1
|
Hong S, Graf S, von Ballmoos C, Gennis RB. Purification and characterization of recombinant human mitochondrial proton-pumping nicotinamide nucleotide transhydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149540. [PMID: 39828237 DOI: 10.1016/j.bbabio.2025.149540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/16/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
The human mitochondrial nicotinamide nucleotide transhydrogenase (NNT) uses the proton motive force to drive hydride transfer from NADH to NADP+ and is a major contributor to the generation of mitochondrial NADPH. NNT plays a critical role in maintaining cellular redox balance. NNT-deficiency results in oxidative damage and its absence results in familial glucocorticoid deficiency. Recently it has also become clear that NNT is a tumor promoter whose presence in mouse models of non-small cell lung cancer results in enhanced tumor growth and aggressiveness. The presence of NNT mitigates the effects of oxidative stress and facilitates cancer cell proliferation, suggesting NNT-inhibition as a promising therapeutic strategy. The human NNT is a homodimer in which each subunit has a molecular weight of 114 kDa and 14 transmembrane spans. Here we report on the development of a system for isolating full-length recombinant human NNT using Escherichia coli. The purified enzyme is catalytically active, and the enzyme reconstituted into proteoliposomes pumps protons and generates a proton motive force capable of driving ATP synthesis by E. coli ATP synthase. The recombinant human NNT will facilitate structural and biochemical studies as well as provide a useful tool to develop and characterize potential anti-cancer therapeutics.
Collapse
Affiliation(s)
- Sangjin Hong
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| | - Simone Graf
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Christoph von Ballmoos
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
2
|
Kristensen SS, Lukassen MV, Siebenhaar S, Diep DB, Morth JP, Mathiesen G. Lactiplantibacillus plantarum as a novel platform for production and purification of integral membrane proteins using RseP as the benchmark. Sci Rep 2023; 13:14361. [PMID: 37658186 PMCID: PMC10474122 DOI: 10.1038/s41598-023-41559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023] Open
Abstract
The present study describes a detailed procedure for expressing and purifying the integral membrane protein RseP using the pSIP system and Lactiplantibacillus plantarum as an expression host. RseP is a membrane-bound site-2-protease and a known antibacterial target in multiple human pathogens. In the present study, we screened five RseP orthologs from Gram-positive bacteria and found RseP from Enterococcus faecium (EfmRseP) to yield the highest protein levels. The production conditions were optimized and EfmRseP was purified by immobilized metal ion affinity chromatography followed by size-exclusion chromatography. The purification resulted in an overall yield of approximately 1 mg of pure protein per 3 g of wet-weight cell pellet. The structural integrity of the purified protein was confirmed using circular dichroism. We further assessed the expression and purification of RseP from E. faecium in the Gram-negative Escherichia coli. Detection of soluble protein failed in two of the three E. coli strains tested. Purification of EfmRseP expressed in E. coli C43(DE3) resulted in a protein with lower purity compared to EfmRseP expressed in L. plantarum. To our knowledge, this is the first time L. plantarum and the pSIP expression system have been applied for the production of membrane proteins.
Collapse
Affiliation(s)
- Sofie S Kristensen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Marie V Lukassen
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Suzana Siebenhaar
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - J Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), Kongens Lyngby, Denmark.
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
3
|
Meier G, Thavarasah S, Ehrenbolger K, Hutter CAJ, Hürlimann LM, Barandun J, Seeger MA. Deep mutational scan of a drug efflux pump reveals its structure-function landscape. Nat Chem Biol 2023; 19:440-450. [PMID: 36443574 PMCID: PMC7615509 DOI: 10.1038/s41589-022-01205-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/10/2022] [Indexed: 11/30/2022]
Abstract
Drug efflux is a common resistance mechanism found in bacteria and cancer cells, but studies providing comprehensive functional insights are scarce. In this study, we performed deep mutational scanning (DMS) on the bacterial ABC transporter EfrCD to determine the drug efflux activity profile of more than 1,430 single variants. These systematic measurements revealed that the introduction of negative charges at different locations within the large substrate binding pocket results in strongly increased efflux activity toward positively charged ethidium, whereas additional aromatic residues did not display the same effect. Data analysis in the context of an inward-facing cryogenic electron microscopy structure of EfrCD uncovered a high-affinity binding site, which releases bound drugs through a peristaltic transport mechanism as the transporter transits to its outward-facing conformation. Finally, we identified substitutions resulting in rapid Hoechst influx without affecting the efflux activity for ethidium and daunorubicin. Hence, single mutations can convert EfrCD into a drug-specific ABC importer.
Collapse
Affiliation(s)
- Gianmarco Meier
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Sujani Thavarasah
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Kai Ehrenbolger
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Cedric A J Hutter
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Linkster Therapeutics AG, Zurich, Switzerland
| | - Lea M Hürlimann
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Linkster Therapeutics AG, Zurich, Switzerland
| | - Jonas Barandun
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Stephen J, Salam F, Lekshmi M, Kumar SH, Varela MF. The Major Facilitator Superfamily and Antimicrobial Resistance Efflux Pumps of the ESKAPEE Pathogen Staphylococcus aureus. Antibiotics (Basel) 2023; 12:343. [PMID: 36830254 PMCID: PMC9952236 DOI: 10.3390/antibiotics12020343] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The ESKAPEE bacterial pathogen Staphylococcus aureus has posed a serious public health concern for centuries. Throughout its evolutionary course, S. aureus has developed strains with resistance to antimicrobial agents. The bacterial pathogen has acquired multidrug resistance, causing, in many cases, untreatable infectious diseases and raising serious public safety and healthcare concerns. Amongst the various mechanisms for antimicrobial resistance, integral membrane proteins that serve as secondary active transporters from the major facilitator superfamily constitute a chief system of multidrug resistance. These MFS transporters actively export structurally different antimicrobial agents from the cells of S. aureus. This review article discusses the S. aureus-specific MFS multidrug efflux pump systems from a molecular mechanistic perspective, paying particular attention to structure-function relationships, modulation of antimicrobial resistance mediated by MFS drug efflux pumps, and direction for future investigation.
Collapse
Affiliation(s)
- Jerusha Stephen
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Fathima Salam
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Manjusha Lekshmi
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Sanath H. Kumar
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Manuel F. Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA
| |
Collapse
|
5
|
Liu F, van Heel AJ, Chen J, Kuipers OP. Functional production of clostridial circularin A in Lactococcus lactis NZ9000 and mutational analysis of its aromatic and cationic residues. Front Microbiol 2022; 13:1026290. [PMID: 36504829 PMCID: PMC9726714 DOI: 10.3389/fmicb.2022.1026290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Circular bacteriocins, also known as bacterial head-to-tail cyclized peptides, are a subgroup of ribosomally synthesized and post-translationally modified peptides (RiPPs). Compared with their conventional linear counterparts, circular bacteriocins are highly stable over a broad temperature and pH range, and circularization decreases proteolytic degradation by exopeptidases. These features render them great potential as scaffold candidates to withstand strident conditions in food- and pharmaceutical applications. However, the biosynthesis and bioactivity of circular bacteriocins still remain largely unknown. To investigate and gain more insights into the biosynthesis of circular bacteriocins and to achieve efficient production and characterization of bacteriocin variants, we developed an efficient cloning and heterologous expression system for clostridial circularin A and successfully produced this circular peptide in Lactococcus lactis NZ9000. We report three system formats with single plasmid or plasmid combinations to achieve successful cloning and functional production of circularin A in L. lactis. These systematic varieties enabled us to choose the appropriate method to efficiently obtain various constructs with desired properties. With the established heterologous systems in L. lactis, we performed several mutagenesis studies in the precursor peptide to study its structure/function relationships. The overlay activity assay revealed that these mutant variants had variable effects on different indicator strains: lysine substitution for certain glutamine residue(s) greatly decreased its bioactivity against Clostridium perfringens and L. lactis NZ9000, and alanine replacement for the cationic residues significantly reduced the activity against Lactobacillus sake ATCC 15521, whereas alanine substitution for the aromatic residues decreased its bioactivity against all three testing strains dramatically. Moreover, the conditions for bacteriocin production were optimized. Results show that supplementing the minimal medium with extra glucose (or sucrose) and immediate nisin-induction improved the peptide yield significantly. Briefly, we developed an excellent system for the production of circularin A and a wide range of variant peptides in a convenient host, as well as a method for fast detection of peptide production and activity. This system facilitated our mutagenesis studies which provided valuable insights into the effects of mutating specific residues on its biosynthesis and bioactivity, and will eventually enable more complex research into the biosynthesis of circularin A.
Collapse
|
6
|
Flourieusse A, Bourgeois P, Schenckbecher E, Palvair J, Legrand D, Labbé C, Bescond T, Avoscan L, Orlowski S, Rouleau A, Frelet-Barrand A. Formation of intracellular vesicles within the Gram+ Lactococcus lactis induced by the overexpression of Caveolin-1β. Microb Cell Fact 2022; 21:239. [PMCID: PMC9670397 DOI: 10.1186/s12934-022-01944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/02/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract
Background
Caveolae are invaginated plasma membrane domains of 50–100 nm in diameter involved in many important physiological functions in eukaryotic cells. They are composed of different proteins, including the membrane-embedded caveolins and the peripheric cavins. Caveolin-1 has already been expressed in various expression systems (E. coli, insect cells, Toxoplasma gondii, cell-free system), generating intracellular caveolin-enriched vesicles in E. coli, insect cells and T. gondii. These systems helped to understand the protein insertion within the membrane and its oligomerization. There is still need for fundamental insights into the formation of specific domains on membrane, the deformation of a biological membrane driven by caveolin-1, the organization of a caveolar coat, and the requirement of specific lipids and proteins during the process. The aim of this study was to test whether the heterologously expressed caveolin-1β was able to induce the formation of intracellular vesicles within a Gram+ bacterium, Lactococcus lactis, since it displays a specific lipid composition different from E. coli and appears to emerge as a good alternative to E. coli for efficient overexpression of various membrane proteins.
Results
Recombinant bacteria transformed with the plasmid pNZ-HTC coding for the canine isoform of caveolin-1β were shown to produce caveolin-1β, in its functional oligomeric form, at a high expression level unexpected for an eukaryotic membrane protein. Electron microscopy revealed several intracellular vesicles from 30 to 60 nm, a size comparable to E. coli h-caveolae, beneath the plasma membrane of the overexpressing bacteria, showing that caveolin-1β is sufficient to induce membrane vesiculation. Immunolabelling studies showed antibodies on such neo-formed intracellular vesicles, but none on plasma membrane. Density gradient fractionation allowed the correlation between detection of oligomers on Western blot and appearance of vesicles measurable by DLS, showing the requirement of caveolin-1β oligomerization for vesicle formation.
Conclusions
Lactococcus lactis cells can heterologously overexpress caveolin-1β, generating caveolin-1β enriched intracellular neo-formed vesicles. These vesicles might be useful for potential co-expression of membrane proteins of pharmaceutical interest for their simplified functional characterization.
Collapse
|
7
|
Shao J, Kuiper BP, Thunnissen AMWH, Cool RH, Zhou L, Huang C, Dijkstra BW, Broos J. The Role of Tryptophan in π Interactions in Proteins: An Experimental Approach. J Am Chem Soc 2022; 144:13815-13822. [PMID: 35868012 PMCID: PMC9354243 DOI: 10.1021/jacs.2c04986] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
In proteins, the amino acids Phe, Tyr, and especially
Trp are frequently
involved in π interactions such as π–π, cation−π,
and CH−π bonds. These interactions are often crucial
for protein structure and protein–ligand binding. A powerful
means to study these interactions is progressive fluorination of these
aromatic residues to modulate the electrostatic component of the interaction.
However, to date no protein expression platform is available to produce
milligram amounts of proteins labeled with such fluorinated amino
acids. Here, we present a Lactococcus lactis Trp
auxotroph-based expression system for efficient incorporation (≥95%)
of mono-, di-, tri-, and tetrafluorinated, as well as a methylated
Trp analog. As a model protein we have chosen LmrR, a dimeric multidrug
transcriptional repressor protein from L. lactis. LmrR binds aromatic drugs, like daunomycin and riboflavin, between
Trp96 and Trp96′ in the dimer interface. Progressive fluorination
of Trp96 decreased the affinity for the drugs 6- to 70-fold, clearly
establishing the importance of electrostatic π–π
interactions for drug binding. Presteady state kinetic data of the
LmrR–drug interaction support the enthalpic nature of the interaction,
while high resolution crystal structures of the labeled protein–drug
complexes provide for the first time a structural view of the progressive
fluorination approach. The L. lactis expression system
was also used to study the role of Trp68 in the binding of riboflavin
by the membrane-bound riboflavin transport protein RibU from L. lactis. Progressive fluorination of Trp68 revealed a
strong electrostatic component that contributed 15–20% to the
total riboflavin-RibU binding energy.
Collapse
Affiliation(s)
- Jinfeng Shao
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Bastiaan P Kuiper
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Andy-Mark W H Thunnissen
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Robbert H Cool
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Liang Zhou
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Chenxi Huang
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Bauke W Dijkstra
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jaap Broos
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
8
|
Gottstein J, Zaschke-Kriesche J, Unsleber S, Voitsekhovskaia I, Kulik A, Behrmann LV, Overbeck N, Stühler K, Stegmann E, Smits SHJ. New insights into the resistance mechanism for the BceAB-type transporter SaNsrFP. Sci Rep 2022; 12:4232. [PMID: 35273305 PMCID: PMC8913810 DOI: 10.1038/s41598-022-08095-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment of bacterial infections is one of the major challenges of our time due to the evolved resistance mechanisms of pathogens against antibiotics. To circumvent this problem, it is necessary to understand the mode of action of the drug and the mechanism of resistance of the pathogen. One of the most potent antibiotic targets is peptidoglycan (PGN) biosynthesis, as this is an exclusively occurring and critical feature of bacteria. Lipid II is an essential PGN precursor synthesized in the cytosol and flipped into the outer leaflet of the membrane prior to its incorporation into nascent PGN. Antimicrobial peptides (AMPs), such as nisin and colistin, targeting PGN synthesis are considered promising weapons against multidrug-resistant bacteria. However, human pathogenic bacteria that were also resistant to these compounds evolved by the expression of an ATP-binding cassette transporter of the bacitracin efflux (BceAB) type localized in the membrane. In the human pathogen Streptococcus agalactiae, the BceAB transporter SaNsrFP is known to confer resistance to the antimicrobial peptide nisin. The exact mechanism of action for SaNsrFP is poorly understood. For a detailed characterization of the resistance mechanism, we heterologously expressed SaNsrFP in Lactococcus lactis. We demonstrated that SaNsrFP conferred resistance not only to nisin but also to a structurally diverse group of antimicrobial PGN-targeting compounds such as ramoplanin, lysobactin, or bacitracin/(Zn)-bacitracin. Growth experiments revealed that SaNsrFP-producing cells exhibited normal behavior when treated with nisin and/or bacitracin, in contrast to the nonproducing cells, for which growth was significantly reduced. We further detected the accumulation of PGN precursors in the cytoplasm after treating the cells with bacitracin. This did not appear when SaNsrFP was produced. Whole-cell proteomic protein experiments verified that the presence of SaNsrFP in L. lactis resulted in higher production of several proteins associated with cell wall modification. These included, for example, the N-acetylmuramic acid-6-phosphate etherase MurQ and UDP-glucose 4-epimerase. Analysis of components of the cell wall of SaNsrFP-producing cells implied that the transporter is involved in cell wall modification. Since we used an ATP-deficient mutant of the transporter as a comparison, we can show that SaNsrFP and its inactive mutant do not show the same phenotype, albeit expressed at similar levels, which demonstrates the ATP dependency of the mediated resistance processes. Taken together, our data agree to a target protection mechanism and imply a direct involvement of SaNsrFP in resistance by shielding the membrane-localized target of these antimicrobial peptides, resulting in modification of the cell wall.
Collapse
Affiliation(s)
- Julia Gottstein
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Julia Zaschke-Kriesche
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Sandra Unsleber
- Interfaculty Institute of Microbiology and Infection Medicin, Eberhard Karls University, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Irina Voitsekhovskaia
- Interfaculty Institute of Microbiology and Infection Medicin, Eberhard Karls University, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Andreas Kulik
- Interfaculty Institute of Microbiology and Infection Medicin, Eberhard Karls University, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Lara V Behrmann
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Nina Overbeck
- Molecular Proteomics Laboratory, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Evi Stegmann
- Interfaculty Institute of Microbiology and Infection Medicin, Eberhard Karls University, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany.
| |
Collapse
|
9
|
Frelet-Barrand A. Lactococcus lactis, an Attractive Cell Factory for the Expression of Functional Membrane Proteins. Biomolecules 2022; 12:180. [PMID: 35204681 PMCID: PMC8961550 DOI: 10.3390/biom12020180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023] Open
Abstract
Membrane proteins play key roles in most crucial cellular processes, ranging from cell-to-cell communication to signaling processes. Despite recent improvements, the expression of functionally folded membrane proteins in sufficient amounts for functional and structural characterization remains a challenge. Indeed, it is still difficult to predict whether a protein can be overproduced in a functional state in some expression system(s), though studies of high-throughput screens have been published in recent years. Prokaryotic expression systems present several advantages over eukaryotic ones. Among them, Lactococcus lactis (L. lactis) has emerged in the last two decades as a good alternative expression system to E. coli. The purpose of this chapter is to describe L. lactis and its tightly inducible system, NICE, for the effective expression of membrane proteins from both prokaryotic and eukaryotic origins.
Collapse
Affiliation(s)
- Annie Frelet-Barrand
- FEMTO-ST Institute, UMR 6174, CNRS, Université Bourgogne Franche-Comté, 15B Avenue des Montboucons, CEDEX, 25030 Besançon, France
| |
Collapse
|
10
|
Xie H, Muenke C, Sommer M, Buschmann S, Michel H. Production of Membrane Proteins in Pseudomonas stutzeri. Methods Mol Biol 2022; 2507:91-110. [PMID: 35773579 DOI: 10.1007/978-1-0716-2368-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Functional and structural studies on membrane proteins are often hampered by insufficient yields, misfolding and aggregation during the production and purification process. Escherichia coli is the most commonly used expression host for the production of recombinant prokaryotic integral membrane proteins. However, in many cases expression hosts other than E. coli are more appropriate for certain target proteins. Here, we report a convenient, systematically developed expression system using the γ-proteobacterium Pseudomonas stutzeri as an alternative production host for over-expression of integral membrane proteins. P. stutzeri can be easily and inexpensively cultured in large quantities. The Pseudomonas expression vectors are designed for inducible expression of affinity-tagged fusion proteins controlled by the PBAD promoter. This chapter provides detailed protocols of the different steps required to successfully produce and isolate recombinant membrane proteins with high yields in P. stutzeri.
Collapse
Affiliation(s)
- Hao Xie
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Cornelia Muenke
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Manuel Sommer
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Sabine Buschmann
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Hartmut Michel
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Birch J, Quigley A. The high-throughput production of membrane proteins. Emerg Top Life Sci 2021; 5:655-663. [PMID: 34623416 PMCID: PMC8726054 DOI: 10.1042/etls20210196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/11/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
Membrane proteins, found at the junctions between the outside world and the inner workings of the cell, play important roles in human disease and are used as biosensors. More than half of all therapeutics directly affect membrane protein function while nanopores enable DNA sequencing. The structural and functional characterisation of membrane proteins is therefore crucial. However, low levels of naturally abundant protein and the hydrophobic nature of membrane proteins makes production difficult. To maximise success, high-throughput strategies were developed that rely upon simple screens to identify successful constructs and rapidly exclude those unlikely to work. Parameters that affect production such as expression host, membrane protein origin, expression vector, fusion-tags, encapsulation reagent and solvent composition are screened in parallel. In this way, constructs with divergent requirements can be produced for a variety of structural applications. As structural techniques advance, sample requirements will change. Single-particle cryo-electron microscopy requires less protein than crystallography and as cryo-electron tomography and time-resolved serial crystallography are developed new sample production requirements will evolve. Here we discuss different methods used for the high-throughput production of membrane proteins for structural biology.
Collapse
Affiliation(s)
- James Birch
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, U.K
| | - Andrew Quigley
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, U.K
| |
Collapse
|
12
|
Zhu X, Boulet A, Buckley KM, Phillips CB, Gammon MG, Oldfather LE, Moore SA, Leary SC, Cobine PA. Mitochondrial copper and phosphate transporter specificity was defined early in the evolution of eukaryotes. eLife 2021; 10:64690. [PMID: 33591272 PMCID: PMC7924939 DOI: 10.7554/elife.64690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
The mitochondrial carrier family protein SLC25A3 transports both copper and phosphate in mammals, yet in Saccharomyces cerevisiae the transport of these substrates is partitioned across two paralogs: PIC2 and MIR1. To understand the ancestral state of copper and phosphate transport in mitochondria, we explored the evolutionary relationships of PIC2 and MIR1 orthologs across the eukaryotic tree of life. Phylogenetic analyses revealed that PIC2-like and MIR1-like orthologs are present in all major eukaryotic supergroups, indicating an ancient gene duplication created these paralogs. To link this phylogenetic signal to protein function, we used structural modeling and site-directed mutagenesis to identify residues involved in copper and phosphate transport. Based on these analyses, we generated an L175A variant of mouse SLC25A3 that retains the ability to transport copper but not phosphate. This work highlights the utility of using an evolutionary framework to uncover amino acids involved in substrate recognition by mitochondrial carrier family proteins.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Biological Sciences, Auburn University, Auburn, United States
| | - Aren Boulet
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | | | - Casey B Phillips
- Department of Biological Sciences, Auburn University, Auburn, United States
| | - Micah G Gammon
- Department of Biological Sciences, Auburn University, Auburn, United States
| | - Laura E Oldfather
- Department of Biological Sciences, Auburn University, Auburn, United States
| | - Stanley A Moore
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Scot C Leary
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, United States
| |
Collapse
|
13
|
King MS, Tavoulari S, Mavridou V, King AC, Mifsud J, Kunji ERS. A Single Cysteine Residue in the Translocation Pathway of the Mitosomal ADP/ATP Carrier from Cryptosporidium parvum Confers a Broad Nucleotide Specificity. Int J Mol Sci 2020; 21:E8971. [PMID: 33255957 PMCID: PMC7730227 DOI: 10.3390/ijms21238971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Cryptosporidiumparvum is a clinically important eukaryotic parasite that causes the disease cryptosporidiosis, which manifests with gastroenteritis-like symptoms. The protist has mitosomes, which are organelles of mitochondrial origin that have only been partially characterized. The genome encodes a highly reduced set of transport proteins of the SLC25 mitochondrial carrier family of unknown function. Here, we have studied the transport properties of one member of the C. parvum carrier family, demonstrating that it resembles the mitochondrial ADP/ATP carrier of eukaryotes. However, this carrier has a broader substrate specificity for nucleotides, transporting adenosine, thymidine, and uridine di- and triphosphates in contrast to its mitochondrial orthologues, which have a strict substrate specificity for ADP and ATP. Inspection of the putative translocation pathway highlights a cysteine residue, which is a serine in mitochondrial ADP/ATP carriers. When the serine residue is replaced by cysteine or larger hydrophobic residues in the yeast mitochondrial ADP/ATP carrier, the substrate specificity becomes broad, showing that this residue is important for nucleotide base selectivity in ADP/ATP carriers.
Collapse
Affiliation(s)
| | | | | | | | | | - Edmund R. S. Kunji
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; (M.S.K.); (S.T.); (V.M.); (A.C.K.); (J.M.)
| |
Collapse
|
14
|
Birch J, Cheruvara H, Gamage N, Harrison PJ, Lithgo R, Quigley A. Changes in Membrane Protein Structural Biology. BIOLOGY 2020; 9:E401. [PMID: 33207666 PMCID: PMC7696871 DOI: 10.3390/biology9110401] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
Membrane proteins are essential components of many biochemical processes and are important pharmaceutical targets. Membrane protein structural biology provides the molecular rationale for these biochemical process as well as being a highly useful tool for drug discovery. Unfortunately, membrane protein structural biology is a difficult area of study due to low protein yields and high levels of instability especially when membrane proteins are removed from their native environments. Despite this instability, membrane protein structural biology has made great leaps over the last fifteen years. Today, the landscape is almost unrecognisable. The numbers of available atomic resolution structures have increased 10-fold though advances in crystallography and more recently by cryo-electron microscopy. These advances in structural biology were achieved through the efforts of many researchers around the world as well as initiatives such as the Membrane Protein Laboratory (MPL) at Diamond Light Source. The MPL has helped, provided access to and contributed to advances in protein production, sample preparation and data collection. Together, these advances have enabled higher resolution structures, from less material, at a greater rate, from a more diverse range of membrane protein targets. Despite this success, significant challenges remain. Here, we review the progress made and highlight current and future challenges that will be overcome.
Collapse
Affiliation(s)
- James Birch
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Harish Cheruvara
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Nadisha Gamage
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Peter J. Harrison
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Ryan Lithgo
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, UK
| | - Andrew Quigley
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| |
Collapse
|
15
|
Sampaio de Oliveira KB, Leite ML, Rodrigues GR, Duque HM, da Costa RA, Cunha VA, de Loiola Costa LS, da Cunha NB, Franco OL, Dias SC. Strategies for recombinant production of antimicrobial peptides with pharmacological potential. Expert Rev Clin Pharmacol 2020; 13:367-390. [PMID: 32357080 DOI: 10.1080/17512433.2020.1764347] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The need to develop new drugs for the control of pathogenic microorganisms has redoubled efforts to prospect for antimicrobial peptides (AMPs) from natural sources and to characterize its structure and function. These molecules present a broad spectrum of action against different microorganisms and frequently present promiscuous action, with anticancer and immunomodulatory activities. Furthermore, AMPs can be used as biopharmaceuticals in the treatment of hospital-acquired infections and other serious diseases with relevant social and economic impacts.Areas covered: The low yield and the therefore difficult extraction and purification process in AMPs are problems that limit their industrial application and scientific research. Thus, optimized heterologous expression systems were developed to significantly boost AMP yields, allow high efficiency in purification and structural optimization for the increase of therapeutic activity.Expert opinion: This review provides an update on recent developments in the recombinant production of ribosomal and non-ribosomal synthesis of AMPs and on strategies to increase the expression of genes encoding AMPs at the transcriptional and translational levels and regulation of the post-translational modifications. Moreover, there are detailed reports of AMPs that have already reached marketable status or are in the pipeline under advanced stages of preclinical testing.
Collapse
Affiliation(s)
- Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Michel Lopes Leite
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Gisele Regina Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Rosiane Andrade da Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Victor Albuquerque Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Lorena Sousa de Loiola Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Nicolau Brito da Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Octavio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Patologia Molecular, Campus Darcy Ribeiro , Brasília, Brazil.,S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco , Campo Grande, Mato Grosso do Sul, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Biologia Animal, Campus Darcy Ribeiro , Brasília, Brazil
| |
Collapse
|
16
|
Membrane Protein Production in Lactococcus lactis for Structural Studies. Methods Mol Biol 2020. [PMID: 32112313 DOI: 10.1007/978-1-0716-0373-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The expression and downstream purification of membrane proteins is the prerequisite for biophysical and structural studies of this major source of therapeutic targets. The gram-positive bacterium Lactococcus lactis is an attractive option for heterologous membrane protein expression and purification thanks to advantageous characteristics such as mild proteolytic activity and small genome size. Vectors designed for gene transcription under the control of inducible promoters are readily available. Specifically, the tightly regulated nisin-inducible gene expression system (NICE) allows to fine-tune the overexpression of different gene products. The expressed protein engineered with a suitable tag can be readily detected and purified from crude membrane extracts. The purpose of this protocol chapter is to detail the procedures of cloning, expression, isolation of the membrane vesicles, and affinity purification of a membrane protein of interest in L. lactis.
Collapse
|
17
|
Stribny J, Thines L, Deschamps A, Goffin P, Morsomme P. The human Golgi protein TMEM165 transports calcium and manganese in yeast and bacterial cells. J Biol Chem 2020; 295:3865-3874. [PMID: 32047108 DOI: 10.1074/jbc.ra119.012249] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/10/2020] [Indexed: 01/17/2023] Open
Abstract
Cases of congenital disorders of glycosylation (CDG) have been associated with specific mutations within the gene encoding the human Golgi TMEM165 (transmembrane protein 165), belonging to UPF0016 (uncharacterized protein family 0016), a family of secondary ion transporters. To date, members of this family have been reported to be involved in calcium, manganese, and pH homeostases. Although it has been suggested that TMEM165 has cation transport activity, direct evidence for its Ca2+- and Mn2+-transporting activities is still lacking. Here, we functionally characterized human TMEM165 by heterologously expressing it in budding yeast (Saccharomyces cerevisiae) and in the bacterium Lactococcus lactis Protein production in these two microbial hosts was enhanced by codon optimization and truncation of the putatively autoregulatory N terminus of TMEM165. We show that TMEM165 expression in a yeast strain devoid of Golgi Ca2+ and Mn2+ transporters abrogates Ca2+- and Mn2+-induced growth defects, excessive Mn2+ accumulation in the cell, and glycosylation defects. Using bacterial cells loaded with the fluorescent Fura-2 probe, we further obtained direct biochemical evidence that TMEM165 mediates Ca2+ and Mn2+ influxes. We also used the yeast and bacterial systems to evaluate the impact of four disease-causing missense mutations identified in individuals with TMEM165-associated CDG. We found that a mutation leading to a E108G substitution within the conserved UPF0016 family motif significantly reduces TMEM165 activity. These results indicate that TMEM165 can transport Ca2+ and Mn2+, which are both required for proper protein glycosylation in cells. Our work also provides tools to better understand the pathogenicity of CDG-associated TMEM165 mutations.
Collapse
Affiliation(s)
- Jiri Stribny
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Louise Thines
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Antoine Deschamps
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Philippe Goffin
- Cellular and Molecular Microbiology Lab, Université Libre de Bruxelles, B-6041 Gosselies, Belgium
| | - Pierre Morsomme
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
18
|
Chan CJ, Yong YS, Song AAL, Abdul Rahim R, In LLA, Lim RLH. Lactococcus lactis harbouring Ara h 2.02 alleviates allergen-specific Th2-associated responses in sensitized mice. J Appl Microbiol 2019; 128:862-874. [PMID: 31758869 DOI: 10.1111/jam.14524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/28/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
AIM To study the prophylactic effect of recombinant Lactococcus lactis (rLl) harbouring Ara h 2.02 peanut allergen, in sensitized and challenged mice. METHODS AND RESULTS Ara h 2.02 cDNA was cloned into pNZ8048 for heterologous expression in L. lactis. The purified recombinant allergen showed IgE binding comparable with native Ara h 2. Balb/c mice were fed with either recombinant (rLl), nonrecombinant L. lactis (Ll) or NaHCO3 (Sham) prior to sensitization and challenged with rAra h 2.02, whereas the baseline group was only fed with Ll. Allergen-specific immunoglobulin and splenocyte cytokines responses were determined for each mouse. Mice fed with either Ll or rLl showed significant alleviation of IgE and IgG1 compared to the Sham group. Despite no significant decrease in Th2 (IL-4, IL-13, IL-6) or increase in Th1 (IFN-γ) cytokines, both groups showed lower IL-10 level, while the IL-4 : IFN-γ ratio was significantly lower for rLl compared to Ll group. CONCLUSIONS Oral administration of rLl harbouring Ara h 2.02 demonstrated alleviation of Th2-associated responses in allergen-challenged mice and a possible added allergen-specific prophylactic effect. SIGNIFICANCE AND IMPACT OF THE STUDY Ara h 2.02 coupled with the intrinsic properties of probiotic L. lactis as a delivery vehicle can be explored for the development of a commercially scalable vaccine.
Collapse
Affiliation(s)
- C J Chan
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, Kuala Lumpur, Malaysia
| | - Y S Yong
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, Kuala Lumpur, Malaysia
| | - A A L Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - R Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - L L A In
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, Kuala Lumpur, Malaysia
| | - R L H Lim
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Rezaei M, Rabbani Khorasgani M, Zarkesh Esfahani SH, Emamzadeh R, Abtahi H. Production of Brucella melitensis Omp16 protein fused to the human interleukin 2 in Lactococcus lactis MG1363 toward developing a Lactococcus-based vaccine against brucellosis. Can J Microbiol 2019; 66:39-45. [PMID: 31574230 DOI: 10.1139/cjm-2019-0261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The use of the food-grade bacterium Lactococcus lactis as a new cell factory is a promising alternative expression system for producing a desired protein. The Omp16-IL2 fusion protein antigen was cloned, expressed, and purified in this study. The Omp16-IL2 fusion gene was designed and cloned in pGH plasmid with appropriate restriction sites and subcloned in pAMJ2008 expression vector digested with the same enzymes. The purified recombinant constructed pAMJ-rOmp-IL2 was introduced into L. lactis subsp. cremoris MG1363 by electrotransformation. Finally, the expression and purification of Omp16-IL2 fusion protein was investigated. This study reports the construction of a recombinant L. lactis expressing the Omp16-IL2 fusion protein as an oral Lactococcus-based vaccine, as compared with commonly used live attenuated vaccines, for future studies against brucellosis.
Collapse
Affiliation(s)
- Marzieh Rezaei
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Islamic Republic of Iran
| | | | | | - Rahman Emamzadeh
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Islamic Republic of Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Science, Arak, Islamic Republic of Iran
| |
Collapse
|
20
|
Gaudu P, Yamamoto Y, Jensen PR, Hammer K, Lechardeur D, Gruss A. Genetics of Lactococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0035-2018. [PMID: 31298208 PMCID: PMC10957224 DOI: 10.1128/microbiolspec.gpp3-0035-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis is the best characterized species among the lactococci, and among the most consumed food-fermenting bacteria worldwide. Thanks to their importance in industrialized food production, lactococci are among the lead bacteria understood for fundamental metabolic pathways that dictate growth and survival properties. Interestingly, lactococci belong to the Streptococcaceae family, which includes food, commensal and virulent species. As basic metabolic pathways (e.g., respiration, metal homeostasis, nucleotide metabolism) are now understood to underlie virulence, processes elucidated in lactococci could be important for understanding pathogen fitness and synergy between bacteria. This chapter highlights major findings in lactococci and related bacteria, and covers five themes: distinguishing features of lactococci, metabolic capacities including the less known respiration metabolism in Streptococcaceae, factors and pathways modulating stress response and fitness, interbacterial dialogue via metabolites, and novel applications in health and biotechnology.
Collapse
Affiliation(s)
| | - Yuji Yamamoto
- Laboratory of Cellular Microbiology, School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Aomori Japan
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Karin Hammer
- DTU Bioengineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | | |
Collapse
|
21
|
Stedman A, Chambers MA, Gutierrez-Merino J. Secretion and functional expression of Mycobacterium bovis antigens MPB70 and MPB83 in lactic acid bacteria. Tuberculosis (Edinb) 2019; 117:24-30. [PMID: 31378264 DOI: 10.1016/j.tube.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 01/23/2023]
Abstract
The aim of this study was to determine the reliability of lactic acid bacteria (LAB) as heterologous hosts for the expression of MPB70 and MPB83, two Mycobacterium bovis antigens that possess diagnostics and immunogenic properties, respectively. We therefore generated recombinant cells of Lactococcus lactis and Lactobacillus plantarum that carried hybrid genes encoding MPB70 and MPB83 fused to signal peptides that are specifically recognized by LAB. Only L. lactis was able to secrete MPB70 using the L. lactis signal peptide Usp45, and to produce MPB83 as an immunogenic membrane protein following its expression with the signal peptide of the L. plantarum lipoprotein prsA. Inactivated cells of MPB83-expressing L. lactis cultures enhanced NF-κB activation in macrophages. Our results show that L. lactis is a reliable host for the secretion and functional expression of antigens that are naturally produced by M. bovis, the causative agent of bovine tuberculosis (bTB). This represents the first step on a long process to establishing whether recombinant LAB could serve as a food-grade platform for potential diagnostic tools and/or vaccine interventions for use against bTB, a chronic disease that primarily affects cattle but also humans and a wide range of domestic and wild animals.
Collapse
Affiliation(s)
- Anna Stedman
- School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, UK; The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK.
| | - Mark A Chambers
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, KT15 3NB, UK; School of Veterinary Medicine, University of Surrey, Guildford, GU2 7AL, UK.
| | | |
Collapse
|
22
|
Lacabanne D, Fogeron ML, Wiegand T, Cadalbert R, Meier BH, Böckmann A. Protein sample preparation for solid-state NMR investigations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:20-33. [PMID: 30803692 DOI: 10.1016/j.pnmrs.2019.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Preparation of a protein sample for solid-state NMR is in many aspects similar to solution-state NMR approaches, mainly with respect to the need for stable isotope labeling. But the possibility of using solid-state NMR to investigate membrane proteins in (native) lipids adds the important requirement of adapted membrane-reconstitution schemes. Also, dynamic nuclear polarization and paramagnetic NMR in solids need specific schemes using metal ions and radicals. Sample sedimentation has enabled structural investigations of objects inaccessible to other structural techniques, but rotor filling using sedimentation has become increasingly complex with smaller and smaller rotors, as needed for higher and higher magic-angle spinning (MAS) frequencies. Furthermore, solid-state NMR can investigate very large proteins and their complexes without the concomitant increase in line widths, motivating the use of selective labeling and unlabeling strategies, as well as segmental labeling, to decongest spectra. The possibility of investigating sub-milligram amounts of protein today using advanced fast MAS techniques enables alternative protein synthesis schemes such as cell-free expression. Here we review these specific aspects of solid-state NMR sample preparation.
Collapse
Affiliation(s)
- Denis Lacabanne
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France; Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France.
| |
Collapse
|
23
|
Modelling the influence of metabolite diffusion on non-starter lactic acid bacteria growth in ripening Cheddar cheese. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2017.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Kok J, van Gijtenbeek LA, de Jong A, van der Meulen SB, Solopova A, Kuipers OP. The Evolution of gene regulation research in Lactococcus lactis. FEMS Microbiol Rev 2018; 41:S220-S243. [PMID: 28830093 DOI: 10.1093/femsre/fux028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/15/2017] [Indexed: 11/12/2022] Open
Abstract
Lactococcus lactis is a major microbe. This lactic acid bacterium (LAB) is used worldwide in the production of safe, healthy, tasteful and nutritious milk fermentation products. Its huge industrial importance has led to an explosion of research on the organism, particularly since the early 1970s. The upsurge in the research on L. lactis coincided not accidentally with the advent of recombinant DNA technology in these years. The development of methods to take out and re-introduce DNA in L. lactis, to clone genes and to mutate the chromosome in a targeted way, to control (over)expression of proteins and, ultimately, the availability of the nucleotide sequence of its genome and the use of that information in transcriptomics and proteomics research have enabled to peek deep into the functioning of the organism. Among many other things, this has provided an unprecedented view of the major gene regulatory pathways involved in nitrogen and carbon metabolism and their overlap, and has led to the blossoming of the field of L. lactis systems biology. All of these advances have made L. lactis the paradigm of the LAB. This review will deal with the exciting path along which the research on the genetics of and gene regulation in L. lactis has trodden.
Collapse
Affiliation(s)
- Jan Kok
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Lieke A van Gijtenbeek
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Sjoerd B van der Meulen
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Ana Solopova
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| |
Collapse
|
25
|
Bartholomae M, Baumann T, Nickling JH, Peterhoff D, Wagner R, Budisa N, Kuipers OP. Expanding the Genetic Code of Lactococcus lactis and Escherichia coli to Incorporate Non-canonical Amino Acids for Production of Modified Lantibiotics. Front Microbiol 2018; 9:657. [PMID: 29681891 PMCID: PMC5897534 DOI: 10.3389/fmicb.2018.00657] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/21/2018] [Indexed: 12/19/2022] Open
Abstract
The incorporation of non-canonical amino acids (ncAAs) into ribosomally synthesized and post-translationally modified peptides, e.g., nisin from the Gram-positive bacterium Lactococcus lactis, bears great potential to expand the chemical space of various antimicrobials. The ncAA Nε-Boc-L-lysine (BocK) was chosen for incorporation into nisin using the archaeal pyrrolysyl-tRNA synthetase–tRNAPyl pair to establish orthogonal translation in L. lactis for read-through of in-frame amber stop codons. In parallel, recombinant nisin production and orthogonal translation were combined in Escherichia coli cells. Both organisms synthesized bioactive nisin(BocK) variants. Screening of a nisin amber codon library revealed suitable sites for ncAA incorporation and two variants displayed high antimicrobial activity. Orthogonal translation in E. coli and L. lactis presents a promising tool to create new-to-nature nisin derivatives.
Collapse
Affiliation(s)
- Maike Bartholomae
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Tobias Baumann
- Biocatalysis Group, Department of Chemistry, Technische Universität Berlin (Berlin Institute of Technology), Berlin, Germany
| | - Jessica H Nickling
- Biocatalysis Group, Department of Chemistry, Technische Universität Berlin (Berlin Institute of Technology), Berlin, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, Universität Regensburg, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Universität Regensburg, Regensburg, Germany
| | - Nediljko Budisa
- Biocatalysis Group, Department of Chemistry, Technische Universität Berlin (Berlin Institute of Technology), Berlin, Germany
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
26
|
Ferro R, Rennig M, Hernández-Rollán C, Daley DO, Nørholm MHH. A synbio approach for selection of highly expressed gene variants in Gram-positive bacteria. Microb Cell Fact 2018. [PMID: 29519251 PMCID: PMC5842541 DOI: 10.1186/s12934-018-0886-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The market for recombinant proteins is on the rise, and Gram-positive strains are widely exploited for this purpose. Bacillus subtilis is a profitable host for protein production thanks to its ability to secrete large amounts of proteins, and Lactococcus lactis is an attractive production organism with a long history in food fermentation. RESULTS We have developed a synbio approach for increasing gene expression in two Gram-positive bacteria. First of all, the gene of interest was coupled to an antibiotic resistance gene to create a growth-based selection system. We then randomised the translation initiation region (TIR) preceding the gene of interest and selected clones that produced high protein titres, as judged by their ability to survive on high concentrations of antibiotic. Using this approach, we were able to significantly increase production of two industrially relevant proteins; sialidase in B. subtilis and tyrosine ammonia lyase in L. lactis. CONCLUSION Gram-positive bacteria are widely used to produce industrial enzymes. High titres are necessary to make the production economically feasible. The synbio approach presented here is a simple and inexpensive way to increase protein titres, which can be carried out in any laboratory within a few days. It could also be implemented as a tool for applications beyond TIR libraries, such as screening of synthetic, homologous or domain-shuffled genes.
Collapse
Affiliation(s)
- Roberto Ferro
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.,Department of Plant and Environmental Science, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Maja Rennig
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Cristina Hernández-Rollán
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Daniel O Daley
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,CloneOpt AB, Upplands Väsby, Sweden
| | - Morten H H Nørholm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark. .,CloneOpt AB, Upplands Väsby, Sweden.
| |
Collapse
|
27
|
Abstract
Characterization of PTS-IIC, an endogenous constitutive promoter from L. lactis.. Cellobiose enhances activity from PTS-IIC promoter. PTS-IIC promoter mediates protein expression in B. subtilis and E coli Nissle 1917.
Constitutively active promoter elements for heterologous protein production in Lactococcus lactis are scarce. Here, the promoter of the PTS-IIC gene cluster from L. lactis NZ3900 is described. This promoter was cloned upstream of an enhanced green fluorescent protein, GFPmut3a, and transformed into L. lactis. Transformants produced up to 13.5 μg of GFPmut3a per milliliter of log phase cells. Addition of cellobiose further increased the production of GFPmut3a by up to two-fold when compared to glucose. Analysis of mutations at two specific positions in the PTS-IIC promoter showed that a ‘T’ to ‘G’ mutation within the −35 element resulted in constitutive expression in glucose, while a ‘C’ at nucleotide 7 in the putative cre site enhanced promoter activity in cellobiose. Finally, this PTS-IIC promoter is capable of mediating protein expression in Bacillus subtilis and Escherichia coli Nissle 1917, suggesting the potential for future biotechnological applications of this element and its derivatives.
Collapse
Key Words
- ELISA, enzyme-linked immunosorbent assay
- GFP, green fluorescent protein
- Heterologous protein expression
- LAB, lactic acid bacteria
- LB, Luria-Bertani media
- Lactococcus lactis
- OD600, optical density at 600 nm
- PBS, phosphate buffered saline
- Probiotics
- Promoter
- RFU, relative fluorescence unit
- ccpA, catabolite control protein A
- celA, cellobiose-specific phosphor-β-glucosidase
- cre, catabolite-responsive element
- noxE, NADH oxidase promoter
- nt, nucleotide
- ptcC, cellobiose-specific PTS IIC component
Collapse
|
28
|
Sommer M, Xie H, Michel H. Pseudomonas stutzeri as an alternative host for membrane proteins. Microb Cell Fact 2017; 16:157. [PMID: 28931397 PMCID: PMC5607611 DOI: 10.1186/s12934-017-0771-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/09/2017] [Indexed: 12/22/2022] Open
Abstract
Background Studies on membrane proteins are often hampered by insufficient yields of the protein of interest. Several prokaryotic hosts have been tested for their applicability as production platform but still Escherichia coli by far is the one most commonly used. Nevertheless, it has been demonstrated that in some cases hosts other than E. coli are more appropriate for certain target proteins. Results Here we have developed an expression system for the heterologous production of membrane proteins using a single plasmid-based approach. The gammaproteobacterium Pseudomonas stutzeri was employed as a new production host. We investigated several basic microbiological features crucial for its handling in the laboratory. The organism belonging to bio-safety level one is a close relative of the human pathogen Pseudomonas aeruginosa. Pseudomonas stutzeri is comparable to E. coli regarding its growth and cultivation conditions. Several effective antibiotics were identified and a protocol for plasmid transformation was established. We present a workflow including cloning of the target proteins, small-scale screening for the best production conditions and finally large-scale production in the milligram range. The GFP folding assay was used for the rapid analysis of protein folding states. In summary, out of 36 heterologous target proteins, 20 were produced at high yields. Additionally, eight transporters derived from P. aeruginosa could be obtained with high yields. Upscaling of protein production and purification of a Gluconate:H+ Symporter (GntP) family transporter (STM2913) from Salmonella enterica to high purity was demonstrated. Conclusions Pseudomonas stutzeri is an alternative production host for membrane proteins with success rates comparable to E. coli. However, some proteins were produced with high yields in P. stutzeri but not in E. coli and vice versa. Therefore, P. stutzeri extends the spectrum of useful production hosts for membrane proteins and increases the success rate for highly produced proteins. Using the new pL2020 vector no additional cloning is required to test both hosts in parallel. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0771-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manuel Sommer
- Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany
| | - Hao Xie
- Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany.
| | - Hartmut Michel
- Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
29
|
Lyu Y, LaPointe G, Zhong L, Lu J, Zhang C, Lu Z. Heterologous Expression of Aldehyde Dehydrogenase in Lactococcus lactis for Acetaldehyde Detoxification at Low pH. Appl Biochem Biotechnol 2017; 184:570-581. [DOI: 10.1007/s12010-017-2573-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/31/2017] [Indexed: 11/28/2022]
|
30
|
Song AAL, In LLA, Lim SHE, Rahim RA. A review on Lactococcus lactis: from food to factory. Microb Cell Fact 2017; 16:55. [PMID: 28376880 PMCID: PMC5379754 DOI: 10.1186/s12934-017-0669-x] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/28/2017] [Indexed: 02/08/2023] Open
Abstract
Lactococcus lactis has progressed a long way since its discovery and initial use in dairy product fermentation, to its present biotechnological applications in genetic engineering for the production of various recombinant proteins and metabolites that transcends the heterologous species barrier. Key desirable features of this gram-positive lactic acid non-colonizing gut bacteria include its generally recognized as safe (GRAS) status, probiotic properties, the absence of inclusion bodies and endotoxins, surface display and extracellular secretion technology, and a diverse selection of cloning and inducible expression vectors. This have made L. lactis a desirable and promising host on par with other well established model bacterial or yeast systems such as Escherichia coli, Saccharomyces [corrected] cerevisiae and Bacillus subtilis. In this article, we review recent technological advancements, challenges, future prospects and current diversified examples on the use of L. lactis as a microbial cell factory. Additionally, we will also highlight latest medical-based applications involving whole-cell L. lactis as a live delivery vector for the administration of therapeutics against both communicable and non-communicable diseases.
Collapse
Affiliation(s)
- Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology & Biomolecular Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Lionel L A In
- Functional Food Research Group, Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Swee Hua Erin Lim
- Perdana University-Royal College of Surgeons in Ireland, Perdana University, Block B and D, MAEPS Building, MARDI Complex, Jalan MAEPS Perdana, 43400, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell & Molecular Biology, Faculty of Biotechnology & Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
31
|
Chang YN, Shaik FR, Neldner Y, Geertsma ER. Production, Purification and Crystallization of a ProkaryoticSLC26 Homolog for Structural Studies. Bio Protoc 2017; 7:e2116. [PMID: 34458442 DOI: 10.21769/bioprotoc.2116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/07/2016] [Accepted: 01/06/2017] [Indexed: 11/02/2022] Open
Abstract
The SLC26 or SulP proteins constitute a large family of anion transporters that are ubiquitously expressed in pro- and eukaryotes. In human, SLC26 proteins perform important roles in ion homeostasis and malfunctioning of selected members is associated with diseases. This protocol details the production and crystallization of a prokaryotic SLC26 homolog, termed SLC26Dg, from Deinococcus geothermalis. Following these instructions we obtained well-folded and homogenous material of the membrane protein SLC26Dg and the nanobody Nb5776 that enabled us to crystallize the complex and determine its structure ( Geertsma et al., 2015 ). The procedure may be adapted to purify and crystallize other membrane protein complexes.
Collapse
Affiliation(s)
- Yung-Ning Chang
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Farooque R Shaik
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Yvonne Neldner
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Eric R Geertsma
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
32
|
van Gijtenbeek LA, Robinson A, van Oijen AM, Poolman B, Kok J. On the Spatial Organization of mRNA, Plasmids, and Ribosomes in a Bacterial Host Overexpressing Membrane Proteins. PLoS Genet 2016; 12:e1006523. [PMID: 27977669 PMCID: PMC5201305 DOI: 10.1371/journal.pgen.1006523] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/30/2016] [Accepted: 12/06/2016] [Indexed: 01/03/2023] Open
Abstract
By using fluorescence imaging, we provide a time-resolved single-cell view on coupled defects in transcription, translation, and growth during expression of heterologous membrane proteins in Lactococcus lactis. Transcripts encoding poorly produced membrane proteins accumulate in mRNA-dense bodies at the cell poles, whereas transcripts of a well-expressed homologous membrane protein show membrane-proximal localization in a translation-dependent fashion. The presence of the aberrant polar mRNA foci correlates with cessation of cell division, which is restored once these bodies are cleared. In addition, activation of the heat-shock response and a loss of nucleoid-occluded ribosomes are observed. We show that the presence of a native-like N-terminal domain is key to SRP-dependent membrane localization and successful production of membrane proteins. The work presented gives new insights and detailed understanding of aberrant membrane protein biogenesis, which can be used for strategies to optimize membrane protein production.
Collapse
Affiliation(s)
- Lieke A. van Gijtenbeek
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
- * E-mail: (LAvG); (JK)
| | - Andrew Robinson
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Antoine M. van Oijen
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Bert Poolman
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
- Department of Biochemistry, University of Groningen, Groningen, The Netherlands
| | - Jan Kok
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
- * E-mail: (LAvG); (JK)
| |
Collapse
|
33
|
Bakari S, Lembrouk M, Sourd L, Ousalem F, André F, Orlowski S, Delaforge M, Frelet-Barrand A. Lactococcus lactis is an Efficient Expression System for Mammalian Membrane Proteins Involved in Liver Detoxification, CYP3A4, and MGST1. Mol Biotechnol 2016; 58:299-310. [PMID: 26961909 DOI: 10.1007/s12033-016-9928-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Despite the great importance of human membrane proteins involved in detoxification mechanisms, their wide use for biochemical approaches is still hampered by several technical difficulties considering eukaryotic protein expression in order to obtain the large amounts of protein required for functional and/or structural studies. Lactococcus lactis has emerged recently as an alternative heterologous expression system to Escherichia coli for proteins that are difficult to express. The aim of this work was to check its ability to express mammalian membrane proteins involved in liver detoxification, i.e., CYP3A4 and two isoforms of MGST1 (rat and human). Genes were cloned using two different strategies, i.e., classical or Gateway-compatible cloning, and we checked the possible influence of two affinity tags (6×-His-tag and Strep-tag II). Interestingly, all proteins could be successfully expressed in L. lactis at higher yields than those previously obtained for these proteins with classical expression systems (E. coli, Saccharomyces cerevisiae) or those of other eukaryotic membrane proteins expressed in L. lactis. In addition, rMGST1 was fairly active after expression in L. lactis. This study highlights L. lactis as an attractive system for efficient expression of mammalian detoxification membrane proteins at levels compatible with further functional and structural studies.
Collapse
Affiliation(s)
- Sana Bakari
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Mehdi Lembrouk
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Laura Sourd
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Fares Ousalem
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - François André
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Stéphane Orlowski
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Marcel Delaforge
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Annie Frelet-Barrand
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France. .,Institute FEMTO-ST, UMR6174 CNRS-Université de Franche-Comté, 25044, Besançon Cedex, France.
| |
Collapse
|
34
|
Vest KE, Wang J, Gammon MG, Maynard MK, White OL, Cobine JA, Mahone WK, Cobine PA. Overlap of copper and iron uptake systems in mitochondria in Saccharomyces cerevisiae. Open Biol 2016; 6:150223. [PMID: 26763345 PMCID: PMC4736827 DOI: 10.1098/rsob.150223] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In Saccharomyces cerevisiae, the mitochondrial carrier family protein Pic2 imports copper into the matrix. Deletion of PIC2 causes defects in mitochondrial copper uptake and copper-dependent growth phenotypes owing to decreased cytochrome c oxidase activity. However, copper import is not completely eliminated in this mutant, so alternative transport systems must exist. Deletion of MRS3, a component of the iron import machinery, also causes a copper-dependent growth defect on non-fermentable carbon. Deletion of both PIC2 and MRS3 led to a more severe respiratory growth defect than either individual mutant. In addition, MRS3 expressed from a high copy number vector was able to suppress the oxygen consumption and copper uptake defects of a strain lacking PIC2. When expressed in Lactococcus lactis, Mrs3 mediated copper and iron import. Finally, a PIC2 and MRS3 double mutant prevented the copper-dependent activation of a heterologously expressed copper sensor in the mitochondrial intermembrane space. Taken together, these data support a role for the iron transporter Mrs3 in copper import into the mitochondrial matrix.
Collapse
Affiliation(s)
- Katherine E Vest
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jing Wang
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Micah G Gammon
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Margaret K Maynard
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | | | - Jai A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wilkerson K Mahone
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
35
|
Gosavi PM, Korendovych IV. Minimalist IR and fluorescence probes of protein function. Curr Opin Chem Biol 2016; 34:103-109. [PMID: 27599185 DOI: 10.1016/j.cbpa.2016.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 11/19/2022]
Abstract
Spectroscopic studies of small proteins and peptides, especially those requiring fine spatial and/or temporal resolution, demand synthetic probes that confer the minimal possible steric and functional change on the native properties. Here we review the recent progress in development of minimally disruptive probes for fluorescence and infrared spectroscopies, as well as the methods to efficiently incorporate them into proteins. Advances in spectroscopy on the one hand result in high specialization of synthetic probes for a particular purpose, but on the other hand allow for the same probes be used for different techniques to gather complementary biochemical information.
Collapse
Affiliation(s)
- Pallavi M Gosavi
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, United States
| | - Ivan V Korendovych
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, United States.
| |
Collapse
|
36
|
Arora T, Wegmann U, Bobhate A, Lee YS, Greiner TU, Drucker DJ, Narbad A, Bäckhed F. Microbially produced glucagon-like peptide 1 improves glucose tolerance in mice. Mol Metab 2016; 5:725-730. [PMID: 27656410 PMCID: PMC5021674 DOI: 10.1016/j.molmet.2016.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/09/2016] [Accepted: 06/14/2016] [Indexed: 11/24/2022] Open
Abstract
Objective The enteroendocrine hormone glucagon-like peptide 1 (GLP-1) is an attractive anti-diabetic therapy. Here, we generated a recombinant Lactococcus lactis strain genetically modified to produce GLP-1 and investigated its ability to improve glucose tolerance in mice on chow or high-fat diet (HFD). Methods We transformed L. lactis FI5876 with either empty vector (pUK200) or murine GLP-1 expression vector to generate LL-UK200 and LL-GLP1, respectively, and determined their potential to induce insulin secretion by incubating primary islets from wild-type (WT) and GLP-1 receptor knockout (GLP1R-KO) mice with culture supernatant of these strains. In addition, we administered these strains to mice on chow or HFD. At the end of the study period, we measured plasma GLP-1 levels, performed intraperitoneal glucose tolerance and insulin tolerance tests, and determined hepatic expression of the gluconeogenic genes G6pc and Pepck. Results Insulin release from primary islets of WT but not GLP1R-KO mice was higher following incubation with culture supernatant from LL-GLP1 compared with LL-UK200. In mice on chow, supplementation with LL-GLP1 versus LL-UK200 promoted increased vena porta levels of GLP-1 in both WT and GLP1R-KO mice; however, LL-GLP1 promoted improved glucose tolerance in WT but not in GLP1R-KO mice, indicating a requirement for the GLP-1 receptor. In mice on HFD and thus with impaired glucose tolerance, supplementation with LL-GLP1 versus LL-UK200 promoted a pronounced improvement in glucose tolerance together with increased insulin levels. Supplementation with LL-GLP1 versus LL-UK200 did not affect insulin tolerance but resulted in reduced expression of G6pc in both chow and HFD-fed mice. Conclusions The L. lactis strain genetically modified to produce GLP-1 is capable of stimulating insulin secretion from islets and improving glucose tolerance in mice. L. lactis can be engineered to produce Glucagon like peptide-1 (LL-GLP1). L. lactis-derived GLP-1 induces insulin release in primary islets. LL-GLP1 increases circulating GLP-1 levels in both chow and high fat diet fed mice. LL-GLP1 improves glucose tolerance in both chow and high fat diet fed mice. GLP-1 receptor is required to exhibit the biological response to LL-GLP1.
Collapse
Key Words
- DPP4, Dipeptidyl peptidase 4
- G-KRB, glucose-Krebs ringer buffer
- G6pc, glucose 6 phosphatase, catalytic subunit
- GLP-1
- GLP-1, Glucagon-like peptide 1
- GLP1R-KO, GLP-1 receptor knock out
- Glucose tolerance
- HFD, high fat diet
- IPGTT, Intraperitoneal glucose tolerance test
- ITT, Insulin tolerance test
- LL-GLP1, GLP-1 producing recombinant strain
- LL-UK200, Control vector only strain
- Lactococcus lactis
- Pepck, phosphoenolpyruvate carboxykinase
- Recombinant bacteria
- WT, Wild type
- cfu, Colony forming unit
Collapse
Affiliation(s)
- Tulika Arora
- Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Udo Wegmann
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich NR4 7UA, UK
| | - Anup Bobhate
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich NR4 7UA, UK
| | - Ying Shiuan Lee
- Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Thomas U Greiner
- Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Daniel J Drucker
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Arjan Narbad
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich NR4 7UA, UK
| | - Fredrik Bäckhed
- Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
37
|
Freires IA, Avilés-Reyes A, Kitten T, Simpson-Haidaris PJ, Swartz M, Knight PA, Rosalen PL, Lemos JA, Abranches J. Heterologous expression of Streptococcus mutans Cnm in Lactococcus lactis promotes intracellular invasion, adhesion to human cardiac tissues and virulence. Virulence 2016; 8:18-29. [PMID: 27260618 DOI: 10.1080/21505594.2016.1195538] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In S. mutans, the expression of the surface glycoprotein Cnm mediates binding to extracellular matrix proteins, endothelial cell invasion and virulence in the Galleria mellonella invertebrate model. To further characterize Cnm as a virulence factor, the cnm gene from S. mutans strain OMZ175 was expressed in the non-pathogenic Lactococcus lactis NZ9800 using a nisin-inducible system. Despite the absence of the machinery necessary for Cnm glycosylation, Western blot and immunofluorescence microscopy analyses demonstrated that Cnm was effectively expressed and translocated to the cell wall of L. lactis. Similar to S. mutans, expression of Cnm in L. lactis enabled robust binding to collagen and laminin, invasion of human coronary artery endothelial cells and increased virulence in G. mellonella. Using an ex vivo human heart tissue colonization model, we showed that Cnm-positive strains of either S. mutans or L. lactis outcompete their Cnm-negative counterparts for tissue colonization. Finally, Cnm expression facilitated L. lactis adhesion and colonization in a rabbit model of infective endocarditis. Collectively, our results provide unequivocal evidence that binding to extracellular matrices mediated by Cnm is an important virulence attribute of S. mutans and confirm the usefulness of the L. lactis heterologous system for further characterization of bacterial virulence factors.
Collapse
Affiliation(s)
- Irlan A Freires
- a Department of Physiological Sciences , Piracicaba Dental School, University of Campinas , Piracicaba , SP , Brazil.,b Center for Oral Biology, University of Rochester Medical Center , Rochester , NY , USA
| | - Alejandro Avilés-Reyes
- c Department of Oral Biology , University of Florida College of Dentistry , Gainesville , FL , USA
| | - Todd Kitten
- d Philips Institute for Oral Health Research, Virginia Commonwealth University , Richmond , VA , USA
| | - P J Simpson-Haidaris
- e Department of Medicine/Hematology-Oncology Division and Department of Pathology and Laboratory Medicine , University of Rochester Medical Center , Rochester , NY , USA
| | - Michael Swartz
- f Department of Surgery , Cardiac Division, University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Peter A Knight
- f Department of Surgery , Cardiac Division, University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Pedro L Rosalen
- a Department of Physiological Sciences , Piracicaba Dental School, University of Campinas , Piracicaba , SP , Brazil
| | - José A Lemos
- c Department of Oral Biology , University of Florida College of Dentistry , Gainesville , FL , USA
| | - Jacqueline Abranches
- c Department of Oral Biology , University of Florida College of Dentistry , Gainesville , FL , USA
| |
Collapse
|
38
|
Shao J, Marcondes MFM, Oliveira V, Broos J. Development of Chemically Defined Media to Express Trp-Analog-Labeled Proteins in a Lactococcus lactis Trp Auxotroph. J Mol Microbiol Biotechnol 2016; 26:269-76. [PMID: 27172771 DOI: 10.1159/000445687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/20/2016] [Indexed: 11/19/2022] Open
Abstract
Chemically defined media for growth of Lactococcus lactis strains contain about 50 components, making them laborious and expensive growth media. However, they are crucial for metabolism studies as well as for expression of heterologous proteins labeled with unnatural amino acids. In particular, the L. lactis Trp auxotroph PA1002, overexpressing the tryptophanyl tRNA synthetase enzyme of L. lactis, is very suitable for the biosynthetic incorporation of Trp analogs in proteins because of its most relaxed substrate specificity reported towards Trp analogs. Here we present two much simpler defined media for L. lactis, which consist of only 24 or 31 components, respectively, and with which the L. lactis Trp auxotroph shows similar growth characteristics as with a 50-component chemically defined medium. Importantly, the expression levels of two recombinant proteins used for evaluation were up to 2-3 times higher in these new media than in the 50-component medium, without affecting the Trp analog incorporation efficiency. Taken together, the simplest chemically defined media reported so far for L. lactis are presented. Since L. lactis also shows auxotrophy for Arg, His, Ile, Leu Val, and Met, our simplified media may also be useful for the biosynthetic incorporation of analogs of these five amino acids.
Collapse
Affiliation(s)
- Jinfeng Shao
- Laboratory of Biophysical Chemistry and Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
39
|
Tools to cope with difficult-to-express proteins. Appl Microbiol Biotechnol 2016; 100:4347-55. [DOI: 10.1007/s00253-016-7514-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 12/26/2022]
|
40
|
Jeffery CJ. Expression, Solubilization, and Purification of Bacterial Membrane Proteins. ACTA ACUST UNITED AC 2016; 83:29.15.1-29.15.15. [PMID: 26836409 DOI: 10.1002/0471140864.ps2915s83] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bacterial integral membrane proteins play many important roles, including sensing changes in the environment, transporting molecules into and out of the cell, and in the case of commensal or pathogenic bacteria, interacting with the host organism. Working with membrane proteins in the lab can be more challenging than working with soluble proteins because of difficulties in their recombinant expression and purification. This protocol describes a standard method to express, solubilize, and purify bacterial integral membrane proteins. The recombinant protein of interest with a 6His affinity tag is expressed in E. coli. After harvesting the cultures and isolating cellular membranes, mild detergents are used to solubilize the membrane proteins. Protein-detergent complexes are then purified using IMAC column chromatography. Support protocols are included to help select a detergent for protein solubilization and for use of gel filtration chromatography for further purification.
Collapse
Affiliation(s)
- Constance J Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
41
|
Bird LE, Nettleship JE, Järvinen V, Rada H, Verma A, Owens RJ. Expression Screening of Integral Membrane Proteins by Fusion to Fluorescent Reporters. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 922:1-11. [DOI: 10.1007/978-3-319-35072-1_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
42
|
Seigneurin-Berny D, King MS, Sautron E, Moyet L, Catty P, André F, Rolland N, Kunji ERS, Frelet-Barrand A. Membrane Protein Production in Lactococcus lactis for Functional Studies. Methods Mol Biol 2016; 1432:79-101. [PMID: 27485331 DOI: 10.1007/978-1-4939-3637-3_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Due to their unique properties, expression and study of membrane proteins in heterologous systems remains difficult. Among the bacterial systems available, the Gram-positive lactic bacterium, Lactococcus lactis, traditionally used in food fermentations, is nowadays widely used for large-scale production and functional characterization of bacterial and eukaryotic membrane proteins. The aim of this chapter is to describe the different possibilities for the functional characterization of peripheral or intrinsic membrane proteins expressed in Lactococcus lactis.
Collapse
Affiliation(s)
- Daphne Seigneurin-Berny
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS (UMR-5168)/CEA/INRA (UMR1417)/Université Grenoble Alpes, BIG, CEA, Grenoble, France
| | - Martin S King
- Medical Research Council, Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 2XY, UK
| | - Emiline Sautron
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS (UMR-5168)/CEA/INRA (UMR1417)/Université Grenoble Alpes, BIG, CEA, Grenoble, France
| | - Lucas Moyet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS (UMR-5168)/CEA/INRA (UMR1417)/Université Grenoble Alpes, BIG, CEA, Grenoble, France
| | - Patrice Catty
- Laboratoire de Chimie et Biologie des Métaux, CNRS (UMR-5249)/CEA/Université Grenoble Alpes, BIG, CEA, Grenoble, France
| | - François André
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris Saclay, Gif-sur-Yvette, France
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS (UMR-5168)/CEA/INRA (UMR1417)/Université Grenoble Alpes, BIG, CEA, Grenoble, France
| | - Edmund R S Kunji
- Medical Research Council, Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 2XY, UK
| | - Annie Frelet-Barrand
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris Saclay, Gif-sur-Yvette, France. .,FEMTO-ST Institute, UMR CNRS 6174, University of Bourgogne Franche-Comte, Besançon, France.
| |
Collapse
|
43
|
Implementation of the agmatine-controlled expression system for inducible gene expression in Lactococcus lactis. Microb Cell Fact 2015; 14:208. [PMID: 26715338 PMCID: PMC4696319 DOI: 10.1186/s12934-015-0399-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/16/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Lactococcus lactis has been safely consumed in fermented foods for millennia. This Gram-positive bacterium has now become of industrial importance as an expression host for the overproduction of lipopolysaccharide-free recombinant proteins used as food ingredients, therapeutic proteins and biotechnological enzymes. RESULTS This paper reports an agmatine-controlled expression (ACE) system for L. lactis, comprising the lactococcal agmatine-sensor/transcriptional activator AguR and its target promoter P(aguB). The usefulness and efficiency of this system was checked via the reporter gene gfp and by producing PEP (Myxococcus xanthus prolyl-endopeptidase), an enzyme of biomedical interest able to degrade the immunotoxic peptides produced during the gastrointestinal breakdown of gluten. CONCLUSION The ACE system developed in this work was suitable for the efficient expression of the functional recombinant proteins GFP and PEP. The expression system was tightly regulated by the agmatine concentration and allowed high protein production without leakiness.
Collapse
|
44
|
Chamcha V, Jones A, Quigley BR, Scott JR, Amara RR. Oral Immunization with a Recombinant Lactococcus lactis-Expressing HIV-1 Antigen on Group A Streptococcus Pilus Induces Strong Mucosal Immunity in the Gut. THE JOURNAL OF IMMUNOLOGY 2015; 195:5025-34. [PMID: 26482408 DOI: 10.4049/jimmunol.1501243] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/16/2015] [Indexed: 01/25/2023]
Abstract
The induction of a potent humoral and cellular immune response in mucosal tissue is important for the development of an effective HIV vaccine. Most of the current HIV vaccines under development use the i.m. route for immunization, which is relatively poor in generating potent and long-lived mucosal immune responses. In this article, we explore the ability of an oral vaccination with a probiotic organism, Lactococcus lactis, to elicit HIV-specific immune responses in the mucosal and systemic compartments of BALB/c mice. We expressed the HIV-1 Gag-p24 on the tip of the T3 pilus of Streptococcus pyogenes as a fusion to the Cpa protein (LL-Gag). After four monthly LL-Gag oral immunizations, we observed strong Gag-specific IgG and IgA responses in serum, feces, and vaginal secretions. However, the Gag-specific CD8 T cell responses in the blood were at or below our detection limit. After an i.m. modified vaccinia Ankara/Gag boost, we observed robust Gag-specific CD8 T cell responses both in systemic and in mucosal tissues, including intraepithelial and lamina propria lymphocytes of the small intestine, Peyer's patches, and mesenteric lymph nodes. Consistent with strong immunogenicity, the LL-Gag induced activation of CD11c(+) CD11b(+) dendritic cells in the Peyer's patches after oral immunization. Our results demonstrate that oral immunization with L. lactis expressing an Ag on the tip of the group A Streptococcus pilus serves as an excellent vaccine platform to induce strong mucosal humoral and cellular immunity against HIV.
Collapse
Affiliation(s)
- Venkateswarlu Chamcha
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; and
| | - Andrew Jones
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; and
| | - Bernard R Quigley
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30329
| | - June R Scott
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30329
| | - Rama Rao Amara
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; and Department of Microbiology and Immunology, Emory University, Atlanta, GA 30329
| |
Collapse
|
45
|
Advances and needs for endotoxin-free production strains. Appl Microbiol Biotechnol 2015; 99:9349-60. [PMID: 26362682 DOI: 10.1007/s00253-015-6947-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/16/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
The choice of an appropriate microbial host cell and suitable production conditions is crucial for the downstream processing of pharmaceutical- and food-grade products. Although Escherichia coli serves as a highly valuable leading platform for the production of value-added products, like most Gram-negative bacteria, this bacterium contains a potent immunostimulatory lipopolysaccharide (LPS), referred to as an endotoxin. In contrast, Gram-positive bacteria, notably Bacillus, lactic acid bacteria (LAB), Corynebacterium, and yeasts have been extensively used as generally recognized as safe (GRAS) endotoxin-free platforms for the production of a variety of products. This review summarizes the currently available knowledge on the utilization of these representative Gram-positive bacteria for the production of eco- and bio-friendly products, particularly natural polyesters, polyhydroxyalkanoates, bacteriocins, and membrane proteins. The successful case studies presented here serve to inspire the use of these microorganisms as a main-player or by-player depending on their individual properties for the industrial production of these desirable targets.
Collapse
|
46
|
Abstract
Itaconic acid is an important building block for the chemical industry. Currently, Aspergillus terreus is the main organism used for itaconic acid production. Due to the enormous citric acid production capacity of Aspergillus niger, this host is investigated as a potential itaconic acid production host. Several strategies have been tried so far: fermentation optimization, expression of cis-aconitate decarboxylase (cadA) alone and in combination with aconitase targeted to the same compartment, chassis optimization, and the heterologous expression of two transporters flanking the cadA gene. We showed that the heterologous expression of these two transporters were key to improving itaconic acid production in an A. niger strain that was unable to produce oxalic acid and gluconic acid. The expression of transporters has increased the production levels of other industrially relevant processes as well, such as β-lactam antibiotics and bioethanol. Thus far, the role of transporters in production process optimization is a bit overlooked.
Collapse
Affiliation(s)
- Laura van der Straat
- a Microbial Systems and Synthetic Biology; Laboratory of Systems and Synthetic Biology; Wageningen University; Wageningen, the Netherlands
| | | |
Collapse
|
47
|
Singh SK, Pal A. Biophysical Approaches to the Study of LeuT, a Prokaryotic Homolog of Neurotransmitter Sodium Symporters. Methods Enzymol 2015; 557:167-98. [PMID: 25950965 DOI: 10.1016/bs.mie.2015.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ion-coupled secondary transport is utilized by multiple integral membrane proteins as a means of achieving the thermodynamically unfavorable translocation of solute molecules across the lipid bilayer. The chemical nature of these molecules is diverse and includes sugars, amino acids, neurotransmitters, and other ions. LeuT is a sodium-coupled, nonpolar amino acid symporter and eubacterial member of the solute carrier 6 (SLC6) family of Na(+)/Cl(-)-dependent neurotransmitter transporters. Eukaryotic counterparts encompass the clinically and pharmacologically significant transporters for γ-aminobutyric acid (GABA), glycine, serotonin (5-hydroxytryptamine, 5-HT), dopamine (DA), and norepinephrine (NE). Since the crystal structure of LeuT was first solved in 2005, subsequent crystallographic, binding, flux, and spectroscopic studies, complemented with homology modeling and molecular dynamic simulations, have allowed this protein to emerge as a remarkable mechanistic paradigm for both the SLC6 class as well as several other sequence-unrelated SLCs whose members possess astonishingly similar architectures. Despite yielding groundbreaking conceptual advances, this vast treasure trove of data has also been the source of contentious hypotheses. This chapter will present a historical scientific overview of SLC6s; recount how the initial and subsequent LeuT structures were solved, describing the insights they each provided; detail the accompanying functional techniques, emphasizing how they either supported or refuted the static crystallographic data; and assemble these individual findings into a mechanism of transport and inhibition.
Collapse
Affiliation(s)
- Satinder K Singh
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA.
| | - Aritra Pal
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
48
|
Abstract
The Gram-positive bacterium Lactococcus lactis has many properties that are ideal for the overproduction of membrane proteins in a functional form. Growth of lactococci is rapid, proceeds to high cell densities, and does not require aeration, which facilitates large-scale fermentation. The available promoter systems are strong and tightly regulated, allowing expression of toxic gene products in a controlled manner. Expressed membrane proteins are targeted exclusively to the cytoplasmic membrane, allowing the use of ionophores, ligands, and inhibitors to study activity of the membrane protein in whole cells. Constructed plasmids are stable and expression levels are highly reproducible. The relatively small genome size of the organism causes little redundancy, which facilitates complementation studies and allows for easier purification. The produced membrane proteins are often stable, as the organism has limited proteolytic capability, and they are readily solubilized from the membrane with mild detergents. Lactococci are multiple amino acid auxotrophs, allowing the incorporation of labels, such as selenomethionine. Among the few disadvantages are the low transformation frequency, AT-rich codon usage, and resistance to lysis by mechanical means, but these problems can be overcome fairly easily. We will describe in detail the protocols used to express membrane proteins in L. lactis, from cloning of the target gene to the isolation of membrane vesicles for the determination of expression levels.
Collapse
Affiliation(s)
- Martin S King
- The Medical Research Council, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - Christoph Boes
- The Medical Research Council, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - Edmund R S Kunji
- The Medical Research Council, Mitochondrial Biology Unit, Cambridge, United Kingdom.
| |
Collapse
|
49
|
Booty LM, King MS, Thangaratnarajah C, Majd H, James AM, Kunji ERS, Murphy MP. The mitochondrial dicarboxylate and 2-oxoglutarate carriers do not transport glutathione. FEBS Lett 2015; 589:621-8. [PMID: 25637873 PMCID: PMC4332691 DOI: 10.1016/j.febslet.2015.01.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 01/23/2023]
Abstract
Glutathione carries out vital protective roles within mitochondria, but is synthesised in the cytosol. Previous studies have suggested that the mitochondrial dicarboxylate and 2-oxoglutarate carriers were responsible for glutathione uptake. We set out to characterise the putative glutathione transport by using fused membrane vesicles of Lactococcus lactis overexpressing the dicarboxylate and 2-oxoglutarate carriers. Although transport of the canonical substrates could be measured readily, an excess of glutathione did not compete for substrate uptake nor could transport of glutathione be measured directly. Thus these mitochondrial carriers do not transport glutathione and the identity of the mitochondrial glutathione transporter remains unknown.
Collapse
Affiliation(s)
- Lee M Booty
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Martin S King
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Chancievan Thangaratnarajah
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Homa Majd
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Andrew M James
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
50
|
Cano-Garrido O, Rueda FL, Sànchez-García L, Ruiz-Ávila L, Bosser R, Villaverde A, García-Fruitós E. Expanding the recombinant protein quality in Lactococcus lactis. Microb Cell Fact 2014; 13:167. [PMID: 25471301 PMCID: PMC4308903 DOI: 10.1186/s12934-014-0167-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/15/2014] [Indexed: 12/12/2022] Open
Abstract
Background Escherichia coli has been a main host for the production of recombinant proteins of biomedical interest, but conformational stress responses impose severe bottlenecks that impair the production of soluble, proteolytically stable versions of many protein species. In this context, emerging Generally Recognized As Safe (GRAS) bacterial hosts provide alternatives as cell factories for recombinant protein production, in which limitations associated to the use of Gram-negative microorganisms might result minimized. Among them, Lactic Acid Bacteria and specially Lactococcus lactis are Gram-positive GRAS organisms in which recombinant protein solubility is generically higher and downstream facilitated, when compared to E. coli. However, deep analyses of recombinant protein quality in this system are still required to completely evaluate its performance and potential for improvement. Results We have explored here the conformational quality (through specific fluorescence emission) and solubility of an aggregation-prone GFP variant (VP1GFP) produced in L. lactis. In this context, our results show that parameters such as production time, culture conditions and growth temperature have a dramatic impact not only on protein yield, but also on protein solubility and conformational quality, that are particularly favored under fermentative metabolism. Conclusions Metabolic regime and cultivation temperature greatly influence solubility and conformational quality of an aggregation-prone protein in L. lactis. Specifically, the present study proves that anaerobic growth is the optimal condition for recombinant protein production purposes. Besides, growth temperature plays an important role regulating both protein solubility and conformational quality. Additionally, our results also prove the great versatility for the manipulation of this bacterial system regarding the improvement of functionality, yield and quality of recombinant proteins in this species. These findings not only confirm L. lactis as an excellent producer of recombinant proteins but also reveal room for significant improvement by the exploitation of external protein quality modulators.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain.
| | - Fabian L Rueda
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain.
| | - Laura Sànchez-García
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain.
| | - Luis Ruiz-Ávila
- Spherium Biomed S.L., Avda. Joan XXIII, 10, 08950, Esplugues de Llobregat, Barcelona, Spain.
| | - Ramon Bosser
- Spherium Biomed S.L., Avda. Joan XXIII, 10, 08950, Esplugues de Llobregat, Barcelona, Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain.
| | - Elena García-Fruitós
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain.
| |
Collapse
|