1
|
Huang E, Yang X, Leighton E, Li X. Carbapenem resistance in the food supply chain. J Food Prot 2023; 86:100108. [PMID: 37244353 DOI: 10.1016/j.jfp.2023.100108] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Carbapenems are critically important antibiotic agents because they are considered the "last-resort" antibiotics for treating serious infections. However, resistance to carbapenems is increasing throughout the world and has become an urgent problem. Some carbapenem-resistant bacteria are considered urgent threats by the United States Centers for Disease Control and Prevention. In this review, we searched and summarized studies published mostly in the recent five years related to carbapenem resistance in three main areas in the food supply chain: livestock, aquaculture, and fresh produce. We have found that many studies have shown a direct or indirect correlation between carbapenem resistance in the food supply chain and human infections. Our review also revealed the worrisome incidences of the cooccurrence of resistance to carbapenem and other "last-resort" antibiotics, such as colistin and/or tigecycline, in the food supply chain. Antibiotic resistance is a global public health challenge, and more effort related to carbapenem resistance in the food supply chain for different food commodities is still needed in some countries and regions, including the United States. In addition, antibiotic resistance in the food supply chain is a complicated issue. Based on the knowledge from current studies, only restricting the use of antibiotics in food animal production might not be enough. Additional research is needed to determine factors contributing to the introduction and persistence of carbapenem resistance in the food supply chain. Through this review, we hope to provide a better understanding of the current state of carbapenem resistance, and the niches of knowledge that are needed for developing strategies to mitigate antibiotic resistance, especially carbapenem resistance in the food supply chain.
Collapse
Affiliation(s)
- En Huang
- Department of Environmental Health Sciences, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Xu Yang
- Department of Nutrition and Food Science, California State Polytechnic University Pomona, 3801 West Temple Ave, Pomona, CA 91768, USA
| | - Elizabeth Leighton
- Department of Microbiology, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI 54601, USA
| | - Xinhui Li
- Department of Microbiology, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI 54601, USA.
| |
Collapse
|
2
|
Narendrakumar L, Chakraborty M, Kumari S, Paul D, Das B. β-Lactam potentiators to re-sensitize resistant pathogens: Discovery, development, clinical use and the way forward. Front Microbiol 2023; 13:1092556. [PMID: 36970185 PMCID: PMC10036598 DOI: 10.3389/fmicb.2022.1092556] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/29/2022] [Indexed: 03/12/2023] Open
Abstract
β-lactam antibiotics are one of the most widely used and diverse classes of antimicrobial agents for treating both Gram-negative and Gram-positive bacterial infections. The β-lactam antibiotics, which include penicillins, cephalosporins, monobactams and carbapenems, exert their antibacterial activity by inhibiting the bacterial cell wall synthesis and have a global positive impact in treating serious bacterial infections. Today, β-lactam antibiotics are the most frequently prescribed antimicrobial across the globe. However, due to the widespread use and misapplication of β-lactam antibiotics in fields such as human medicine and animal agriculture, resistance to this superlative drug class has emerged in the majority of clinically important bacterial pathogens. This heightened antibiotic resistance prompted researchers to explore novel strategies to restore the activity of β-lactam antibiotics, which led to the discovery of β-lactamase inhibitors (BLIs) and other β-lactam potentiators. Although there are several successful β-lactam-β-lactamase inhibitor combinations in use, the emergence of novel resistance mechanisms and variants of β-lactamases have put the quest of new β-lactam potentiators beyond precedence. This review summarizes the success stories of β-lactamase inhibitors in use, prospective β-lactam potentiators in various phases of clinical trials and the different strategies used to identify novel β-lactam potentiators. Furthermore, this review discusses the various challenges in taking these β-lactam potentiators from bench to bedside and expounds other mechanisms that could be investigated to reduce the global antimicrobial resistance (AMR) burden.
Collapse
Affiliation(s)
- Lekshmi Narendrakumar
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | | | | | | | | |
Collapse
|
3
|
Complete Genome Sequence of an Enterobacter roggenkampii Strain with Reduced Carbapenem Susceptibility Isolated from a Home-Visit Nursing Agency. Microbiol Resour Announc 2022; 11:e0035322. [PMID: 35972254 PMCID: PMC9476973 DOI: 10.1128/mra.00353-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Carbapenem-resistant bacteria represent an emerging threat to global health; nursing homes may be reservoirs for these isolates, which cause life-threatening infections. Here, we present the complete genome sequence of an Enterobacter roggenkampii strain with reduced carbapenem susceptibility that was isolated from a sink in a home-visit nursing agency.
Collapse
|
4
|
Multicentre study of the main carbapenem resistance mechanisms in important members of the Enterobacteriaceae family in Iran. New Microbes New Infect 2021; 41:100860. [PMID: 33912349 PMCID: PMC8066762 DOI: 10.1016/j.nmni.2021.100860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/19/2021] [Accepted: 03/04/2021] [Indexed: 01/22/2023] Open
Abstract
Resistance to carbapenems has been increasingly reported from the Enterobacteriaceae family, with different mechanisms in different geographic parts of the world. This study investigated the mechanisms of carbapenem resistance in Escherichia coli, Klebsiella pneumoniae and Enterobacter spp. carried out as a multicentre study (n = 10). All third-generation cephalosporin-resistant E. coli, K. pneumoniae and Enterobacter spp. that had been recovered from the selected provinces were included. Modified Hodge test and Carba NP test were done as a phenotypical method for detection of carbapenemase; the most common carbapenemase was detected by PCR. We evaluated the presence of an active efflux pump by using cyanide 3-chlorophenylhydrazone. Overexpression of AcrA/B and presence of OqxAB was detected by real-time PCR and conventional PCR respectively. Microorganisms in this study included 58 E. coli, 95 K. pneumoniae and 60 Enterobacter spp. Modified Hodge test showed a sensitivity of 41% and a specificity of 83%, and the Carba NP test showed a sensitivity of 26% and a specificity of 92% for detection of carbapenemase. OXA-48 was the most frequently detected carbapenemase, followed by NDM-1. Thirty-nine percent and 27% of positive cyanide 3-chlorophenylhydrazone test organisms included active AcrA/B and OqxAB efflux pumps respectively. The result showed the Carba NP test was more specific than MHT. Data confirmed the involvement of AcrA/B and OqxAB efflux pump as a carbapenem resistance mechanism in selected bacteria. Similar to other reports from the Middle East, we found OXA-48 and NDM-1 to be the most frequent carbapenemase.
Collapse
|
5
|
Hafeezunnisa M, Sen R. The Rho-Dependent Transcription Termination Is Involved in Broad-Spectrum Antibiotic Susceptibility in Escherichia coli. Front Microbiol 2020; 11:605305. [PMID: 33329496 PMCID: PMC7734253 DOI: 10.3389/fmicb.2020.605305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/10/2020] [Indexed: 01/19/2023] Open
Abstract
One of the major ways of acquiring multidrug resistance in bacteria is via drug influx and efflux pathways. Here, we show that E. coli with compromised Rho-dependent transcription termination function has enhanced broad-spectrum antibiotic susceptibility, which arises from the inefficient TolC-efflux process and increased permeability of the membrane. The Rho mutants have altered morphology, distinct cell surface, and increased levels of lipopolysaccharide in their outer membrane, which might have rendered the TolC efflux pumps inefficient. These alterations are due to the upregulations of poly-N-acetyl-glucosamine and lipopolysaccharide synthesis operons because of inefficient Rho functions. The Rho mutants are capable of growing on various dipeptides and carbohydrate sources, unlike their WT counterpart. Dipeptides uptake arises from the upregulations of the di-peptide permease operon in these mutants. The metabolomics of the Rho mutants revealed the presence of a high level of novel metabolites. Accumulation of these metabolites in these Rho mutants might titrate out the TolC-efflux pumps, which could further reduce their efficiency. We conclude that the transcription termination factor, Rho, regulates the broad-spectrum antibiotic susceptibility of E. coli through multipartite pathways in a TolC-dependent manner. The involvement of Rho-dependent termination in multiple pathways and its association with antibiotic susceptibility should make Rho-inhibitors useful in the anti-bacterial treatment regimen.
Collapse
Affiliation(s)
- Md Hafeezunnisa
- Laboratory of Transcription, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Ranjan Sen
- Laboratory of Transcription, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
6
|
Chetri S, Das BJ, Bhowmik D, Chanda DD, Chakravarty A, Bhattacharjee A. Transcriptional response of mar, sox and rob regulon against concentration gradient carbapenem stress within Escherichia coli isolated from hospital acquired infection. BMC Res Notes 2020; 13:168. [PMID: 32192538 PMCID: PMC7083032 DOI: 10.1186/s13104-020-04999-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/10/2020] [Indexed: 12/01/2022] Open
Abstract
Objective The present study was carried out to investigate the transcriptional response of marA (Multiple antibiotic resistance A gene), soxS (Superoxide S gene) and rob (Right-origin-binding gene) under carbapenem stress. Results 12 isolates were found over-expressing AcrAB-TolC efflux pump system and showed reduced expression of OmpF (Outer membrane porin) gene were selected for further study. Among them, over expression of marA and rob was observed in 7 isolates. Increasing pattern of expression of marA and rob against meropenem was observed. The clones of marA and rob showed reduced susceptibility towards carbapenems.
Collapse
|
7
|
Lewis R, Clooney AG, Stockdale SR, Buttimer C, Draper LA, Ross RP, Hill C. Isolation of a Novel Jumbo Bacteriophage Effective Against Klebsiella aerogenes. Front Med (Lausanne) 2020; 7:67. [PMID: 32185177 PMCID: PMC7058600 DOI: 10.3389/fmed.2020.00067] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
Increasing levels of bacterial resistance to many common and last resort antibiotics has increased interest in finding new treatments. The low rate of approval of new antibiotics has led to the search for new and alternative antimicrobial compounds. Bacteriophages (phages) are bacterial viruses found in almost every environment. Phage therapy was historically investigated to control bacterial infections and is still in use in Georgia and as a treatment of last resort. Phage therapy is increasingly recognized as an alternative antimicrobial treatment for antibiotic resistant pathogens. A novel lytic Klebsiella aerogenes phage N1M2 was isolated from maize silage. Klebsiella aerogenes, a member of the ESKAPE bacterial pathogens, is an important target for new antimicrobial therapies. Klebsiella aerogenes can form biofilms on medical devices which aids its environmental persistence and for this reason we tested the effect of phage N1M2 against biofilms. Phage N1M2 successfully removed a pre-formed Klebsiella aerogenes biofilm. Biofilm assays were also carried out with Staphylococcus aureus and Phage K. Phage K successfully removed a preformed Staphylococcus aureus biofilm. Phage N1M2 and Phage K in combination were significantly better at removing a mixed community biofilm of Klebsiella aerogenes and Staphylococcus aureus than either phage alone.
Collapse
Affiliation(s)
- Rhea Lewis
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Adam G Clooney
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Stephen R Stockdale
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Buttimer
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Sundaramoorthy NS, Suresh P, Selva Ganesan S, GaneshPrasad A, Nagarajan S. Restoring colistin sensitivity in colistin-resistant E. coli: Combinatorial use of MarR inhibitor with efflux pump inhibitor. Sci Rep 2019; 9:19845. [PMID: 31882661 PMCID: PMC6934491 DOI: 10.1038/s41598-019-56325-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Antibiotics like colistin are the last resort to deal with infections by carbapenem-resistant Enterobacteriaceae (CREB). Resistance to colistin severely restricts therapeutic options. To tackle this dire situation, urgent measures to restore colistin sensitivity are needed. In this study, whole-genome sequencing of colistin-resistant E. coli strain was performed and the genome analysis revealed that the strain belonged to the sequence type ST405. Multiple mutations were observed in genes implicated in colistin resistance, especially those related to the L-Ara-4-N pathway but mgrB was unmutated and mcr1-9 genes were missing. MarR inhibitor salicylate was used to re-sensitize this strain to colistin, which increased the negative charge on the cell surface especially in colistin resistant E. coli (U3790 strain) and thereby facilitated a decrease in colistin MIC by 8 fold. It is indeed well known that MarR inhibition by salicylate triggers the expression of AcrAB efflux pumps through MarA. So, in order to fully restore colistin sensitivity, a potent efflux pump inhibitor (BC1), identified earlier by this group was employed. The combination of colistin with both salicylate and BC1 caused a remarkable 6 log reduction in cell counts of U3790 in time-kill assay. Infection of muscle tissue of zebrafish with U3790 followed by various treatments showed that the combination of colistin + salicylate + BC1 was highly effective in reducing bioburden in infected muscle tissue by 4 log fold. Thus, our study shows that a combination of MarR inhibitor to enhance colistin binding and efflux pump inhibitor to reduce colistin extrusion was highly effective in restoring colistin sensitivity in colistin-resistant clinical isolate of E. coli in vitro and in vivo.
Collapse
Affiliation(s)
- Niranjana Sri Sundaramoorthy
- Center for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Pavithira Suresh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Subramaniapillai Selva Ganesan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - ArunKumar GaneshPrasad
- Center for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Saisubramanian Nagarajan
- Center for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
9
|
Davin-Regli A, Lavigne JP, Pagès JM. Enterobacter spp.: Update on Taxonomy, Clinical Aspects, and Emerging Antimicrobial Resistance. Clin Microbiol Rev 2019; 32:e00002-19. [PMID: 31315895 PMCID: PMC6750132 DOI: 10.1128/cmr.00002-19] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The genus Enterobacter is a member of the ESKAPE group, which contains the major resistant bacterial pathogens. First described in 1960, this group member has proven to be more complex as a result of the exponential evolution of phenotypic and genotypic methods. Today, 22 species belong to the Enterobacter genus. These species are described in the environment and have been reported as opportunistic pathogens in plants, animals, and humans. The pathogenicity/virulence of this bacterium remains rather unclear due to the limited amount of work performed to date in this field. In contrast, its resistance against antibacterial agents has been extensively studied. In the face of antibiotic treatment, it is able to manage different mechanisms of resistance via various local and global regulator genes and the modulation of the expression of different proteins, including enzymes (β-lactamases, etc.) or membrane transporters, such as porins and efflux pumps. During various hospital outbreaks, the Enterobacter aerogenes and E. cloacae complex exhibited a multidrug-resistant phenotype, which has stimulated questions about the role of cascade regulation in the emergence of these well-adapted clones.
Collapse
Affiliation(s)
- Anne Davin-Regli
- INSERM, SSA, IRBA, MCT, Aix Marseille University, Marseille, France
| | - Jean-Philippe Lavigne
- Department of Microbiology, U1047, INSERM, University Montpellier and University Hospital Nîmes, Nîmes, France
| | - Jean-Marie Pagès
- INSERM, SSA, IRBA, MCT, Aix Marseille University, Marseille, France
| |
Collapse
|
10
|
Chetri S, Bhowmik D, Paul D, Pandey P, Chanda DD, Chakravarty A, Bora D, Bhattacharjee A. AcrAB-TolC efflux pump system plays a role in carbapenem non-susceptibility in Escherichia coli. BMC Microbiol 2019; 19:210. [PMID: 31488061 PMCID: PMC6727511 DOI: 10.1186/s12866-019-1589-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/29/2019] [Indexed: 11/21/2022] Open
Abstract
Background Efflux pump mediated antibiotic resistance is an unnoticed and undetected mechanism in clinical microbiology laboratory. RND efflux systems are known for aminoglycoside and tetracycline resistance whereas their role in carbapenem non-susceptibility is not established. The study was undertaken to investigate the role of efflux pump in providing resistance against carbapenems and their response against concentration gradient carbapenem stress on the transcriptional level of the AcrAB gene in the clinical isolates of Escherichia coli from a tertiary referral hospital of Northeast India. Results Out of 298 non-susceptible Escherichia coli isolates 98 isolates were found to have efflux pump mediated carbapenem non-susceptibility. Among them thirty-five were non carbapenemase producers and their expressional levels were verified using qRT-PCR under concentration gradient carbapenem stress. In this study, a strong correlation between ertapenem resistance and AcrA overexpression was observed which has not been reported previously. Further, it was observed that imipenem stress increased AcrB expression in Escherichia coli which holds the novelty of this study. Additionally, the transcription of AcrR was insistently increased which is much higher than the transcriptional level of AcrA under concentration gradient carbapenem stress condition. Conclusion The study established that AcrAB pump is a relevant antibiotic resistance determinant in bacterial pathogen, has an important role in developing resistance against carbapenem group of antibiotics. Electronic supplementary material The online version of this article (10.1186/s12866-019-1589-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiela Chetri
- Department of Microbiology, Assam University, Silchar, Assam, India
| | | | - Deepjyoti Paul
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, India
| | | | - Atanu Chakravarty
- Department of Microbiology, Silchar Medical College and Hospital, Silchar, India
| | - Debajyoti Bora
- Department of Statistics, Dibrugarh University, Dibrugarh, India
| | | |
Collapse
|
11
|
Alizadeh N, Rezaee MA, Kafil HS, Barhaghi MHS, Memar MY, Milani M, Hasani A, Ghotaslou R. Detection of carbapenem-resistant Enterobacteriaceae by chromogenic screening media. J Microbiol Methods 2018; 153:40-44. [DOI: 10.1016/j.mimet.2018.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/29/2018] [Accepted: 09/02/2018] [Indexed: 01/07/2023]
|
12
|
Proteomic identification of Axc, a novel beta-lactamase with carbapenemase activity in a meropenem-resistant clinical isolate of Achromobacter xylosoxidans. Sci Rep 2018; 8:8181. [PMID: 29802257 PMCID: PMC5970244 DOI: 10.1038/s41598-018-26079-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/04/2018] [Indexed: 01/24/2023] Open
Abstract
The development of antibiotic resistance during treatment is a threat to patients and their environment. Insight in the mechanisms of resistance development is important for appropriate therapy and infection control. Here, we describe how through the application of mass spectrometry-based proteomics, a novel beta-lactamase Axc was identified as an indicator of acquired carbapenem resistance in a clinical isolate of Achromobacter xylosoxidans. Comparative proteomic analysis of consecutively collected susceptible and resistant isolates from the same patient revealed that high Axc protein levels were only observed in the resistant isolate. Heterologous expression of Axc in Escherichia coli significantly increased the resistance towards carbapenems. Importantly, direct Axc mediated hydrolysis of imipenem was demonstrated using pH shift assays and 1H-NMR, confirming Axc as a legitimate carbapenemase. Whole genome sequencing revealed that the susceptible and resistant isolates were remarkably similar. Together these findings provide a molecular context for the fast development of meropenem resistance in A. xylosoxidans during treatment and demonstrate the use of mass spectrometric techniques in identifying novel resistance determinants.
Collapse
|
13
|
Spectrofluorimetric quantification of antibiotic drug concentration in bacterial cells for the characterization of translocation across bacterial membranes. Nat Protoc 2018; 13:1348-1361. [DOI: 10.1038/nprot.2018.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Dam S, Pagès JM, Masi M. Stress responses, outer membrane permeability control and antimicrobial resistance in Enterobacteriaceae. MICROBIOLOGY-SGM 2018; 164:260-267. [PMID: 29458656 DOI: 10.1099/mic.0.000613] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacteria have evolved several strategies to survive a myriad of harmful conditions in the environment and in hosts. In Gram-negative bacteria, responses to nutrient limitation, oxidative or nitrosative stress, envelope stress, exposure to antimicrobials and other growth-limiting stresses have been linked to the development of antimicrobial resistance. This results from the activation of protective changes to cell physiology (decreased outer membrane permeability), resistance transporters (drug efflux pumps), resistant lifestyles (biofilms, persistence) and/or resistance mutations (target mutations, production of antibiotic modification/degradation enzymes). In targeting and interfering with essential physiological mechanisms, antimicrobials themselves are considered as stresses to which protective responses have also evolved. In this review, we focus on envelope stress responses that affect the expression of outer membrane porins and their impact on antimicrobial resistance. We also discuss evidences that indicate the role of antimicrobials as signaling molecules in activating envelope stress responses.
Collapse
Affiliation(s)
- Sushovan Dam
- UMR_MD-1, Aix-Marseille Univ. & IRBA, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Jean-Marie Pagès
- UMR_MD-1, Aix-Marseille Univ. & IRBA, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Muriel Masi
- UMR_MD-1, Aix-Marseille Univ. & IRBA, 27 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
15
|
Tran QT, Maigre L, D'Agostino T, Ceccarelli M, Winterhalter M, Pagès JM, Davin-Regli A. Porin flexibility in Providencia stuartii : cell-surface-exposed loops L5 and L7 are markers of Providencia porin OmpPst1. Res Microbiol 2017; 168:685-699. [DOI: 10.1016/j.resmic.2017.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/10/2017] [Accepted: 05/19/2017] [Indexed: 12/16/2022]
|
16
|
Tichy EM, Hardwick SW, Luisi BF, Salmond GPC. 1.8 Å resolution crystal structure of the carbapenem intrinsic resistance protein CarF. Acta Crystallogr D Struct Biol 2017; 73:549-556. [PMID: 28695855 PMCID: PMC7610886 DOI: 10.1107/s2059798317002236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 02/09/2017] [Indexed: 11/10/2022] Open
Abstract
The natural production of the β-lactam antibiotic carbapenem in bacteria involves a group of enzymes that form a synthetic pathway as well as proteins that protect the cell from self-intoxification by the products. Here, the crystal structure of CarF, one of the two proteins that confer resistance to synthesis of the antibiotic in the host organism, is reported. The CarF fold places it within a widely occurring structural family, indicating an ancient structural origin from which the resistance function has been derived.
Collapse
Affiliation(s)
- Evelyn M. Tichy
- Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW, England
| | - Steven W. Hardwick
- Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW, England
| | - Ben F. Luisi
- Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW, England
| | - George P. C. Salmond
- Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW, England
| |
Collapse
|
17
|
Rosa JF, Rizek C, Marchi AP, Guimaraes T, Miranda L, Carrilho C, Levin AS, Costa SF. Clonality, outer-membrane proteins profile and efflux pump in KPC- producing Enterobacter sp. in Brazil. BMC Microbiol 2017; 17:69. [PMID: 28302074 PMCID: PMC5356252 DOI: 10.1186/s12866-017-0970-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/04/2017] [Indexed: 11/21/2022] Open
Abstract
Background Carbapenems resistance in Enterobacter spp. has increased in the last decade, few studies, however, described the mechanisms of resistance in this bacterium. This study evaluated clonality and mechanisms of carbapenems resistance in clinical isolates of Enterobacter spp. identified in three hospitals in Brazil (Hospital A, B and C) over 7-year. Methods Antibiotics sensitivity, pulsed-field gel electrophoresis (PFGE), PCR for carbapenemase and efflux pump genes were performed for all carbapenems-resistant isolates. Outer-membrane protein (OMP) was evaluated based on PFGE profile. Results A total of 130 isolates of Enterobacter spp were analyzed, 44/105 (41, 9%) E. aerogenes and 8/25 (32,0%) E. cloacae were resistant to carbapenems. All isolates were susceptible to fosfomycin, polymyxin B and tigecycline. KPC was present in 88.6% of E. aerogenes and in all E. cloacae resistant to carbapenems. The carbapenems-resistant E. aerogenes identified in hospital A belonged to six clones, however, a predominant clone was identified in this hospital over the study period. There is a predominant clone in Hospital B and Hospital C as well. The mechanisms of resistance to carbapenems differ among subtypes. Most of the isolates co-harbored blaKPC, blaTEM and /or blaCTX associated with decreased or lost of 35–36KDa and or 39 KDa OMP. The efflux pump AcrAB-TolC gene was only identified in carbapenems-resistant E. cloacae. Conclusions There was a predominant clone in each hospital suggesting that cross-transmission of carbapenems-resistant Enterobacter spp. was frequent. The isolates presented multiple mechanisms of resistance to carbapenems including OMP alteration.
Collapse
Affiliation(s)
- Juliana Ferraz Rosa
- Department of Infectious Diseases, University of São Paulo, Laboratory of Medical Investigation 54 (LIM-54), Hospital Das Clínicas FMUSP, São Paulo, Brazil
| | - Camila Rizek
- Department of Infectious Diseases, University of São Paulo, Laboratory of Medical Investigation 54 (LIM-54), Hospital Das Clínicas FMUSP, São Paulo, Brazil
| | - Ana Paula Marchi
- Department of Infectious Diseases, University of São Paulo, Laboratory of Medical Investigation 54 (LIM-54), Hospital Das Clínicas FMUSP, São Paulo, Brazil
| | - Thais Guimaraes
- Department of Infectious Diseases, University of São Paulo, Laboratory of Medical Investigation 54 (LIM-54), Hospital Das Clínicas FMUSP, São Paulo, Brazil
| | - Lourdes Miranda
- Hospital de Itapecerica da Serra, Itapecerica da Serra, SP, Brazil
| | | | - Anna S Levin
- Department of Infectious Diseases, University of São Paulo, Laboratory of Medical Investigation 54 (LIM-54), Hospital Das Clínicas FMUSP, São Paulo, Brazil
| | - Silvia F Costa
- LIM-54, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
18
|
Prevalence of carbapenemase producing Enterobacteriaceae isolated from German pig-fattening farms during the years 2011–2013. Vet Microbiol 2017; 200:124-129. [DOI: 10.1016/j.vetmic.2015.11.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/20/2015] [Accepted: 11/21/2015] [Indexed: 11/19/2022]
|
19
|
High prevalence of non-clonal imipenem-nonsusceptible Enterobacter spp. isolates in Korea and their association with porin down-regulation. Diagn Microbiol Infect Dis 2017; 87:53-59. [DOI: 10.1016/j.diagmicrobio.2016.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/23/2016] [Accepted: 10/04/2016] [Indexed: 11/17/2022]
|
20
|
Grazziotin AL, Vidal NM, Palmeiro JK, Dalla-Costa LM, Venancio TM. Genome Sequencing of Four Multidrug-Resistant Enterobacter aerogenes Isolates from Hospitalized Patients in Brazil. Front Microbiol 2016; 7:1649. [PMID: 27833588 PMCID: PMC5081556 DOI: 10.3389/fmicb.2016.01649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/04/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ana Laura Grazziotin
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy RibeiroCampos dos Goytacazes, Brazil
| | - Newton M. Vidal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesda, MD, USA
| | - Jussara K. Palmeiro
- Laboratório de Bacteriologia, Unidade Laboratório de Análises Clínicas, Hospital de Clínicas, Universidade Federal do ParanáCuritiba, Brazil
- Faculdades e Instituto de Pesquisa Pelé Pequeno PríncipeCuritiba, Brazil
| | - Libera Maria Dalla-Costa
- Laboratório de Bacteriologia, Unidade Laboratório de Análises Clínicas, Hospital de Clínicas, Universidade Federal do ParanáCuritiba, Brazil
- Faculdades e Instituto de Pesquisa Pelé Pequeno PríncipeCuritiba, Brazil
| | - Thiago M. Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy RibeiroCampos dos Goytacazes, Brazil
| |
Collapse
|
21
|
Pavez M, Vieira C, de Araujo MR, Cerda A, de Almeida LM, Lincopan N, Mamizuka EM. Molecular mechanisms of membrane impermeability in clinical isolates of Enterobacteriaceae exposed to imipenem selective pressure. Int J Antimicrob Agents 2016; 48:78-85. [DOI: 10.1016/j.ijantimicag.2016.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/08/2016] [Accepted: 04/16/2016] [Indexed: 01/08/2023]
|
22
|
Lai JH, Yang JT, Chern J, Chen TL, Wu WL, Liao JH, Tsai SF, Liang SY, Chou CC, Wu SH. Comparative Phosphoproteomics Reveals the Role of AmpC β-lactamase Phosphorylation in the Clinical Imipenem-resistant Strain Acinetobacter baumannii SK17. Mol Cell Proteomics 2015; 15:12-25. [PMID: 26499836 DOI: 10.1074/mcp.m115.051052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 01/13/2023] Open
Abstract
Nosocomial infectious outbreaks caused by multidrug-resistant Acinetobacter baumannii have emerged as a serious threat to human health. Phosphoproteomics of pathogenic bacteria has been used to identify the mechanisms of bacterial virulence and antimicrobial resistance. In this study, we used a shotgun strategy combined with high-accuracy mass spectrometry to analyze the phosphoproteomics of the imipenem-susceptible strain SK17-S and -resistant strain SK17-R. We identified 410 phosphosites on 248 unique phosphoproteins in SK17-S and 285 phosphosites on 211 unique phosphoproteins in SK17-R. The distributions of the Ser/Thr/Tyr/Asp/His phosphosites in SK17-S and SK17-R were 47.0%/27.6%/12.4%/8.0%/4.9% versus 41.4%/29.5%/17.5%/6.7%/4.9%, respectively. The Ser-90 phosphosite, located on the catalytic motif S(88)VS(90)K of the AmpC β-lactamase, was first identified in SK17-S. Based on site-directed mutagenesis, the nonphosphorylatable mutant S90A was found to be more resistant to imipenem, whereas the phosphorylation-simulated mutant S90D was sensitive to imipenem. Additionally, the S90A mutant protein exhibited higher β-lactamase activity and conferred greater bacterial protection against imipenem in SK17-S compared with the wild-type. In sum, our results revealed that in A. baumannii, Ser-90 phosphorylation of AmpC negatively regulates both β-lactamase activity and the ability to counteract the antibiotic effects of imipenem. These findings highlight the impact of phosphorylation-mediated regulation in antibiotic-resistant bacteria on future drug design and new therapies.
Collapse
Affiliation(s)
- Juo-Hsin Lai
- From the ‡Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei 10617, Taiwan; §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan
| | - Jhih-Tian Yang
- §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan; ¶Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan
| | - Jeffy Chern
- §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan; ‖Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; **Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Te-Li Chen
- ‡‡Institute of Clinical Medicine, School of Medicine, National Yang Ming University, Taipei 11221, Taiwan; §§Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; ¶¶Department of Medicine, Cheng Hsin General Hospital, Taipei 11220, Taiwan
| | - Wan-Ling Wu
- §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan
| | - Jiahn-Haur Liao
- §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan
| | - Shih-Feng Tsai
- ‖‖Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 11221, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Suh-Yuen Liang
- §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan; Core Facilities for Protein Structural Analysis, Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Chi Chou
- §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan; Core Facilities for Protein Structural Analysis, Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Shih-Hsiung Wu
- From the ‡Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei 10617, Taiwan; §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan; ‖Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; **Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|
23
|
In Vivo Evolution of Bacterial Resistance in Two Cases of Enterobacter aerogenes Infections during Treatment with Imipenem. PLoS One 2015; 10:e0138828. [PMID: 26398358 PMCID: PMC4580588 DOI: 10.1371/journal.pone.0138828] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/03/2015] [Indexed: 11/24/2022] Open
Abstract
Infections caused by multidrug resistant (MDR) bacteria are a major concern worldwide. Changes in membrane permeability, including decreased influx and/or increased efflux of antibiotics, are known as key contributors of bacterial MDR. Therefore, it is of critical importance to understand molecular mechanisms that link membrane permeability to MDR in order to design new antimicrobial strategies. In this work, we describe genotype-phenotype correlations in Enterobacter aerogenes, a clinically problematic and antibiotic resistant bacterium. To do this, series of clinical isolates have been periodically collected from two patients during chemotherapy with imipenem. The isolates exhibited different levels of resistance towards multiple classes of antibiotics, consistently with the presence or the absence of porins and efflux pumps. Transport assays were used to characterize membrane permeability defects. Simultaneous genome-wide analysis allowed the identification of putative mutations responsible for MDR. The genome of the imipenem-susceptible isolate G7 was sequenced to closure and used as a reference for comparative genomics. This approach uncovered several loci that were specifically mutated in MDR isolates and whose products are known to control membrane permeability. These were omp35 and omp36, encoding the two major porins; rob, encoding a global AraC-type transcriptional activator; cpxA, phoQ and pmrB, encoding sensor kinases of the CpxRA, PhoPQ and PmrAB two-component regulatory systems, respectively. This report provides a comprehensive analysis of membrane alterations relative to mutational steps in the evolution of MDR of a recognized nosocomial pathogen.
Collapse
|
24
|
Chen Z, Li H, Feng J, Li Y, Chen X, Guo X, Chen W, Wang L, Lin L, Yang H, Yang W, Wang J, Zhou D, Liu C, Yin Z. NDM-1 encoded by a pNDM-BJ01-like plasmid p3SP-NDM in clinical Enterobacter aerogenes. Front Microbiol 2015; 6:294. [PMID: 25926823 PMCID: PMC4396501 DOI: 10.3389/fmicb.2015.00294] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/25/2015] [Indexed: 11/13/2022] Open
Abstract
A carbapenem-nonsusceptible Enterobacter aerogenes strain named 3-SP was isolated from a human case of pneumonia in a Chinese teaching hospital. NDM-1 carbapenemase is produced by a pNDM-BJ01-like conjugative plasmid designated p3SP-NDM to account for carbapenem resistance of 3-SP. p3SP-NDM was fully sequenced and compared with all publically available pNDM-BJ01-like plasmids. The genetic differences between p3SP-NDM and pNDM-BJ01 include only 18 single nucleotide polymorphisms, a 1 bp deletion and a 706 bp deletion. p3SP-NDM and pNDM-BJ01 harbor an identical Tn125 element organized as ISAba125, blaNDM−1, bleMBL, ΔtrpF, dsbC, cutA, ΔgroES, groEL, ISCR27, and ISAba125. The blaNDM−1 surrounding regions in these pNDM-BJ01-like plasmids have a conserved linear organization ISAba14-aphA6-Tn125-unknown IS, with considerable genetic differences identified within or immediately downstream of Tn125. All reported pNDM-BJ01-like plasmids are exclusively found in Acinetobacter, whereas this is the first report of identification of a pNDM-BJ01-like plasmid in Enterobacteriaceae.
Collapse
Affiliation(s)
- Zhenhong Chen
- Nanlou Respiratory Diseases Department, Chinese People's Liberation Army General Hospital Beijing, China
| | - Hongxia Li
- Nanlou Respiratory Diseases Department, Chinese People's Liberation Army General Hospital Beijing, China
| | - Jiao Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Yuxue Li
- The First Hospital of Shijiazhuang City Shijiazhuang, China
| | - Xin Chen
- Zhongshan School of Medicine, Sun Yat-Sen University Guangzhou, China
| | - Xuemin Guo
- Zhongshan School of Medicine, Sun Yat-Sen University Guangzhou, China
| | - Weijun Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China
| | - Li Wang
- Nanlou Respiratory Diseases Department, Chinese People's Liberation Army General Hospital Beijing, China
| | - Lei Lin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Jie Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Changting Liu
- Nanlou Respiratory Diseases Department, Chinese People's Liberation Army General Hospital Beijing, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| |
Collapse
|
25
|
Andersen JL, He GX, Kakarla P, K C R, Kumar S, Lakra WS, Mukherjee MM, Ranaweera I, Shrestha U, Tran T, Varela MF. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:1487-547. [PMID: 25635914 PMCID: PMC4344678 DOI: 10.3390/ijerph120201487] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/15/2015] [Indexed: 02/07/2023]
Abstract
Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations.
Collapse
Affiliation(s)
- Jody L Andersen
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Gui-Xin He
- Department of Clinical Laboratory and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | - Prathusha Kakarla
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Ranjana K C
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Sanath Kumar
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India.
| | - Wazir Singh Lakra
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India.
| | - Mun Mun Mukherjee
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Indrika Ranaweera
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Ugina Shrestha
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Thuy Tran
- Department of Clinical Laboratory and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| |
Collapse
|
26
|
Tichy EM, Luisi BF, Salmond GPC. Crystal structure of the carbapenem intrinsic resistance protein CarG. J Mol Biol 2014; 426:1958-70. [PMID: 24583229 PMCID: PMC4361734 DOI: 10.1016/j.jmb.2014.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/15/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
In the Gram-negative enterobacterium Erwinia (Pectobacterium) and Serratia sp. ATCC 39006, intrinsic resistance to the carbapenem antibiotic 1-carbapen-2-em-3-carboxylic acid is mediated by the CarF and CarG proteins, by an unknown mechanism. Here, we report a high-resolution crystal structure for the Serratia sp. ATCC 39006 carbapenem resistance protein CarG. This structure of CarG is the first in the carbapenem intrinsic resistance (CIR) family of resistance proteins from carbapenem-producing bacteria. The crystal structure shows the protein to form a homodimer, in agreement with results from analytical gel filtration. The structure of CarG does not show homology with any known antibiotic resistance proteins nor does it belong to any well-characterised protein structural family. However, it is a close structural homologue of the bacterial inhibitor of invertebrate lysozyme, PliI-Ah, with some interesting structural variations, including the absence of the catalytic site responsible for lysozyme inhibition. Both proteins show a unique β-sandwich fold with short terminal α-helices. The core of the protein is formed by stacked anti-parallel sheets that are individually very similar in the two proteins but differ in their packing interface, causing the splaying of the two sheets in CarG. Furthermore, a conserved cation binding site identified in CarG is absent from the homologue.
Collapse
Affiliation(s)
- E M Tichy
- Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB21QW, UK
| | - B F Luisi
- Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB21QW, UK
| | - G P C Salmond
- Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB21QW, UK
| |
Collapse
|
27
|
Biot FV, Lopez MM, Poyot T, Neulat-Ripoll F, Lignon S, Caclard A, Thibault FM, Peinnequin A, Pagès JM, Valade E. Interplay between three RND efflux pumps in doxycycline-selected strains of Burkholderia thailandensis. PLoS One 2013; 8:e84068. [PMID: 24386333 PMCID: PMC3873969 DOI: 10.1371/journal.pone.0084068] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/11/2013] [Indexed: 11/18/2022] Open
Abstract
Background Efflux systems are involved in multidrug resistance in most Gram-negative non-fermentative bacteria. We have chosen Burkholderia thailandensis to dissect the development of multidrug resistance phenotypes under antibiotic pressure. Methodology/Principal Findings We used doxycycline selection to obtain several resistant B. thailandensis variants. The minimal inhibitory concentrations of a large panel of structurally unrelated antibiotics were determined ± the efflux pump inhibitor phenylalanine-arginine ß-naphthylamide (PAßN). Membrane proteins were identified by proteomic method and the expressions of major efflux pumps in the doxycycline selected variants were compared to those of the parental strains by a quantitative RT-PCR analysis. Doxycycline selected variants showed a multidrug resistance in two major levels corresponding to the overproduction of two efflux pumps depending on its concentration: AmrAB-OprA and BpeEF-OprC. The study of two mutants, each lacking one of these pumps, indicated that a third pump, BpeAB-OprB, could substitute for the defective pump. Surprisingly, we observed antagonistic effects between PAßN and aminoglycosides or some ß-lactams. PAßN induced the overexpression of AmrAB-OprA and BpeAB-OprB pump genes, generating this unexpected effect. Conclusions/Significance These results may account for the weak activity of PAßN in some Gram-negative species. We clearly demonstrated two antagonistic effects of this molecule on bacterial cells: the blocking of antibiotic efflux and an increase in efflux pump gene expression. Thus, doxycycline is a very efficient RND efflux pump inducer and PAßN may promote the production of some efflux pumps. These results should be taken into account when considering antibiotic treatments and in future studies on efflux pump inhibitors.
Collapse
Affiliation(s)
- Fabrice Vincent Biot
- Unité de Bactériologie/UMR_MD 1, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France ; UMR_MD 1, Aix Marseille Université, IRBA, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Mélanie Monique Lopez
- Unité de Bactériologie/UMR_MD 1, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Thomas Poyot
- Pôle de génomique, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Fabienne Neulat-Ripoll
- Unité de Bactériologie/UMR_MD 1, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France ; UMR_MD 1, Aix Marseille Université, IRBA, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Sabrina Lignon
- FR 3479 Plate-forme de Protéomique, CNRS, Aix-Marseille Université, Marseille, France
| | - Arnaud Caclard
- Unité de Bactériologie/UMR_MD 1, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France ; UMR_MD 1, Aix Marseille Université, IRBA, Facultés de Médecine et de Pharmacie, Marseille, France
| | - François Michel Thibault
- Unité de Bactériologie/UMR_MD 1, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France ; UMR_MD 1, Aix Marseille Université, IRBA, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Andre Peinnequin
- Pôle de génomique, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Jean-Marie Pagès
- UMR_MD 1, Aix Marseille Université, IRBA, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Eric Valade
- Unité de Bactériologie/UMR_MD 1, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France ; UMR_MD 1, Aix Marseille Université, IRBA, Facultés de Médecine et de Pharmacie, Marseille, France ; Ecole du Val-de-Grâce, Paris, France
| |
Collapse
|
28
|
Kester JC, Fortune SM. Persisters and beyond: mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Crit Rev Biochem Mol Biol 2013; 49:91-101. [PMID: 24328927 DOI: 10.3109/10409238.2013.869543] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One of the challenges in clinical infectious diseases is the problem of chronic infections, which can require long durations of antibiotic treatment and often recur. An emerging explanation for the refractoriness of some infections to treatment is the existence of subpopulations of drug tolerant cells. While typically discussed as "persister" cells, it is becoming increasingly clear that there is significant heterogeneity in drug responses within a bacterial population and that multiple mechanisms underlie the emergence of drug tolerant and drug-resistant subpopulations. Many of these parallel mechanisms have been shown to affect drug susceptibility at the level of a whole population. Here we review mechanisms of phenotypic drug tolerance and resistance in bacteria with the goal of providing a framework for understanding the similarities and differences in these cells.
Collapse
Affiliation(s)
- Jemila C Kester
- Department of Immunology and Infectious Diseases, Harvard School of Public Health , Boston, MA , USA
| | | |
Collapse
|
29
|
Valade E, Davin-Regli A, Bolla JM, Pagès JM. Bacterial Membrane, a Key for Controlling Drug Influx and Efflux. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
30
|
Masi M, Pagès JM. Structure, Function and Regulation of Outer Membrane Proteins Involved in Drug Transport in Enterobactericeae: the OmpF/C - TolC Case. Open Microbiol J 2013; 7:22-33. [PMID: 23569467 PMCID: PMC3617542 DOI: 10.2174/1874285801307010022] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 11/26/2022] Open
Abstract
Antibiotic translocation across membranes of Gram-negative bacteria is a key step for the activity on their specific intracellular targets. Resistant bacteria control their membrane permeability as a first line of defense to protect themselves against external toxic compounds such as antibiotics and biocides. On one hand, resistance to small hydrophilic antibiotics such as ß-lactams and fluoroquinolones frequently results from the « closing » of their way in: the general outer membrane porins. On the other hand, an effective way out for a wide range of antibiotics is provided by TolC-like proteins, which are outer membrane components of multidrug efflux pumps. Accordingly, altered membrane permeability, including porin modifications and/or efflux pumps’ overexpression, is always associated to multidrug resistance (MDR) in a number of clinical isolates. Several recent studies have highlighted our current understanding of porins/TolC structures and functions in Enterobacteriaceae. Here, we review the transport of antibiotics through the OmpF/C general porins and the TolC-like channels with regards to recent data on their structure, function, assembly, regulation and contribution to bacterial resistance. Because MDR strains have evolved global strategies to identify and fight our antibiotic arsenal, it is important to constantly update our global knowledge on antibiotic transport.
Collapse
Affiliation(s)
- Muriel Masi
- CNRS-UMR 8619, Institut de Biophysique et de Biochimie Moléculaire et Cellulaire (IBBMC), Université Paris Sud, Orsay, France
| | | |
Collapse
|
31
|
Dalvi SD, Worobec EA. Gene expression analysis of the SdeAB multidrug efflux pump in antibiotic-resistant clinical isolates of Serratia marcescens. Indian J Med Microbiol 2012; 30:302-7. [DOI: 10.4103/0255-0857.99491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Kaščáková S, Maigre L, Chevalier J, Réfrégiers M, Pagès JM. Antibiotic transport in resistant bacteria: synchrotron UV fluorescence microscopy to determine antibiotic accumulation with single cell resolution. PLoS One 2012; 7:e38624. [PMID: 22719907 PMCID: PMC3373604 DOI: 10.1371/journal.pone.0038624] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/13/2012] [Indexed: 12/11/2022] Open
Abstract
A molecular definition of the mechanism conferring bacterial multidrug resistance is clinically crucial and today methods for quantitative determination of the uptake of antimicrobial agents with single cell resolution are missing. Using the naturally occurring fluorescence of antibacterial agents after deep ultraviolet (DUV) excitation, we developed a method to non-invasively monitor the quinolones uptake in single bacteria. Our approach is based on a DUV fluorescence microscope coupled to a synchrotron beamline providing tuneable excitation from 200 to 600 nm. A full spectrum was acquired at each pixel of the image, to study the DUV excited fluorescence emitted from quinolones within single bacteria. Measuring spectra allowed us to separate the antibiotic fluorescence from the autofluorescence contribution. By performing spectroscopic analysis, the quantification of the antibiotic signal was possible. To our knowledge, this is the first time that the intracellular accumulation of a clinical antibiotic could be determined and discussed in relation with the level of drug susceptibility for a multiresistant strain. This method is especially important to follow the behavior of quinolone molecules at individual cell level, to quantify the intracellular concentration of the antibiotic and develop new strategies to combat the dissemination of MDR-bacteria. In addition, this original approach also indicates the heterogeneity of bacterial population when the same strain is under environmental stress like antibiotic attack.
Collapse
|
33
|
Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med 2012; 18:263-72. [PMID: 22480775 DOI: 10.1016/j.molmed.2012.03.003] [Citation(s) in RCA: 678] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/29/2012] [Accepted: 03/08/2012] [Indexed: 12/21/2022]
Abstract
The current worldwide emergence of resistance to the powerful antibiotic carbapenem in Enterobacteriaceae constitutes an important growing public health threat. Sporadic outbreaks or endemic situations with enterobacterial isolates not susceptible to carbapenems are now reported not only in hospital settings but also in the community. Acquired class A (KPC), class B (IMP, VIM, NDM), or class D (OXA-48, OXA-181) carbapenemases, are the most important determinants sustaining resistance to carbapenems. The corresponding genes are mostly plasmid-located and associated with various mobile genetic structures (insertion sequences, integrons, transposons), further enhancing their spread. This review summarizes the current knowledge on carbapenem resistance in Enterobacteriaceae, including activity, distribution, clinical impact, and possible novel antibiotic pathways.
Collapse
Affiliation(s)
- Patrice Nordmann
- Service de Bactériologie-Virologie, INSERM U914 Emerging Resistance to Antibiotic, Hôpital de Bicêtre, Assistance Publique/Hôpitaux de Paris, Faculté de Médecine Paris Sud, K.-Bicêtre, 94275 Le Kremlin-Bicêtre Cedex, France.
| | | | | |
Collapse
|
34
|
Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrob Agents Chemother 2011; 55:4943-60. [PMID: 21859938 PMCID: PMC3195018 DOI: 10.1128/aac.00296-11] [Citation(s) in RCA: 877] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In this review, we summarize the current "state of the art" of carbapenem antibiotics and their role in our antimicrobial armamentarium. Among the β-lactams currently available, carbapenems are unique because they are relatively resistant to hydrolysis by most β-lactamases, in some cases act as "slow substrates" or inhibitors of β-lactamases, and still target penicillin binding proteins. This "value-added feature" of inhibiting β-lactamases serves as a major rationale for expansion of this class of β-lactams. We describe the initial discovery and development of the carbapenem family of β-lactams. Of the early carbapenems evaluated, thienamycin demonstrated the greatest antimicrobial activity and became the parent compound for all subsequent carbapenems. To date, more than 80 compounds with mostly improved antimicrobial properties, compared to those of thienamycin, are described in the literature. We also highlight important features of the carbapenems that are presently in clinical use: imipenem-cilastatin, meropenem, ertapenem, doripenem, panipenem-betamipron, and biapenem. In closing, we emphasize some major challenges and urge the medicinal chemist to continue development of these versatile and potent compounds, as they have served us well for more than 3 decades.
Collapse
Affiliation(s)
- Krisztina M. Papp-Wallace
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106
- Departments of Medicine
| | - Andrea Endimiani
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106
- Institute for Infectious Diseases, University of Bern 3010, Bern, Switzerland
- Departments of Medicine
| | | | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106
- Departments of Medicine
- Pharmacology
- Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
35
|
Nikaido H, Pagès JM. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol Rev 2011; 36:340-63. [PMID: 21707670 DOI: 10.1111/j.1574-6976.2011.00290.x] [Citation(s) in RCA: 489] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistance mechanisms reported in Gram-negative bacteria are causing a worldwide health problem. The continuous dissemination of 'multidrug-resistant' (MDR) bacteria drastically reduces the efficacy of our antibiotic 'arsenal' and consequently increases the frequency of therapeutic failure. In MDR bacteria, the overexpression of efflux pumps that expel structurally unrelated drugs contributes to the reduced susceptibility by decreasing the intracellular concentration of antibiotics. During the last decade, several clinical data have indicated an increasing involvement of efflux pumps in the emergence and dissemination of resistant Gram-negative bacteria. It is necessary to clearly define the molecular, functional and genetic bases of the efflux pump in order to understand the translocation of antibiotic molecules through the efflux transporter. The recent investigation on the efflux pump AcrB at its structural and physiological levels, including the identification of drug affinity sites and kinetic parameters for various antibiotics, may pave the way towards the rational development of an improved new generation of antibacterial agents as well as efflux inhibitors in order to efficiently combat efflux-based resistance mechanisms.
Collapse
Affiliation(s)
- Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | |
Collapse
|
36
|
The identification of new metallo-β-lactamase inhibitor leads from fragment-based screening. Bioorg Med Chem Lett 2011; 21:3282-5. [DOI: 10.1016/j.bmcl.2011.04.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/01/2011] [Accepted: 04/07/2011] [Indexed: 11/22/2022]
|
37
|
Amaral L, Fanning S, Pagès JM. Efflux pumps of gram-negative bacteria: genetic responses to stress and the modulation of their activity by pH, inhibitors, and phenothiazines. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 77:61-108. [PMID: 21692367 DOI: 10.1002/9780470920541.ch2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Leonard Amaral
- Unit of Mycobacteriology, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | | |
Collapse
|
38
|
Biot FV, Valade E, Garnotel E, Chevalier J, Villard C, Thibault FM, Vidal DR, Pagès JM. Involvement of the efflux pumps in chloramphenicol selected strains of Burkholderia thailandensis: proteomic and mechanistic evidence. PLoS One 2011; 6:e16892. [PMID: 21347382 PMCID: PMC3036723 DOI: 10.1371/journal.pone.0016892] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 01/04/2011] [Indexed: 11/18/2022] Open
Abstract
Burkholderia is a bacterial genus comprising several pathogenic species, including two species highly pathogenic for humans, B. pseudomallei and B. mallei. B. thailandensis is a weakly pathogenic species closely related to both B. pseudomallei and B. mallei. It is used as a study model. These bacteria are able to exhibit multiple resistance mechanisms towards various families of antibiotics. By sequentially plating B. thailandensis wild type strains on chloramphenicol we obtained several resistant variants. This chloramphenicol-induced resistance was associated with resistance against structurally unrelated antibiotics including quinolones and tetracyclines. We functionally and proteomically demonstrate that this multidrug resistance phenotype, identified in chloramphenicol-resistant variants, is associated with the overexpression of two different efflux pumps. These efflux pumps are able to expel antibiotics from several families, including chloramphenicol, quinolones, tetracyclines, trimethoprim and some β-lactams, and present a partial susceptibility to efflux pump inhibitors. It is thus possible that Burkholderia species can develop such adaptive resistance mechanisms in response to antibiotic pressure resulting in emergence of multidrug resistant strains. Antibiotics known to easily induce overexpression of these efflux pumps should be used with discernment in the treatment of Burkholderia infections.
Collapse
Affiliation(s)
- Fabrice V Biot
- UMR-MD-1, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, IFR88, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Tran QT, Mahendran KR, Hajjar E, Ceccarelli M, Davin-Regli A, Winterhalter M, Weingart H, Pagès JM. Implication of porins in beta-lactam resistance of Providencia stuartii. J Biol Chem 2010; 285:32273-81. [PMID: 20667831 DOI: 10.1074/jbc.m110.143305] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An integrative approach combining biophysical and microbiological methods was used to characterize the antibiotic translocation through the outer membrane of Providencia stuartii. Two novel members of the General Bacterial Porin family of Enterobacteriaceae, named OmpPst1 and OmpPst2, were identified in P. stuartii. In the presence of ertapenem (ERT), cefepime (FEP), and cefoxitin (FOX) in growth media, several resistant derivatives of P. stuartii ATCC 29914 showed OmpPst1-deficiency. These porin-deficient strains showed significant decrease of susceptibility to β-lactam antibiotics. OmpPst1 and OmpPst2 were purified to homogeneity and reconstituted into planar lipid bilayers to study their biophysical characteristics and their interactions with β-lactam molecules. Determination of β-lactam translocation through OmpPst1 and OmpPst2 indicated that the strength of interaction decreased in the order of ertapenem ≫ cefepime > cefoxitin. Moreover, the translocation of these antibiotics through OmpPst1 was more efficient than through OmpPst2. Heterologous expression of OmpPst1 in the porin-deficient E. coli strain BL21(DE3)omp8 was associated with a higher antibiotic susceptibility of the E. coli cells to β-lactams compared with expression of OmpPst2. All our data enlighten the involvement of porins in the resistance of P. stuartii to β-lactam antibiotics.
Collapse
Affiliation(s)
- Que-Tien Tran
- School of Engineering and Science, Jacobs University Bremen, D-28759 Bremen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Jeong HW, Cheong HJ, Kim WJ, Kim MJ, Song KJ, Song JW, Kim HS, Roh KH. Loss of the 29-kilodalton outer membrane protein in the presence of OXA-51-like enzymes in Acinetobacter baumannii is associated with decreased imipenem susceptibility. Microb Drug Resist 2009; 15:151-8. [PMID: 19728771 DOI: 10.1089/mdr.2009.0828] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Carbapenem resistance in Acinetobacter baumannii is increasing these days. We investigated the roles of outer membrane proteins and efflux pumps in carbapenem resistance of A. baumannii which showed no carbapenemase activity in modified Hodge test. Among 58 carbapenem-resistant isolates collected from the Korea University Medical Center between January 2002 and March 2006, 17 isolates showed negative results in modified Hodge test. In outer membrane protein analysis, loss of the 29-kDa protein band was related with higher imipenem minimum inhibitory concentrations especially in the presence of OXA-51-like enzymes. Efflux pump-mediated carbapenem resistance was found in one out of the 17 isolates (5.9%). All of the 58 carbapenem-resistant strains and 5 of the 10 carbapenem-susceptible strains had OXA-51-like carbapenemase genes, suggesting that OXA-51-like enzymes may be naturally existing in A. baumannii and have very weak carbapenem hydrolyzing activity.
Collapse
Affiliation(s)
- Hye Won Jeong
- Division of Infectious Disease, Department of Internal Medicine, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome, although they can also be plasmid-encoded. A previous article in this journal provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past 5 years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario K1A OK9, Canada
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| |
Collapse
|
42
|
Gröbner S, Linke D, Schütz W, Fladerer C, Madlung J, Autenrieth IB, Witte W, Pfeifer Y. Emergence of carbapenem-non-susceptible extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates at the university hospital of Tübingen, Germany. J Med Microbiol 2009; 58:912-922. [DOI: 10.1099/jmm.0.005850-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spread of Gram-negative bacteria with plasmid-borne extended-spectrum β-lactamases (ESBLs) has become a worldwide problem. This study analysed a total of 366 ESBL-producing Enterobacteriaceae strains isolated from non-selected patient specimens at the university hospital of Tübingen in the period January 2003 to December 2007. Although the overall ESBL rate was comparatively low (1.6 %), the percentages of ESBL-producing Enterobacter spp. and Escherichia coli increased from 0.8 and 0.5 %, respectively, in 2003 to 4.6 and 3.8 % in 2007. In particular, the emergence was observed of one carbapenem-resistant ESBL-producing E. coli isolate and five carbapenem-non-susceptible ESBL-positive Klebsiella pneumoniae isolates, in two of which carbapenem resistance development was documented in vivo under a meropenem-containing antibiotic regime. The possible underlying mechanism for this carbapenem resistance in three of the K. pneumoniae isolates was loss of the Klebsiella porin channel protein OmpK36 as shown by PCR analysis. The remaining two K. pneumoniae isolates exhibited increased expression of a tripartite AcrAB–TolC efflux pump as demonstrated by SDS-PAGE and mass spectrometry analysis of bacterial outer-membrane extracts, which, in addition to other unknown mechanisms, may contribute towards increasing the carbapenem MIC values further. Carbapenem-non-susceptible ESBL isolates may pose a new problem in the future due to possible outbreak situations and limited antibiotic treatment options. Therefore, a systematic exploration of intestinal colonization with ESBL isolates should be reconsidered, at least for haemato-oncological departments from where four of the five carbapenem-non-susceptible ESBL isolates originated.
Collapse
Affiliation(s)
- Sabine Gröbner
- Institute of Medical Microbiology and Hygiene, Eberhard Karls University of Tübingen, Elfriede-Aulhorn-Str. 6, D-72076 Tübingen, Germany
| | - Dirk Linke
- Max Planck Institute for Developmental Biology, Department I, Protein Evolution, Spemannstr. 35, D-72076 Tübingen, Germany
| | - Wolfgang Schütz
- Proteome Centre Tübingen, Interfaculty Institute of Cell Biology, University of Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | - Claudia Fladerer
- Proteome Centre Tübingen, Interfaculty Institute of Cell Biology, University of Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | - Johannes Madlung
- Proteome Centre Tübingen, Interfaculty Institute of Cell Biology, University of Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | - Ingo B. Autenrieth
- Institute of Medical Microbiology and Hygiene, Eberhard Karls University of Tübingen, Elfriede-Aulhorn-Str. 6, D-72076 Tübingen, Germany
| | - Wolfgang Witte
- Robert Koch Institute, Burgstr. 37, D-38855 Wernigerode, Germany
| | - Yvonne Pfeifer
- Robert Koch Institute, Burgstr. 37, D-38855 Wernigerode, Germany
| |
Collapse
|
43
|
Moreira MAS, Rodrigues PP, Tomaz RS, de Moraes CA. Multidrug efflux systems in Escherichia coli and Enterobacter cloacae obtained from wholesome broiler carcasses. Braz J Microbiol 2009; 40:241-7. [PMID: 24031352 PMCID: PMC3769709 DOI: 10.1590/s1517-83822009000200007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 08/15/2008] [Accepted: 03/31/2009] [Indexed: 11/22/2022] Open
Abstract
Members of the Enterobacteriaceae family are present in the intestines of man and animals as commensals or are important disease causing agents. Bacteria bearing multidrug efflux systems (MDR) are able to survive adverse ecological niches. Multiresistant Escherichia coli and Enterobacter cloacae isolates from wholesome broiler carcasses were investigated for the presence of MDR. Lowering of Minimal Inhibitory Concentration for antimicrobials in the presence of a proton-motive force (PMF) uncoupler was tested as a potential display of the MDR phenotype. PCR amplification of the genes encoding AcrA and AcrB, components of a MDR system was performed. Diversity of each species was ascertained by Pulsed-Field Gel Electrophoresis (PFGE) of DNA digested with endonuclease XbaI. For all the isolates, except E. coli 1 and E. cloacae 9, lowering of MIC or of the growth rate in the presence of antimicrobials was observed, indicating a PMF dependent resistance mechanism. Expected products of DNA amplification with acrAB derived primers was obtained with all E. coli strains and with two of the five E. cloacae strains. Dendrogram generated shows diverse pulsetypes, confirming the genetic diversity among the strains. An important issue and related public health is the fact that different models and mechanisms of antimicrobial resistance are present in a small number of non-pathogenic strains and isolated from the same origin. These may be sources of resistance genes to others microorganisms, among them, pathogenic strains.
Collapse
Affiliation(s)
- Maria Aparecida S. Moreira
- Laboratório de Doenças Bacterianas, Setor de Medicina Veterinária Preventiva e Saúde Pública, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | - Patrícia P.C.F. Rodrigues
- Laboratório de Microbiologia Industrial, Instituto de Biotecnologia Aplicada à Agropecuária, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | - Rafael S. Tomaz
- Laboratório de Genética de Microrganismos, Instituto de Biotecnologia Aplicada à Agropecuária, Departamento de Microbiologia e Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | - Célia A. de Moraes
- Laboratório de Microbiologia Industrial, Instituto de Biotecnologia Aplicada à Agropecuária, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| |
Collapse
|
44
|
Pages JM, Lavigne JP, Leflon-Guibout V, Marcon E, Bert F, Noussair L, Nicolas-Chanoine MH. Efflux pump, the masked side of beta-lactam resistance in Klebsiella pneumoniae clinical isolates. PLoS One 2009; 4:e4817. [PMID: 19279676 PMCID: PMC2652100 DOI: 10.1371/journal.pone.0004817] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 02/09/2009] [Indexed: 11/19/2022] Open
Abstract
Background β-lactamase production and porin decrease are the well-recognized mechanisms of acquired ß-lactam resistance in Klebsiella pneumoniae isolates. However, such mechanisms proved to be absent in K. pneumoniae isolates that are non susceptible to cefoxitin (FOX) and succeptible to amoxicillin+clavulanic acid in our hospital. Assessing the role of efflux pumps in this β-lactam phenotype was the aim of this study. Methodology/Findings MICs of 9 β-lactams, including cloxacillin (CLX), and other antibiotic families were tested alone and with an efflux pump inhibitor (EPI), then with both CLX (subinhibitory concentrations) and EPI against 11 unique bacteremia K. pneumoniae isolates displaying the unusual phenotype, and 2 ATCC strains. CLX and EPI-dose dependent effects were studied on 4 representatives strains. CLX MICs significantly decreased when tested with EPI. A similar phenomenon was observed with piperacillin+tazobactam whereas MICs of the other β-lactams significantly decreased only in the presence of both EPI and CLX. Thus, FOX MICs decreased 128 fold in the K. pneumoniae isolates but also16 fold in ATCC strain. Restoration of FOX activity was CLX dose-dependent suggesting a competitive relationship between CLX and the other β-lactams with regard to their efflux. For chloramphenicol, erythromycin and nalidixic acid whose resistance was also due to efflux, adding CLX to EPI did not increase their activity suggesting differences between the efflux process of these molecules and that of β-lactams. Conclusion This is the first study demonstrating that efflux mechanism plays a key role in the β-lactam susceptibility of clinical isolates of K. pneumoniae. Such data clearly evidence that the involvement of efflux pumps in ß-lactam resistance is specially underestimated in clinical isolates.
Collapse
Affiliation(s)
- Jean-Marie Pages
- UMR-MD-1, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, IFR88, Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
45
|
The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol 2008; 6:893-903. [PMID: 18997824 DOI: 10.1038/nrmicro1994] [Citation(s) in RCA: 607] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gram-negative bacteria are responsible for a large proportion of antibiotic-resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds, including several classes of antibiotics. Bacterial adaptation to reduce influx through porins is an increasing problem worldwide that contributes, together with efflux systems, to the emergence and dissemination of antibiotic resistance. An exciting challenge is to decipher the genetic and molecular basis of membrane impermeability as a bacterial resistance mechanism. This Review outlines the bacterial response towards antibiotic stress on altered membrane permeability and discusses recent advances in molecular approaches that are improving our knowledge of the physico-chemical parameters that govern the translocation of antibiotics through porin channels.
Collapse
|
46
|
Slama TG. Clinical review: balancing the therapeutic, safety, and economic issues underlying effective antipseudomonal carbapenem use. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 12:233. [PMID: 18983709 PMCID: PMC2592734 DOI: 10.1186/cc6994] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antipseudomonal carbapenems have played a useful role in our antimicrobial armamentarium for 20 years. However, a review of their use during that period creates concern that their clinical effectiveness is critically dependent on attainment of an appropriate dosing range. Unfortunately, adequate carbapenem dosing is missed for many reasons, including benefit/risk misconceptions, a narrow therapeutic window for imipenem and meropenem (due to an increased rate of seizures at higher doses), increasingly resistant pathogens requiring higher doses than are typically given, and cost containment issues that may limit their use. To improve the use of carbapenems, several initiatives should be considered: increase awareness about appropriate treatment with carbapenems across hospital departments; determine optimal dosing regimens for settings where multidrug resistant organisms are more likely encountered; use of, or combination with, an alternative antimicrobial agent having more favorable pharmacokinetic, pharmacodynamic, or adverse event profile; and administer a newer carbapenem with lower propensity for resistance development (for example, reduced expression of efflux pumps or greater stability against carbapenemases).
Collapse
Affiliation(s)
- Thomas G Slama
- Department of Infectious Diseases, Indiana University School of Medicine, Indianapolis, Indiana 46260, USA.
| |
Collapse
|
47
|
Chen YG, Zhang Y, Yu YS, Qu TT, Wei ZQ, Shen P, Li LJ. In vivo development of carbapenem resistance in clinical isolates of Enterobacter aerogenes producing multiple β-lactamases. Int J Antimicrob Agents 2008; 32:302-7. [DOI: 10.1016/j.ijantimicag.2008.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 02/20/2008] [Accepted: 02/21/2008] [Indexed: 10/21/2022]
|
48
|
Chevalier J, Mulfinger C, Garnotel E, Nicolas P, Davin-Régli A, Pagès JM. Identification and evolution of drug efflux pump in clinical Enterobacter aerogenes strains isolated in 1995 and 2003. PLoS One 2008; 3:e3203. [PMID: 18787654 PMCID: PMC2527680 DOI: 10.1371/journal.pone.0003203] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 07/23/2008] [Indexed: 11/19/2022] Open
Abstract
Background The high mortality impact of infectious diseases will increase due to accelerated evolution of antibiotic resistance in important human pathogens. Development of antibiotic resistance is a evolutionary process inducing the erosion of the effectiveness of our arsenal of antibiotics. Resistance is not necessarily limited to a single class of antibacterial agents but may affect many unrelated compounds; this is termed ‘multidrug resistance’ (MDR). The major mechanism of MDR is the active expulsion of drugs by bacterial pumps; the treatment of Gram negative bacterial infections is compromised due to resistance mechanisms including the expression of efflux pumps that actively expel various usual antibiotics (ß-lactams, quinolones, …). Methodology/Principal Findings Enterobacter aerogenes has emerged among Enterobacteriaceae associated hospital infections during the last twenty years due to its faculty of adaptation to antibiotic stresses. Clinical isolates of E. aerogenes belonging to two strain collections isolated in 1995 and 2003 respectively, were screened to assess the involvement of efflux pumps in antibiotic resistance. Drug susceptibility assays were performed on all bacterial isolates and an efflux pump inhibitor (PAßN) previously characterized allowed to decipher the role of efflux in the resistance. Accumulation of labelled chloramphenicol was monitored in the presence of an energy poison to determine the involvement of active efflux on the antibiotic intracellular concentrations. The presence of the PAßN-susceptible efflux system was also identified in resistant E. aerogenes strains. Conclusions/Significance For the first time a noticeable increase in clinical isolates containing an efflux mechanism susceptible to pump inhibitor is report within an 8 year period. After the emergence of extended spectrum ß-lactamases in E. aerogenes and the recent characterisation of porin mutations in clinical isolates, this study describing an increase in inhibitor-susceptible efflux throws light on a new step in the evolution of mechanism in E. aerogenes.
Collapse
Affiliation(s)
| | - Céline Mulfinger
- UMR-MD1, IFR 48, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Eric Garnotel
- UMR-MD1, IFR 48, Facultés de Médecine et de Pharmacie, Marseille, France
- Service de Biologie, H.I.A. Laveran, Marseille, France
| | - Pierre Nicolas
- UMR-MD1, IFR 48, Facultés de Médecine et de Pharmacie, Marseille, France
- IMTSSA, Marseille, France
| | - Anne Davin-Régli
- UMR-MD1, IFR 48, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Jean-Marie Pagès
- UMR-MD1, IFR 48, Facultés de Médecine et de Pharmacie, Marseille, France
- * E-mail:
| |
Collapse
|
49
|
Abstract
Carbapenems, such as imipenem and meropenem, are most often used to treat infections caused by enterobacteria that produce extended-spectrum beta-lactamases, and the emergence of enzymes capable of inactivating carbapenems would therefore limit the options for treatment. Carbapenem resistance in Enterobacteriaceae is rare, but class A beta-lactamases with activity against the carbapenems are becoming more prevalent within this bacterial family. The class A carbapenemases can phylogenetically be segregated into six different groups of which four groups are formed by members of the GES, KPC, SME, IMI/NMC-A enzymes, while SHV-38 and SFC-1 each separately constitute a group. The genes encoding the class A carbapenemases are either plasmid-borne or located on the chromosome of the host. The bla(GES) genes reside as gene cassettes on mainly class I integrons, whereas the bla(KPC) genes and a single bla(IMI-2) gene are flanked by transposable elements on plasmids. Class A carbapenemases hydrolyse penicillins, classical cephalosporins, monobactam, and imipenem and meropenem, and the enzymes are divided into four phenotypically different groups, namely group 2br, 2be, 2e and 2f, according to the Bush-Jacoby-Medeiros classification system. Class A carbapenemases are inhibited by clavulanate and tazobactam like other class A beta-lactamases.
Collapse
Affiliation(s)
- Jan Walther-Rasmussen
- Department of Clinical Microbiology, 9301, Rigshospitalet, National University Hospital, Copenhagen, Denmark.
| | | |
Collapse
|
50
|
Kioumis IP, Kuti JL, Nicolau DP. Intra-abdominal infections: considerations for the use of the carbapenems. Expert Opin Pharmacother 2007; 8:167-82. [PMID: 17257087 DOI: 10.1517/14656566.8.2.167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Intra-abdominal infection remains a common and frequently severe medical condition, carrying with it significant morbidity and mortality. These infections are almost always polymicrobial in nature as they are caused by mixed aerobic/anaerobic intestinal flora. Despite substantial improvements in both the medical and surgical management of these infections over the last several decades, there remains an opportunity to further enhance the utilization of adjunctive antibiotic therapy. As a result of the epidemiology and the current resistance profile of the infecting pathogens, the carbapenems represent a class of antibiotics that are considered appropriate for the treatment of severe intra-abdominal infections. This review will discuss the classification and microbiology of these infections and emerging resistance in the pathogens of interest. The review also and focuses on the role of the carbapenems in the management of the constellation of diseases known as intra-abdominal infection.
Collapse
Affiliation(s)
- Ioannis P Kioumis
- Center for Anti-infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA
| | | | | |
Collapse
|