1
|
Lu X, Wang X, Liu X, Liu X. The multifaceted interactions between Newcastle disease virus proteins and host proteins: a systematic review. Virulence 2024; 15:2299182. [PMID: 38193514 PMCID: PMC10793697 DOI: 10.1080/21505594.2023.2299182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
Newcastle disease virus (NDV) typically induces severe illness in poultry and results in significant economic losses for the worldwide poultry sector. NDV, an RNA virus with a single-stranded negative-sense genome, is susceptible to mutation and immune evasion during viral transmission, thus imposing enormous challenges to avian health and poultry production. NDV is composed of six structural proteins and two nonstructural proteins that exert pivotal roles in viral infection and antiviral responses by interacting with host proteins. Nowadays, there is a particular focus on the mechanisms of virus-host protein interactions in NDV research, yet a comprehensive overview of such research is still lacking. Herein, we briefly summarize the mechanisms regarding the effects of virus-host protein interaction on viral infection, pathogenesis, and host immune responses. This review can not only enhance the present comprehension of the mechanism underlying NDV and host interplay, but also furnish a point of reference for the advancement of antiviral measures.
Collapse
Affiliation(s)
- Xiaolong Lu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Chen Y, Wang C, Hu S, Liu X. HRS Facilitates Newcastle Disease Virus Replication in Tumor Cells by Promoting Viral Budding. Int J Mol Sci 2024; 25:10060. [PMID: 39337546 PMCID: PMC11432301 DOI: 10.3390/ijms251810060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Newcastle disease virus (NDV) is a highly pathogenic avian infectious disease agent and also a promising oncolytic virus with broad application prospects. The Endosomal Sorting Complex Required for Transport (ESCRT) machinery has been increasingly recognized for its crucial role in the life cycles of enveloped viruses, influencing processes such as viral entry, replication, and budding. In this study, we employed an RNA interference screening approach to identify key ESCRT components that regulate NDV replication in tumor cells. qPCR, immunofluorescence, and Western blot assays demonstrated that knockdown of HRS, CHMP4A, CHMP4B, and CHMP4C significantly impaired NDV replication in HeLa cells, with HRS exhibiting the most pronounced inhibitory effect. Additionally, HRS knockout significantly inhibited viral budding and suppressed NDV-induced cell death in HeLa cells. Notably, NDV infection was shown to significantly upregulate HRS gene and protein expression in a time-dependent manner. In conclusion, this study systematically identifies critical ESCRT components involved in NDV replication within tumor cells, with a particular focus on the role of HRS in promoting NDV's replication by promoting viral budding, offering new insights for the development of NDV-based oncolytic therapies.
Collapse
Affiliation(s)
- Yu Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225012, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225012, China
| | - Chunxuan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225012, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225012, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225012, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225012, China
| |
Collapse
|
3
|
Neog S, Vinjamuri SR, Vijayan K, Kumar S, Trivedi V. NDV targets the invasion pathway in malaria parasite through cell surface sialic acid interaction. FASEB J 2024; 38:e23856. [PMID: 39092913 DOI: 10.1096/fj.202400004rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Merozoites utilize sialic acids on the red blood cell (RBC) cell surface to rapidly adhere to and invade the RBCs. Newcastle disease virus (NDV) displays a strong affinity toward membrane-bound sialic acids. Incubation of NDV with the malaria parasites dose-dependently reduces its cellular viability. The antiplasmodial activity of NDV is specific, as incubation with Japanese encephalitis virus, duck enteritis virus, infectious bronchitis virus, and influenza virus did not affect the parasite propagation. Interestingly, NDV is reducing more than 80% invasion when RBCs are pretreated with the virus. Removal of the RBC surface proteins or the NDV coat proteins results in disruption of the virus binding to RBC. It suggests the involvement of specific protein: ligand interaction in virus binding. We established that the virus engages with the parasitized RBCs (PRBCs) through its hemagglutinin neuraminidase (HN) protein by recognizing sialic acid-containing glycoproteins on the cell surface. Blocking of the HN protein with free sialic acid or anti-HN antibodies abolished the virus binding as well as its ability to reduce parasite growth. Interestingly, the purified HN from the virus alone could inhibit the parasite's growth in a dose-dependent manner. NDV binds strongly to knobless murine parasite strain Plasmodium yoelii and restricted the parasite growth in mice. Furthermore, the virus was found to preferentially target the PRBCs compared to normal erythrocytes. Immunolocalization studies reveal that NDV is localized on the plasma membrane as well as weakly inside the PRBC. NDV causes neither any infection nor aggregation of the human RBCs. Our findings suggest that NDV is a potential candidate for developing targeted drug delivery platforms for the Plasmodium-infected RBCs.
Collapse
Affiliation(s)
- Siddharth Neog
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Sandeep Reddy Vinjamuri
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Kamalakannan Vijayan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Sachin Kumar
- Viral Immunology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| |
Collapse
|
4
|
Liu Y, Pan H, Wang H, Yuan Y, Cao F, Song W, Wang Z. Mutations in the NDV fusion protein HR4 region decreased fusogenic activity due to failed protein expression. Microb Pathog 2024; 192:106713. [PMID: 38810765 DOI: 10.1016/j.micpath.2024.106713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/28/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Newcastle disease virus (NDV) is the pathogen of a zoonosis that is primarily transmitted by poultry and has severe infectivity and a high fatality rate. Many studies have focused on the role of the NDV fusion (F) protein in the cell-cell membrane fusion process. However, little attention has been given to the heptad repeat region, HR4, which is located in the NDV F2 subunit. Here, site-directed mutants were constructed to study the function of the NDV F protein HR4 region and identify the key amino acids in this region. Nine conserved amino acids were substituted with alanine or the corresponding amino acid of other aligned paramyxoviruses. The desired mutants were examined for changes in fusogenic activity through three kinds of membrane fusion assays and expression and proteolysis through IFA, FACS and WB. The results showed that when conserved amino acids (L81, Y84, L88, L91, L92, P94, L95 and I99) were replaced with alanine, the fusogenic activity of the F protein was abolished, possibly because of failed protein expression not only on the cell surface but also inside cells. These data indicated that the conserved amino acids above in NDV F HR4 are critical for normal protein synthesis and expression, possibly for the stability of the F protein monomer, formation of trimer and conformational changes.
Collapse
Affiliation(s)
- Yaqing Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Huazheng Pan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Hongwei Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yuan Yuan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Fangfang Cao
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Wei Song
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Zhiyu Wang
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China.
| |
Collapse
|
5
|
Zhang D, Ding Z, Xu X. Pathologic Mechanisms of the Newcastle Disease Virus. Viruses 2023; 15:v15040864. [PMID: 37112843 PMCID: PMC10143668 DOI: 10.3390/v15040864] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Newcastle disease (ND) has been a consistent risk factor to the poultry industry worldwide. Its pathogen, Newcastle disease virus (NDV), is also a promising antitumor treatment candidate. The pathogenic mechanism has intrigued the great curiosity of researchers, and advances in the last two decades have been summarized in this paper. The NDV’s pathogenic ability is highly related to the basic protein structure of the virus, which is described in the Introduction of this review. The overall clinical signs and recent findings pertaining to NDV-related lymph tissue damage are then described. Given the involvement of cytokines in the overall virulence of NDV, cytokines, particularly IL6 and IFN expressed during infection, are reviewed. On the other hand, the host also has its way of antagonizing the virus, which starts with the detection of the pathogen. Thus, advances in NDV’s physiological cell mechanism and the subsequent IFN response, autophagy, and apoptosis are summarized to provide a whole picture of the NDV infection process.
Collapse
|
6
|
Teng Q, Tang L, Huang Y, Yang R, He Y, Zhang G, Zhao Y. Mutagenesis of the di-leucine motif in the cytoplasmic tail of newcastle disease virus fusion protein modulates the viral fusion ability and pathogenesis. Virol J 2023; 20:25. [PMID: 36759854 PMCID: PMC9909845 DOI: 10.1186/s12985-023-01985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Newcastle disease virus (NDV) is a highly infectious viral disease, which can affect chickens and many other kinds of birds. The main virulence factor of NDV, the fusion (F) protein, is located on the viral envelope and plays a major role in the virus' ability to penetrate cells and cause host cell fusion during infection. Multiple highly conserved tyrosine and di-leucine (LL) motifs in the cytoplasmic tail (CT) of the virus may contribute to F protein functionality in the viral life cycle. METHODS To examine the contribution of the LL motif in the biosynthesis, transport, and function of the F protein, we constructed and rescued a NDV mutant strain, rSG10*-F/L537A, with an L537A mutation using a reverse genetic system. Subsequently, we compared the differences in the syncytium formation ability, pathogenicity, and replication levels of wild-type rSG10* and the mutated strain. RESULTS Compared with rSG10*, rSG10*-F/L537A had attenuated syncytial formation and pathogenicity, caused by a viral budding defect. Further studies showed that the LL-motif mutation did not affect the replication, transcription, or translation of the virus genome but affected the expression of the F protein at the cell surface. CONCLUSIONS We concluded that the LL motif in the NDV F CT affected the regulation of F protein expression at the cell surface, thus modulating the viral fusion ability and pathogenic phenotype.
Collapse
Affiliation(s)
- Qingyuan Teng
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Lihua Tang
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Yahui Huang
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Ruihua Yang
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Yizhuo He
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Ye Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
7
|
Cao Y, Bo Z, Ruan B, Guo M, Zhang C, Zhang X, Wu Y. Construction of Novel Thermostable Chimeric Vaccine Candidates for Genotype VII Newcastle Disease Virus. Viruses 2022; 15:82. [PMID: 36680122 PMCID: PMC9866313 DOI: 10.3390/v15010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Genotype VII Newcastle Disease Virus (NDV) has caused a pandemic in many countries and usually causes fatal consequences in infected chickens. Although current commercial attenuated NDV vaccines can provide an ideal protection against genotype VII NDV, they cannot completely prevent the infection and viral shedding, and the genotype of some vaccine strains cannot match with the prevalent strain. In this study, in order to construct a thermostable and genotype VII-matched live attenuated vaccine, we used a thermostable genotype VIII virulent HR09 strain as the backbone and replaced its F gene with that of the genotype VII DT-2014 strain. Meanwhile, the cleavage site of F gene of DT-2014 was mutated to that of class I F protein and avirulent class II F protein, respectively. The results showed that the two chimeric viruses, designated rcHR09-CI and rcHR09-CII, shared a similar growth kinetics and thermostability with their parental HR09 strain. Mean death time (MDT) and intracerebral pathogenicity index (ICPI) tests showed that the two chimeric viruses were highly attenuated. Though both chimeric NDVs and La Sota vaccine strain could provide complete protection to immunized chickens against the challenge of virulent genotype VII ZJ1 strain, the two chimeric NDVs could induce a higher level of antibody response against ZJ1 strain and could significantly reduce the viral shedding compared with La Sota vaccine strain. In conclusion, our study constructed two chimeric thermostable genotype VII-matched NDV vaccine candidates, which provided complete protection against the challenge of virulent genotype VII NDV.
Collapse
Affiliation(s)
- Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zongyi Bo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Baoyang Ruan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Mengjiao Guo
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chengcheng Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yantao Wu
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Funsho-Sanni OO, Ella EE, Rogo LD, Sanni OS, Inabo HI, Luka SA, Shittu I. Analysis of Amino Acid Changes in the Fusion Protein of Virulent Newcastle Disease Virus from Vaccinated Poultry in Nigerian Isolates. Int J Microbiol 2022; 2022:9979683. [PMID: 36353523 PMCID: PMC9640230 DOI: 10.1155/2022/9979683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/21/2022] [Accepted: 10/08/2022] [Indexed: 09/08/2024] Open
Abstract
The roles of fusion gene in the virulence of Newcastle disease virus are well established, but the extent of its variation among the XIV, XVII, and XVIII genotypes reported in Central Africa and West Africa has until recently been understudied. In this study, virulent Newcastle disease virus (vNDV) was isolated from dead chickens among vaccinated flocks between March and April 2020. Fusion (F) gene was sequenced and analysed for characterization and information about genetic changes. Many substitutions were observed along the region and some of their functions are yet to be determined. Results showed that all study isolates have virulent cleavage site sequence 112-RRRKR-116/F117 and clustered within genotype XIVb. Sequence analysis showed K78R mutation in the A2 antigenic epitope in all isolates and more along the F-gene which varied in some instances within the isolates. Mutation in this A2 antigenic epitope has been reported to induce escape mutation to monoclonal antibodies generated using the NDV LaSota strain. The range of percentage nucleotide and amino acid homology between the study isolates and commercially available vaccine strains is 81.14%-84.39% and 0.175-0.211, respectively. This report provides evidence of vNDV among vaccinated chicken flock and molecular information about circulating vNDV strains in Kano State, Nigeria, which is useful for the development of virus matched vaccines. Newcastle disease (ND) surveillance and molecular analysis of circulating strains in this region should be encouraged and reported. Furthermore, ND outbreaks or cases among vaccinated poultry presented to veterinary clinics should be reported to the state epidemiologist. Nucleotide sequences were assigned accession numbers OK491971-OK491977.
Collapse
Affiliation(s)
- Olubukola O. Funsho-Sanni
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, P.M.B.06, Zaria, Kaduna, Nigeria
| | - Elijah E. Ella
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, P.M.B.06, Zaria, Kaduna, Nigeria
| | - Lawal D. Rogo
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Health Sciences Bayero University Kano, P.M.B.3011, Kano, Nigeria
| | - Olufunsho S. Sanni
- Center for Integrated Health Programs, Kikuyi Close, Wuse 904101, Abuja, Nigeria
| | - Helen I. Inabo
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, P.M.B.06, Zaria, Kaduna, Nigeria
| | - Sodangi A. Luka
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, P.M.B.06, Zaria, Kaduna, Nigeria
| | - Ismaila Shittu
- National Veterinary Research Institute, P.M.B.01, Vom, Plateau, Nigeria
| |
Collapse
|
9
|
Mao Q, Ma S, Schrickel PL, Zhao P, Wang J, Zhang Y, Li S, Wang C. Review detection of Newcastle disease virus. Front Vet Sci 2022; 9:936251. [PMID: 35982920 PMCID: PMC9378970 DOI: 10.3389/fvets.2022.936251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
Newcastle disease (ND) is an acute and highly contagious disease caused by the Newcastle disease virus (NDV) infecting poultry, which has caused great harm to the poultry industry around the world. Rapid diagnosis of NDV is important to early treatment and early institution of control measures. In this review, we comprehensively summarize the most recent research into NDV, including historical overview, molecular structure, and infection mechanism. We then focus on detection strategies for NDV, including virus isolation, serological assays (such as hemagglutination and hemagglutination-inhibition tests, enzyme linked immunosorbent assay, reporter virus neutralization test, Immunofluorescence assay, and Immune colloidal gold technique), molecular assays (such as reverse transcription polymerase chain reaction, real-time quantitative PCR, and loop-mediated isothermal amplification) and other assays. The performance of the different serological and molecular biology assays currently available was also analyzed. To conclude, we examine the limitations of currently available strategies for the detection of NDV to lay the groundwork for new detection assays.
Collapse
Affiliation(s)
- Qian Mao
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Shengming Ma
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Philip Luke Schrickel
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Pengwei Zhao
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Jingya Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Yuhua Zhang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Shuangyu Li
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Chengbao Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
- *Correspondence: Chengbao Wang
| |
Collapse
|
10
|
The pathogenesis of Nipah virus: A review. Microb Pathog 2022; 170:105693. [DOI: 10.1016/j.micpath.2022.105693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022]
|
11
|
Feng H, Shang Y, Li L, Sun X, Fan S, Ren X, Xu Y, Zeng Z, Hu X, Cheng G, Wen G. Fusion Protein Cleavage Site Containing Three Basic Amino Acids Attenuates Newcastle Disease Virus in Chicken Embryos: Use as an in ovo Vaccine. Front Microbiol 2022; 13:812289. [PMID: 35387070 PMCID: PMC8978892 DOI: 10.3389/fmicb.2022.812289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
In ovo vaccination is an attractive immunization strategy for the poultry industry. However, although most live Newcastle disease virus (NDV) vaccine strains, such as LaSota and V4, can be used after hatching, they are pathogenic to chicken embryos when administered in ovo. We have previously reported that NDV strain TS09-C is a safe in ovo vaccine in specific-pathogen-free and commercial chicken embryos because it is attenuated in chicken embryos. However, the molecular basis of its attenuation is poorly understood. In this study, we firstly evaluated the safety of chimeric NDV strains after exchanging genes between strains TS09-C and LaSota as in ovo vaccines, and demonstrated that the attenuation of NDV in chicken embryos was dependent upon the origin of the fusion (F) protein. Next, by comparing the F protein sequences of TS09-C strain with those of LaSota and V4 strain, the R115 in cleavage site and F379 were found to be unique to TS09-C strain. The mutant viruses were generated by substituting one or two amino acids at position 115 and 379 in the F protein, and their safety as in ovo vaccine was evaluated. Mutation in residue 379 did not affect the viral embryonic pathogenicity. While the mutant virus rTS-2B (R115G mutation based on the backbone of TS09-C strain) with two basic amino acids in F cleavage site, was pathogenic to chicken embryos and similar with rLaSota in its tissue tropism, differing markedly from rTS09-C with three basic amino acids in F cleavage site. Together, these findings indicate that the F protein cleavage site containing three basic amino acids is the crucial determinant of the attenuation of TS09-C in chicken embryos. This study extends our understanding of the pathogenicity of NDV in chicken embryos and should expedite the development of in ovo vaccines against NDV.
Collapse
Affiliation(s)
- Helong Feng
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China.,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Yu Shang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China.,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Li Li
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China.,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Xiuxiu Sun
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Sanling Fan
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China.,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Xiangfei Ren
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China.,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Yingying Xu
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China.,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Zhe Zeng
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China.,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Xingxing Hu
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China.,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Guofu Cheng
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Guoyuan Wen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China.,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| |
Collapse
|
12
|
Li Y, Yuan F, Yan X, Matta T, Cino-Ozuna GA, Fang Y. Characterization of an emerging porcine respirovirus 1 isolate in the US: A novel viral vector for expression of foreign antigens. Virology 2022; 570:107-116. [DOI: 10.1016/j.virol.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
|
13
|
Takeda M. Proteolytic activation of SARS-CoV-2 spike protein. Microbiol Immunol 2022; 66:15-23. [PMID: 34561887 PMCID: PMC8652499 DOI: 10.1111/1348-0421.12945] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/10/2021] [Accepted: 09/18/2021] [Indexed: 11/27/2022]
Abstract
Spike (S) protein cleavage is a crucial step in coronavirus infection. In this review, this process is discussed, with particular focus on the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Compared with influenza virus and paramyxovirus membrane fusion proteins, the cleavage activation mechanism of coronavirus S protein is much more complex. The S protein has two cleavage sites (S1/S2 and S2'), and the cleavage motif for furin protease at the S1/S2 site that results from a unique four-amino acid insertion is one of the distinguishing features of SARS-CoV-2. The viral particle incorporates the S protein, which has already undergone S1/S2 cleavage by furin, and then undergoes further cleavage at the S2' site, mediated by the type II transmembrane serine protease transmembrane protease serine 2 (TMPRSS2), after binding to the receptor angiotensin-converting enzyme 2 (ACE2) to facilitate membrane fusion at the plasma membrane. In addition, SARS-CoV-2 can enter the cell by endocytosis and be proteolytically activated by cathepsin L, although this is not a major mode of SARS-CoV-2 infection. SARS-CoV-2 variants with enhanced infectivity have been emerging throughout the ongoing pandemic, and there is a close relationship between enhanced infectivity and changes in S protein cleavability. All four variants of concern carry the D614G mutation, which indirectly enhances S1/S2 cleavability by furin. The P681R mutation of the delta variant directly increases S1/S2 cleavability, enhancing membrane fusion and SARS-CoV-2 virulence. Changes in S protein cleavability can significantly impact viral infectivity, tissue tropism, and virulence. Understanding these mechanisms is critical to counteracting the coronavirus pandemic.
Collapse
Affiliation(s)
- Makoto Takeda
- Department of Virology 3National Institute of Infectious DiseasesTokyoJapan
| |
Collapse
|
14
|
Bu Y, Teng Q, Feng D, Sun L, Xue J, Zhang G. YLMY Tyrosine Residue within the Cytoplasmic Tail of Newcastle Disease Virus Fusion Protein Regulates Its Surface Expression to Modulate Viral Budding and Pathogenicity. Microbiol Spectr 2021; 9:e0217321. [PMID: 34937182 PMCID: PMC8694109 DOI: 10.1128/spectrum.02173-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 11/20/2022] Open
Abstract
Newcastle disease virus (NDV) fusion protein mediates the virus's fusion activity, which is a determinant of NDV pathogenicity. The ectodomain of the F protein is known to have a major impact on fusion, and several reports have also indicated the role of the cytoplasmic tail (CT) in viral entry, F protein cleavage, and fusion, which are regulated by specific motifs. We found a highly conserved tyrosine residue located in the YLMY motif. The tyrosine residues at positions 524 and 527 have different roles in viral replication and pathogenicity and are associated with F protein intracellular processing. Tyrosine residues mutants affect the transportation of the F protein from the endoplasmic reticulum to the Golgi apparatus, resulting in different cleavage efficiencies. F protein is subsequently transported to the cell surface where it participates in viral budding, a process closely related to the distinctions in pathogenicity caused by the tyrosine residues. In addition, the different mutations all led to a hypofusogenic phenotype. We believe that the highly conserved tyrosine residue of the YLMY motif uses a similar mechanism to the tyrosine-based motif (YXXΦ) to regulate F protein transport and thus affect viral replication and pathogenicity. IMPORTANCE The amino-terminal cytoplasmic domains of paramyxovirus fusion glycoproteins include trafficking signals that influence protein processing and cell surface expression. This study clarified that tyrosine residues at different positions in the YLMY motif in the cytoplasmic region of the F protein regulate F protein transportation, thereby affecting viral replication and pathogenicity. This study has increased our understanding of how NDV virulence is mediated by the F protein and provides a fresh perspective on the role of CT in the virus's life cycle. This information may be useful in the development of NDV as an effective vaccine vector and oncolytic agent.
Collapse
Affiliation(s)
- Yawen Bu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qingyuan Teng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Delan Feng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lu Sun
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jia Xue
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Antivirals targeting paramyxovirus membrane fusion. Curr Opin Virol 2021; 51:34-47. [PMID: 34592709 DOI: 10.1016/j.coviro.2021.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/29/2023]
Abstract
The Paramyxoviridae family includes enveloped single-stranded negative-sense RNA viruses such as measles, mumps, human parainfluenza, canine distemper, Hendra, and Nipah viruses, which cause a tremendous global health burden. The ability of paramyxoviral glycoproteins to merge viral and host membranes allows entry of the viral genome into host cells, as well as cell-cell fusion, an important contributor to disease progression. Recent molecular and structural advances in our understanding of the paramyxovirus membrane fusion machinery gave rise to various therapeutic approaches aiming at inhibiting viral infection, spread, and cytopathic effects. These therapeutic approaches include peptide mimics, antibodies, and small molecule inhibitors with various levels of success at inhibiting viral entry, increasing the potential of effective antiviral therapeutic development.
Collapse
|
16
|
Novel Roles of the N1 Loop and N4 Alpha-Helical Region of the Nipah Virus Fusion Glycoprotein in Modulating Early and Late Steps of the Membrane Fusion Cascade. J Virol 2021; 95:JVI.01707-20. [PMID: 33568505 DOI: 10.1128/jvi.01707-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/27/2021] [Indexed: 11/20/2022] Open
Abstract
Nipah virus (NiV) is a zoonotic bat henipavirus in the family Paramyxoviridae NiV is deadly to humans, infecting host cells by direct fusion of the viral and host cell plasma membranes. This membrane fusion process is coordinated by the receptor-binding attachment (G) and fusion (F) glycoproteins. Upon G-receptor binding, F fuses membranes via a cascade that sequentially involves F-triggering, fusion pore formation, and viral or genome entry into cells. Using NiV as an important paramyxoviral model, we identified two novel regions in F that modulate the membrane fusion cascade. For paramyxoviruses and other viral families with class I fusion proteins, the heptad repeat 1 (HR1) and HR2 regions in the fusion protein prefusion conformation bind to form a six-helix bundle in the postfusion conformation. Here, structural comparisons between the F prefusion and postfusion conformations revealed that a short loop region (N1) undergoes dramatic spatial reorganization and a short alpha helix (N4) undergoes secondary structural changes. The roles of the N1 and N4 regions during the membrane fusion cascade, however, remain unknown for henipaviruses and paramyxoviruses. By performing alanine scanning mutagenesis and various functional analyses, we report that specific residues within these regions alter various steps in the membrane fusion cascade. While the N1 region affects early F-triggering, the N4 region affects F-triggering, F thermostability, and extensive fusion pore expansion during syncytium formation, also uncovering a link between F-G interactions and F-triggering. These novel mechanistic roles expand our understanding of henipaviral and paramyxoviral F-triggering, viral entry, and cell-cell fusion (syncytia), a pathognomonic feature of paramyxoviral infections.IMPORTANCE Henipaviruses infect bats, agriculturally important animals, and humans, with high mortality rates approaching ∼75% in humans. Known human outbreaks have been concentrated in Southeast Asia and Australia. Furthermore, about 20 new henipaviral species have been recently discovered in bats, with geographical spans in Asia, Africa, and South America. The development of antiviral therapeutics requires a thorough understanding of the mechanism of viral entry into host cells. In this study, we discovered novel roles of two regions within the fusion protein of the deadly henipavirus NiV. Such roles were in allowing viral entry into host cells and cell-cell fusion, a pathological hallmark of this and other paramyxoviruses. These novel roles were in the previously undescribed N1 and N4 regions within the fusion protein, modulating early and late steps of these important processes of viral infection and henipaviral disease. Notably, this knowledge may apply to other henipaviruses and more broadly to other paramyxoviruses.
Collapse
|
17
|
Wajid A, Mayahi V, Yin R, Ain Q, Mohiuddin A, Khalid F, Rehim A, Manan A, Baksh M. Genomic and biological characteristics of Avian Orthoavulavirus-1 strains isolated from multiple wild birds and backyard chickens in Pakistan. Trop Anim Health Prod 2021; 53:90. [PMID: 33415381 DOI: 10.1007/s11250-020-02497-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 12/03/2020] [Indexed: 01/01/2023]
Abstract
Circulation of the dominant sub-genotype VII.2 of Avian Orthoavulavirus-1 (AOAV-1) is affecting multiple poultry and non-poultry avian species and causing significant economic losses to the poultry industry worldwide. In countries where ND is endemic, continuous monitoring and characterization of field strains are necessary. In this study, genetic characteristics of eleven AOAV-1 strains were analyzed isolated from wild birds including parakeets (n = 3), lovebird parrot (n = 1), pheasant (n = 1), peacock (n = 1), and backyard chickens (n = 5) during 2015-2016. Genetic characterization (genome size [15,192 nucleotides], the presence of typical cleavage site [112-RRQKRF-117]) and biological assessment (HA log 27 to 29 and intracerebral pathogenicity index [ICPI] value ranging from 1.50 to 1.86) showed virulent AOAV-1. Phylogenetic analysis showed that the studied isolates belonged to sub-genotype VII.2 and genetically very closely related (> 98.9%) to viruses repeatedly isolated (2011-2018) from commercial poultry. These findings provide evidence for the existence of epidemiological links between poultry and wild bird species in the region where the disease is prevalent. The deduced amino acid analysis revealed several substitutions in critical domains of fusion and hemagglutinin-neuraminidase genes. The pathogenesis and transmission potential of wild bird-origin AOAV-1 strain (AW-Pht/2015) was evaluated in 21-day-old chickens that showed the strain was highly virulent causing clinical signs and killed all chickens. High viral loads were detected in different organs of the infected chickens correlating with the severity of lesions developed. The continuous monitoring of AOAV-1 isolates in different species of birds will improve our knowledge of the evolution of these viruses, thereby preventing possible panzootic.
Collapse
Affiliation(s)
- Abdul Wajid
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan.
| | - Vafa Mayahi
- Central Laboratory Department, Razi Vaccine and Serum Research Institute Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Renfu Yin
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Road 5333, Changchun, Xi'an, 130062, Jilin, China
| | - Quratul Ain
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Ayesha Mohiuddin
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Farah Khalid
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Asif Rehim
- Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Balochistan, Pakistan
| | - Abdul Manan
- Center for Advanced Studies in Vaccinology and Biotechnology, University of Balochistan, Quetta, Pakistan
| | - Muqadas Baksh
- Departmeny of Bioinformatics and Computational Biology, Virtual University of Pakistan, Lahore, Pakistan
| |
Collapse
|
18
|
Putri N, Wulandari I, Ernawati R, Abdul Rantam F. Multi-epitope peptide vaccine prediction against Newcastle disease virus using immuno-informatics approaches. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.15547/bjvm.2019-0074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Newcastle disease is one of the most critical disease in poultry and wild birds, largely due to its high morbidity and mortality, as well as its worldwide distribution and threat of considerable economic losses to avian industries caused by Newcastle disease virus (NDV). The NDV can cause clinical signs varying from subclinical infections to 100% mortality, depending on the susceptibility of the host and the virulence of the virus. The virus is classified into velogenic (viscerotropic velogenic and neurotropic velogenic), mesogenic and lentogenic. The objectives of this study was to design a peptide vaccine using immunoinformatics approaches. In total, 12 NDV fusion proteins retrieved from NCBI database were aligned to determine the conservancy and candidate epitopes were analysed by predictions tools from Immune Epitope Database. Then the 3D structure of the conserved region was modelled using the Swiss Model and aligned using PyMol software. Two epitopes were predicted as a peptide vaccine for B cell (DKAVNVYTSSQT and NMPKDKEACAKAPLEA). This is a preliminary study of designing an epitope-based peptide vaccine against NDV, and we recommend further study to identify the interaction between these peptides with T cells and antibodies.
Collapse
|
19
|
Dénes L, Cságola A, Schönhardt K, Halas M, Solymosi N, Balka G. First report of porcine parainfluenza virus 1 (species Porcine respirovirus 1) in Europe. Transbound Emerg Dis 2020; 68:1731-1735. [PMID: 33006252 DOI: 10.1111/tbed.13869] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 09/27/2020] [Indexed: 01/15/2023]
Abstract
Porcine respirovirus 1, also known as Porcine parainfluenza virus 1 (PPIV-1) was first identified in Hong Kong in 2013, later in the USA and most recently in Chile. Here, we report the first detection of PPIV-1 outside these three regions. We screened 22 farms in Hungary by testing 15 nasal swab samples obtained from 3-week-old piglets (3 randomly chosen piglets from 5 litters in each farm). Only one farm was found to be positive. We subsequently sampled the positive farm by taking cross-sectional 20 nasal swab samples from 2-, 4-, 6- and 8-week-old piglets. Virus detection by qRT-PCR showed that although all investigated age groups were positive to PPIV-1, a higher number of infected animals and higher viral loads were found among 4-week-old animals. Based on the phylogenetic analyses of partial F and L genes, the 3 Hungarian strains are genetically closely related to the very first PPIV-1 strain identified in Hong Kong in 2013, whereas the overall genetic difference compared to the recently described North American isolates was around 10%.
Collapse
Affiliation(s)
- Lilla Dénes
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | | | - Kitti Schönhardt
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | | | - Norbert Solymosi
- Centre for Bioinformatics, University of Veterinary Medicine, Budapest, Hungary
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
20
|
Feline Morbillivirus, a New Paramyxovirus Possibly Associated with Feline Kidney Disease. Viruses 2020; 12:v12050501. [PMID: 32370044 PMCID: PMC7290405 DOI: 10.3390/v12050501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
Feline morbillivirus (FeMV) was first isolated in stray cats in Hong Kong in 2012. Since its discovery, the virus has been reported in domestic cats worldwide, including in Hong Kong, Japan, Italy, US, Brazil, Turkey, UK, Germany, and Malaysia. FeMV is classified in the Morbillivirus genus within the Paramyxoviridae family. FeMV research has focused primarily on determining the host range, symptoms, and characteristics of persistent infections in vitro. Importantly, there is a potential association between FeMV infection and feline kidney diseases, such as tubulointerstitial nephritis (TIN) and chronic kidney diseases (CKD), which are known to significantly affect feline health and survival. However, the tropism and viral entry mechanism(s) of FeMV remain unknown. In this review, we summarize the FeMV studies up to date, including the discoveries of various FeMV strains, basic virology, pathogenicity, and disease signs.
Collapse
|
21
|
A comprehensive global perspective on phylogenomics and evolutionary dynamics of Small ruminant morbillivirus. Sci Rep 2020; 10:17. [PMID: 31913305 PMCID: PMC6949297 DOI: 10.1038/s41598-019-54714-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/18/2019] [Indexed: 11/14/2022] Open
Abstract
A string of complete genome sequences of Small ruminant morbillivirus (SRMV) have been reported from different parts of the globe including Asia, Africa and the Middle East. Despite individual genome sequence-based analysis, there is a paucity of comparative genomic and evolutionary analysis to provide overarching and comprehensive evolutionary insights. Therefore, we first enriched the existing database of complete genome sequences of SRMVs with Pakistan-originated strains and then explored overall nucleotide diversity, genomic and residue characteristics, and deduced an evolutionary relationship among strains representing a diverse geographical region worldwide. The average number of pairwise nucleotide differences among the whole genomes was found to be 788.690 with a diversity in nucleotide sequences (0.04889 ± S.D. 0.00468) and haplotype variance (0.00001). The RNA-dependent-RNA polymerase (L) gene revealed phylogenetic relationship among SRMVs in a pattern similar to those of complete genome and the nucleoprotein (N) gene. Therefore, we propose another useful molecular marker that may be employed for future epidemiological investigations. Based on evolutionary analysis, the mean evolution rate for the complete genome, N, P, M, F, H and L genes of SRMV was estimated to be 9.953 × 10–4, 1.1 × 10–3, 1.23 × 10–3, 2.56 × 10–3, 2.01 × 10–3, 1.47 × 10–3 and 9.75 × 10–4 substitutions per site per year, respectively. A recombinant event was observed in a Pakistan-originated strain (KY967608) revealing Indian strains as major (98.1%, KR140086) and minor parents (99.8%, KT860064). Taken together, outcomes of the study augment our knowledge and current understanding towards ongoing phylogenomic and evolutionary dynamics for better comprehensions of SRMVs and effective disease control interventions.
Collapse
|
22
|
NP protein and F protein of pigeon paramyxovirus type 1 are associated with its low pathogenicity in chickens. Arch Virol 2019; 164:2525-2530. [PMID: 31286221 DOI: 10.1007/s00705-019-04339-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/13/2019] [Indexed: 10/26/2022]
Abstract
In this study, we investigated which structural proteins of pigeon paramyxovirus type 1 (PPMV-1) are responsible for its low pathogenicity in chickens. The results revealed that the pathogenicity of the virus is determined by multiple genes. The NP protein and F protein were found to have the strongest individual effect on virulence, and this effect further enhanced when the two proteins were expressed in combination. Our study highlights the influence of the NP and F proteins on the pathogenicity of PPMV-1 in chickens.
Collapse
|
23
|
Mulama DH, Mutsvunguma LZ, Totonchy J, Ye P, Foley J, Escalante GM, Rodriguez E, Nabiee R, Muniraju M, Wussow F, Barasa AK, Ogembo JG. A multivalent Kaposi sarcoma-associated herpesvirus-like particle vaccine capable of eliciting high titers of neutralizing antibodies in immunized rabbits. Vaccine 2019; 37:4184-4194. [PMID: 31201053 DOI: 10.1016/j.vaccine.2019.04.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is an emerging pathogen and the causative agent of multiple cancers in immunocompromised patients. To date, there is no licensed prophylactic KSHV vaccine. In this study, we generated a novel subunit vaccine that incorporates four key KSHV envelope glycoproteins required for viral entry in diverse cell types (gpK8.1, gB, and gH/gL) into a single multivalent KSHV-like particle (KSHV-LP). Purified KSHV-LPs were similar in size, shape, and morphology to KSHV virions. Vaccination of rabbits with adjuvanted KSHV-LPs generated strong glycoprotein-specific antibody responses, and purified immunoglobulins from KSHV-LP-immunized rabbits neutralized KSHV infection in epithelial, endothelial, fibroblast, and B cell lines (60-90% at the highest concentration tested). These findings suggest that KSHV-LPs may be an ideal platform for developing a safe and effective prophylactic KSHV vaccine. We envision performing future studies in animal models that are susceptible to KSHV infection, to determine correlates of immune protection in vivo.
Collapse
Affiliation(s)
- David H Mulama
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States; Biological Sciences Department, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Lorraine Z Mutsvunguma
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | | | - Peng Ye
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Joslyn Foley
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Gabriela M Escalante
- Irell & Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, United States
| | - Esther Rodriguez
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Ramina Nabiee
- Chapman University, School of Pharmacy, Irvine, CA, United States
| | - Murali Muniraju
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Felix Wussow
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Anne K Barasa
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States; Department of Human Pathology, University of Nairobi, Nairobi, Kenya
| | - Javier Gordon Ogembo
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States.
| |
Collapse
|
24
|
Pees M, Schmidt V, Papp T, Gellért Á, Abbas M, Starck JM, Neul A, Marschang RE. Three genetically distinct ferlaviruses have varying effects on infected corn snakes (Pantherophis guttatus). PLoS One 2019; 14:e0217164. [PMID: 31163032 PMCID: PMC6548425 DOI: 10.1371/journal.pone.0217164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/06/2019] [Indexed: 01/10/2023] Open
Abstract
Ferlaviruses are important pathogens in snakes and other reptiles. They cause respiratory and neurological disease in infected animals and can cause severe disease outbreaks. Isolates from this genus can be divided into four genogroups–A, B, and C, as well as a more distantly related sister group, “tortoise”. Sequences from large portions (5.3 kb) of the genomes of a variety of ferlavirus isolates from genogroups A, B, and C, including the genes coding the surface glycoproteins F and HN as well as the L protein were determined and compared. In silico analyses of the glycoproteins of genogroup A, B, and C isolates were carried out. Three isolates representing these three genogroups were used in transmission studies with corn snakes (Pantherophis guttatus), and clinical signs, gross and histopathology, electronmicroscopic changes in the lungs, and isolation of bacteria from the lungs were evaluated. Analysis of the sequences supported the previous categorization of ferlaviruses into four genogroups, and criteria for definition of ferlavirus genogroups and species were established based on sequence identities (80% resp. 90%). Analysis of the ferlavirus glycoprotein models showed parallels to corresponding regions of other paramyxoviruses. The transmission studies showed clear differences in the pathogenicities of the three virus isolates used. The genogroup B isolate was the most and the group A virus the least pathogenic. Reasons for these differences were not clear based on the differences in the putative structures of their respective glycoproteins, although e.g. residue and consequential structure variation of an extended cleavage site or changes in electrostatic charges at enzyme binding sites could play a role. The presence of bacteria in the lungs of the infected animals also clearly corresponded to increased pathogenicity. This study contributes to knowledge about the structure and phylogeny of ferlaviruses and lucidly demonstrates differences in pathogenicity between strains of different genogroups.
Collapse
Affiliation(s)
- Michael Pees
- Department for Birds and Reptiles, University Teaching Hospital, University of Leipzig, Leipzig, Germany
- * E-mail:
| | - Volker Schmidt
- Department for Birds and Reptiles, University Teaching Hospital, University of Leipzig, Leipzig, Germany
| | - Tibor Papp
- Institute for Veterinary Medical Research, Centre for Agricultural Research, the Hungarian Academy of Sciences, Budapest, Hungary
| | - Ákos Gellért
- Institute for Veterinary Medical Research, Centre for Agricultural Research, the Hungarian Academy of Sciences, Budapest, Hungary
| | - Maha Abbas
- Institute for Environmental and Animal Hygiene, University of Hohenheim, Stuttgart, Germany
| | | | - Annkatrin Neul
- Department for Birds and Reptiles, University Teaching Hospital, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
25
|
Detection, isolation, and in vitro characterization of porcine parainfluenza virus type 1 isolated from respiratory diagnostic specimens in swine. Vet Microbiol 2019; 228:219-225. [DOI: 10.1016/j.vetmic.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 01/08/2023]
|
26
|
Detection of viral components in exosomes derived from NDV-infected DF-1 cells and their promoting ability in virus replication. Microb Pathog 2018; 128:414-422. [PMID: 30597256 DOI: 10.1016/j.micpath.2018.12.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 12/14/2022]
Abstract
Exosomes are micro messengers encapsulating RNA, DNA, and proteins for intercellular communication associated with various physiological and pathological reactions. Several viral infection processes have been reported to pertain to exosomal pathways. However, because of the difficulty in obtaining avian-sourced exosomes, avian virus-related exosomes are scarcely investigated. In this study, we developed a protein A/G-correlated method and successfully obtained the Newcastle disease virus-related exosome (NDV Ex). These exosomes promoted NDV propagation, proven by both GW4869-mediated deprivation and exosomal supplementation. Viral structural proteins NP and F were detected in the NDV Ex and further investigation indicated that the NP protein can be transferred to DF-1 cells through exosomes. The intracellular NP protein exhibited viral replication-promoting and cytokine-suppressing abilities. Therefore, NDV infection produces exosomes, which transfer viral NP protein and promote NDV infection, emphasizing the importance of exosomes in an NDV infection.
Collapse
|
27
|
Si L, Meng K, Tian Z, Sun J, Li H, Zhang Z, Soloveva V, Li H, Fu G, Xia Q, Xiao S, Zhang L, Zhou D. Triterpenoids manipulate a broad range of virus-host fusion via wrapping the HR2 domain prevalent in viral envelopes. SCIENCE ADVANCES 2018; 4:eaau8408. [PMID: 30474060 PMCID: PMC6248931 DOI: 10.1126/sciadv.aau8408] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/24/2018] [Indexed: 05/19/2023]
Abstract
A trimer-of-hairpins motif has been identified in triggering virus-cell fusion within a variety of viral envelopes. Chemically manipulating such a motif represents current repertoire of viral fusion inhibitors. Here, we report that triterpenoids, a class of natural products, antagonize this trimer-of-hairpins via its constitutive heptad repeat-2 (HR2), a prevalent α-helical coil in class I viral fusion proteins. Triterpenoids inhibit the entry of Ebola, Marburg, HIV, and influenza A viruses with distinct structure-activity relationships. Specifically, triterpenoid probes capture the viral envelope via photocrosslinking HR2. Profiling the Ebola HR2-triterpenoid interactions using amino acid substitution, surface plasmon resonance, and nuclear magnetic resonance revealed six residues accessible to triterpenoids, leading to wrapping of the hydrophobic helix and blocking of the HR1-HR2 interaction critical in the trimer-of-hairpins formation. This finding was also observed in the envelopes of HIV and influenza A viruses and might potentially extend to a broader variety of viruses, providing a mechanistic insight into triterpenoid-mediated modulation of viral fusion.
Collapse
Affiliation(s)
- Longlong Si
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Kun Meng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zhenyu Tian
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Jiaqi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Huiqiang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Ziwei Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Veronica Soloveva
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Haiwei Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Ge Fu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Qing Xia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
- Corresponding author.
| |
Collapse
|
28
|
Aziz-ul-Rahman, Munir M, Shabbir MZ. Comparative evolutionary and phylogenomic analysis of Avian avulaviruses 1–20. Mol Phylogenet Evol 2018; 127:931-951. [DOI: 10.1016/j.ympev.2018.06.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/15/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
|
29
|
Rahman AU, Habib M, Shabbir MZ. Adaptation of Newcastle Disease Virus (NDV) in Feral Birds and their Potential Role in Interspecies Transmission. Open Virol J 2018; 12:52-68. [PMID: 30288195 PMCID: PMC6142666 DOI: 10.2174/1874357901812010052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 03/14/2018] [Accepted: 06/11/2018] [Indexed: 12/19/2022] Open
Abstract
Introduction: Newcastle Disease (ND), caused by Avian avulavirus 1 (AAvV 1, avulaviruses), is a notifiable disease throughout the world due to the economic impact on trading restrictions and its embargoes placed in endemic regions. The feral birds including aquatic/migratory birds and other wild birds may act as natural reservoir hosts of ND Viruses (NDVs) and may play a remarkable role in the spread of the virus in environment. In addition, other 19 avulaviruses namely: AAvV 2 to 20, have been potentially recognized from feral avian species. Expalantion: Many previous studies have investigated the field prevailing NDVs to adapt a wide range of susceptible host. Still the available data is not enough to declare the potential role of feral birds in transmission of the virus to poultry and/or other avian birds. In view of the latest evidence related to incidences of AAvVs in susceptible avian species, it is increasingly important to understand the potential of viruses to transmit within the domestic poultry and other avian hosts. Genomic and phylogenomic analysis of several investigations has shown the same (RK/RQRR↓F) motif cleavage site among NDV isolates with same genotypes from domestic poultry and other wild hosts. So, the insight of this, various semi-captive/free-ranging wild avian species could play a vital role in the dissemination of the virus, which is an important consideration to control the disease outbreaks. Insufficient data on AAvV 1 transmission from wild birds to poultry and vice versa is the main constraint to understand about its molecular biology and genomic potential to cause infection in all susceptible hosts. Conclusion: The current review details the pertinent features of several historical and contemporary aspects of NDVs and the vital role of feral birds in its molecular epidemiology and ecology.
Collapse
Affiliation(s)
- Aziz-Ul- Rahman
- Department of Microbiology, University of Veterinary and Animal Sciences, 54000, Lahore, Pakistan
| | - Momena Habib
- Department of Microbiology, University of Veterinary and Animal Sciences, 54000, Lahore, Pakistan
| | - Muhammad Zubair Shabbir
- Quality Operations Laboratory, University of Veterinary and Animal Sciences, 54000, Lahore, Pakistan
| |
Collapse
|
30
|
Metagenomics detection and characterisation of viruses in faecal samples from Australian wild birds. Sci Rep 2018; 8:8686. [PMID: 29875375 PMCID: PMC5989203 DOI: 10.1038/s41598-018-26851-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/17/2018] [Indexed: 01/19/2023] Open
Abstract
We present an optimised metagenomics method for detection and characterisation of all virus types including single and double stranded DNA/RNA and enveloped and non-enveloped viruses. Initial evaluation included both spiked and non-spiked bird faecal samples as well as non-spiked human faecal samples. From the non-spiked bird samples (Australian Muscovy duck and Pacific black ducks) we detected 21 viruses, and we also present a summary of a few viruses detected in human faecal samples. We then present a detailed analysis of selected virus sequences in the avian samples that were somewhat similar to known viruses, and had good quality (Q20 or higher) and quantity of next-generation sequencing reads, and was of interest from a virological point of view, for example, avian coronavirus and avian paramyxovirus 6. Some of these viruses were closely related to known viruses while others were more distantly related with 70% or less identity to currently known/sequenced viruses. Besides detecting viruses, the technique also allowed the characterisation of host mitochondrial DNA present and thus identifying host species, while ribosomal RNA sequences provided insight into the "ribosomal activity microbiome"; of gut parasites; and of food eaten such as plants or insects, which we correlated to non-avian host associated viruses.
Collapse
|
31
|
Quantitative investigation of the direct interaction between Hemagglutinin and fusion proteins of Peste des petits ruminant virus using surface Plasmon resonance. Virol J 2018; 15:21. [PMID: 29357882 PMCID: PMC5778702 DOI: 10.1186/s12985-018-0933-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/15/2018] [Indexed: 11/30/2022] Open
Abstract
Background The specific and dynamic interaction between the hemagglutinin (H) and fusion (F) proteins of morbilliviruses is a prerequisite for the conformational rearrangements and membrane fusion during infection process. The two heptad repeat regions (HRA and HRB) of F protein are both important for the triggering of F protein. Methods In this study, the direct interactions of Peste des petits ruminants virus (PPRV) H with F, HRA and HRB were quantitatively evaluated using biosensor surface plasmon resonance (SPR). Results The binding affinities of immobilized pCMV-HA-H (HA-H) interacted with proteins pCMV-HA-F (HA-F) and pCMV-HA-HRB (HA-HRB) (KD = 1.91 × 10− 8 M and 2.60 × 10− 7 M, respectively) reacted an order of magnitude more strongly than that of pCMV-HA-HRA (HA-HRA) and pCMV-HA-Tp IGFR-LD (HA) (KD = 1.08 × 10− 4 M and 1.43 × 10− 4 M, respectively). Conclusions The differences of the binding affinities suggested that HRB is involved in functionally important intermolecular interaction in the fusion process.
Collapse
|
32
|
Wang Y, Bi Y, Yu W, Wei N, Wang W, Wei Q, Wang X, Zhang S, Yang Z, Xiao S. Two mutations in the HR2 region of Newcastle disease virus fusion protein with a cleavage motif "RRQRRL" are critical for fusogenic activity. Virol J 2017; 14:185. [PMID: 28946881 PMCID: PMC5613334 DOI: 10.1186/s12985-017-0851-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/17/2017] [Indexed: 11/16/2022] Open
Abstract
Background Newcastle disease virus (NDV) causes severe diseases in avian species. Its fusion protein cleavage site (Fcs) is a major contributor to virulence and membrane fusion. Previous studies showed that a change from phenylalanine (F) to lysine (L) at position 117 of the virulent strain fusion protein, which has the polybasic amino acid Fcs motif “112RRQKR↓F117”, blocked syncytium formation. However, we observed that F proteins of the virulent strain F48E9 and avirulent strain LaSota substituted with an identical cleavage motif, “112RRQRR↓L117”, induced extensive and slight syncytium formation, respectively. Accordingly, we hypothesized that the difference in syncytium formation is caused by other regions of the fusion protein. Results The exchanged regions between the fusion proteins of two strains, F48E9 and LaSota, showed that the region from amino acid 118–499 plays an important role in modulation of fusogenic activity in transfected cells. Further dissection of this region indicated that replacement of two amino acids (N479D, R486S) in heptad repeat 2 (HR2) of the avirulent fusion protein by the virulent counterpart resulted in fusion promotion. Moreover, the role of these two amino acids in fusion is dependent on the unique Fcs sequence “RRQRR↓L”. Conclusions Our results demonstrated that two amino acids (D479, S486) of the virulent strain F protein with this unique Fcs were critical for promoting fusogenic activity, and residue F or L at position 117 did not affect syncytium formation. These findings provide novel insights into fusogenic triggering by the fusion protein and may be useful for designing antiviral peptides.
Collapse
Affiliation(s)
- Yanhong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Youkun Bi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wanqi Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ning Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenbin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiaolin Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shuxia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
33
|
Lardinois A, Vandersleyen O, Steensels M, Desloges N, Mast J, van den Berg T, Lambrecht B. Stronger Interference of Avian Influenza Virus-Specific Than Newcastle Disease Virus-Specific Maternally Derived Antibodies with a Recombinant NDV-H5 Vaccine. Avian Dis 2017; 60:191-201. [PMID: 27309055 DOI: 10.1637/11133-050815-reg] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Maternally derived antibodies (MDA) are known to provide early protection from disease but also to interfere with vaccination efficacy of young chicks. This interference phenomenon is well described in the literature for viral diseases such as infectious bursal disease, Newcastle disease (ND), and avian influenza (AI). The goal of this work was to investigate the impact of H5 MDA and/or ND virus (NDV) MDA on the vaccine efficacy of a recombinant NDV-H5-vectored vaccine (rNDV-H5) against two antigenically divergent highly pathogenic AI (HPAI) H5N1 challenges. In chickens with both H5 and NDV MDA, a strong interference was observed with reduced clinical protection when compared to vaccinated specific-pathogen-free (SPF) chickens. In contrast, in chickens from commercial suppliers with NDV MDA only, a beneficial impact on the vaccine efficacy was observed with full protection and reduced viral excretion in comparison with rNDV-H5-vaccinated SPF chickens. To distinguish between the respective effects of the H5 and NDV MDA, an SPF model where passive immunity had been artificially induced by inoculations of H5 and NDV hyperimmunized polysera, respectively, was used. In the presence of H5 artificial MDA, a strong interference reflected by a reduction in vaccine protection was demonstrated whereas no interference and even an enhancing protective effect was confirmed in presence of NDV MDA. The present work suggests that H5 and NDV MDA interact differently with the rNDV-H5 vaccine with different consequences on its efficacy, the mechanisms of which require further investigations.
Collapse
Affiliation(s)
- Amélyne Lardinois
- A Avian Virology and Immunology Service, Veterinary and Agrochemical Research Centre, Groeselenberg 99, 1180-Brussels, Belgium
| | - Olivier Vandersleyen
- A Avian Virology and Immunology Service, Veterinary and Agrochemical Research Centre, Groeselenberg 99, 1180-Brussels, Belgium
| | - Mieke Steensels
- A Avian Virology and Immunology Service, Veterinary and Agrochemical Research Centre, Groeselenberg 99, 1180-Brussels, Belgium
| | - Nathalie Desloges
- A Avian Virology and Immunology Service, Veterinary and Agrochemical Research Centre, Groeselenberg 99, 1180-Brussels, Belgium
| | - Jan Mast
- A Avian Virology and Immunology Service, Veterinary and Agrochemical Research Centre, Groeselenberg 99, 1180-Brussels, Belgium
| | - Thierry van den Berg
- A Avian Virology and Immunology Service, Veterinary and Agrochemical Research Centre, Groeselenberg 99, 1180-Brussels, Belgium
| | - Bénédicte Lambrecht
- A Avian Virology and Immunology Service, Veterinary and Agrochemical Research Centre, Groeselenberg 99, 1180-Brussels, Belgium
| |
Collapse
|
34
|
Ren S, Xie X, Wang Y, Tong L, Gao X, Jia Y, Wang H, Fan M, Zhang S, Xiao S, Wang X, Yang Z. Molecular characterization of a Class I Newcastle disease virus strain isolated from a pigeon in China. Avian Pathol 2017; 45:408-17. [PMID: 26950543 DOI: 10.1080/03079457.2016.1153036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Constant monitoring is performed to elucidate the role of natural hosts in the ecology of Newcastle disease virus (NDV). In this study, an NDV strain isolated from an asymptomatic pigeon was sequenced and analysed. Results showed that the full-length genomes of this isolate were 15,198 nucleotides with the gene order of 3'-NP-P-M-F-HN-L-5'. This NDV isolate was lentogenic, with an intracerebral pathogenicity index of 0.00 and a mean time of death more than 148 h. The isolate possessed a motif of -(112)E-R-Q-E-R-L(117)- at the F protein cleavage site. In addition, 7 and 13 amino acid substitutions were identified in the functional domains of fusion protein (F) and haemagglutinin-neuraminidase protein (HN) proteins, respectively. Analysis of the amino acids of neutralizing epitopes of F and HN proteins showed 3 and 10 amino acid substitutions, respectively, in the isolate. Phylogenetic analysis classified the isolate into genotype Ib in Class I. This isolate shared high homologies with the NDV strains isolated from wild birds and waterfowl in southern and eastern parts of China from 2005 to 2013. To our knowledge, this study is the first to report a NDV strain isolated from pigeon that belongs to genotype Ib in Class I, rather than to the traditional genotype VI or other sub-genotypes in Class II. This study provides information to elucidate the distribution and evolution of Class I viruses for further NDV prevention.
Collapse
Affiliation(s)
- Shanhui Ren
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Xiumei Xie
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Yanping Wang
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Lina Tong
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Xiaolong Gao
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Yanqing Jia
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Haixin Wang
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Mengfei Fan
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Shuxia Zhang
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Sa Xiao
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Xinglong Wang
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Zengqi Yang
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| |
Collapse
|
35
|
Zhirnov OP. Paramyxoviruses activation by host proteases in cultures of normal and cancer cells. Vopr Virusol 2017; 62:65-72. [PMID: 36494930 DOI: 10.18821/0507-4088-2017-62-2-65-72] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Multiplication of paramyxovirus Sendai and Newcastle disease virus (NDV) was studied in cultures of normal and tumor cells. Production of noninfectious virus with uncleaved F0 was observed in canine kidney cell line MDCK (line H) and its derivatives carrying tetracycline-regulated expression of transmembrane protease HAT or TMPRSS2 with trypsin-like cleavage specificity. Under tetracycline induction, a cleavage F0 (65 kD)>F1 (50 kD)+F2(15 kD) and production of infectious virus were observed in these cell cultures. Under tetracycline induction, the additional subunit 38K (m.w. 38 kDa) of the F protein was detected both in infected MDCK-HAT cells and in newly synthesized Sendai virus in addition to F0, F1 and F2, indicating thereby a second HAT-sensitive proteolytic site in the F0 molecule. Highly infectious virus containing cleaved F1+F2 was produced in cultures of cancer cells Caco-2 and H1299. Virus Sendai synthesized in H1299 cells contained 38 K subunit indicating a cleavage of the F0 at a second site by H1299 host cell proteases. Levels of cleaved F1+F2 and infectious virions were higher at the late stage of infection in cancer cells, suggesting thus the induction of virus-activating proteases in Caco-2 and H1299 cells under infection with paramyxoviruses. NDV virus was found to induce more rapid death of cancer cells Caco-2 than Sendai virus. Cooperatively, the obtained data show that cancer cells in distinction to nonmalignant cells can synthesize protease(s) activating infectivity of paramyxoviruses. Thus, they are more vulnerable to paramyxovirus infection than normal cells.
Collapse
Affiliation(s)
- O P Zhirnov
- Federal State Budgetary Institution «Federal Research Centre of Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya»
| |
Collapse
|
36
|
Yun B, Zhang Y, Liu Y, Guan X, Wang Y, Qi X, Cui H, Liu C, Zhang Y, Gao H, Gao L, Li K, Gao Y, Wang X. TMPRSS12 Is an Activating Protease for Subtype B Avian Metapneumovirus. J Virol 2016; 90:11231-11246. [PMID: 27707927 PMCID: PMC5126379 DOI: 10.1128/jvi.01567-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/29/2016] [Indexed: 12/28/2022] Open
Abstract
The entry of avian metapneumovirus (aMPV) into host cells initially requires the fusion of viral and cell membranes, which is exclusively mediated by fusion (F) protein. Proteolysis of aMPV F protein by endogenous proteases of host cells allows F protein to induce membrane fusion; however, these proteases have not been identified. Here, we provide the first evidence that the transmembrane serine protease TMPRSS12 facilitates the cleavage of subtype B aMPV (aMPV/B) F protein. We found that overexpression of TMPRSS12 enhanced aMPV/B F protein cleavage, F protein fusogenicity, and viral replication. Subsequently, knockdown of TMPRSS12 with specific small interfering RNAs (siRNAs) reduced aMPV/B F protein cleavage, F protein fusogenicity, and viral replication. We also found a cleavage motif in the aMPV/B F protein (amino acids 100 and 101) that was recognized by TMPRSS12. The histidine, aspartic acid, and serine residue (HDS) triad of TMPRSS12 was shown to be essential for the proteolysis of aMPV/B F protein via mutation analysis. Notably, we observed TMPRSS12 mRNA expression in target organs of aMPV/B in chickens. Overall, our results indicate that TMPRSS12 is crucial for aMPV/B F protein proteolysis and aMPV/B infectivity and that TMPRSS12 may serve as a target for novel therapeutics and prophylactics for aMPV. IMPORTANCE Proteolysis of the aMPV F protein is a prerequisite for F protein-mediated membrane fusion of virus and cell and for aMPV infection; however, the proteases used in vitro and vivo are not clear. A combination of analyses, including overexpression, knockdown, and mutation methods, demonstrated that the transmembrane serine protease TMPRSS12 facilitated cleavage of subtype B aMPV (aMPV/B) F protein. Importantly, we located the motif in the aMPV/B F protein recognized by TMPRSS12 and the catalytic triad in TMPRSS12 that facilitated proteolysis of the aMPV/B F protein. This is the first report on TMPRSS12 as a protease for proteolysis of viral envelope glycoproteins. Our study will shed light on the mechanism of proteolysis of aMPV F protein and pathogenesis of aMPV.
Collapse
Affiliation(s)
- Bingling Yun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yao Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yongzhen Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiaolu Guan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Honglei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, People's Republic of China
| |
Collapse
|
37
|
Genomic characterization of a wild-bird-origin pigeon paramyxovirus type 1 (PPMV-1) first isolated in the northwest region of China. Arch Virol 2016; 162:749-761. [DOI: 10.1007/s00705-016-3156-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/11/2016] [Indexed: 10/20/2022]
|
38
|
The Microtubule Inhibitor Podofilox Inhibits an Early Entry Step of Human Cytomegalovirus. Viruses 2016; 8:v8100295. [PMID: 27783035 PMCID: PMC5086627 DOI: 10.3390/v8100295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/11/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus is a ubiquitous β-herpesvirus that infects many different cell types through an initial binding to cell surface receptors followed by a fusion event at the cell membrane or endocytic vesicle. A recent high-throughput screen to identify compounds that block a step prior to viral gene expression identified podofilox as a potent and nontoxic inhibitor. Time-of-addition studies in combination with quantitative-PCR analysis demonstrated that podofilox limits an early step of virus entry at the cell surface. Podofilox was also able to drastically reduce infection by herpes simplex 1, an α-herpesvirus with a very similar entry process to CMV. Podofilox caused a reduced maximal plateau inhibition of infection by viruses with single step binding processes prior to fusion-like Newcastle disease virus, Sendai virus, and influenza A virus or viruses that enter via endocytosis like vesicular stomatitis virus and a clinical-like strain of CMV. These results indicate that microtubules appear to be participating in the post-binding step of virus entry including the pre- and post-penetration events. Modulation of the plasma membrane is required to promote virus entry for herpesviruses, and that podofilox, unlike colchicine or nocodazole, is able to preferentially target microtubule networks at the plasma membrane.
Collapse
|
39
|
Morla S, Shah M, Kaore M, Kurkure NV, Kumar S. Molecular characterization of genotype XIIIb Newcastle disease virus from central India during 2006–2012: Evidence of its panzootic potential. Microb Pathog 2016; 99:83-86. [DOI: 10.1016/j.micpath.2016.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 11/28/2022]
|
40
|
A Y527A mutation in the fusion protein of Newcastle disease virus strain LaSota leads to a hyperfusogenic virus with increased replication and immunogenicity. J Gen Virol 2016; 97:287-292. [DOI: 10.1099/jgv.0.000350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
Shahid N, Tahir S, Rao AQ, Hassan S, Khan A, Latif A, Au Khan M, Tabassum B, Shahid AA, Zafar AU, Husnain T. Escherichia coli expression of NDV fusion protein gene and determination of its antigenic epitopes. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Trypsin- and low pH-mediated fusogenicity of avian metapneumovirus fusion proteins is determined by residues at positions 100, 101 and 294. Sci Rep 2015; 5:15584. [PMID: 26498473 PMCID: PMC4620442 DOI: 10.1038/srep15584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/29/2015] [Indexed: 12/03/2022] Open
Abstract
Avian metapneumovirus (aMPV) and human metapneumovirus (hMPV) are members of the genus Metapneumovirus in the subfamily Pneumovirinae. Metapneumovirus fusion (F) protein mediates the fusion of host cells with the virus membrane for infection. Trypsin- and/or low pH-induced membrane fusion is a strain-dependent phenomenon for hMPV. Here, we demonstrated that three subtypes of aMPV (aMPV/A, aMPV/B, and aMPV/C) F proteins promoted cell-cell fusion in the absence of trypsin. Indeed, in the presence of trypsin, only aMPV/C F protein fusogenicity was enhanced. Mutagenesis of the amino acids at position 100 and/or 101, located at a putative cleavage region in aMPV F proteins, revealed that the trypsin-mediated fusogenicity of aMPV F proteins is regulated by the residues at positions 100 and 101. Moreover, we demonstrated that aMPV/A and aMPV/B F proteins mediated cell-cell fusion independent of low pH, whereas the aMPV/C F protein did not. Mutagenesis of the residue at position 294 in the aMPV/A, aMPV/B, and aMPV/C F proteins showed that 294G played a critical role in F protein-mediated fusion under low pH conditions. These findings on aMPV F protein-induced cell-cell fusion provide new insights into the molecular mechanisms underlying membrane fusion and pathogenesis of aMPV.
Collapse
|
43
|
The Fusion Protein Specificity of the Parainfluenza Virus Hemagglutinin-Neuraminidase Protein Is Not Solely Defined by the Primary Structure of Its Stalk Domain. J Virol 2015; 89:12374-87. [PMID: 26423949 DOI: 10.1128/jvi.01448-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/24/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Virus-specific interaction between the attachment protein (HN) and the fusion protein (F) is prerequisite for the induction of membrane fusion by parainfluenza viruses. This HN-F interaction presumably is mediated by particular amino acids in the HN stalk domain and those in the F head domain. We found in the present study, however, that a simian virus 41 (SV41) F-specific chimeric HPIV2 HN protein, SCA, whose cytoplasmic, transmembrane, and stalk domains were derived from the SV41 HN protein, could not induce cell-cell fusion of BHK-21 cells when coexpressed with an SV41 HN-specific chimeric PIV5 F protein, no. 36. Similarly, a headless form of the SV41 HN protein failed to induce fusion with chimera no. 36, whereas it was able to induce fusion with the SV41 F protein. Interestingly, replacement of 13 amino acids of the SCA head domain, which are located at or around the dimer interface of the head domain, with SV41 HN counterparts resulted in a chimeric HN protein, SCA-RII, which induced fusion with chimera no. 36 but not with the SV41 F protein. More interestingly, retroreplacement of 11 out of the 13 amino acids of SCA-RII with the SCA counterparts resulted in another chimeric HN protein, IM18, which induced fusion either with chimera no. 36 or with the SV41 F protein, similar to the SV41 HN protein. Thus, we conclude that the F protein specificity of the HN protein that is observed in the fusion event is not solely defined by the primary structure of the HN stalk domain. IMPORTANCE It is appreciated that the HN head domain initially conceals the HN stalk domain but exposes it after the head domain has bound to the receptors, which allows particular amino acids in the stalk domain to interact with the F protein and trigger it to induce fusion. However, other regulatory roles of the HN head domain in the fusion event have been ill defined. We have shown in the current study that removal of the head domain or amino acid substitutions in a particular region of the head domain drastically change the F protein specificity of the HN protein, suggesting that the ability of a given HN protein to interact with an F protein is defined not only by the primary structure of the HN stalk domain but also by its conformation. This notion seems to account for the unidirectional substitutability among rubulavirus HN proteins in triggering noncognate F proteins.
Collapse
|
44
|
Xie W, Wen H, Chu F, Yan S, Lin B, Xie W, Liu Y, Ren G, Zhao L, Song Y, Sun C, Wang Z. Mutations in the DI-DII Linker of Human Parainfluenza Virus Type 3 Fusion Protein Result in Diminished Fusion Activity. PLoS One 2015; 10:e0136474. [PMID: 26305905 PMCID: PMC4549179 DOI: 10.1371/journal.pone.0136474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/04/2015] [Indexed: 01/21/2023] Open
Abstract
Human parainfluenza virus type 3 (HPIV3) can cause severe respiratory tract diseases in infants and young children, but no licensed vaccines or antiviral agents are currently available for treatment. Fusing the viral and target cell membranes is a prerequisite for its entry into host cells and is directly mediated by the fusion (F) protein. Although several domains of F are known to have important effects on regulating the membrane fusion activity, the roles of the DI-DII linker (residues 369–374) of the HPIV3 F protein in the fusogenicity still remains ill-defined. To facilitate our understanding of the role of this domain might play in F-induced cell-cell fusion, nine single mutations were engineered into this domain by site-directed mutagenesis. A vaccinia virus-T7 RNA polymerase transient expression system was employed to express the wild-type or mutated F proteins. These mutants were analyzed for membrane fusion activity, cell surface expression, and interaction between F and HN protein. Each of the mutated F proteins in this domain has a cell surface expression level similar to that of wild-type F. All of them resulted in a significant reduction in fusogenic activity in all steps of membrane fusion. Furthermore, all these fusion-deficient mutants reduced the amount of the HN-F complexes at the cell surface. Together, the results of our work suggest that this region has an important effect on the fusogenic activity of F.
Collapse
Affiliation(s)
- Wenyan Xie
- Department of Virology, School of Public Health, Shandong University, Jinan, China
| | - Hongling Wen
- Department of Virology, School of Public Health, Shandong University, Jinan, China
| | - Fulu Chu
- Department of Laboratory Medicine, Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Shaofeng Yan
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Lin
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Wenli Xie
- Department of Laboratory Medicine, Shandong Tumor Hospital and Institute, Jinan, China
| | - Ying Liu
- Department of Virology, School of Public Health, Shandong University, Jinan, China
| | - Guijie Ren
- Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Li Zhao
- Department of Virology, School of Public Health, Shandong University, Jinan, China
| | - Yanyan Song
- Department of Virology, School of Public Health, Shandong University, Jinan, China
| | - Chengxi Sun
- Department of Virology, School of Public Health, Shandong University, Jinan, China
| | - Zhiyu Wang
- Department of Virology, School of Public Health, Shandong University, Jinan, China
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
45
|
Cuadrado-Castano S, Sanchez-Aparicio MT, García-Sastre A, Villar E. The therapeutic effect of death: Newcastle disease virus and its antitumor potential. Virus Res 2015. [PMID: 26221764 DOI: 10.1016/j.virusres.2015.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Programmed cell death is essential to survival of multicellular organisms. Previously restricted to apoptosis, the concept of programmed cell death is now extended to other mechanisms, as programmed necrosis or necroptosis, autophagic cell death, pyroptosis and parthanatos, among others. Viruses have evolved to manipulate and take control over the programmed cell death response, and the infected cell attempts to neutralize viral infections displaying different stress signals and defensive pathways before taking the critical decision of self-destruction. Learning from viruses and their interplay with the host may help us to better understand the complexity of the self-defense death response that when altered might cause disorders as important as cancer. In addition, as the fields of immunotherapy and oncolytic viruses advance as promising novel cancer therapies, the programmed cell death response reemerges as a key point for the success of both therapeutic approaches. In this review we summarize the research of the multimodal cell death response induced by Newcastle disease viruses (NDV), considered nowadays a promising viral oncolytic therapeutic, and how the manipulation of the host programmed cell death response can enhance the NDV antitumor capacity.
Collapse
Affiliation(s)
- Sara Cuadrado-Castano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Maria T Sanchez-Aparicio
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Enrique Villar
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain
| |
Collapse
|
46
|
Sun C, Wen H, Chen Y, Chu F, Lin B, Ren G, Song Y, Wang Z. Roles of the highly conserved amino acids in the globular head and stalk region of the Newcastle disease virus HN protein in the membrane fusion process. Biosci Trends 2015; 9:56-64. [DOI: 10.5582/bst.2014.01140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chengxi Sun
- Department of Virology, School of Public Health, Shandong University
| | - Hongling Wen
- Department of Virology, School of Public Health, Shandong University
| | - Yuzhen Chen
- Shandong Center for Disease Control and Prevention
| | - Fulu Chu
- Department of Virology, School of Public Health, Shandong University
| | - Bin Lin
- Shandong Center for Disease Control and Prevention
| | - Guijie Ren
- Institute of Biochemistry and Molecular Biology, Shandong University
| | - Yanyan Song
- Department of Virology, School of Public Health, Shandong University
| | - Zhiyu Wang
- The Key Laboratory for Experimental Teratology of the Ministry of Education
- Department of Virology, School of Public Health, Shandong University
| |
Collapse
|
47
|
Kumar CS, Kumar S. Species based synonymous codon usage in fusion protein gene of Newcastle disease virus. PLoS One 2014; 9:e114754. [PMID: 25479071 PMCID: PMC4257736 DOI: 10.1371/journal.pone.0114754] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/13/2014] [Indexed: 11/18/2022] Open
Abstract
Newcastle disease is highly pathogenic to poultry and many other avian species. However, the Newcastle disease virus (NDV) has also been reported from many non-avian species. The NDV fusion protein (F) is a major determinant of its pathogenicity and virulence. The functionalities of F gene have been explored for the development of vaccine and diagnostics against NDV. Although the F protein is well studied but the codon usage and its nucleotide composition from NDV isolated from different species have not yet been explored. In present study, we have analyzed the factors responsible for the determination of codon usage in NDV isolated from four major avian host species. The F gene of NDV is analyzed for its base composition and its correlation with the bias in codon usage. Our result showed that random mutational pressure is responsible for codon usage bias in F protein of NDV isolates. Aromaticity, GC3s, and aliphatic index were not found responsible for species based synonymous codon usage bias in F gene of NDV. Moreover, the low amount of codon usage bias and expression level was further confirmed by a low CAI value. The phylogenetic analysis of isolates was found in corroboration with the relatedness of species based on codon usage bias. The relationship between the host species and the NDV isolates from the host does not represent a significant correlation in our study. The present study provides a basic understanding of the mechanism involved in codon usage among species.
Collapse
Affiliation(s)
- Chandra Shekhar Kumar
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Sachin Kumar
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
- * E-mail:
| |
Collapse
|
48
|
Different regions of the newcastle disease virus fusion protein modulate pathogenicity. PLoS One 2014; 9:e113344. [PMID: 25437176 PMCID: PMC4249879 DOI: 10.1371/journal.pone.0113344] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/22/2014] [Indexed: 12/13/2022] Open
Abstract
Newcastle disease virus (NDV), also designated as Avian paramyxovirus type 1 (APMV-1), is the causative agent of a notifiable disease of poultry but it exhibits different pathogenicity dependent on the virus strain. The molecular basis for this variability is not fully understood. The efficiency of activation of the fusion protein (F) is determined by presence or absence of a polybasic amino acid sequence at an internal proteolytic cleavage site which is a major determinant of NDV virulence. However, other determinants of pathogenicity must exist since APMV-1 of high (velogenic), intermediate (mesogenic) and low (lentogenic) virulence specify a polybasic F cleavage site. We aimed at elucidation of additional virulence determinants by constructing a recombinant virus that consists of a lentogenic NDV Clone 30 backbone and the F protein gene from a mesogenic pigeon paramyxovirus-1 (PPMV-1) isolate with an intracerebral pathogenicity index (ICPI) of 1.1 specifying the polybasic sequence R-R-K-K-R*F motif at the cleavage site. The resulting virus was characterized by an ICPI of 0.6, indicating a lentogenic pathotype. In contrast, alteration of the cleavage site G-R-Q-G-R*L of the lentogenic Clone 30 to R-R-K-K-R*F resulted in a recombinant virus with an ICPI of 1.36 which was higher than that of parental PPMV-1. Substitution of different regions of the F protein of Clone 30 by those of PPMV-1, while maintaining the polybasic amino acid sequence at the F cleavage site, resulted in recombinant viruses with ICPIs ranging from 0.59 to 1.36 suggesting that virulence is modulated by regions of the F protein other than the polybasic cleavage site.
Collapse
|
49
|
Wang B, Wang B, Liu P, Li T, Si W, Xiu J, Liu H. Package of NDV-pseudotyped HIV-Luc virus and its application in the neutralization assay for NDV infection. PLoS One 2014; 9:e99905. [PMID: 24937158 PMCID: PMC4061091 DOI: 10.1371/journal.pone.0099905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/19/2014] [Indexed: 01/01/2023] Open
Abstract
Newcastle disease virus (NDV) is a member of the Paramyxovirinae subfamily and can infect most species of birds. It has been a great threat for the poultry industry all around the world. In this report, we successfully produced infectious pseudotyped pNL4-3-Luc-R−E− (HIV-Luc) viruses with the HN and F envelope proteins of NDV. Further investigation revealed the cytoplasmic domains of HN and F, especially HN, plays a significant role in the infection efficiency of these pseudotyped HIV-Luc viruses. Replacement of, or direct fusion to the cytoplasmic domain of the HN protein by that of vesicular stomatitis virus G (VSV-G) could greatly enhance or destroy the infective potential of HN and F-pseudotyped (NDV-pseudotyped) HIV-Luc virus. We further established a novel neutralization assay to evaluate neutralizing antibodies against NDV with the NDV-pseudotyped HIV-Luc viruses. Comparative neutralization data indicate that the results determined by using the NDV-pseudotyped HIV-Luc viruses are as reliable as those by the conventional virus-neutralization assay (VN test) with native NDV. Moreover, the results show that the novel neutralization assay is more sensitive than the VN test.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bin Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Peixin Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Si
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinsheng Xiu
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Henggui Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- * E-mail:
| |
Collapse
|
50
|
Dey S, Chellappa MM, Gaikwad S, Kataria JM, Vakharia VN. Genotype characterization of commonly used Newcastle disease virus vaccine strains of India. PLoS One 2014; 9:e98869. [PMID: 24897503 PMCID: PMC4045777 DOI: 10.1371/journal.pone.0098869] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 05/08/2014] [Indexed: 12/29/2022] Open
Abstract
Newcastle disease is an avian pathogen causing severe economic losses to the Indian poultry industry due to recurring outbreaks in vaccinated and unvaccinated flocks. India being an endemic country, advocates vaccination against the virus using lentogenic and mesogenic strains. Two virus strains which are commonly used for vaccination are strain F (a lentogenic virus) and strain R2B (a mesogenic virus). Strain F is given to 0-7 days old chicks and R2B is given to older birds which are around 6-8 weeks old. To understand the genetic makeup of these two strains, a complete genome study and phylogenetic analysis of the F, HN genes of these vaccine strains were carried out. Both the viral strains had a genome length of 15,186 nucleotides and consisted of six genes with conserved complimentary 3' leader and 5' trailer regions. The fusion protein cleavage site of strain F is GGRQGRL and strain R2B is RRQKRF. Although both the viral strains had different virulence attributes, the length of the HN protein was similar with 577 amino acids. Phylogenetic analysis of F, HN and complete genome sequences grouped these two strains in genotype II category which are considered as early genotypes and corroborated with their years of isolation.
Collapse
Affiliation(s)
- Sohini Dey
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Madhan Mohan Chellappa
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Satish Gaikwad
- OIE Reference Laboratory for Newcastle Disease, Avian Diseases Section, Animal and Plant Quarantine Agency, Anyang, South Korea
| | | | - Vikram N. Vakharia
- Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| |
Collapse
|