1
|
Liu KN, Boxer SG. Single-virus content-mixing assay reveals cholesterol-enhanced influenza membrane fusion efficiency. Biophys J 2021; 120:4832-4841. [PMID: 34536389 DOI: 10.1016/j.bpj.2021.09.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/05/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022] Open
Abstract
To infect a cell, enveloped viruses must first undergo membrane fusion, which proceeds through a hemifusion intermediate, followed by the formation of a fusion pore through which the viral genome is transferred to a target cell. Single-virus fusion studies to elucidate the dynamics of content mixing typically require extensive fluorescent labeling of viral contents. The labeling process must be optimized depending on the virus identity and strain and can potentially be perturbative to viral fusion behavior. Here, we introduce a single-virus assay in which content-labeled vesicles are bound to unlabeled influenza A virus (IAV) to eliminate the problematic step of content-labeling virions. We use fluorescence microscopy to observe individual, pH-triggered content mixing and content-loss events between IAV and target vesicles of varying cholesterol compositions. We show that target membrane cholesterol increases the efficiency of IAV content mixing and decreases the fraction of content-mixing events that result in content loss. These results are consistent with previous findings that cholesterol stabilizes pore formation in IAV entry and limits leakage after pore formation. We also show that content loss due to hemagglutinin fusion peptide engagement with the target membrane is independent of composition. This approach is a promising strategy for studying the single-virus content-mixing kinetics of other enveloped viruses.
Collapse
Affiliation(s)
- Katherine N Liu
- Department of Chemistry, Stanford University, Stanford, California
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California.
| |
Collapse
|
2
|
Lim K, Kodera N, Wang H, Mohamed MS, Hazawa M, Kobayashi A, Yoshida T, Hanayama R, Yano S, Ando T, Wong RW. High-Speed AFM Reveals Molecular Dynamics of Human Influenza A Hemagglutinin and Its Interaction with Exosomes. NANO LETTERS 2020; 20:6320-6328. [PMID: 32787163 DOI: 10.1021/acs.nanolett.0c01755] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Influenza A hemagglutinin (HA) is one of the crucial virulence factors that mediate host tropism and viral infectivity. Presently, the mechanism of the fusogenic transition of HA remains elusive. Here, we used high-speed atomic force microscopy (HS-AFM) to decipher the molecular dynamics of HA and its interaction with exosomes. Our data reveal that the native conformation of HA in the neutral buffer is ellipsoidal, and HA undergoes a conformational change in an acidic buffer. Real-time visualization of the fusogenic transition by HS-AFM suggests that the mechanism is possibly fit to the "uncaging" model, and HA intermediate appears as Y-shaped. A firm interaction between the HA and exosome in an acidic buffer indicates the insertion of a fusion peptide into the exosomal layer and subsequently destabilizes the layer, resulting in the deformation or rupture of exosomes, releasing exosomal contents. In contrast, the HA-exosome interaction is weak in a neutral buffer because the interaction is mediated by weak bonds between the HA receptor-binding site and receptors on the exosome.
Collapse
Affiliation(s)
- Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hanbo Wang
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Mahmoud Shaaban Mohamed
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Masaharu Hazawa
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Akiko Kobayashi
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Takeshi Yoshida
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Department of Immunology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara, Kanazawa, Ishikawa 920-8640, Japan
| | - Rikinari Hanayama
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Department of Immunology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara, Kanazawa, Ishikawa 920-8640, Japan
| | - Seiji Yano
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Toshio Ando
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Richard W Wong
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
3
|
Salinas DG. Flux theory for Poisson distributed pores with Gaussian permeability. Channels (Austin) 2015; 10:111-8. [PMID: 26488853 DOI: 10.1080/19336950.2015.1100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The mean of the solute flux through membrane pores depends on the random distribution and permeability of the pores. Mathematical models including such randomness factors make it possible to obtain statistical parameters for pore characterization. Here, assuming that pores follow a Poisson distribution in the lipid phase and that their permeabilities follow a Gaussian distribution, a mathematical model for solute dynamics is obtained by applying a general result from a previous work regarding any number of different kinds of randomly distributed pores. The new proposed theory is studied using experimental parameters obtained elsewhere, and a method for finding the mean single pore flux rate from liposome flux assays is suggested. This method is useful for pores without requiring studies by patch-clamp in single cells or single-channel recordings. However, it does not apply in the case of ion-selective channels, in which a more complex flux law combining the concentration and electrical gradient is required.
Collapse
Affiliation(s)
- Dino G Salinas
- a Centro de Investigación Biomédica, Facultad de Medicina , Universidad Diego Portales , Santiago , Chile
| |
Collapse
|
4
|
Salinas DG. Fluxes theory in experiments with random distributed channels on vesicles. Channels (Austin) 2014; 8:258-63. [PMID: 24643013 DOI: 10.4161/chan.28011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
When channels are randomly distributed in a population of vesicles, disregarding the number of channels per vesicle, these channels follow a Poisson distribution. This has been verified in many cases, determining the average of channels per vesicle. However, to determine kinetic parameters in population studies, a mathematical expression for the mean flux of solute through channels per vesicle is necessary. Hence, here, this mean flux is calculated, assuming Poisson distributed channels in a population of vesicle. Moreover, this result has been generalized to any number of different kinds of channels (i.e., channels with different permeabilities). These results, useful for in vitro experiments with mixed both channels and vesicles, can be supplemented with those from other techniques, in order to understanding how the nature of the lipid membrane affects kinetic parameters of channel.
Collapse
|
5
|
Bonnafous P, Nicolaï MC, Taveau JC, Chevalier M, Barrière F, Medina J, Le Bihan O, Adam O, Ronzon F, Lambert O. Treatment of influenza virus with beta-propiolactone alters viral membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:355-63. [PMID: 24140008 DOI: 10.1016/j.bbamem.2013.09.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/25/2013] [Accepted: 09/30/2013] [Indexed: 11/24/2022]
Abstract
Beta-propiolactone (BPL) is commonly used as an inactivating reagent to produce viral vaccines. Although BPL has been described to chemically modify nucleic acids, its effect on viral proteins, potentially affecting viral infectivity, remains poorly studied. Here, a H3N2 strain of influenza virus was submitted to treatment with various BPL concentrations (2-1000μM). Cell infectivity was progressively reduced and entirely abolished at 1mM BPL. Virus fusion with endosome being a critical step in virus infection, we analyzed its ability to fuse with lipid membrane after BPL treatment. By monitoring calcein leakage from liposomes fusing with the virus, we measured a decrease of membrane fusion in a BPL dose-dependent manner that correlates with the loss of infectivity. These data were complemented with cryo transmission electron microscopy (cryoTEM) and cryo electron tomography (cryoET) studies of native and modified viruses. In addition, a decrease of leakage irrespective of BPL concentration was measured suggesting that the insertion of HA2 fusion peptide into the target membrane was inhibited even at low BPL concentrations. Interestingly, mass spectrometry revealed that HA2 and M1 matrix proteins had been modified. Furthermore, fusion activity was partially restored by the protonophore monensin as confirmed by cryoTEM and cryoET. Moreover, exposure to amantadine, an inhibitor of M2 channel, did not alter membrane fusion activity of 1mM BPL treated virus. Taken together these results show that BPL treatment inhibits membrane fusion, likely by altering function of proteins involved in the fusion process, shedding new light on the effect of BPL on influenza virus.
Collapse
Affiliation(s)
- Pierre Bonnafous
- University of Bordeaux, CBMN UMR 5248, IPB, IECB, F-33600 Pessac, France; CNRS, CBMN UMR 5248, F-33600 Pessac, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lai AL, Tamm LK. Shallow boomerang-shaped influenza hemagglutinin G13A mutant structure promotes leaky membrane fusion. J Biol Chem 2010; 285:37467-75. [PMID: 20826788 DOI: 10.1074/jbc.m110.153700] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous studies showed that an angled boomerang-shaped structure of the influenza hemagglutinin (HA) fusion domain is critical for virus entry into host cells by membrane fusion. Because the acute angle of ∼105° of the wild-type fusion domain promotes efficient non-leaky membrane fusion, we asked whether different angles would still support fusion and thus facilitate virus entry. Here, we show that the G13A fusion domain mutant produces a new leaky fusion phenotype. The mutant fusion domain structure was solved by NMR spectroscopy in a lipid environment at fusion pH. The mutant adopted a boomerang structure similar to that of wild type but with a shallower kink angle of ∼150°. G13A perturbed the structure of model membranes to a lesser degree than wild type but to a greater degree than non-fusogenic fusion domain mutants. The strength of G13A binding to lipid bilayers was also intermediate between that of wild type and non-fusogenic mutants. These membrane interactions provide a clear link between structure and function of influenza fusion domains: an acute angle is required to promote clean non-leaky fusion suitable for virus entry presumably by interaction of the fusion domain with the transmembrane domain deep in the lipid bilayer. A shallower angle perturbs the bilayer of the target membrane so that it becomes leaky and unable to form a clean fusion pore. Mutants with no fixed boomerang angle interacted with bilayers weakly and did not promote any fusion or membrane perturbation.
Collapse
Affiliation(s)
- Alex L Lai
- Center for Membrane Biology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22903-0886, USA
| | | |
Collapse
|
7
|
Abstract
Enveloped viruses use specialized protein machinery to fuse the viral membrane with that of the host cell during cell invasion. In influenza virus, hundreds of copies of the haemagglutinin (HA) fusion glycoprotein project from the virus surface. Despite intensive study of HA and its fusion activity, the protein's modus operandi in manipulating viral and target membranes to catalyse their fusion is poorly understood. Here, the three-dimensional architecture of influenza virus-liposome complexes at pH 5.5 was investigated by electron cryo-tomography. Tomographic reconstructions show that early stages of membrane remodeling take place in a target membrane-centric manner, progressing from punctate dimples, to the formation of a pinched liposomal funnel that may impinge on the apparently unperturbed viral envelope. The results suggest that the M1 matrix layer serves as an endoskeleton for the virus and a foundation for HA during membrane fusion. Fluorescence spectroscopy monitoring fusion between liposomes and virions shows that leakage of liposome contents takes place more rapidly than lipid mixing at pH 5.5. The relation of 'leaky' fusion to the observed prefusion structures is discussed.
Collapse
Affiliation(s)
- Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, USA.
| |
Collapse
|
8
|
Hilgenbrink AR, Low PS. Folate Receptor-Mediated Drug Targeting: From Therapeutics to Diagnostics. J Pharm Sci 2005; 94:2135-46. [PMID: 16136558 DOI: 10.1002/jps.20457] [Citation(s) in RCA: 448] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Folate targeted drug delivery has emerged as an alternative therapy for the treatment and imaging of many cancers and inflammatory diseases. Due to its small molecular size and high binding affinity for cell surface folate receptors (FR), folate conjugates have the ability to deliver a variety of molecular complexes to pathologic cells without causing harm to normal tissues. Complexes that have been successfully delivered to FR expressing cells, to date, include protein toxins, immune stimulants, chemotherapeutic agents, liposomes, nanoparticles, and imaging agents. This review will summarize the applications of folic acid as a targeting ligand and highlight the various methods being developed for delivery of therapeutic and imaging agents to FR-expressing cells.
Collapse
|
9
|
Frolov VA, Dunina-Barkovskaya AY, Samsonov AV, Zimmerberg J. Membrane permeability changes at early stages of influenza hemagglutinin-mediated fusion. Biophys J 2003; 85:1725-33. [PMID: 12944287 PMCID: PMC1303346 DOI: 10.1016/s0006-3495(03)74602-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
While biological membrane fusion is classically defined as the leak-free merger of membranes and contents, leakage is a finding in both experimental and theoretical studies. The fusion stages, if any, that allow membrane permeation are uncharted. In this study we monitored membrane ionic permeability at early stages of fusion mediated by the fusogenic protein influenza hemagglutinin (HA). HAb2 cells, expressing HA on their plasma membrane, fused with human red blood cells, cultured liver cells PLC/PRF/5, or planar phospholipid bilayer membranes. With a probability that depended upon the target membrane, an increase of the electrical conductance of the fusing membranes (leakage) by up to several nS was generally detected. This leakage was recorded at the initial stages of fusion, when fusion pores formed. This leakage usually accompanied the "flickering" stage of the early fusion pore development. As the pore widened, the leakage reduced; concomitantly, the lipid exchange between the fusing membranes accelerated. We conclude that during fusion pore formation, HA locally and temporarily increases the permeability of fusing membranes. Subsequent rearrangement in the fusion complex leads to the resealing of the leaky membranes and enlargement of the pore.
Collapse
Affiliation(s)
- V A Frolov
- A. N. Frumkin Institute of Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Pierre Bonnafous
- Crucell Holland BV, Archimedesweg 4, P.O. Box 2048, Leiden, The Netherlands
| | | |
Collapse
|
11
|
Turk MJ, Reddy JA, Chmielewski JA, Low PS. Characterization of a novel pH-sensitive peptide that enhances drug release from folate-targeted liposomes at endosomal pHs. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1559:56-68. [PMID: 11825588 DOI: 10.1016/s0005-2736(01)00441-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although liposomes have proven useful for the delivery of drugs and gene therapy vectors, their potencies are often compromised by poor unloading following uptake into their target cells. We have consequently explored the properties of a novel 29-residue amphipathic peptide that was designed by arrangement of hydrophobic and hydrophilic residues to disrupt liposomes at lower peptide concentrations than previously tested peptides. The peptide was indeed found to promote pH-dependent liposome unloading with improved efficiency. A peptide of the same sequence, but half the length, however, promoted pH-dependent permeabilization only at much higher concentrations. Further characterization of the longer peptide revealed that release of liposome contents (i) occurred at a pH of approximately 6, (ii) became less efficient as the size of the encapsulated cargo increased, and (iii) was moderately suppressed in cholesterol-containing liposomes. Use of this peptide to enhance the cytotoxicity of cytosine arabinoside encapsulated in folate-targeted liposomes demonstrated an increase in drug potency of approximately 30-fold. Gene expression by a serum-stable folate-targeted liposomal vector was also measurably enhanced by inclusion of the peptide. We conclude that intracellular unloading of liposomal contents can be significantly improved by co-encapsulation of an optimally designed, pH-sensitive peptide.
Collapse
Affiliation(s)
- Mary Jo Turk
- Department of Chemistry, Purdue University, 1393 Brown Building, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
12
|
Epand RF, Yip CM, Chernomordik LV, LeDuc DL, Shin YK, Epand RM. Self-assembly of influenza hemagglutinin: studies of ectodomain aggregation by in situ atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1513:167-75. [PMID: 11470088 DOI: 10.1016/s0005-2736(01)00350-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have used in situ tapping mode atomic force microscopy (AFM) to study the structural morphology of two fragments of the influenza hemagglutinin protein bound to supported bilayers. The two proteins that we studied are the bromelain-cleaved hemagglutinin (BHA), corresponding to the full ectodomain of the hemagglutinin protein, and FHA2, the 127 amino acid N-terminal fragment of the HA2 subunit of the hemagglutinin protein. While BHA is water soluble at neutral pH and is known to bind to membranes via specific interactions with a viral receptor, FHA2 can only be solubilized in water with an appropriate detergent. Furthermore, FHA2 is known to readily bind to membranes at neutral pH in the absence of a receptor. Our in situ AFM studies demonstrated that, when bound to supported bilayers at neutral pH, both these proteins are self-assembled as single trimeric molecules. In situ acidification resulted in further lateral association of the FHA2 without a large perturbation of the bilayer. In contrast, BHA remained largely unaffected by acidification, except in areas of exposed mica where it is aggregated. Remarkably, these results are consistent with previous observations that FHA2 promotes membrane fusion while BHA only induces liposome leakage at low pH. The results presented here are the first example of in situ imaging of the ectodomain of a viral envelope protein allowing characterization of the real-time self-assembly of a membrane fusion protein.
Collapse
Affiliation(s)
- R F Epand
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5.
| | | | | | | | | | | |
Collapse
|
13
|
Melikyan GB, Markosyan RM, Roth MG, Cohen FS. A point mutation in the transmembrane domain of the hemagglutinin of influenza virus stabilizes a hemifusion intermediate that can transit to fusion. Mol Biol Cell 2000; 11:3765-75. [PMID: 11071905 PMCID: PMC15035 DOI: 10.1091/mbc.11.11.3765] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A hemagglutinin (HA) of influenza virus having a single semiconserved Gly residue within the transmembrane domain mutated to Leu (G520L) was expressed on cells; these cells were bound to red blood cells. By decreasing pH at 23 degrees C rather than 37 degrees C, an intermediate with properties expected of hemifusion just as the membranes are about to transit to full fusion was captured. As evidence: 1) increasing temperature to 37 degrees C at neutral pH allowed fusion to proceed; 2) after achieving the intermediate, the two membranes did not separate from each other after proteolytic cleavage of G520L because cells treated with proteinase K could not fuse upon temperature increase but could fuse upon the addition of chlorpromazine; and 3) at the point of the intermediate, adding exogenous lipids known to promote or inhibit the creation of hemifusion did not significantly alter the lipid dye spread that occurred upon increasing temperature, implying that at the intermediate, contacting membrane leaflets had already merged. A stable intermediate of hemifusion that could transit to fusion was also generated for wild-type HA, but pH had to be reduced at the significantly lower temperature of 4 degrees C. The fusion pores generated by G520L did not enlarge, whereas those induced by wild-type HA did. The finding that a state of transitional hemifusion can be readily obtained via a point mutation without the need for unusually low temperature supports the hypothesis that hemifusion occurs before pore formation.
Collapse
Affiliation(s)
- G B Melikyan
- Department of Molecular Biophysics and Physiology, Rush Medical College, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
14
|
Bonnafous P, Stegmann T. Membrane perturbation and fusion pore formation in influenza hemagglutinin-mediated membrane fusion. A new model for fusion. J Biol Chem 2000; 275:6160-6. [PMID: 10692407 DOI: 10.1074/jbc.275.9.6160] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Low pH-induced fusion mediated by the hemagglutinin (HA) of influenza virus involves conformational changes in the protein that lead to the insertion of a "fusion peptide" domain of this protein into the target membrane and is thought to perturb the membrane, triggering fusion. By using whole virus, purified HA, or HA ectodomains, we found that shortly after insertion, pores of less than 26 A in diameter were formed in liposomal membranes. As measured by a novel assay, these pores stay open, or continue to close and open, for minutes to hours and persist after pH neutralization. With virus and purified HA, larger pores, allowing the leakage of dextrans, were seen at times well after insertion. For virus, dextran leakage was simultaneous with lipid mixing and the formation of "fusion pores," allowing the transfer of dextrans from the liposomal to the viral interior or vice versa. Pores did not form in the viral membrane in the absence of a target membrane. Based on these data, we propose a new model for fusion, in which HA initially forms a proteinaceous pore in the target, but not in the viral membrane, before a lipidic hemifusion intermediate is formed.
Collapse
Affiliation(s)
- P Bonnafous
- Institut de Pharmacologie et de Biologie Structurale, CNRS UPR 9062, 205 Route de Narbonne, 31077 Toulouse, France
| | | |
Collapse
|
15
|
Epand RF, Macosko JC, Russell CJ, Shin YK, Epand RM. The ectodomain of HA2 of influenza virus promotes rapid pH dependent membrane fusion. J Mol Biol 1999; 286:489-503. [PMID: 9973566 DOI: 10.1006/jmbi.1998.2500] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To better understand the roles of different regions of influenza hemagglutinin in membrane fusion, we have studied the fusion properties of large unilamellar vesicles in the presence of constructs comprising the 127 amino acid ectodomain of the HA2 fragment (FHA2) as well as mutated forms of FHA2 containing single amino acid substitutions, the 95 amino acid truncated form of FHA2 lacking the N-terminal fusion peptide (SHA2), the 20 amino acid N-terminal fusion peptide and the ten amino acid peptide corresponding to the kinked loop region of FHA2. The 100 nm liposomes were made from dioleoylphosphatidylethanolamine, dioleoylphosphatidylcholine and cholesterol in equimolar ratio. At pH 5 a high rate of lipid mixing was observed with FHA2 present, even at very low molar concentrations, whereas much lower rates were observed using the shorter constructs: SHA2, the fusion peptide, and the loop peptide. Concentrations of FHA2 which promoted extensive lipid mixing also induced leakage of aqueous contents. Marked effects of FHA2 were also observed with liposomes of egg phosphatidylcholine. All of the changes observed with the liposomes were highly pH-dependent, with only negligible changes occurring at pH 7. The results demonstrate the potent action of FHA2 in promoting lipid mixing and demonstrate the contribution of other regions of the ectodomain of FHA2, in addition to the fusion peptide, to the mechanism of acceleration of membrane fusion. The results also indicate that the pH dependence of fusion is not due solely to changes in the interactions between the HA1 and HA2 subunits. Thus, the "spring loaded energy" is not required to bring about the apposition of the two membranes, considering that FHA2 is already in its thermostable conformation. The acidic amino acid residues in the kinked loop region appear to play a particularly important role in the pH-dependent fusion process as demonstrated by the marked loss of lipid mixing activity of mutant forms of FHA2.
Collapse
Affiliation(s)
- R F Epand
- McMaster University Health Sciences Centre, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada.
| | | | | | | | | |
Collapse
|