1
|
Janicka M, Sztanke M, Sztanke K. Biomimetic Chromatography/QSAR Investigations in Modeling Properties Influencing the Biological Efficacy of Phenoxyacetic Acid-Derived Congeners. Molecules 2025; 30:688. [PMID: 39942792 PMCID: PMC11819946 DOI: 10.3390/molecules30030688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
A hybrid method-combining liquid biomimetic chromatography techniques (immobilized artificial membrane chromatography and biopartitioning micellar chromatography) and Quantitative Structure-Activity Relationships-was used to derive helpful models for predicting selected biological properties such as penetration through the plant cuticle, the skin and the blood-brain barrier, and binding to human serum albumin of phenoxyacetic acid-derived congeners regarded as potential herbicides. Reliable, high-concept models were developed indicating the lipophilicity, polarizability, and sum of hydrogen bond donors and acceptors as properties that determine the biological efficacy of the title compounds. These models were validated by leave-one-out cross-validation. Modeling the toxicity of phenoxyacetic acid-derived congeners to red blood cells allowed the identification of the most toxic substances as well as those molecular descriptors that determine their hemolytic properties.
Collapse
Affiliation(s)
- Małgorzata Janicka
- Department of Physical Chemistry, Faculty of Chemistry, Institute of Chemical Science, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031 Lublin, Poland;
| | - Małgorzata Sztanke
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland;
| | - Krzysztof Sztanke
- Laboratory of Bioorganic Compounds Synthesis and Analysis, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
2
|
Martínez-Ruiz EB, Martínez-Jerónimo F. Exposure to the herbicide 2,4-D produces different toxic effects in two different phytoplankters: A green microalga (Ankistrodesmus falcatus) and a toxigenic cyanobacterium (Microcystis aeruginosa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:1566-1578. [PMID: 29070448 DOI: 10.1016/j.scitotenv.2017.10.145] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
The extensive use of 2,4-dichlorophenoxiacetic acid (2,4-D) in agriculture is an important source of pollution to water and soil. Toxicity of commonly used herbicides to non-target, planktonic photosynthetic organisms has not been described completely yet. Therefore, we determined the effect of subinhibitory 2,4-D concentrations on the Chlorophycean alga Ankistrodesmus falcatus and on a toxigenic strain of the cyanobacterium Microcystis aeruginosa. Population growth, photosynthetic pigments, macromolecular biomarkers (carbohydrates, lipids, and protein), and antioxidant enzymes (catalase [CAT], glutathione peroxidase [GPx], and superoxide dismutase [SOD]) were quantified, and the integrated biomarker response (IBR) was calculated. Scanning electron microscope (SEM) and transmission electron microscope (TEM) observations were also performed. The 96-h median inhibitory concentration (IC50) for 2,4-D was 1353.80 and 71.20mgL-1 for the alga and the cyanobacterium, respectively. Under 2,4-D stress, both organisms increased pigments and macromolecules concentration, modified the activity of all the evaluated enzymes, and exhibited ultrastructural alterations. M. aeruginosa also increased microcystins production, and A. falcatus showed external morphological alterations. The green alga was tolerant to high concentrations of the herbicide, whereas the cyanobacterium exhibited sensitivity comparable to other phytoplankters. Both organisms were tolerant to comparatively high concentrations of the herbicide; however, negative effects on the assessed biomarkers and cell morphology were significant. Moreover, stimulation of the production of cyanotoxins under chemical stress could increase the risk for the biota in aquatic environments, related to herbicides pollution in eutrophic freshwater ecosystems.
Collapse
Affiliation(s)
- Erika Berenice Martínez-Ruiz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico
| | - Fernando Martínez-Jerónimo
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico.
| |
Collapse
|
3
|
Dakhakhni TH, Raouf GA, Qusti SY. Evaluation of the toxic effect of the herbicide 2, 4-D on rat hepatocytes: an FT-IR spectroscopic study. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:311-20. [DOI: 10.1007/s00249-015-1097-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 10/26/2015] [Accepted: 11/05/2015] [Indexed: 02/03/2023]
|
4
|
Barrera C, López S, Aguilar L, Mercado L, Bravo M, Quiroz W. Pentavalent antimony uptake pathway through erythrocyte membranes: molecular and atomic fluorescence approaches. Anal Bioanal Chem 2015; 408:2937-44. [DOI: 10.1007/s00216-015-9188-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/04/2015] [Accepted: 11/11/2015] [Indexed: 11/28/2022]
|
5
|
Múčka V, Buňata M, Čuba V, Silber R, Juha L. Radiation induced dechlorination of some chlorinated hydrocarbons in aqueous suspensions of various solid particles. Radiat Phys Chem Oxf Engl 1993 2015. [DOI: 10.1016/j.radphyschem.2015.03.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Kiruthiga PV, Karutha Pandian S, Pandima Devi K. Silymarin prevents the toxicity induced by benzo(a)pyrene in human erythrocytes by preserving its membrane integrity: an in vitro study. ENVIRONMENTAL TOXICOLOGY 2014; 29:165-175. [PMID: 22052664 DOI: 10.1002/tox.20783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 09/12/2011] [Accepted: 09/24/2011] [Indexed: 05/31/2023]
Abstract
Silymarin, the purified extract from milk thistle Silybum marianum (L.) Gaertn, consists mainly of four isomeric flavonolignans: silibinin, isosilibinin, silidianin, and silichristin. The present study was carried out to evaluate the protective potential of silymarin in human erythrocytes against in vitro exposure to the carcinogen benzo(a)pyrene (B(a)P). Erythrocytes isolated from human blood were divided into four groups and treated with Vehicle [Group I], B(a)P (300 μM) [Group II], Silymarin (500 μM) + B(a)P (300 μM) [Group III], and Silymarin alone (500 μM)] [Group IV]. Silymarin treatment maintains the integrity of erythrocytes by preventing hemolysis, protein thiol oxidation and by decreasing the activity of AChE. SEM observations indicate that B(a)P induced significant alteration in the morphology of erythrocytes to echinocytes, which may be due to the interaction of B(a)P with the membrane's outer phopholipid monolayer. The light microscopic and SEM images show that silymarin treatment maintains the normal discocytic morphology of erythrocytes. The protective effect of silymarin might be attributed to its chemical structure and membranotrophic nature. The components silibinin, silydianin, and silychristin have OH in the 3rd, 5th, and 7th carbon atoms that may account for its increased antioxidant activity and removal of ROS formed during B(a)P metabolism.
Collapse
Affiliation(s)
- P V Kiruthiga
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | | | | |
Collapse
|
7
|
Ganguli A, Choudhury D, Chakrabarti G. 2,4-Dichlorophenoxyacetic acid induced toxicity in lung cells by disruption of the tubulin-microtubule network. Toxicol Res (Camb) 2014. [DOI: 10.1039/c3tx50082a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
8
|
Oxidative damage to human red blood cells treated with chlorfenvinphos, an organophosphate insecticide (in vitro). Biologia (Bratisl) 2013. [DOI: 10.2478/s11756-013-0200-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Pshenichnyuk SA, Modelli A. Can mitochondrial dysfunction be initiated by dissociative electron attachment to xenobiotics? Phys Chem Chem Phys 2013; 15:9125-35. [PMID: 23646356 DOI: 10.1039/c3cp50614b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resonance attachment of low-energy electrons to xenobiotic molecules, 2,4-dichlorophenoxyacetic acid (2,4-D), dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE), was investigated under gas-phase conditions by means of complementary experimental techniques. Electron transmission spectroscopy (ETS) and dissociative electron attachment spectroscopy (DEAS), in the 0-6 eV and 0-15 eV energy range, respectively, were applied with the aim of modeling the behavior of these pesticide molecules under reductive conditions in vivo. Formation of long-lived parent molecular anions and fragment negative ions was observed at incident electron energies very close to zero, in agreement with the results of density functional theory calculations. The gas-phase DEA process, analogous to dissociative electron transfer in solution, was considered as a model for the initial step which occurs in the intermembrane space of mitochondria when a xenobiotic molecule captures an electron "leaked" from the respiratory chain. A possible involvement of the fragments produced by DEA to the pesticides under investigation into cellular processes is discussed. It is concluded that the free radicals and potential DNA adducts formed by DEA are expected to be dangerous for mitochondrial functionalities, while several of the products observed could act as messenger molecules, thus interfering with the normal cellular signaling pathways.
Collapse
Affiliation(s)
- Stanislav A Pshenichnyuk
- Institute of Molecule and Crystal Physics, Ufa Research Centre, Russian Academy of Sciences, Ufa, Russia.
| | | |
Collapse
|
10
|
Arul Dhas D, Hubert Joe I, Roy SDD, Balachandran S. DFT computation and experimental analysis of vibrational and electronic spectra of phenoxy acetic acid herbicides. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 108:89-99. [PMID: 23466319 DOI: 10.1016/j.saa.2013.01.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 06/01/2023]
Abstract
An absolute vibrational analysis has been attempted on the basis of experimental FTIR and NIR-FT Raman spectra with calculated vibrational wavenumbers and intensities of phenoxy acetic acids. The equilibrium geometry, bonding features and harmonic vibrational wavenumbers have been calculated with the help of B3LYP method with Dunning correlation consistent basis set aug-cc-pVTZ. The electronic structures of molecular fragments were described in terms of natural bond orbital analysis, which shows intermolecular O-H···O and intramolecular C-H···O hydrogen bonds. The electronic absorption spectra with different solvents have been investigated in combination with time-dependent density functional theory calculation. The pKa values of phenoxy acetic acids were compared.
Collapse
Affiliation(s)
- D Arul Dhas
- Department of Physics, Nesamony Memorial Christian College, Marthandam 629 165, Tamil Nadu, India
| | | | | | | |
Collapse
|
11
|
Kopka A, Janiszewska S, Szwed M, Duda W, Bukowska B. The effect of alendronate sodium on human erythrocytes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 32:306-314. [PMID: 21843812 DOI: 10.1016/j.etap.2011.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 05/31/2023]
Abstract
Alendronate sodium is a medicine, which is commonly used in osteoporosis treatment. Nowadays, this substance is given to patients in tablets, but in future it is planned that it will be administrated into human organisms as intravenous infusions; therefore, significant interactions of this medicine with erythrocytes will be inevitable. It is the reason why we decided to investigate the interaction of alendronate sodium with human erythrocytes. The effect of this medicine on acetylcholinesterase activity, lipid and protein peroxidation, as well as cellular thiol content was examined. Moreover, the effect of alendronate sodium on alterations in erythrocytes morphology was assessed. Human erythrocytes were incubated with alendronate sodium in the concentrations ranging from 0.33 to 100 μM for 1 h and 24 h. No changes have been observed in the parameters examined after 1h of incubation of the erythrocytes with this medicine excluding the carbonyl groups level. Moreover, no alterations in the activity of acetylcholinesterase, the level of thiols as well as in morphology of the erythrocytes incubated with alendronate sodium for 24h have been observed. It was also proven that alendronate sodium increased the level of reactive oxygen species (ROS) but only after 24h of incubation. We have not observed any severe changes in cells studied even at the highest dose of bisphosphonates examined, thus their usage should not be dangerous for the erythrocytes of people treated with these medicines.
Collapse
Affiliation(s)
- Anna Kopka
- Department of Biophysics of Environmental Pollution, University of Łódź, Pomorska 141/143 Str., 90-237 Łódź, Poland
| | | | | | | | | |
Collapse
|
12
|
Comparison of the effect of phenoxyherbicides on human erythrocyte membrane (in vitro). Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0022-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Szatkowska B, Bukowska B, Huras B. The effect of bromfenvinphos and its impurities on human erythrocyte. Food Chem Toxicol 2011; 49:502-7. [DOI: 10.1016/j.fct.2010.11.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/16/2010] [Accepted: 11/23/2010] [Indexed: 11/16/2022]
|
14
|
Na⁺,K⁺-ATPase as the Target Enzyme for Organic and Inorganic Compounds. SENSORS 2008; 8:8321-8360. [PMID: 27873990 PMCID: PMC3791021 DOI: 10.3390/s8128321] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 11/09/2008] [Accepted: 12/11/2008] [Indexed: 01/16/2023]
Abstract
This paper gives an overview of the literature data concerning specific and non specific inhibitors of Na+,K+-ATPase receptor. The immobilization approaches developed to improve the rather low time and temperature stability of Na+,K+-ATPase, as well to preserve the enzyme properties were overviewed. The functional immobilization of Na+,K+-ATPase receptor as the target, with preservation of the full functional protein activity and access of various substances to an optimum number of binding sites under controlled conditions in the combination with high sensitive technology for the detection of enzyme activity is the basis for application of this enzyme in medical, pharmaceutical and environmental research.
Collapse
|
15
|
Bjørling-Poulsen M, Andersen HR, Grandjean P. Potential developmental neurotoxicity of pesticides used in Europe. Environ Health 2008; 7:50. [PMID: 18945337 PMCID: PMC2577708 DOI: 10.1186/1476-069x-7-50] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 10/22/2008] [Indexed: 05/18/2023]
Abstract
Pesticides used in agriculture are designed to protect crops against unwanted species, such as weeds, insects, and fungus. Many compounds target the nervous system of insect pests. Because of the similarity in brain biochemistry, such pesticides may also be neurotoxic to humans. Concerns have been raised that the developing brain may be particularly vulnerable to adverse effects of neurotoxic pesticides. Current requirements for safety testing do not include developmental neurotoxicity. We therefore undertook a systematic evaluation of published evidence on neurotoxicity of pesticides in current use, with specific emphasis on risks during early development. Epidemiologic studies show associations with neurodevelopmental deficits, but mainly deal with mixed exposures to pesticides. Laboratory experimental studies using model compounds suggest that many pesticides currently used in Europe--including organophosphates, carbamates, pyrethroids, ethylenebisdithiocarbamates, and chlorophenoxy herbicides--can cause neurodevelopmental toxicity. Adverse effects on brain development can be severe and irreversible. Prevention should therefore be a public health priority. The occurrence of residues in food and other types of human exposures should be prevented with regard to the pesticide groups that are known to be neurotoxic. For other substances, given their widespread use and the unique vulnerability of the developing brain, the general lack of data on developmental neurotoxicity calls for investment in targeted research. While awaiting more definite evidence, existing uncertainties should be considered in light of the need for precautionary action to protect brain development.
Collapse
Affiliation(s)
- Marina Bjørling-Poulsen
- Department of Environmental Medicine, University of Southern Denmark, Winslowparken 17, 5000 Odense, Denmark
| | - Helle Raun Andersen
- Department of Environmental Medicine, University of Southern Denmark, Winslowparken 17, 5000 Odense, Denmark
| | - Philippe Grandjean
- Department of Environmental Medicine, University of Southern Denmark, Winslowparken 17, 5000 Odense, Denmark
- Department of Environmental Health, Harvard School of Public Health, Landmark Building 3E-110, 401 Park Drive, Boston, MA 02215, USA
| |
Collapse
|
16
|
The interaction of DNR and glutaraldehyde with cell membrane proteins leads to morphological changes in erythrocytes. Cancer Lett 2008; 260:118-26. [DOI: 10.1016/j.canlet.2007.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/17/2007] [Accepted: 10/19/2007] [Indexed: 11/19/2022]
|
17
|
Schüller C, Mamnun YM, Wolfger H, Rockwell N, Thorner J, Kuchler K. Membrane-active compounds activate the transcription factors Pdr1 and Pdr3 connecting pleiotropic drug resistance and membrane lipid homeostasis in saccharomyces cerevisiae. Mol Biol Cell 2007; 18:4932-44. [PMID: 17881724 PMCID: PMC2096591 DOI: 10.1091/mbc.e07-06-0610] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Saccharomyces cerevisiae zinc cluster transcription factors Pdr1 and Pdr3 mediate general drug resistance to many cytotoxic substances also known as pleiotropic drug resistance (PDR). The regulatory mechanisms that activate Pdr1 and Pdr3 in response to the various xenobiotics are poorly understood. In this study, we report that exposure of yeast cells to 2,4-dichlorophenol (DCP), benzyl alcohol, nonionic detergents, and lysophospholipids causes rapid activation of Pdr1 and Pdr3. Furthermore, Pdr1/Pdr3 target genes encoding the ATP-binding cassette proteins Pdr5 and Pdr15 confer resistance against these compounds. Genome-wide transcript analysis of wild-type and pdr1Delta pdr3Delta cells treated with DCP reveals most prominently the activation of the PDR response but also other stress response pathways. Polyoxyethylene-9-laurylether treatment produced a similar profile with regard to activation of Pdr1 and Pdr3, suggesting activation of these by detergents. The Pdr1/Pdr3 response element is sufficient to confer regulation to a reporter gene by these substances in a Pdr1/Pdr3-dependent manner. Our data indicate that compounds with potential membrane-damaging or -perturbing effects might function as an activating signal for Pdr1 and Pdr3, and they suggest a role for their target genes in membrane lipid organization or remodeling.
Collapse
Affiliation(s)
- Christoph Schüller
- *Medical University Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, A-1030 Vienna, Austria; and
| | - Yasmine M. Mamnun
- *Medical University Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, A-1030 Vienna, Austria; and
| | - Hubert Wolfger
- *Medical University Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, A-1030 Vienna, Austria; and
| | - Nathan Rockwell
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720
| | - Jeremy Thorner
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720
| | - Karl Kuchler
- *Medical University Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, A-1030 Vienna, Austria; and
| |
Collapse
|
18
|
LaChapelle AM, Ruygrok ML, Toomer M, Oost JJ, Monnie ML, Swenson JA, Compton AA, Stebbins-Boaz B. The hormonal herbicide, 2,4-dichlorophenoxyacetic acid, inhibits Xenopus oocyte maturation by targeting translational and post-translational mechanisms. Reprod Toxicol 2007; 23:20-31. [PMID: 17055699 DOI: 10.1016/j.reprotox.2006.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 07/21/2006] [Accepted: 08/22/2006] [Indexed: 11/16/2022]
Abstract
The widely used hormonal herbicide, 2,4-dichlorophenoxyacetic acid, blocks meiotic maturation in vitro and is thus a potential environmental endocrine disruptor with early reproductive effects. To test whether maturation inhibition was dependent on protein kinase A, an endogenous maturation inhibitor, oocytes were microinjected with PKI, a specific PKA inhibitor, and exposed to 2,4-D. Oocytes failed to mature, suggesting that 2,4-D is not dependent on PKA activity and likely acts on a downstream target, such as Mos. De novo synthesis of Mos, which is triggered by mRNA poly(A) elongation, was examined. Oocytes were microinjected with radiolabelled in vitro transcripts of Mos RNA and exposed to progesterone and 2,4-D. RNA analysis showed progesterone-induced polyadenylation as expected but none with 2,4-D. 2,4-D-activated MAPK was determined to be cytoplasmic in localization studies but poorly induced Rsk2 phosphorylation and activation. In addition to inhibition of the G2/M transition, 2,4-D caused abrupt reduction of H1 kinase activity in MII phase oocytes. Attempts to rescue maturation in oocytes transiently exposed to 2,4-D failed, suggesting that 2,4-D induces irreversible dysfunction of the meiotic signaling mechanism.
Collapse
|
19
|
Marczak A, Walczak M, Jóźwiak Z. The combined effect of IDA and glutaraldehyde on the erythrocyte membrane proteins. Int J Pharm 2006; 335:154-162. [PMID: 17158004 DOI: 10.1016/j.ijpharm.2006.11.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 09/14/2006] [Accepted: 11/06/2006] [Indexed: 11/19/2022]
Abstract
A number of investigators have been focusing their attention on the encapsulation of antineoplastic drugs within erythrocytes to diminish their side-effects. Glutaraldehyde is often used as crosslinking agent to link the drugs (including idarubicin, IDA) to the cells. The previous studies indicated that in glutaraldehyde-treated human erythrocytes the elevated level of drugs was observed but also the various changes in the organization of the red cells were noted. In this study, we continue our investigations on the interaction of IDA and glutaraldehyde on the erythrocytes and now we concentrate on the effect of these compounds with the erythrocyte membrane proteins. For this purpose, SDS-gel electrophoresis of the cell proteins was carried out. Additionally, analysis of the disturbances of erythrocytes shape and size, accompanied by the application of flow cytometry and microscopy examination, were undertaken. The fluorimetric method was used to estimate content of IDA in supernatants, after erythrocyte membranes incubation with different glutaraldehyde concentrations. It was observed that glutaraldehyde caused in gradually dependent manner an increase of percent of IDA linked to the cell membrane proteins. After this incorporation, perturbations in the content of the proteins in the cell membrane were observed. The protein aggregates and changes in the level of spectrin, band 3 protein and small mass proteins were noted. The use of flow cytometry and microscopy technique demonstrated also disturbances in the shape and size of erythrocytes. For all tested concentrations of glutaraldehyde, the changes were statistically significant.
Collapse
Affiliation(s)
- A Marczak
- Department of Thermobiology, University of Łódź, Banacha 12/16 Str, 90-237 Łódź, Poland.
| | - M Walczak
- Department of Thermobiology, University of Łódź, Banacha 12/16 Str, 90-237 Łódź, Poland
| | - Z Jóźwiak
- Department of Thermobiology, University of Łódź, Banacha 12/16 Str, 90-237 Łódź, Poland
| |
Collapse
|
20
|
Zafeiridou G, Geronikaki A, Papaefthimiou C, Tryfonos M, Kosmidis EK, Theophilidis G. Assessing the effects of the three herbicides acetochlor, 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and 2,4-dichlorophenoxyacetic acid on the compound action potential of the sciatic nerve of the frog (Rana ridibunda). CHEMOSPHERE 2006; 65:1040-8. [PMID: 16674996 DOI: 10.1016/j.chemosphere.2006.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 02/21/2006] [Accepted: 03/18/2006] [Indexed: 05/09/2023]
Abstract
To assess the relative toxicity of the herbicides acetochlor and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) on the nervous system, the sciatic nerve of the frog (Rana ridibunda) nerve was incubated in saline inside a specially designed recording chamber. This chamber permits monitoring of the evoked compound action potential (CAP) of the nerve, a parameter that could be used to quantify the vitality of the nerve in normal conditions as well as when the nerve was exposed to the compounds under investigation. Thus, when the nerve was exposed to acetochlor, the EC(50) was estimated to be 0.22mM, while for 2,4,5-T the EC(50) was 0.90mM. Using the identical nerve preparation, the EC(50) of 2,4-D was estimated to be 3.80mM [Kouri, G., Theophilidis, G., 2002. The action of the herbicide 2,4-dichlorophenoxyacetic acid on the isolated sciatic nerve of the frog (Rana ridibunda). Neurotoxicol. Res. 4, 25-32]. The ratio of the relative toxicity for acetochlor, 2,4,5-T and 2,4-D was found to be 1:4:17.2. However, because it is well-known that the action of 2,4-D is dependent on the pH, the relative toxicity of the three compounds was tested at pH 3.3, since it has been found that the sciatic nerve of the frog is tolerant of such a low pH. Under these conditions, the EC(50) was 0.77mM (from 0.22mM at pH 7.2) for acetochlor, 0.20mM (from 0.90mM) for 2,4,5-T and 0.24mM (from 3.80mM at pH 7.2) for 2,4-D. Thus, the relative toxicity of the three compounds changed drastically to 1:0.25:0.31. This change in the relative toxicity is due not only to the increase in the toxicity of 2,4,5-T and 2,4-D at low pH levels, but also to the decrease in the toxicity of acetochlor at pH 3.3.
Collapse
Affiliation(s)
- Georgia Zafeiridou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University, Thessaloniki 54124, Hellas, Greece
| | | | | | | | | | | |
Collapse
|
21
|
Teixeira MC, Fernandes AR, Mira NP, Becker JD, Sá-Correia I. Early transcriptional response of Saccharomyces cerevisiae to stress imposed by the herbicide 2,4-dichlorophenoxyacetic acid. FEMS Yeast Res 2006; 6:230-48. [PMID: 16487346 DOI: 10.1111/j.1567-1364.2006.00041.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The global gene transcription pattern of the eukaryotic experimental model Saccharomyces cerevisiae in response to sudden aggression with the widely used herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was analysed. Under acute stress, 14% of the yeast transcripts suffered a greater than twofold change. The yeastract database was used to predict the transcription factors mediating the response registered in this microarray analysis. Most of the up-regulated genes in response to 2,4-D are known targets of Msn2p, Msn4p, Yap1p, Pdr1p, Pdr3p, Stp1p, Stp2p and Rpn4p. The major regulator of ribosomal protein genes, Sfp1p, is known to control 60% of the down-regulated genes, in particular many involved in the transcriptional and translational machinery and in cell division. The yeast response to the herbicide includes the increased expression of genes involved in the oxidative stress response, the recovery or degradation of damaged proteins, cell wall remodelling and multiple drug resistance. Although the protective role of TPO1 and PDR5 genes was confirmed, the majority of the responsive genes encoding multidrug resistance do not confer resistance to 2,4-D. The increased expression of genes involved in alternative carbon and nitrogen source metabolism, fatty acid beta-oxidation and autophagy was also registered, suggesting that acute herbicide stress leads to nutrient limitation.
Collapse
Affiliation(s)
- Miguel Cacho Teixeira
- Biological Sciences Research Group, Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Lisboa, Portugal
| | | | | | | | | |
Collapse
|
22
|
Teixeira MC, Santos PM, Fernandes AR, Sá-Correia I. A proteome analysis of the yeast response to the herbicide 2,4-dichlorophenoxyacetic acid. Proteomics 2005; 5:1889-901. [PMID: 15832368 DOI: 10.1002/pmic.200401085] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The intensive use of herbicides may give rise to a number of toxicological problems in non-target organisms and has led to the emergence of resistant weeds. To gain insights into the mechanisms of adaptation to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), we have identified variations in protein expression level in the eukaryotic experimental model Saccharomyces cerevisiae exposed to herbicide aggression, based on two-dimensional gel electrophoresis. We show results suggesting that during the adaptation period preceding the resumption of inhibited exponential growth under herbicide stress, the antioxidant enzyme Ahp1p and the heat shock proteins Hsp12p and Ssb2p (or Ssb1p) are present in higher amounts. The increased level of other enzymes involved in protein (Cdc48p) and mRNA (Dcp1p) degradation, in carbohydrate metabolism (Eno1p, Eno2p and Glk1p) and in vacuolar H(+)-ATPase (V-ATPase) function (Vma1p and Vma2p, two subunits of the peripheral catalytic sector) was also registered. V-ATPase is involved in the homeostasis of intracellular pH and in the compartmentalization of amino acids and other metabolites in the vacuole. The increased expression of amino acid biosynthetic enzymes (Arg1p, Aro3p, Aro8p, Gdh1p, His4p, Ilv3p and Met6p), also suggested by comparative analysis of the proteome, was correlated with the reduction of amino acid concentration registered in both the vacuole and the cytosol of 2,4-D-stressed cells, possibly due to the disturbance of vacuolar and plasma membrane functions by the lipophilic acid herbicide.
Collapse
Affiliation(s)
- Miguel C Teixeira
- Biological Sciences Research Group, Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Lisbon, Portugal
| | | | | | | |
Collapse
|
23
|
Argese E, Bettiol C, Marchetto D, De Vettori S, Zambon A, Miana P, Ghetti PF. Study on the toxicity of phenolic and phenoxy herbicides using the submitochondrial particle assay. Toxicol In Vitro 2005; 19:1035-43. [PMID: 16023322 DOI: 10.1016/j.tiv.2005.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 05/14/2005] [Accepted: 05/27/2005] [Indexed: 12/20/2022]
Abstract
A simple and rapid in vitro toxicological assay, utilizing submitochondrial particles (SMP), has been used to evaluate the toxic effects of fifteen herbicides belonging to the phenol and phenoxyalkanoic acid chemical classes. The SMP assay allows the quantitative evaluation of the toxicity of compounds with different mechanisms of action: uncouplers, inhibitors of the enzyme complexes involved in reverse electron transfer and in oxidative phosphorylation and chemicals that alter the membrane structure. The two groups of herbicides showed different levels of toxicity. For phenol derivatives, EC50 values ranged from 0.16 microM (ioxynil) to 6.7 microM (2,4-dinitrophenol), whereas for phenoxy herbicides EC50 values ranged from 21 microM (2,4,5-trichlorophenoxyacetic acid, 2,4,5-T) to 110 microM (4-chloro-2-methylphenoxyacetic acid, MCPA). On the average, the toxicity of phenolic compounds is greater than that of phenoxyalkanoic acids by two orders of magnitude. Quantitative structure-activity relationships (QSAR) were developed between EC50 values and various molecular descriptors. The results suggest the existence of different mechanisms of action for the two classes of compounds. The findings obtained for phenolic herbicides are consistent with a protonophoric uncoupling mechanism, whereas for phenoxy herbicides a non-specific mode of action at membrane level can be hypothesized.
Collapse
Affiliation(s)
- E Argese
- Dipartimento di Scienze Ambientali, Università Ca Foscari di Venezia, Calle Larga S. Marta 2137, 30123 Venezia, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Suwalsky M, Rodríguez C, Villena F, Sotomayor CP. Human erythrocytes are affected by the organochloride insecticide chlordane. Food Chem Toxicol 2005; 43:647-54. [PMID: 15778003 DOI: 10.1016/j.fct.2004.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 12/15/2004] [Accepted: 12/19/2004] [Indexed: 11/18/2022]
Abstract
Chlordane is a widely used organochlorine insecticide. In order to evaluate its perturbing effect upon the morphology of human erythrocytes it was caused to interact with human red cells and molecular models of cell membranes. These consisted in bilayers of dimyristoylphosphatidylethanolamine (DMPE) and of dimyristoylphosphatidylcholine (DMPC), representative of phospholipid classes located in the inner and outer monolayers of the erythrocyte membrane, respectively. Scanning electron microscopy (SEM) observations indicated that this pesticide induced a significant alteration in the shape of the erythrocytes as they changed their discoid shape to spherocytes. According to the bilayer couple hypothesis, the shape changes induced in erythrocytes by foreign molecules are due to differential expansion of their two monolayers. The fact that chlordane produced spherocytes would indicate that the pesticide was equally located in the outer and the inner moieties of the red cell membrane. This conclusion was supported by the results obtained from X-ray diffraction studies. These showed that the hydrophobic and polar head regions of DMPC bilayers were perturbed when the insecticide was in a 1:10 molar ratio with respect to the lipid. These results were confirmed by the fluorescence experiments performed in DMPC large unilamellar vesicles (LUV). Chlordane produced a sharp decrease in the anisotropy and general polarization parameters in the 0-0.1 mM range, implying an increase in the fluidity at the acyl chain and polar region of DMPC. On the other hand, the bilayer structure of DMPE was perturbed in a fashion similar to that observed by X-ray diffraction in DMPC, a fact that explains the morphological change induced by chlordane to the human erythrocytes.
Collapse
Affiliation(s)
- M Suwalsky
- Faculty of Chemical Sciences, Department of Polymers, University of Concepcion, Casilla 160-C, Concepcion, Chile.
| | | | | | | |
Collapse
|
25
|
Durkin P, Hertzberg R, Diamond G. Application of PBPK model for 2,4-D to estimates of risk in backpack applicators. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2004; 16:73-91. [PMID: 21782695 DOI: 10.1016/j.etap.2003.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2003] [Accepted: 09/08/2003] [Indexed: 05/31/2023]
Abstract
A PBPK model for 2,4-D was developed that involves flow-limited pH trapping modified to consider tissue binding, binding to plasma, and high-dose inhibition of urinary excretion. The PBPK model provides reasonable estimates of the kinetics of 2,4-D in rats as well as in humans, providing a common metric for expressing risk. The risk characterization for 2,4-D based on the PBPK model is consistent with that based on standard risk assessment methods, except that the apparent variability in the risk characterization is reduced. The model demonstrates that non-linear pharmacokinetics and inhibition of urinary excretion would not be expected in occupational exposures. This case study suggests that preliminary PBPK models could be developed for numerous pesticides based on commonly available data. If properly validated with well-designed worker exposure studies, such models may be useful in more complete assessments of risks to workers as well as members of the general public.
Collapse
Affiliation(s)
- Patrick Durkin
- Syracuse Environmental Research Associates, Inc., 5100 Highbridge Street, 42C Fayetteville, New York, NY 13066-0950, USA
| | | | | |
Collapse
|
26
|
Bukowska B. Effects of 2,4-D and its metabolite 2,4-dichlorophenol on antioxidant enzymes and level of glutathione in human erythrocytes. Comp Biochem Physiol C Toxicol Pharmacol 2003; 135:435-41. [PMID: 12965188 DOI: 10.1016/s1532-0456(03)00151-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of in vitro exposure of human erythrocytes to different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and its metabolite 2,4-dichlorophenol (2,4-DCP) were studied. The activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and the level of reduced glutathione (GSH) were determined. The activity of erythrocyte superoxide dismutase SOD decreased with increasing dose of 2,4-D and 2,4-DCP, while glutathione peroxidase activity increased. 2,4-D (500 ppm) decreased the level of reduced glutathione in erythrocytes by 18% and 2,4-DCP (250 ppm) by 32%, respectively, in comparison with the controls. These results lead to the conclusion that in vitro administration of herbicide-2,4-D and its metabolite 2,4-DCP causes a decrease in the level of reduced glutathione in erythrocytes and significant changes in antioxidant enzyme activities. Comparison of the toxicity of 2,4-D and 2,4-DCP revealed that the most prominent changes occurred in human erythrocytes incubated with 2,4-DCP.
Collapse
Affiliation(s)
- Bozena Bukowska
- Department of Biophysics of Environmental Pollution, University of Lódz, Banacha 12/16, 90-237 Lódz, Poland.
| |
Collapse
|
27
|
Sarapuk J, Bonarska D, Kleszczyńska H. Biological activity of binary mixtures of 2,4-D with some aminophosphonates. J Appl Biomed 2003. [DOI: 10.32725/jab.2003.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
28
|
Ateeq B, Abul farah M, Niamat Ali M, Ahmad W. Induction of micronuclei and erythrocyte alterations in the catfish Clarias batrachus by 2,4-dichlorophenoxyacetic acid and butachlor. Mutat Res 2002; 518:135-44. [PMID: 12113764 DOI: 10.1016/s1383-5718(02)00075-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The micronucleus test (MNT) in fish erythrocytes has increasingly been used to detect the genotoxic effects of environmental mutagens and its frequency is considered to reflect the genotoxic damage to cells, mainly the chromosomes. Besides, morphologically altered erythrocyte is taken as an index of cytotoxicity. Both parameters were used in the present study by two herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D, in 25, 50 and 75ppm concentrations) and 2-chloro-2,6-diethyl-N-(butoxymethyl) acetanilide (butachlor, in 1, 2 and 2.5ppm concentrations) for genotoxic and cytotoxic endpoints. The study was carried out by an in vivo method on peripheral erythrocytes of catfish Clarias batrachus using multiple sampling times (48, 72 and 96h). Cytogenetic preparations were made by haematoxylin-eosin staining technique. Pycnotic and granular micronuclei (MN) were consistently observed irrespective of chemical tested. A wide range of altered cells was also observed. Echinocytes accompanied by altered nuclei and vacuoles were prominent feature of 2,4-D, whereas, anisochromasia and anisocytosis of erythrocytes were characteristic of butachlor. Increase in MN as well as altered cells frequencies were significant. A positive dose-response relationship in all exposures and sampling times was observed. Herbicides used were found to be genotoxic as well as cytotoxic in this fish. The suitability of the adopted parameters for the screening of the aquatic genotoxicants is discussed.
Collapse
Affiliation(s)
- Bushra Ateeq
- Gene-Tox Laboratory, Department of Zoology, Division of Genetics, Aligarh Muslim University, U.P. 202002, India
| | | | | | | |
Collapse
|
29
|
Papaefthimiou C, Pavlidou V, Gregorc A, Theophilidis G. The action of 2,4-Dichlorophenoxyacetic acid on the isolated heart of insect and amphibia. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2002; 11:127-140. [PMID: 21782594 DOI: 10.1016/s1382-6689(01)00113-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2001] [Revised: 11/14/2001] [Accepted: 11/15/2001] [Indexed: 05/31/2023]
Abstract
The action of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on the isolated heart of the frog (Rana ridibunda) and two insects, the honeybee (Apis mellifera macedonica) and the beetle (Tenebrio molitor), was investigated using basic electrophysiological methods. The results of this study showed that a concentration of 1 μM 2,4-D was required to reduce the force and the frequency of the isolated heart of the honeybee to about 70% of the initial contraction in less than 20 min. To cause the same effects on the atria of the frog, 45 μM 2,4-D was required and on the isolated heart of the beetle, over 1000 μM of 2,4-D. The presence of an extensive system of gap junctions found in the honeybee is most probably the cause of the unusual sensitivity of its heart to 2,4-D, compared with the heart of the beetle, where no gap junctions were identified.
Collapse
Affiliation(s)
- Chrisovalantis Papaefthimiou
- Department of Zoology, Laboratory of Animal Physiology, School of Biology, Aristotle University, Thessaloniki 54006, Greek Macedonia, Greece
| | | | | | | |
Collapse
|
30
|
Kouri G, Theophilidis G. The action of the herbicide 2,4-dichlorophenoxyacetic acid on the isolated sciatic nerve of the frog (Rana ridibunda). Neurotox Res 2002; 4:25-32. [PMID: 12826490 DOI: 10.1080/10298420290007592] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The isolated sciatic nerve of the frog was used to assess the effects of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on the peripheral nervous system. For each experiment, both sciatic nerves were used. The evoked compound action potentials of the nerves were monitored for over 48 h as an indication of their viability. The viability of nerve incubated in control saline was compared to the viability of the nerve incubated in saline where 2,4-D was diluted. The minimum effective concentration (minEC) of 2,4-D was estimated to be between 2 and 4 mM.
Collapse
Affiliation(s)
- G Kouri
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University, Thessaloniki 54006, Greek Macedonia, Hellas, Greece.
| | | |
Collapse
|
31
|
Suwalsky M, Ungerer B, Villena F, Cuevas F, Sotomayor CP. HgCl2 disrupts the structure of the human erythrocyte membrane and model phospholipid bilayers. J Inorg Biochem 2000; 81:267-73. [PMID: 11065190 DOI: 10.1016/s0162-0134(00)00105-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural effects of Hg(II) ions on the erythrocyte membrane were studied through the interactions of HgCl2 with human erythrocytes and their isolated resealed membranes. Studies were carried out by scanning electron microscopy and fluorescence spectroscopy, respectively. Hg(II) induced shape changes in erythrocytes, which took the form of echinocytes and stomatocytes. This finding means that Hg(II) locates in both the outer and inner monolayers of the erythrocyte membrane. Fluorescence spectroscopy results indicate strong interactions of Hg(II) ions with phospholipid amino groups, which also affected the packing of the lipid acyl chains at the deep hydrophobic core of the membrane. HgCl2 also interacted with bilayers of dimyristoylphosphatidylcholine and dimyristoylphosphatidylethanolamine, representative of phospholipid classes located in the outer and inner monolayers of the erythrocyte membrane, respectively. X-ray diffraction indicated that Hg(II) ions induced molecular disorder to both phospholipid bilayers, while fluorescence spectroscopy of dimyristoylphosphatidylcholine large unilamellar vesicles confirmed the interaction of Hg(II) ions with the lipid polar head groups. All these findings point to the important role of the phospholipid bilayers in the interaction of Hg(II) on cell membranes.
Collapse
Affiliation(s)
- M Suwalsky
- Faculty of Chemical Sciences, University of Concepción, Chile.
| | | | | | | | | |
Collapse
|
32
|
Bradberry SM, Watt BE, Proudfoot AT, Vale JA. Mechanisms of toxicity, clinical features, and management of acute chlorophenoxy herbicide poisoning: a review. JOURNAL OF TOXICOLOGY. CLINICAL TOXICOLOGY 2000; 38:111-22. [PMID: 10778907 DOI: 10.1081/clt-100100925] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Chlorophenoxy herbicides are used widely for the control of broad-leaved weeds. They exhibit a variety of mechanisms of toxicity including dose-dependent cell membrane damage, uncoupling of oxidative phosphorylation, and disruption of acetylcoenzyme A metabolism. Between January 1962 and January 1999, 66 cases of chlorophenoxy herbicide poisoning following ingestion were reported in the literature. FEATURES FOLLOWING INGESTION: Adjuvants in the formulations may have contributed to some of the features observed. Vomiting, abdominal pain, diarrhea, and, occasionally, gastrointestinal hemorrhage were early effects. When present, hypotension was predominantly due to intravascular volume loss, although vasodilation and direct myocardial toxicity may have contributed in some cases. Neurotoxic features included coma, hypertonia, hyperreflexia, ataxia, nystagmus, miosis, hallucinations, convulsions, fasciculation, and paralysis. Hypoventilation occurred not infrequently, usually in association with central nervous system depression, but respiratory muscle weakness was a factor in the development of respiratory failure in some patients. Myopathic symptoms including limb muscle weakness, loss of tendon reflexes, and myotonia were observed and increased creatine kinase activity was noted in some cases. Other clinical features reported included metabolic acidosis, rhabdomyolysis, renal failure, increased aminotransferase activities, pyrexia, and hyperventilation. Twenty-two of 66 patients died. FEATURES FOLLOWING DERMAL AND INHALATIONAL EXPOSURE: Substantial dermal or inhalational 2,4-dichlorophenoxyacetic acid exposure has occasionally led to systemic features but no such reports have been published in the last 20 years and no fatalities have been reported at any time. Substantial dermal exposure has been reported to cause mild gastrointestinal irritation after a latent period followed by progressive mixed sensory-motor peripheral neuropathy. Mild, transient gastrointestinal and peripheral neuromuscular symptoms have also occurred after occupational inhalation exposure, with or without dermal exposure. MANAGEMENT In addition to supportive care, alkaline diuresis to enhance herbicide elimination should be considered in all seriously poisoned patients. Limited clinical data suggest that hemodialysis produces similar herbicide clearance to alkaline diuresis without the need for urine pH manipulation and the administration of substantial amounts of intravenous fluid in an already compromised patient. CONCLUSIONS While chlorophenoxy herbicide poisoning is uncommon, ingestion of a chlorophenoxy herbicide can result in serious and sometimes fatal sequelae. In severe cases of poisoning, alkaline diuresis or hemodialysis to increase herbicide elimination should be considered.
Collapse
Affiliation(s)
- S M Bradberry
- National Poisons Information Service (Birmingham Centre), City Hospital, United Kingdom
| | | | | | | |
Collapse
|
33
|
Brückner E, Sonntag P, Rehage H. Influence of Toluene on the Bending Elastic Properties of Giant Phosphatidylcholine Vesicles. J Phys Chem B 2000. [DOI: 10.1021/jp993265c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- E. Brückner
- Institute of Physical Chemistry, University of Essen, Essen D-45141, Germany
| | - P. Sonntag
- Institute of Physical Chemistry, University of Essen, Essen D-45141, Germany
| | - H. Rehage
- Institute of Physical Chemistry, University of Essen, Essen D-45141, Germany
| |
Collapse
|
34
|
Suwalsky M, Benites M, Norris B, Sotomayor P. Toxic effects of the fungicide benomyl on cell membranes. Comp Biochem Physiol C Toxicol Pharmacol 2000; 125:111-9. [PMID: 11790335 DOI: 10.1016/s0742-8413(99)00097-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This paper examines the toxicity of the fungicide benomyl towards cell membranes. Approaches to this aim were the study of its acute effects on the stimulatory response of a frog neuroepithelial synapse and on membrane models. The latter consisted of large unilamellar vesicles of dimyristoylphosphatidylcholine (DMPC) and phospholipid multilayers built-up of DMPC and dimyristoylphosphatidylethanolamine (DMPE). Results showed that benomyl at concentrations as low as 10 microM decreased the stimulatory response of the potential difference (PD) and the short-circuit current (SCC) of the frog sympathetic junction. It is concluded that benomyl caused a dose-dependent reduction in the response of a sympathetic junction of the frog to stimulation leading to Cl(-) channel perturbation. This finding might be explained from those obtained from fluorescence spectroscopy and X-ray diffraction studies on membrane models. In fact, similar (0.01-1.0 mM) concentrations induced structural perturbations in DMPC large unilamellar vesicles and multilayers, respectively. Although it is still premature to define the precise molecular mechanism of benomyl toxicity, the experimental results confirm the important role played by the phospholipid bilayers in the interaction of the pesticide with cell membranes.
Collapse
Affiliation(s)
- M Suwalsky
- Faculty of Chemical Sciences, University of Concepción, Casilla 160-C, Concepción, Chile.
| | | | | | | |
Collapse
|
35
|
Rosso SB, Gonzalez M, Bagatolli LA, Duffard RO, Fidelio GD. Evidence of a strong interaction of 2,4-dichlorophenoxyacetic acid herbicide with human serum albumin. Life Sci 1999; 63:2343-51. [PMID: 9877224 DOI: 10.1016/s0024-3205(98)00523-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction of 2,4-dichlorophenoxyacetic acid herbicide (2,4-D) with human serum albumin (HSA) was studied using fluorescence and differential scanning calorimetry (DSC). Fluorescence displacement of 1-anilino-8-naphtalenesulfonate (ANS) bound to HSA was used to evaluate the binding affinity of 2,4-D to HSA. The binding is associated to a high affinity site of HSA located in the IIIA subdomain. The association constant (Kass) of the herbicide was about 5 microM(-1), several times higher than the affinity found for pharmaceutical compounds. This relatively strong interaction with HSA was evidenced by the increase in HSA protein thermostability induced as consequence of herbicide interaction. 2,4-D induces an increase in the midpoint of thermal denaturation temperature from 60.1 degrees C in herbicide free solution to 75.6 degrees C in full ligand saturating condition. The calorimetric enthalpy and the excess heat capacity also increased upon 2,4-D binding. To investigate the possibility of other/s system/s of 2,4-D transport in blood, besides of HSA, the interaction of the herbicide with lipid monolayers was explored. No interaction was detected with any of the lipids tested. The overall results provided evidence that high affinity 2,4-D-HSA complex exhibits enhanced thermal stability and that HSA is the unique transport system for 2,4-D in blood.
Collapse
Affiliation(s)
- S B Rosso
- Laboratorio de Toxicología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | | | | | | | | |
Collapse
|
36
|
Abstract
The influence of Cu2+ ions on the physical properties of resealed human erythrocyte membranes was studied by fluorescence spectroscopy. A net ordering effect was observed at the hydrophobic-hydrophilic interface both in the bulk as well as in the lipid-protein boundary. The explanation for this result was found by X-ray diffraction performed in multilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. Cu2+ did not significantly affect the structure of DMPE; however, DMPC polar head and hydrocarbon chain arrangements were perturbed at low but reordered at high Cu2+ concentrations. These effects were respectively explained in terms of a limited and extended interaction between Cu2+ ions and DMPC PO4 groups. Thus, the ordering effect in the erythrocyte membrane could be based on the interaction of this cation with phosphatidylcholine phosphate groups located in its outer leaflet. This binding, besides producing a decrease of membrane fluidity, might also induce a change in its electric field. These two effects should affect the activity of membrane proteins, particularly of ion channels. In fact, it was found that increasing concentrations of Cu2+ ions applied to either the mucosal or serosal surface of the isolated toad skin elicited a dose-dependent decrease of the short-circuit current (SCC) and of the potential difference (PD). These results lead to the conclusion that Cu2+ ions inhibited Na+ transport across the epithelial cell membranes.
Collapse
Affiliation(s)
- M Suwalsky
- Faculty of Chemical Sciences, University of Concepcion, Chile.
| | | | | | | | | |
Collapse
|
37
|
Suwalsky M, Benites M, Villena F, Norris B, Quevedo L. The organochlorine herbicide chloridazon interacts with cell membranes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 120:29-35. [PMID: 9827013 DOI: 10.1016/s0742-8413(98)90002-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chloridazon is a widely used organochlorine herbicide. In order to evaluate its perturbing effect on cell membranes it was made to interact with human erythrocytes, frog adrenergic neuroepithelial synapse and molecular models. These consisted in multilayers of dimyristoylphosphatidylethanolamine (DMPE) and of dimyristoylphosphatidyltidylcholine (DMPC), representative of phospholipid classes located in the inner and outer monolayers of the erythrocyte membrane, respectively. X-ray diffraction showed that chloridazon interacted preferentially with DMPC multilayers. Scanning electron microscopy revealed that 0.1 mM chloridazon induced erythrocyte crenation. According to the bilayer couple hypothesis, this is due to the preferential insertion of chloridazon in the phosphatidylcholine-rich external moiety of the red cell membrane. Electrophysiological measurements showed that nerve stimulation was followed immediately by a transient increase in short-circuit current (SCC) and in the potential difference (PD) of the neuroepithelial synapse. Increasing concentrations of chloridazon caused a dose-dependent and reversible decrease of the responses of both parameters to 76% of their control values. The pesticide induced a similar (28%) significant time-dependent decrease in the basal values of the SCC and of PD. These results are in accordance with a perturbing effect of chloridazon on the phospholipid moiety of the nerve fibre membrane leading to interference with total ion transport across the nerve skin junction.
Collapse
Affiliation(s)
- M Suwalsky
- Faculty of Chemical Sciences, University of Concepcion, Chile.
| | | | | | | | | |
Collapse
|
38
|
Suwalsky M, Benites M, Villena F, Aguilar F, Sotomayor CP. The organochlorine pesticide heptachlor disrupts the structure of model and cell membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1326:115-23. [PMID: 9188806 DOI: 10.1016/s0005-2736(97)00019-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Heptachlor is an organochlorine pesticide which is particularly toxic for aquatic life. A significant source of this pesticide for infants is breast milk, where its concentration is considerably higher than in dairy milk. Given the lipophilic character of heptachlor, lipid-rich cell membranes are a very plausible target for its interaction with living organisms. In order to evaluate its toxicity towards cell membranes, heptachlor was made to interact with human erythrocytes and molecular models of the red cell membrane. These consisted of multilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), which are types of phospholipids that are respectively located in the outer and inner monolayers of the erythrocyte membrane, and large unilamellar vesicles (LUV) of DMPC. Observations by scanning electron microscopy showed that 10 mM heptachlor produced various degrees of shape alterations to erythrocytes, which ranged from a few blebs in some cells to a great number of protuberances in others. On the other hand, experiments performed by X-ray diffraction on DMPC and DMPE indicated that the bilayer structure of DMPC was much more affected by heptachlor than that of DMPE. Measurements by fluorescence spectroscopy on DMPC LUV confirmed the X-ray diffraction results in that both the hydrocarbon chain and polar head regions of DMPC were structurally perturbed by heptachlor. The results obtained from the model studies could explain the shape changes induced to red cells by heptachlor. According to the bilayer hypothesis, they were due to the preferential interaction of heptachlor with the phosphatidylcholine-rich external moiety of the erythrocyte membrane. It is therefore concluded that toxic effects of this pesticide can be related to its capacity to perturb the phospholipid bilayer structure, whose integrity is essential for cell membrane functions.
Collapse
Affiliation(s)
- M Suwalsky
- Faculty of Chemical Sciences, University of Concepción, Chile.
| | | | | | | | | |
Collapse
|