cells. ABCG2 expression is associated with the side population (SP) phenotype of Hoechst 33342 efflux. The substrate profile of ABCG2 includes the antineoplastic drugs primarily targeting topoisomerases, including anthracyclines and camptothecins. More recently, pheophorbide, a chlorophyll-breakdown product, and protoporhyrin IX have been described as ABCG2 substrates, perhaps indicating a physiologic role of cytoprotection of primitive cells. Also, mice lacking ABCG2 expression have no intrinsic stem cell defects, although there is a remarkable increase in toxicity with antineoplastic drugs that are ABCG2 substrates, and also a photosensitivity resembling protoporphyria. Like other members of the ABC family, such as MDR1 and MRP1, ABCG2 is expressed in a variety of malignancies. Despite numerous reports of ABCG2 expression in AML, there is little evidence that ABCG2 expression is correlated with an adverse clinical outcome. This review will focus on the potential usefulness of ABCG2 as a marker primitive stem cells and possible physiologic roles of ABCG2 in protection of primitive stem cell populations, and potential methods of overcoming ABCG2-associated drug resistance in anticancer therapy.
Collapse
Affiliation(s)
- Brian L Abbott
- Blood and Marrow Transplant Program, University of Colorado Health Science Center, Denver, CO, USA.
| |
Collapse
|