1
|
Tran HT, Nguyen MK, Hoang HG, Hutchison JM, Vu CT. Composting and green technologies for remediation of phthalate (PAE)-contaminated soil: Current status and future perspectives. CHEMOSPHERE 2022; 307:135989. [PMID: 35988768 PMCID: PMC10052775 DOI: 10.1016/j.chemosphere.2022.135989] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 05/29/2023]
Abstract
Phthalate esters (PAEs) are hazardous organic compounds that are widely added to plastics to enhance their flexibility, temperature, and acidic tolerance. The increase in global consumption and the corresponding environmental pollution of PAEs has caused broad public concerns. As most PAEs accumulate in soil due to their high hydrophobicity, composting is a robust remediation technology for PAE-contaminated soil (efficiency 25%-100%), where microbial activity plays an important role. This review summarized the roles of the microbial community, biodegradation pathways, and specific enzymes involved in the PAE degradation. Also, other green technologies, including biochar adsorption, bioaugmentation, and phytoremediation, for PAE degradation were also presented, compared, and discussed. Composting combined with these technologies significantly enhanced removal efficiency; yet, the properties and roles of each bacterial strain in the degradation, upscaling, and economic feasibility should be clarified in future research.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Civil, Environmental, and Architectural Engineering Department, University of Kansas, Lawrence, KS, 66045, USA.
| | - Minh-Ky Nguyen
- Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City 700000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai 76100, Viet Nam
| | - Justin M Hutchison
- Civil, Environmental, and Architectural Engineering Department, University of Kansas, Lawrence, KS, 66045, USA
| | - Chi Thanh Vu
- Civil and Environmental Engineering Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| |
Collapse
|
2
|
Bleffert F, Granzin J, Caliskan M, Schott-Verdugo SN, Siebers M, Thiele B, Rahme L, Felgner S, Dörmann P, Gohlke H, Batra-Safferling R, Jaeger KE, Kovacic F. Structural, mechanistic, and physiological insights into phospholipase A-mediated membrane phospholipid degradation in Pseudomonas aeruginosa. eLife 2022; 11:e72824. [PMID: 35536643 PMCID: PMC9132575 DOI: 10.7554/elife.72824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
Cells steadily adapt their membrane glycerophospholipid (GPL) composition to changing environmental and developmental conditions. While the regulation of membrane homeostasis via GPL synthesis in bacteria has been studied in detail, the mechanisms underlying the controlled degradation of endogenous GPLs remain unknown. Thus far, the function of intracellular phospholipases A (PLAs) in GPL remodeling (Lands cycle) in bacteria is not clearly established. Here, we identified the first cytoplasmic membrane-bound phospholipase A1 (PlaF) from Pseudomonas aeruginosa, which might be involved in the Lands cycle. PlaF is an important virulence factor, as the P. aeruginosa ΔplaF mutant showed strongly attenuated virulence in Galleria mellonella and macrophages. We present a 2.0-Å-resolution crystal structure of PlaF, the first structure that reveals homodimerization of a single-pass transmembrane (TM) full-length protein. PlaF dimerization, mediated solely through the intermolecular interactions of TM and juxtamembrane regions, inhibits its activity. The dimerization site and the catalytic sites are linked by an intricate ligand-mediated interaction network, which might explain the product (fatty acid) feedback inhibition observed with the purified PlaF protein. We used molecular dynamics simulations and configurational free energy computations to suggest a model of PlaF activation through a coupled monomerization and tilting of the monomer in the membrane, which constrains the active site cavity into contact with the GPL substrates. Thus, these data show the importance of the PlaF-mediated GPL remodeling pathway for virulence and could pave the way for the development of novel therapeutics targeting PlaF.
Collapse
Affiliation(s)
- Florian Bleffert
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| | - Joachim Granzin
- Institute of Biological Information Processing - Structural Biochemistry (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbHJülichGermany
| | - Muttalip Caliskan
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| | - Stephan N Schott-Verdugo
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University DüsseldorfDuesseldorfGermany
- Centro de Bioinformática y Simulación Molecular (CBSM), Faculty of Engineering, University of TalcaTalcaChile
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbHJülichGermany
| | - Meike Siebers
- Institute of Molecular Physiology, and Biotechnology of Plants (IMBIO), University of BonnBonnGermany
- Institute for Plant Genetics, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Björn Thiele
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), and Agrosphere (IBG-3), Forschungszentrum Jülich GmbHJülichGermany
| | - Laurence Rahme
- Department of Microbiology, and Immunobiology, Harvard Medical SchoolBostonUnited States
| | - Sebastian Felgner
- Department of Molecular Bacteriology, Helmholtz Centre for Infection ResearchBraunschweigGermany
| | - Peter Dörmann
- Institute of Molecular Physiology, and Biotechnology of Plants (IMBIO), University of BonnBonnGermany
| | - Holger Gohlke
- Institute of Biological Information Processing - Structural Biochemistry (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbHJülichGermany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University DüsseldorfDuesseldorfGermany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbHJülichGermany
| | - Renu Batra-Safferling
- Institute of Biological Information Processing - Structural Biochemistry (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbHJülichGermany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbHJülichGermany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| |
Collapse
|
3
|
Differential Roles of Three Different Upper Pathway meta Ring Cleavage Product Hydrolases in the Degradation of Dibenzo- p-Dioxin and Dibenzofuran by Sphingomonas wittichii Strain RW1. Appl Environ Microbiol 2021; 87:e0106721. [PMID: 34469199 DOI: 10.1128/aem.01067-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingomonas wittichii RW1 grows on the two related compounds dibenzofuran (DBF) and dibenzo-p-dioxin (DXN) as the sole source of carbon. Previous work by others (P. V. Bunz, R. Falchetto, and A. M. Cook, Biodegradation 4:171-178, 1993, https://doi/org/10.1007/BF00695119) identified two upper pathway meta cleavage product hydrolases (DxnB1 and DxnB2) active on the DBF upper pathway metabolite 2-hydroxy-6-oxo-6-(2-hydroxyphenyl)-hexa-2,4-dienoate. We took a physiological approach to determine the role of these two enzymes in the degradation of DBF and DXN by RW1. Single knockouts of either plasmid-located dxnB1 or chromosome-located dxnB2 had no effect on RW1 growth on either DBF or DXN. However, a double-knockout strain lost the ability to grow on DBF but still grew normally on DXN, demonstrating that DxnB1 and DxnB2 are the only hydrolases involved in the DBF upper pathway. Using a transcriptomics-guided approach, we identified a constitutively expressed third hydrolase encoded by the chromosomally located SWIT0910 gene. Knockout of SWIT0910 resulted in a strain that no longer grows on DXN but still grows normally on DBF. Thus, the DxnB1 and DxnB2 hydrolases function in the DBF but not the DXN catabolic pathway, and the SWIT0190 hydrolase functions in the DXN but not the DBF catabolic pathway. IMPORTANCE S. wittichii RW1 is one of only a few strains known to grow on DXN as the sole source of carbon. Much of the work deciphering the related RW1 DXN and DBF catabolic pathways has involved genome gazing, transcriptomics, proteomics, heterologous expression, and enzyme purification and characterization. Very little research has utilized physiological techniques to precisely dissect the genes and enzymes involved in DBF and DXN degradation. Previous work by others identified and extensively characterized two RW1 upper pathway hydrolases. Our present work demonstrates that these two enzymes are involved in DBF but not DXN degradation. In addition, our work identified a third constitutively expressed hydrolase that is involved in DXN but not DBF degradation. Combined with our previous work (T. Y. Mutter and G. J. Zylstra, Appl Environ Microbiol 87:e02464-20, 2021, https://doi.org/10.1128/AEM.02464-20), this means that the RW1 DXN upper pathway involves genes from three very different locations in the genome, including an initial plasmid-encoded dioxygenase and a ring cleavage enzyme and hydrolase encoded on opposite sides of the chromosome.
Collapse
|
4
|
Fan S, Wang J, Yan Y, Wang J, Jia Y. Excellent Degradation Performance of a Versatile Phthalic Acid Esters-Degrading Bacterium and Catalytic Mechanism of Monoalkyl Phthalate Hydrolase. Int J Mol Sci 2018; 19:ijms19092803. [PMID: 30231475 PMCID: PMC6164851 DOI: 10.3390/ijms19092803] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/05/2018] [Accepted: 09/08/2018] [Indexed: 12/03/2022] Open
Abstract
Despites lots of characterized microorganisms that are capable of degrading phthalic acid esters (PAEs), there are few isolated strains with high activity towards PAEs under a broad range of environmental conditions. In this study, Gordonia sp. YC-JH1 had advantages over its counterparts in terms of di(2-ethylhexyl) phthalate (DEHP) degradation performance. It possessed an excellent degradation ability in the range of 20–50 °C, pH 5.0–12.0, or 0–8% NaCl with the optimal degradation condition 40 °C and pH 10.0. Therefore, strain YC-JH1 appeared suitable for bioremediation application at various conditions. Metabolites analysis revealed that DEHP was sequentially hydrolyzed by strain YC-JH1 to mono(2-ethylhexyl) phthalate (MEHP) and phthalic acid (PA). The hydrolase MphG1 from strain YC-JH1 hydrolyzed monoethyl phthalate (MEP), mono-n-butyl phthalate (MBP), mono-n-hexyl phthalate (MHP), and MEHP to PA. According to molecular docking and molecular dynamics simulation between MphG1 and monoalkyl phthalates (MAPs), some key residues were detected, including the catalytic triad (S125-H291-D259) and the residues R126 and F54 potentially binding substrates. The mutation of these residues accounted for the reduced activity. Together, the mechanism of MphG1 catalyzing MAPs was elucidated, and would shed insights into catalytic mechanism of more hydrolases.
Collapse
Affiliation(s)
- Shuanghu Fan
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Junhuan Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yanchun Yan
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jiayi Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yang Jia
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Singh N, Dalal V, Mahto JK, Kumar P. Biodegradation of phthalic acid esters (PAEs) and in silico structural characterization of mono-2-ethylhexyl phthalate (MEHP) hydrolase on the basis of close structural homolog. JOURNAL OF HAZARDOUS MATERIALS 2017; 338:11-22. [PMID: 28531656 DOI: 10.1016/j.jhazmat.2017.04.055] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 05/27/2023]
Abstract
Three bacterial strains capable of degrading phthalates namely Pseudomonas sp. PKDM2, Pseudomonas sp. PKDE1 and Pseudomonas sp. PKDE2 were isolated and characterized for their degradative potential. These strains efficiently degraded 77.4%-84.4% of DMP, 75.0%-75.7% of DEP and 71.7%-74.7% of DEHP, initial amount of each phthalate is 500mgL-1 of each phthalate, after 44h of incubation. GC-MS results reveal the tentative DEHP degradation pathway, where hydrolases mediate the breakdown of DEHP to phthalic acid (PA) via an intermediate MEHP. MEHP hydrolase is a serine hydrolase which is involved in the reduction of the MEHP to PA. The predicted 3D model of MEHP hydrolase from Pseudomonas mosselii was docked with phthalate monoesters (PMEs) such as MEHP, mono-n-hexyl phthalate (MHP), mono-n-butyl phthalate (MBP) and mono-n-ethyl phthalate (MEP), respectively. Docking results show the distance between the carbonyl carbon of respective phthalate monoester and the hydroxyl group of catalytic serine lies in the range of 2.9 to 3.3Å, which is similar to the ES complex of other serine hydrolases. This structural study highlights the interaction and the role of catalytic residues of MEHP hydrolase involved in the biodegradation of PMEs to phthalate.
Collapse
Affiliation(s)
- Neha Singh
- Department of Biotechnology, Indian Institute of Technology, Roorkee, 247667, India
| | - Vikram Dalal
- Department of Biotechnology, Indian Institute of Technology, Roorkee, 247667, India
| | - Jai Krishna Mahto
- Department of Biotechnology, Indian Institute of Technology, Roorkee, 247667, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology, Roorkee, 247667, India.
| |
Collapse
|
6
|
Iwata M, Imaoka T, Nishiyama T, Fujii T. Re-characterization of mono-2-ethylhexyl phthalate hydrolase belonging to the serine hydrolase family. J Biosci Bioeng 2016; 122:140-5. [PMID: 26868518 DOI: 10.1016/j.jbiosc.2016.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 11/25/2022]
Abstract
A novel bacterium assimilating di-2-ethylhexyl phthalate as a sole carbon source was isolated, and identified as a Rhodococcus species and the strain was named EG-5. The strain has a mono-2-ethylhexyl phthalate (MEHP) hydrolase (EG-5 MehpH), which exhibits some different enzymatic features when compared with the previously reported MEHP hydrolase (P8219 MehpH) from Gordonia sp. These differences include different pH optimum activity, maximal reaction temperature and heat stability. The Km and Vmax values of EG-5 MehpH were significantly higher than those of P8219 MehpH. The primary structure of EG-5 MehpH showed the highest sequence identity to that of P8219 MehpH (39%) among hydrolases. The phylogenetic tree suggested that EG-5 MehpH and P8219 MehpH were categorized in different groups of the novel MEHP hydrolase family. Mutation of a conserved R(109) residue of EG-5 MehpH to a hydrophobic residue resulted in a dramatic reduction in the Vmax value towards MEHP without affecting the Km value. These results indicate that this residue may neutralize the negative charge of a carboxylate anion of MEHP, and thus inhibit the catalytic nucleophile from attacking the ester bond. In other words, the R residue blocks inhibition from the carboxylate anion of MEHP. Recently, registered hypothetical proteins exhibiting 98% or 99% identities for EG-5 MehpH or for P8219 MehpH were found from some pathogens belonging to Actinomycetes. The protein may have other activities besides MEHP hydrolysis and function in other physiological reactions in some Actinomycetes.
Collapse
Affiliation(s)
- Makoto Iwata
- IMB Co., Ltd., 1070-10 Hitotsugi, Asakura City, Fukuoka 838-0065, Japan
| | - Takuya Imaoka
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Takashi Nishiyama
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Takao Fujii
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan.
| |
Collapse
|
7
|
Single residues dictate the co-evolution of dual esterases: MCP hydrolases from the α/β hydrolase family. Biochem J 2013; 454:157-66. [PMID: 23750508 DOI: 10.1042/bj20130552] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several members of the C-C MCP (meta-cleavage product) hydrolase family demonstrate an unusual ability to hydrolyse esters as well as the MCPs (including those from mono- and bi-cyclic aromatics). Although the molecular mechanisms responsible for such substrate promiscuity are starting to emerge, the full understanding of these complex enzymes is far from complete. In the present paper, we describe six distinct α/β hydrolases identified through genomic approaches, four of which demonstrate the unprecedented characteristic of activity towards a broad spectrum of substrates, including p-nitrophenyl, halogenated, fatty acyl, aryl, glycerol, cinnamoyl and carbohydrate esters, lactones, 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate and 2-hydroxy-6-oxohepta-2,4-dienoate. Using structural analysis and site-directed mutagenesis we have identified the three residues (Ser32, Val130 and Trp144) that determine the unusual substrate specificity of one of these proteins, CCSP0084. The results may open up new research avenues into comparative catalytic models, structural and mechanistic studies, and biotechnological applications of MCP hydrolases.
Collapse
|
8
|
Ruzzini AC, Bhowmik S, Yam KC, Ghosh S, Bolin JT, Eltis LD. The lid domain of the MCP hydrolase DxnB2 contributes to the reactivity toward recalcitrant PCB metabolites. Biochemistry 2013; 52:5685-5695. [PMID: 23879719 PMCID: PMC3903462 DOI: 10.1021/bi400774m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DxnB2 and BphD are meta-cleavage product (MCP) hydrolases that catalyze C-C bond hydrolysis of the biphenyl metabolite 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA). BphD is a bottleneck in the bacterial degradation of polychlorinated biphenyls (PCBs) by the Bph catabolic pathway due in part to inhibition by 3-Cl HOPDAs. By contrast, DxnB2 from Sphingomonas wittichii RW1 catalyzes the hydrolysis of 3-Cl HOPDAs more efficiently. X-ray crystallographic studies of the catalytically inactive S105A variant of DxnB2 complexed with 3-Cl HOPDA revealed a binding mode in which C1 through C6 of the dienoate are coplanar. The chlorine substituent is accommodated by a hydrophobic pocket that is larger than the homologous site in BphDLB400 from Burkholderia xenovorans LB400. The planar binding mode observed in the crystalline complex was consistent with the hyper- and hypsochromically shifted absorption spectra of 3-Cl and 3,9,11-triCl HOPDA, respectively, bound to S105A in solution. Moreover, ES(red), an intermediate possessing a bathochromically shifted spectrum observed in the turnover of HOPDA, was not detected, suggesting that substrate destabilization was rate-limiting in the turnover of these PCB metabolites. Interestingly, electron density for the first α-helix of the lid domain was poorly defined in the dimeric DxnB2 structures, unlike in the tetrameric BphDLB400. Structural comparison of MCP hydrolases identified the NC-loop, connecting the lid to the α/β-hydrolase core domain, as a determinant in the oligomeric state and suggests its involvement in catalysis. Finally, an increased mobility of the DxnB2 lid may contribute to the enzyme's ability to hydrolyze PCB metabolites, highlighting how lid architecture contributes to substrate specificity in α/β-hydrolases.
Collapse
Affiliation(s)
- Antonio C. Ruzzini
- Department of Biochemistry and Molecular Biology, University of British Columbia, BC, Canada
| | - Shiva Bhowmik
- Purdue Cancer Research Center and Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Katherine C. Yam
- Department of Biochemistry and Molecular Biology, University of British Columbia, BC, Canada
| | - Subhangi Ghosh
- Purdue Cancer Research Center and Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Jeffrey T. Bolin
- Purdue Cancer Research Center and Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Lindsay D. Eltis
- Department of Biochemistry and Molecular Biology, University of British Columbia, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, BC, Canada
| |
Collapse
|
9
|
Crystal structure of a novel esterase Rv0045c from Mycobacterium tuberculosis. PLoS One 2011; 6:e20506. [PMID: 21637775 PMCID: PMC3102732 DOI: 10.1371/journal.pone.0020506] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 05/04/2011] [Indexed: 11/19/2022] Open
Abstract
There are at least 250 enzymes in Mycobacterium tuberculosis (M. tuberculosis) involved in lipid metabolism. Some of the enzymes are required for bacterial survival and full virulence. The esterase Rv0045c shares little amino acid sequence similarity with other members of the esterase/lipase family. Here, we report the 3D structure of Rv0045c. Our studies demonstrated that Rv0045c is a novel member of α/β hydrolase fold family. The structure of esterase Rv0045c contains two distinct domains: the α/β fold domain and the cap domain. The active site of esterase Rv0045c is highly conserved and comprised of two residues: Ser154 and His309. We proposed that Rv0045c probably employs two kinds of enzymatic mechanisms when hydrolyzing C-O ester bonds within substrates. The structure provides insight into the hydrolysis mechanism of the C-O ester bond, and will be helpful in understanding the ester/lipid metabolism in M. tuberculosis.
Collapse
|
10
|
Bains J, Kaufman L, Farnell B, Boulanger MJ. A product analog bound form of 3-oxoadipate-enol-lactonase (PcaD) reveals a multifunctional role for the divergent cap domain. J Mol Biol 2011; 406:649-58. [PMID: 21237173 DOI: 10.1016/j.jmb.2011.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/24/2010] [Accepted: 01/03/2011] [Indexed: 11/15/2022]
Abstract
Lactones are a class of structurally diverse molecules that serve essential roles in biological processes ranging from quorum sensing to the aerobic catabolism of aromatic compounds. Not surprisingly, enzymes involved in the bioprocessing of lactones are often targeted for protein engineering studies with the potential, for example, of optimized bioremediation of aromatic pollutants. The enol-lactone hydrolase (ELH) represents one such class of targeted enzymes and catalyzes the conversion of 3-oxoadipate-enol-lactone into the linear β-ketoadipate. To define the structural details that govern ELH catalysis and assess the impact of divergent features predicted by sequence analysis, we report the first structural characterization of an ELH (PcaD) from Burkholderia xenovorans LB400 in complex with the product analog levulinic acid. The overall dimeric structure of PcaD reveals an α-helical cap domain positioned atop a core α/β-hydrolase domain. Despite the localization of the conserved catalytic triad to the core domain, levulinic acid is bound largely within the region of the active site defined by the cap domain, suggesting a key role for this divergent substructure in mediating product release. Furthermore, the architecture of the cap domain results in an unusually deep active-site pocket with topological features to restrict binding to small or kinked substrates. The evolutionary basis for this substrate selectivity is discussed with respect to the homologous dienelactone hydrolase. Overall, the PcaD costructure provides a detailed insight into the intimate role of the cap domain in influencing all aspects of substrate binding, turnover, and product release.
Collapse
Affiliation(s)
- Jasleen Bains
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, Canada
| | | | | | | |
Collapse
|
11
|
George KW, Kagle J, Junker L, Risen A, Hay AG. Growth of Pseudomonas putida F1 on styrene requires increased catechol-2,3-dioxygenase activity, not a new hydrolase. Microbiology (Reading) 2011; 157:89-98. [DOI: 10.1099/mic.0.042531-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas putida F1 cannot grow on styrene despite being able to degrade it through the toluene degradation (tod) pathway. Previous work had suggested that this was because TodF, the meta-fission product (MFP) hydrolase, was unable to metabolize the styrene MFP 2-hydroxy-6-vinylhexa-2,4-dienoate. Here we demonstrate via kinetic and growth analyses that the substrate specificity of TodF is not the limiting factor preventing F1 from growing on styrene. Rather, we found that the metabolite 3-vinylcatechol accumulated during styrene metabolism and that micromolar concentrations of this intermediate inactivated TodE, the catechol-2,3-dioxygenase (C23O) responsible for its cleavage. Analysis of cells growing on styrene suggested that inactivation of TodE and the subsequent accumulation of 3-vinylcatechol resulted in toxicity and cell death. We found that simply overexpressing TodE on a plasmid (pTodE) was all that was necessary to allow F1 to grow on styrene. Similar results were also obtained by expressing a related C23O, DmpB from Pseudomonas sp. CF600, in tandem with its plant-like ferredoxin, DmpQ (pDmpQB). Further analysis revealed that the ability of F1 (pDmpQB) and F1 (pTodE) to grow on styrene correlated with increased C23O activity as well as resistance of the enzyme to 3-vinylcatechol-mediated inactivation. Although TodE inactivation by 3-halocatechols has been studied before, to our knowledge, this is the first published report demonstrating inactivation by a 3-vinylcatechol. Given the ubiquity of catechol intermediates in aromatic hydrocarbon metabolism, our results further demonstrate the importance of C23O inactivation as a determinant of growth substrate specificity.
Collapse
Affiliation(s)
- Kevin W. George
- Department of Microbiology, Cornell University Ithaca, NY 14850, USA
- Field of Environmental Toxicology, Cornell University Ithaca, NY 14850, USA
| | - Jeanne Kagle
- Department of Microbiology, Cornell University Ithaca, NY 14850, USA
| | - Lauren Junker
- Department of Microbiology, Cornell University Ithaca, NY 14850, USA
| | - Amy Risen
- Department of Microbiology, Cornell University Ithaca, NY 14850, USA
- Field of Environmental Toxicology, Cornell University Ithaca, NY 14850, USA
| | - Anthony G. Hay
- Department of Microbiology, Cornell University Ithaca, NY 14850, USA
- Field of Environmental Toxicology, Cornell University Ithaca, NY 14850, USA
| |
Collapse
|
12
|
Li Q, Li G, Yu S, Zhang Z, Ma F, Feng Y. Ring-opening polymerization of ɛ-caprolactone catalyzed by a novel thermophilic lipase from Fervidobacterium nodosum. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Goldstone DC, Villas-Bôas SG, Till M, Kelly WJ, Attwood GT, Arcus VL. Structural and functional characterization of a promiscuous feruloyl esterase (Est1E) from the rumen bacterium Butyrivibrio proteoclasticus. Proteins 2010; 78:1457-69. [PMID: 20058325 DOI: 10.1002/prot.22662] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The release of polysaccharide from the plant cell wall is a key process to release the stored energy from plant biomass. Within the ruminant digestive system, a host of commensal microorganisms speed the breakdown of plant cell matter releasing fermentable sugars. The presence of phenolic compounds, most notably ferulic acid (FA), esterified within the cell wall is thought to pose a significant impediment to the degradation of the plant cell wall. The structure of a FA esterase from the ruminant bacterium Butyrivibrio proteoclasticus has been determined in two different space groups, in both the apo-form, and the ligand bound form with FA located in the active site. The structure reveals a new lid domain that has no structural homologues in the PDB. The flexibility of the lid domain is evident by the presence of three different conformations adopted by different molecules in the crystals. In the FA-bound structures, these conformations show sequential binding and closing of the lid domain over the substrate. Enzymatic activity assays demonstrate a broad activity against plant-derived hemicellulose, releasing at least four aromatic compounds including FA, coumaric acid, coumarin-3-carboxylic acid, and cinnamic acid. The rumen is a complex ecosystem that efficiently degrades plant biomass and the genome of B. proteoclasticus contains greater than 130 enzymes, which are potentially involved in this process of which Est1E is the first to be well characterized.
Collapse
|
14
|
McCulloch KM, Mukherjee T, Begley TP, Ealick SE. Structure determination and characterization of the vitamin B6 degradative enzyme (E)-2-(acetamidomethylene)succinate hydrolase. Biochemistry 2010; 49:1226-35. [PMID: 20099871 DOI: 10.1021/bi901812p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The gene identification and kinetic characterization of (E)-2-(acetamidomethylene)succinate (E-2AMS) hydrolase has recently been described. This enzyme catalyzes the final reaction in the degradation of vitamin B(6) and produces succinic semialdehyde, acetate, ammonia, and carbon dioxide from E-2AMS. The structure of E-2AMS hydrolase was determined to 2.3 A using SAD phasing. E-2AMS hydrolase is a member of the alpha/beta hydrolase superfamily and utilizes a serine/histidine/aspartic acid catalytic triad. Mutation of either the nucleophilic serine or the aspartate resulted in inactive enzyme. Mutation of an additional serine residue in the active site causes the enzyme to be unstable and is likely structurally important. The structure also provides insight into the mechanism of hydrolysis of E-2AMS and identifies several potential catalytically important residues.
Collapse
Affiliation(s)
- Kathryn M McCulloch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
15
|
Okimoto N, Futatsugi N, Fuji H, Suenaga A, Morimoto G, Yanai R, Ohno Y, Narumi T, Taiji M. High-performance drug discovery: computational screening by combining docking and molecular dynamics simulations. PLoS Comput Biol 2009; 5:e1000528. [PMID: 19816553 PMCID: PMC2746282 DOI: 10.1371/journal.pcbi.1000528] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 09/03/2009] [Indexed: 11/29/2022] Open
Abstract
Virtual compound screening using molecular docking is widely used in the discovery of new lead compounds for drug design. However, this method is not completely reliable and therefore unsatisfactory. In this study, we used massive molecular dynamics simulations of protein-ligand conformations obtained by molecular docking in order to improve the enrichment performance of molecular docking. Our screening approach employed the molecular mechanics/Poisson-Boltzmann and surface area method to estimate the binding free energies. For the top-ranking 1,000 compounds obtained by docking to a target protein, approximately 6,000 molecular dynamics simulations were performed using multiple docking poses in about a week. As a result, the enrichment performance of the top 100 compounds by our approach was improved by 1.6–4.0 times that of the enrichment performance of molecular dockings. This result indicates that the application of molecular dynamics simulations to virtual screening for lead discovery is both effective and practical. However, further optimization of the computational protocols is required for screening various target proteins. Lead discovery is one of the most important processes in rational drug design. To improve the rate of the detection of lead compounds, various technologies such as high-throughput screening and combinatorial chemistry have been introduced into the pharmaceutical industry. However, since these technologies alone may not improve lead productivity, computational screening has become important. A central method for computational screening is molecular docking. This method generally docks many flexible ligands to a rigid protein and predicts the binding affinity for each ligand in a practical time. However, its ability to detect lead compounds is less reliable. In contrast, molecular dynamics simulations can treat both proteins and ligands in a flexible manner, directly estimate the effect of explicit water molecules, and provide more accurate binding affinity, although their computational costs and times are significantly greater than those of molecular docking. Therefore, we developed a special purpose computer “MDGRAPE-3” for molecular dynamics simulations and applied it to computational screening. In this paper, we report an effective method for computational screening; this method is a combination of molecular docking and massive-scale molecular dynamics simulations. The proposed method showed a higher and more stable enrichment performance than the molecular docking method used alone.
Collapse
Affiliation(s)
- Noriaki Okimoto
- High-performance Molecular Simulation Team, Computational Systems Biology Research Group, Advanced Computational Sciences Department, RIKEN Advanced Science Institute, Yokohama, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cloning of a novel pyrethroid-hydrolyzing carboxylesterase gene from Sphingobium sp. strain JZ-1 and characterization of the gene product. Appl Environ Microbiol 2009; 75:5496-500. [PMID: 19581484 DOI: 10.1128/aem.01298-09] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel esterase gene, pytH, encoding a pyrethroid-hydrolyzing carboxylesterase was cloned from Sphingobium sp. strain JZ-1. The gene contained an open reading frame of 840 bp. Sequence identity searches revealed that the deduced enzyme shared the highest similarity with many alpha/beta-hydrolase fold proteins (20 to 24% identities). PytH was expressed in Escherichia coli BL21 and purified using Ni-nitrilotriacetic acid affinity chromatography. It was a monomeric structure with a molecular mass of approximately 31 kDa and a pI of 4.85. PytH was able to transform p-nitrophenyl esters of short-chain fatty acids and a wide range of pyrethroid pesticides, and isomer selectivity was not observed. No cofactors were required for enzyme activity.
Collapse
|
17
|
Khajamohiddin S, Repalle ER, Pinjari AB, Merrick M, Siddavattam D. Biodegradation of aromatic compounds: an overview of meta-fission product hydrolases. Crit Rev Microbiol 2008; 34:13-31. [PMID: 18259978 DOI: 10.1080/10408410701683656] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Meta fission product (MFP) hydrolases catalyze hydrolysis of a low reactive carbon-carbon bond found in meta-fission products, generated during biodegradation of various aromatic compounds. These enzymes belong to the alpha/beta hydrolase super family and show structural conservation despite having poor sequence similarity. MFP-hydrolases are substrate specific and studies have indicated that this substrate specificity plays a key role in the determination of the organism's ability to degrade a particular substrate. In this concise review of MFP-hydrolases we discuss their classification, biochemical properties, the molecular basis of their substrate specificity, their catalytic mechanism, and evolutionary significance.
Collapse
Affiliation(s)
- Syed Khajamohiddin
- Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | | | | | | |
Collapse
|
18
|
Seah SYK, Ke J, Denis G, Horsman GP, Fortin PD, Whiting CJ, Eltis LD. Characterization of a C-C bond hydrolase from Sphingomonas wittichii RW1 with novel specificities towards polychlorinated biphenyl metabolites. J Bacteriol 2007; 189:4038-45. [PMID: 17416660 PMCID: PMC1913379 DOI: 10.1128/jb.01950-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingomonas wittichii RW1 degrades chlorinated dibenzofurans and dibenzo-p-dioxins via meta cleavage. We used inverse PCR to amplify dxnB2, a gene encoding one of three meta-cleavage product (MCP) hydrolases identified in the organism that are homologues of BphD involved in biphenyl catabolism. Purified DxnB2 catalyzed the hydrolysis of 8-OH 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate (HOPDA) approximately six times faster than for HOPDA at saturating substrate concentrations. Moreover, the specificity of DxnB2 for HOPDA (k(cat)/K(m) = 1.2 x 10(7) M(-1) s(-1)) was about half that of the BphDs of Burkholderia xenovorans LB400 and Rhodococcus globerulus P6, two potent polychlorinated biphenyl (PCB)-degrading strains. Interestingly, DxnB2 transformed 3-Cl and 4-OH HOPDAs, compounds that inhibit the BphDs and limit PCB degradation. DxnB2 had a higher specificity for 9-Cl HOPDA than for HOPDA but a lower specificity for 8-Cl HOPDA (k(cat)/K(m) = 1.7 x 10(6) M(-1) s(-1)), the chlorinated analog of 8-OH HOPDA produced during dibenzofuran catabolism. Phylogenetic analyses based on structure-guided sequence alignment revealed that DxnB2 belongs to a previously unrecognized class of MCP hydrolases, evolutionarily divergent from the BphDs although the physiological substrates of both enzyme types are HOPDAs. However, both classes of enzymes have mainly small hydrophobic residues lining the subsite that binds the C-6 phenyl of HOPDA, in contrast to the bulky hydrophobic residues (Phe106, Phe135, Trp150, and Phe197) found in the class II enzymes that prefer substrates possessing a C-6 alkyl. Thr196 and/or Asn203 appears to be an important determinant of specificity for DxnB2, potentially forming hydrogen bonds with the 8-OH substituent. This study demonstrates that the substrate specificities of evolutionarily divergent hydrolases may be useful for degrading mixtures of pollutants, such as PCBs.
Collapse
|
19
|
Schleberger C, Sachelaru P, Brandsch R, Schulz GE. Structure and action of a C-C bond cleaving alpha/beta-hydrolase involved in nicotine degradation. J Mol Biol 2006; 367:409-18. [PMID: 17275835 DOI: 10.1016/j.jmb.2006.12.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 12/21/2006] [Accepted: 12/27/2006] [Indexed: 11/29/2022]
Abstract
The enzyme 2,6-dihydroxy-pseudo-oxynicotine hydrolase from the nicotine-degradation pathway of Arthrobacter nicotinovorans was crystallized and the structure was determined by an X-ray diffraction analysis at 2.1 A resolution. The enzyme belongs to the alpha/beta-hydrolase family as derived from the chain-fold and from the presence of a catalytic triad with its oxyanion hole at the common position. This relationship assigns a pocket lined by the catalytic triad as the active center. The asymmetric unit contains two C(2)-symmetric dimer molecules, each adopting a specific conformation. One dimer forms a more spacious active center pocket and the other a smaller one, suggesting an induced-fit. All of the currently established C-C bond cleaving alpha/beta-hydrolases are from bacterial meta-cleavage pathways for the degradation of aromatic compounds and cover their active center with a 40 residue lid placed between two adjacent strands of the beta-sheet. In contrast, the reported enzyme shields its active center with a 110 residue N-terminal domain, which is absent in the meta-cleavage hydrolases. Since neither the substrate nor an analogue could be bound in the crystals, the substrate was modeled into the active center using the oxyanion hole as a geometric constraint. The model was supported by enzymatic activity data of 11 point mutants and by the two dimer conformations suggesting an induced-fit. Moreover, the model assigned a major role for the large N-terminal domain that is specific to the reported enzyme. The proposal is consistent with the known data for the meta-cleavage hydrolases although it differs in that the reaction does not release alkenes but a hetero-aromatic compound in a retro-Friedel-Crafts acylation. Because the hydrolytic water molecule can be assigned to a geometrically suitable site that can be occupied in the presence of the substrate, the catalytic triad may not form a covalent acyl-enzyme intermediate but merely support a direct hydrolysis.
Collapse
Affiliation(s)
- Christian Schleberger
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Albertstr. 21, D-79104 Freiburg im Breisgau, Germany
| | | | | | | |
Collapse
|
20
|
Horsman GP, Ke J, Dai S, Seah SYK, Bolin JT, Eltis LD. Kinetic and structural insight into the mechanism of BphD, a C-C bond hydrolase from the biphenyl degradation pathway. Biochemistry 2006; 45:11071-86. [PMID: 16964968 PMCID: PMC2519953 DOI: 10.1021/bi0611098] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Kinetic and structural analyses of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) hydrolase from Burkholderia xenovorans LB400 (BphD(LB400)) provide insight into the catalytic mechanism of this unusual serine hydrolase. Single turnover stopped-flow analysis at 25 degrees C showed that the enzyme rapidly (1/tau(1) approximately 500 s(-1)) transforms HOPDA (lambda(max) = 434 nm) into a species with electronic absorption maxima at 473 and 492 nm. The absorbance of this enzyme-bound species (E:S) decayed in a biphasic manner (1/tau(2) = 54 s(-1), 1/tau(3) = 6 s(-1) approximately k(cat)) with simultaneous biphasic appearance (48 and 8 s(-1)) of an absorbance band at 270 nm characteristic of one of the products, 2-hydroxypenta-2,4-dienoic acid (HPD). Increasing solution viscosity with glycerol slowed 1/tau(1) and 1/tau(2) but affected neither 1/tau(3) nor k(cat), suggesting that 1/tau(2) may reflect diffusive HPD dissociation, and 1/tau(3) represents an intramolecular event. Product inhibition studies suggested that the other product, benzoate, is released after HPD. Contrary to studies in a related hydrolase, we found no evidence that ketonized HOPDA is partially released prior to hydrolysis, and, therefore, postulate that the biphasic kinetics reflect one of two mechanisms, pending assignment of E:S (lambda(max) = 492 nm). The crystal structures of the wild type, the S112C variant, and S112C incubated with HOPDA were each determined to 1.6 A resolution. The latter reveals interactions between conserved active site residues and the dienoate moiety of the substrate. Most notably, the catalytic residue His265 is hydrogen-bonded to the 2-hydroxy/oxo substituent of HOPDA, consistent with a role in catalyzing ketonization. The data are more consistent with an acyl-enzyme mechanism than with the formation of a gem-diol intermediate.
Collapse
Affiliation(s)
- Geoff P. Horsman
- Departments of Biochemistry and Molecular Biology, and Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jiyuan Ke
- Purdue Cancer Center and Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907−2054
| | - Shaodong Dai
- Purdue Cancer Center and Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907−2054
| | - Stephen Y. K. Seah
- Departments of Biochemistry and Molecular Biology, and Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jeffrey T. Bolin
- Purdue Cancer Center and Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907−2054
| | - Lindsay D. Eltis
- Departments of Biochemistry and Molecular Biology, and Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- To whom correspondence should be addressed: Lindsay D. Eltis, , Phone: (604)822−0042, Fax: (604)822−6041
| |
Collapse
|
21
|
Jun SY, Fushinobu S, Nojiri H, Omori T, Shoun H, Wakagi T. Improving the catalytic efficiency of a meta-cleavage product hydrolase (CumD) from Pseudomonas fluorescens IP01. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1159-66. [PMID: 16844437 DOI: 10.1016/j.bbapap.2006.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 05/24/2006] [Accepted: 05/24/2006] [Indexed: 11/21/2022]
Abstract
The meta-cleavage product hydrolase from Pseudomonas fluorescens IP01 (CumD) hydrolyzes 2-hydroxy-6-oxo-7-methylocta-2,4-dienoate (6-isopropyl HODA) in the cumene (isopropylbenzene) degradation pathway. To modulate the substrate specificity and catalytic efficiency of CumD toward substrates derived from monocyclic aromatic compounds, we constructed the CumD mutants, A129V, I199V, and V227I, as well as four types of double and triple mutants. Toward substrates with smaller side chains (e.g. 2-hydroxy-6-oxohepta-2,4-dienoate; 6-ethyl-HODA), the k(cat)/K(m) values of the single mutants were 4.2-11 fold higher than that of the wild type enzyme and 1.8-4.7 fold higher than that of the meta-cleavage product hydrolase from Pseudomonas putida F1 (TodF). The A129V mutant showed the highest k(cat)/K(m) value for 2-hydroxy-6-oxohepta-2,4-dienoate (6-ethyl-HODA). The crystal structure of the A129V mutant was determined at 1.65 A resolution, enabling location of the Ogamma atom of the Ser103 side chain. A chloride ion was bound to the oxyanion hole of the active site, and mutant enzymes at the residues forming this site were also examined. The k(cat) values of Ser34 mutants were decreased 2.9-65 fold, suggesting that the side chain of Ser34 supports catalysis by stabilizing the anionic oxygen of the proposed intermediate state (gem-diolate). This is the first crystal structure determination of CumD in an active form, with the Ser103 residue, one of the catalytically essential "triad", being intact.
Collapse
Affiliation(s)
- So-Young Jun
- Laboratory of Enzymology, Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Nishioka T, Iwata M, Imaoka T, Mutoh M, Egashira Y, Nishiyama T, Shin T, Fujii T. A mono-2-ethylhexyl phthalate hydrolase from a Gordonia sp. that is able to dissimilate di-2-ethylhexyl phthalate. Appl Environ Microbiol 2006; 72:2394-9. [PMID: 16597936 PMCID: PMC1449075 DOI: 10.1128/aem.72.4.2394-2399.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gordonia sp. strain P8219, a strain able to decompose di-2-ethylhexyl phthalate, was isolated from machine oil-contaminated soil. Mono-2-ethylhexyl phthalate hydrolase was purified from cell extracts of this strain. This enzyme was a 32,164-Da homodimeric protein, and it effectively hydrolyzed monophthalate esters, such as monoethyl, monobutyl, monohexyl, and mono-2-ethylhexyl phthalate. The K(m) and V(max) values for mono-2-ethylhexyl phthalate were 26.9 +/- 4.3 microM and 18.1 +/- 0.9 micromol/min . mg protein, respectively. The deduced amino acid sequence of the enzyme exhibited less than 30% homology with those of meta-cleavage hydrolases which are serine hydrolases but exhibited no significant homology with the sequences of serine esterases. The pentapeptide motif GXSXG, which is conserved in serine hydrolases, was present in the sequence. The enzymatic properties and features of the primary structure suggested that this enzyme is a novel enzyme belonging to an independent group of serine hydrolases.
Collapse
Affiliation(s)
- Tuguhiro Nishioka
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Miyakoshi M, Urata M, Habe H, Omori T, Yamane H, Nojiri H. Differentiation of carbazole catabolic operons by replacement of the regulated promoter via transposition of an insertion sequence. J Biol Chem 2006; 281:8450-7. [PMID: 16455652 DOI: 10.1074/jbc.m600234200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The carbazole catabolic car operons from Pseudomonas resinovorans CA10 and Janthinobacterium sp. J3 have nearly identical nucleotide sequences in their structural and intergenic regions but not in their flanking regions. Transposition of ISPre1 from the anthranilate catabolic ant operon located an inducible promoter Pant upstream of the carCA10 operon, which is regulated by the AraC/XylS family activator AntR in response to anthranilate. The transposed Pant drives transcription of the carCA10 operon, which is composed of the car-AaAaBaBbCAcAdDFECA10 structural genes. Transcriptional fusion truncating Pant upstream of carAaCA10 resulted in constitutive luciferase expression. Primer extension analysis identified a transcription start point of the constitutive mRNA of the carCA10 operon at 385 nucleotides upstream of the carAaCA10 translation start point, and the PcarAa promoter was found. On the other hand, a GntR family regulatory gene carRJ3 is divergently located upstream of the carJ3 operon. The Pu13 promoter, required for inducible transcription of the carJ3 operon in the presence of carbazole, was identified in the region upstream of carAaJ3, which had been replaced with the Pant promoter in the carCA10 operon. Deletion of carRJ3 from a transcriptional fusion resulted in high level constitutive expression from Pu13. Purified CarRJ3 protein bound at two operator sequences OI and OII, showing that CarRJ3 directly represses Pu13 in the absence of its inducer, which was identified as 2-hydroxy-6-oxo-6-(2'-aminophenyl)hexa-2,4-dienoate, an intermediate of the carbazole degradation pathway.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Carbazoles/metabolism
- DNA Footprinting
- DNA, Bacterial/chemistry
- DNA, Intergenic/chemistry
- Electrophoretic Mobility Shift Assay
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Genes, Reporter
- Luciferases/metabolism
- Molecular Sequence Data
- Mutagenesis, Insertional
- Operon
- Plasmids
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Pseudomonadaceae/chemistry
- Pseudomonadaceae/genetics
- Pseudomonadaceae/growth & development
- Pseudomonadaceae/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
- Transformation, Genetic
Collapse
Affiliation(s)
- Masatoshi Miyakoshi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Dunn G, Montgomery MG, Mohammed F, Coker A, Cooper JB, Robertson T, Garcia JL, Bugg TDH, Wood SP. The structure of the C-C bond hydrolase MhpC provides insights into its catalytic mechanism. J Mol Biol 2004; 346:253-65. [PMID: 15663942 DOI: 10.1016/j.jmb.2004.11.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 11/12/2004] [Accepted: 11/15/2004] [Indexed: 11/26/2022]
Abstract
2-Hydroxy-6-ketonona-2,4-diene-1,9-dioic acid 5,6-hydrolase (MhpC) is a 62 kDa homodimeric enzyme of the phenylpropionate degradation pathway of Escherichia coli. The 2.1 A resolution X-ray structure of the native enzyme determined from orthorhombic crystals confirms that it is a member of the alpha/beta hydrolase fold family, comprising eight beta-strands interconnected by loops and helices. The 2.8 A resolution structure of the enzyme co-crystallised with the non-hydrolysable substrate analogue 2,6-diketo-nona-1,9-dioic acid (DKNDA) confirms the location of the active site in a buried channel including Ser110, His263 and Asp235, postulated contributors to a serine protease-like catalytic triad in homologous enzymes. It appears that the ligand binds in two separate orientations. In the first, the C6 keto group of the inhibitor forms a hemi-ketal adduct with the Ser110 side-chain, the C9 carboxylate group interacts, via the intermediacy of a water molecule, with Arg188 at one end of the active site, while the C1 carboxylate group of the inhibitor comes close to His114 at the other end. In the second orientation, the C1 carboxylate group binds at the Arg188 end of the active site and the C9 carboxylate group at the His114 end. These arrangements implicated His114 or His263 as plausible contributors to catalysis of the initial enol/keto tautomerisation of the substrate but lack of conservation of His114 amongst related enzymes and mutagenesis results suggest that His263 is the residue involved. Variability in the quality of the electron density for the inhibitor amongst the eight molecules of the crystal asymmetric unit appears to correlate with alternative positions for the side-chain of His114. This might arise from half-site occupation of the dimeric enzyme and reflect the apparent dissociation of approximately 50% of the keto intermediate from the enzyme during the catalytic cycle.
Collapse
Affiliation(s)
- G Dunn
- Department of Biomolecular Science, University of Southampton, Bassett Crescent East, Southampton, SO16 7PX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Shintani M, Yoshida T, Habe H, Omori T, Nojiri H. Large plasmid pCAR2 and class II transposon Tn4676 are functional mobile genetic elements to distribute the carbazole/dioxin-degradative car gene cluster in different bacteria. Appl Microbiol Biotechnol 2004; 67:370-82. [PMID: 15856217 DOI: 10.1007/s00253-004-1778-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 09/10/2004] [Accepted: 09/17/2004] [Indexed: 10/26/2022]
Abstract
The carbazole-catabolic plasmid pCAR1 isolated from Pseudomonas resinovorans strain CA10 was sequenced in its entirety; and it was found that pCAR1 carries the class II transposon Tn4676 containing carbazole-degradative genes. In this study, a new plasmid designated pCAR2 was isolated from P. putida strain HS01 that was a transconjugant from mating between the carbazole-degrader Pseudomonas sp. strain K23 and P. putida strain DS1. Southern hybridization and nucleotide sequence analysis of pCAR1 and pCAR2 revealed that the whole backbone structure was very similar in each. Plasmid pCAR2 was self-transmissible, because it was transferred from strain HS01 to P. fluorescens strain IAM12022 at the frequency of 2 x 10(-7) per recipient cell. After the serial transfer of strain HS01 on rich medium, we detected the transposition of Tn4676 from pCAR2 to the HS01 chromosome. The chromosome-located copy of Tn4676 was flanked by a 6-bp target duplication, 5'-AACATC-3'. These results experimentally demonstrated the transferability of pCAR2 and the functionality of Tn4676 on pCAR2. It was clearly shown that plasmid pCAR2 and transposon Tn4676 are active mobile genetic elements that can mediate the horizontal transfer of genes for the catabolism of carbazole.
Collapse
Affiliation(s)
- Masaki Shintani
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|