1
|
Poggi L, Chentout L, Lizot S, Boyne A, Juillerat A, Moiani A, Luka M, Carbone F, Ménager M, Cavazzana M, Duchateau P, Valton J, Kracker S. Rescuing the cytolytic function of APDS1 patient T cells via TALEN-mediated PIK3CD gene correction. Mol Ther Methods Clin Dev 2023; 31:101133. [PMID: 38152700 PMCID: PMC10751510 DOI: 10.1016/j.omtm.2023.101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/05/2023] [Indexed: 12/29/2023]
Abstract
Gain-of-function mutations in the PIK3CD gene result in activated phosphoinositide 3-kinase δ syndrome type 1 (APDS1). This syndrome is a life-threatening combined immunodeficiency and today there are neither optimal nor long-term therapeutic solutions for APDS1 patients. Thus, new alternative treatments are highly needed. The aim of the present study is to explore one therapeutic avenue that consists of the correction of the PIK3CD gene through gene editing. Our proof-of-concept shows that TALEN-mediated gene correction of the mutated PIK3CD gene in APDS1 T cells results in normalized phospho-AKT levels in basal and activated conditions. Normalization of PI3K signaling was correlated to restored cytotoxic functions of edited CD8+ T cells. At the transcriptomic level, single-cell RNA sequencing revealed corrected signatures of CD8+ effector memory and CD8+ proliferating T cells. This proof-of-concept study paves the way for the future development of a gene therapy candidate to cure activated phosphoinositide 3-kinase δ syndrome type 1.
Collapse
Affiliation(s)
- Lucie Poggi
- Université de Paris Cité, Imagine Institute, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Loïc Chentout
- Université de Paris Cité, Imagine Institute, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Sabrina Lizot
- Cellectis, 8 rue de la Croix Jarry, 75013 Paris, France
| | - Alex Boyne
- Cellectis, Inc., 430 East 29th Street, New York, NY 10016, USA
| | | | | | - Marine Luka
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Francesco Carbone
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Mickael Ménager
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Marina Cavazzana
- Université de Paris Cité, Imagine Institute, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | | | - Julien Valton
- Cellectis, 8 rue de la Croix Jarry, 75013 Paris, France
| | - Sven Kracker
- Université de Paris Cité, Imagine Institute, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| |
Collapse
|
2
|
Xie L, Chiang ET, Wu X, Kelly GT, Kanteti P, Singleton PA, Camp SM, Zhou T, Dudek SM, Natarajan V, Wang T, Black SM, Garcia JGN, Jacobson JR. Regulation of Thrombin-Induced Lung Endothelial Cell Barrier Disruption by Protein Kinase C Delta. PLoS One 2016; 11:e0158865. [PMID: 27442243 PMCID: PMC4956111 DOI: 10.1371/journal.pone.0158865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 06/23/2016] [Indexed: 12/18/2022] Open
Abstract
Protein Kinase C (PKC) plays a significant role in thrombin-induced loss of endothelial cell (EC) barrier integrity; however, the existence of more than 10 isozymes of PKC and tissue-specific isoform expression has limited our understanding of this important second messenger in vascular homeostasis. In this study, we show that PKCδ isoform promotes thrombin-induced loss of human pulmonary artery EC barrier integrity, findings substantiated by PKCδ inhibitory studies (rottlerin), dominant negative PKCδ construct and PKCδ silencing (siRNA). In addition, we identified PKCδ as a signaling mediator upstream of both thrombin-induced MLC phosphorylation and Rho GTPase activation affecting stress fiber formation, cell contraction and loss of EC barrier integrity. Our inhibitor-based studies indicate that thrombin-induced PKCδ activation exerts a positive feedback on Rho GTPase activation and contributes to Rac1 GTPase inhibition. Moreover, PKD (or PKCμ) and CPI-17, two known PKCδ targets, were found to be activated by PKCδ in EC and served as modulators of cytoskeleton rearrangement. These studies clarify the role of PKCδ in EC cytoskeleton regulation, and highlight PKCδ as a therapeutic target in inflammatory lung disorders, characterized by the loss of barrier integrity, such as acute lung injury and sepsis.
Collapse
Affiliation(s)
- Lishi Xie
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Eddie T Chiang
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Xiaomin Wu
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Gabriel T Kelly
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Prasad Kanteti
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Patrick A Singleton
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Sara M Camp
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Tingting Zhou
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Steven M Dudek
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Viswanathan Natarajan
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ting Wang
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Steven M Black
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Joe G N Garcia
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Jeffrey R Jacobson
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
3
|
Majowicz A, van der Marel S, te Velde AA, Meijer SL, Petry H, van Deventer SJ, Ferreira V. Murine CD4⁺CD25⁻ cells activated in vitro with PMA/ionomycin and anti-CD3 acquire regulatory function and ameliorate experimental colitis in vivo. BMC Gastroenterol 2012. [PMID: 23198878 PMCID: PMC3536706 DOI: 10.1186/1471-230x-12-172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Induced regulatory T (iTreg) lymphocytes show promise for application in the treatment of allergic, autoimmune and inflammatory disorders. iTreg cells demonstrate advantages over natural Treg (nTreg) cells in terms of increased number of starting population and greater potential to proliferate. Different activation methods to generate iTreg cells result in iTreg cells that are heterogeneous in phenotype and mechanisms of suppression. Therefore it is of interest to explore new techniques to generate iTreg cells and to determine their physiological relevance. Methods Using phorbol myristate acetate (PMA)/ionomycin and anti-CD3 activation of CD4+CD25- cells we generated in vitro functional CD4+CD25+ iTreg (TregPMA) cells. Functionality of the generated TregPMA cells was tested in vivo in a mouse model of inflammatory bowel disease (IBD) - CD45RB transfer colitis model. Results TregPMA cells expressed regulatory markers and proved to ameliorate the disease phenotype in murine CD45RB transfer colitis model. The body weight loss and disease activity scores for TregPMA treated mice were reduced when compared to diseased control group. Histological assessment of colon sections confirmed amelioration of the disease phenotype. Additionally, cytokine analysis showed decreased levels of proinflammatory colonic and plasma IL-6, colonic IL-1 β and higher levels of colonic IL-17 when compared to diseased control group. Conclusions This study identifies a new method to generate in vitro iTreg cells (TregPMA cells) which physiological efficacy has been demonstrated in vivo.
Collapse
Affiliation(s)
- Anna Majowicz
- Research and Development, uniQure BV, Meibergdreef 61, 1105 BA, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
4
|
Bull ND, Wood JP, Osborne NN, Barnett NL. Protein Kinase C-Mediated Modulation of Glutamate Transporter Activity in Rat Retina. Curr Eye Res 2009; 32:123-31. [PMID: 17364745 DOI: 10.1080/02713680601139200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
It has previously been shown that inhibitors of protein kinase C (PKC) attenuate retinal glutamate uptake in situ. The aim of the current study was to determine whether PKCdelta-mediated inhibition differentially reduces the transport of glutamate into retinal Müller cells when compared with retinal neurons. The influence of two different types of PKC inhibitors on the uptake of [3H]D-aspartate was therefore compared in the intact retina, mixed retinal cultures, and Müller cell-enriched retinal cultures. It was found that 25 microM of the pan-isoform PKC inhibitor, chelerythrine, reduced [3H]D-aspartate uptake by 78%, 71%, and 68% in isolated retinas, mixed neuronal/glial cultures, and Müller cell-enriched cultures, respectively. Importantly, 20 microM of the PKCdelta-selective inhibitor rottlerin also reduced the uptake of D-aspartate to similar extents in all three systems, and the reductions were statistically similar to those found for the pan-specific PKC inhibitor. Neither pan-isoform nor PKCdelta-selective activators stimulated glutamate uptake in either culture system or the intact retina. The current results suggest that specific PKC inhibitors are quantitatively similar in reducing the uptake of glutamate into retinal neurons and Müller cells.
Collapse
Affiliation(s)
- Natalie D Bull
- Vision, Touch and Hearing Research Centre, School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | |
Collapse
|
5
|
Raju BR, Saikia AK. Asymmetric synthesis of naturally occurring spiroketals. Molecules 2008; 13:1942-2038. [PMID: 18794795 PMCID: PMC6245485 DOI: 10.3390/molecules13081942] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 08/22/2008] [Accepted: 08/22/2008] [Indexed: 12/03/2022] Open
Abstract
Spiroketals are widely found as substructures of many naturally occurring compounds from diverse sources including plants, animals as well as microbes. Naturally occurring spiroketals are biologically active and most of them are chiral molecules. This article aims at reviewing the asymmetric synthesis of biologically active spiroketals for last 10 years (1998-2007).
Collapse
Affiliation(s)
| | - Anil K. Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India E-mail:
| |
Collapse
|
6
|
Schonhoff CM, Gillin H, Webster CRL, Anwer MS. Protein kinase Cdelta mediates cyclic adenosine monophosphate-stimulated translocation of sodium taurocholate cotransporting polypeptide and multidrug resistant associated protein 2 in rat hepatocytes. Hepatology 2008; 47:1309-16. [PMID: 18273864 DOI: 10.1002/hep.22162] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
UNLABELLED Cyclic adenosine monophosphate (cAMP) stimulates translocation of Na(+)-taurocholate (TC) cotransporting polypeptide (Ntcp) and multidrug resistant associated protein 2 (Mrp2) to the plasma membrane. Because cAMP activates phosphoinositide-3-kinase (PI3K) and protein kinase C (PKC) activation is PI3K-dependent, the aim of the current study was to determine whether cAMP activates conventional and novel PKCs in hepatocytes and whether such activation plays a role in cAMP-stimulated Ntcp and Mrp2 translocation. The effect of cAMP on PKCs, TC uptake, and Ntcp and Mrp2 translocation was studied in isolated rat hepatocytes using a cell-permeable cAMP analog, CPT-cAMP. The activity of PKCs was assessed from membrane translocation of individual PKCs, and phospho-specific antibodies were used to determine PKCdelta phosphorylation. TC uptake was determined from time-dependent uptake of (14)C-TC, and a cell surface biotinylation method was used to determine Ntcp and Mrp2 translocation. CPT-cAMP stimulated nPKCdelta but not cPKCalpha or nPKCepsilon, and induced PI3K-dependent phosphorylation of nPKCdelta at Thr(505). Rottlerin, an inhibitor of nPKCdelta, inhibited cAMP-induced nPKCdelta translocation, TC uptake, and Ntcp and Mrp2 translocation. Bistratene A, an activator of nPKCdelta, stimulated nPKCdelta translocation, TC uptake, and Ntcp and Mrp2 translocation. The effects of cAMP and bistratene A on TC uptake and Ntcp and Mrp2 translocation were not additive. CONCLUSION These results suggest that cAMP stimulates Ntcp and Mrp2 translocation, at least in part, by activating nPKCdelta via PI3K-dependent phosphorylation at Thr(505).
Collapse
Affiliation(s)
- Christopher M Schonhoff
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA
| | | | | | | |
Collapse
|
7
|
Muchekehu RW, Harvey BJ. 17beta-estradiol rapidly mobilizes intracellular calcium from ryanodine-receptor-gated stores via a PKC-PKA-Erk-dependent pathway in the human eccrine sweat gland cell line NCL-SG3. Cell Calcium 2008; 44:276-88. [PMID: 18215419 DOI: 10.1016/j.ceca.2007.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 11/01/2007] [Accepted: 12/10/2007] [Indexed: 11/25/2022]
Abstract
We describe a novel rapid non-genomic effect of 17beta-estradiol (E2) on intracellular Ca2+ ([Ca2+]i) signalling in the eccrine sweat gland epithelial cell line NCL-SG3. E2 had no observable effect on basal [Ca2+]i, however exposure of cells to E2 in the presence of the microsomal Ca2+ ATPase pump inhibitor, thapsigargin, produced a secondary, sustained increase in [Ca2+]i compared to thapsigargin treatment alone, where cells responded with a transient single spike-like increase in [Ca2+]i. The E2-induced increase in [Ca2+]i was not dependent on the presence of extracellular calcium and was completely abolished by ryanodine (100 microM). The estrogen receptor antagonist ICI 182,780 (1 microM) prevented the E2-induced effects suggesting a role for the estrogen receptor in the release of [Ca2+]i from ryanodine-receptor-gated stores. The E2-induced effect on [Ca2+]i could also be prevented by the protein kinase C delta (PKCdelta)-specific inhibitor rottlerin (10 microM), the protein kinase A (PKA) inhibitor Rp-adenosine 3',5'-cyclic monophosphorothioate (200 microM) and the MEK inhibitor PD98059 (10 microM). We established E2 rapidly activates the novel PKC isoform PKCepsilon, PKA and Erk 1/2 MAPK in a PKCdelta and estrogen-receptor-dependent manner. The E2-induced effect was specific to 17beta-estradiol, as other steroids had no effect on [Ca2+]i. We have demonstrated a novel mechanism by which E2 rapidly modulates [Ca2+]i release from ryanodine-receptor-gated intracellular Ca2+ stores. The signal transduction pathway involves the estrogen receptor coupled to a PKC-PKA-Erk 1/2 signalling pathway.
Collapse
Affiliation(s)
- Ruth W Muchekehu
- Molecular Medicine Laboratories, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Smurfit Building, Beaumont Hospital, P.O. Box 9063, Dublin 9, Ireland.
| | | |
Collapse
|
8
|
Lee CF, Chen YC, Liu CY, Wei YH. Involvement of protein kinase C delta in the alteration of mitochondrial mass in human cells under oxidative stress. Free Radic Biol Med 2006; 40:2136-46. [PMID: 16785027 DOI: 10.1016/j.freeradbiomed.2006.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2005] [Revised: 01/15/2006] [Accepted: 02/13/2006] [Indexed: 11/26/2022]
Abstract
Alteration of mitochondrial mass of human 143B osteosarcoma cells upon exposure to hydrogen peroxide (H(2)O(2)) was investigated. We found that mitochondrial mass and the intracellular level of H(2)O(2) were increased by exogenous H(2)O(2), which was accompanied with up-regulation of functional PKCdelta. To investigate the role of PKCdelta in H(2)O(2)-induced increase of mitochondrial mass, we treated 143B cells with PKCdelta activator, bistratene A, and PKCdelta inhibitor, rottlerin, respectively. The results show that bistratene A caused an increase of mitochondrial mass and that the H(2)O(2)-induced increase of mitochondrial mass was completely suppressed by rottlerin. Furthermore, we found that activation of PKCdelta by bistratene A increased the intracellular levels of H(2)O(2) and MnSOD protein expression. By contrast, suppression of PKCdelta by rottlerin decreased the intracellular levels of H(2)O(2) and MnSOD protein expression. Moreover, we noted that MnSOD expression was highly correlated with the expression of p53, which was controlled by PKCdelta. Finally, we demonstrated that PKCdelta was overexpressed in skin fibroblasts of patients with MERRF syndrome. Taken together, we conclude that PKCdelta is involved in the regulation of mitochondrial mass and intracellular H(2)O(2) in human cells and may play a key role in the overproliferation of mitochondria in the affected tissues of patients with mitochondrial diseases such as MERRF syndrome.
Collapse
Affiliation(s)
- Cheng-Feng Lee
- Department of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | |
Collapse
|
9
|
Abstract
The enantioselective synthesis of bistramide A has been achieved with a longest linear sequence of 18 steps. The synthetic strategy involves the use of a distereoselective glycolate alkylation, an aldol addition of a chlorotitanium enolate of N-acylthiazolidinthione, and a Sharpless asymmetric epoxidation to synthesize the three key fragments.
Collapse
Affiliation(s)
- Michael T Crimmins
- Department of Chemistry, Venable and Kenan Laboratories of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA.
| | | |
Collapse
|
10
|
D'Costa AM, Robinson JK, Maududi T, Chaturvedi V, Nickoloff BJ, Denning MF. The proapoptotic tumor suppressor protein kinase C-delta is lost in human squamous cell carcinomas. Oncogene 2006; 25:378-86. [PMID: 16158048 DOI: 10.1038/sj.onc.1209065] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein kinase C (PKC)-delta is proapoptotic in human keratinocytes, and is downregulated or inactivated in keratinocytes expressing the activated Ha-ras oncogene, making it a candidate tumor suppressor gene for squamous cell carcinoma (SCC). We evaluated the significance of PKC-delta loss in transformed human keratinocytes using tumorigenic HaCaT Ras II-4 cells that have significantly reduced PKC-delta levels. Re-expression of PKC-delta by retrovirus transduction caused an increase in apoptosis and growth inhibition in culture. The growth inhibition induced by PKC-delta could be partially reversed by Bcl-x(L) expression, indicating that apoptosis was in part responsible for PKC-delta-induced growth inhibition. PKC-delta re-expression suppressed the tumorigenicity of HaCaT Ras II-4 cells in nude mice (P<0.05), and the small tumors that did form contained elevated levels of activated caspase-3, indicating increased apoptosis. In addition, we found that 29% (12/42) of human Bowen's disease (squamous carcinoma in situ) or SCC cases had absent or reduced PKC-delta when compared to the surrounding normal epidermis. These results indicate that PKC-delta inhibits transformed keratinocyte growth by inducing apoptosis, and that PKC-delta may function as a tumor suppressor in human SCCs where its loss in cells harboring activated ras could provide a growth advantage by conferring resistance to apoptosis.
Collapse
Affiliation(s)
- A M D'Costa
- Cardinal Bernardin Cancer Center, Skin Cancer Research Program, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | | | | | |
Collapse
|
11
|
Statsuk AV, Bai R, Baryza JL, Verma VA, Hamel E, Wender PA, Kozmin SA. Actin is the primary cellular receptor of bistramide A. Nat Chem Biol 2006; 1:383-8. [PMID: 16372404 DOI: 10.1038/nchembio748] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bistramide A (1) is a marine natural product with broad, potent antiproliferative effects. Bistramide A has been reported to selectively activate protein kinase C (PKC) delta, leading to the view that PKCdelta is the principal mediator of antiproliferative activity of this natural product. Contrary to this observation, we established that bistramide A binds PKCdelta with low affinity, does not activate this kinase in vitro and does not translocate GFP-PKCdelta. Furthermore, we identified actin as the cellular receptor of bistramide A. We report that bistramide A disrupts the actin cytoskeleton, inhibits actin polymerization, depolymerizes filamentous F-actin in vitro and binds directly to monomeric G-actin in a 1:1 ratio with a Kd of 7 nM. We also constructed a fully synthetic9 bistramide A-based affinity matrix and isolated actin as a specific bistramide A-binding protein. This activity provides a molecular explanation for the potent antiproliferative effects of bistramide A, identifying it as a new biochemical tool for studies of the actin cytoskeleton and as a potential lead for development of a new class of antitumor agents.
Collapse
Affiliation(s)
- Alexander V Statsuk
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Farhadi A, Keshavarzian A, Ranjbaran Z, Fields JZ, Banan A. The role of protein kinase C isoforms in modulating injury and repair of the intestinal barrier. J Pharmacol Exp Ther 2005; 316:1-7. [PMID: 16002462 DOI: 10.1124/jpet.105.085449] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal cells express a diverse group of protein kinase C (PKC) isoforms that play critical roles in a number of cell functions, including intracellular signaling and barrier integrity. PKC isoforms expressed by gastrointestinal epithelial cells consist of three major PKC subfamilies: conventional isoforms (alpha, beta1, beta2, and gamma), novel isoforms (delta, epsilon, theta, eta, and mu), and atypical isoforms (lambda, tau, and zeta). This review highlights recent discoveries, including our own, that some PKC isoforms in gastrointestinal epithelia monolayer cell culture are involved in injury to, whereas others are involved in protection of, intestinal barrier integrity. For example, certain PKC isoforms aggravate oxidative damage, whereas others protect against it. These findings suggest that the development of agents that selectively activate or inhibit specific PKC isoforms may lead to new therapeutic modalities for important gastrointestinal disorders such as cancer and inflammatory bowel disease.
Collapse
Affiliation(s)
- A Farhadi
- Section of Gastroenterology and Nutrition, Division of Digestive Diseases, Rush University Medical Center, 1725 W. Harrison, Suite 206, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
13
|
Lewis AE, Susarla R, Wong BCY, Langman MJS, Eggo MC. Protein kinase C delta is not activated by caspase-3 and its inhibition is sufficient to induce apoptosis in the colon cancer line, COLO 205. Cell Signal 2005; 17:253-62. [PMID: 15494216 DOI: 10.1016/j.cellsig.2004.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 06/03/2004] [Accepted: 07/17/2004] [Indexed: 11/16/2022]
Abstract
Activation of protein kinase C delta (PKCdelta) is believed to be pro-apoptotic. PKCdelta is reported to be reduced in colon cancers. Using a colon cancer cell line, COLO 205, we have examined the roles of PKCdelta in apoptosis and of caspase-3 in the activation and inhibition of PKCdelta. PKCdelta activation with bistratene A and its inhibition with rottlerin induced apoptosis. Effects of PKC activators and inhibitors were additive, suggesting that PKCdelta down-regulation was responsible for the effects on apoptosis. Different apoptotic pathways induced PKCdelta cleavage, but the fragment produced was inactive in kinase assays. Caspase-3 inhibition did not block DNA fragmentation or PKCdelta proteolysis despite blocking intracellular caspase-3 activity. Calpain inhibition with calpeptin did not prevent TPA-induced PKCdelta cleavage. We conclude that in colonocytes, inhibition of PKCdelta is sufficient to lead to caspase-3-independent apoptosis. Caspase-3 does not cleave PKCdelta to an active form, nor does caspase-3 inhibition block apoptosis.
Collapse
Affiliation(s)
- Aurélia E Lewis
- Division of Medical Sciences, The Medical School, University of Birmingham, B15 2TT, UK
| | | | | | | | | |
Collapse
|
14
|
Mayer AMS, Hamann MT. Marine pharmacology in 2001--2002: marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 2005; 140:265-86. [PMID: 15919242 PMCID: PMC4928201 DOI: 10.1016/j.cca.2005.04.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 04/01/2005] [Accepted: 04/03/2005] [Indexed: 11/25/2022]
Abstract
During 2001--2002, research on the pharmacology of marine chemicals continued to be global in nature involving investigators from Argentina, Australia, Brazil, Canada, China, Denmark, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Netherlands, New Zealand, Pakistan, the Philippines, Russia, Singapore, Slovenia, South Africa, South Korea, Spain, Sweden, Switzerland, Thailand, United Kingdom, and the United States. This current article, a sequel to the authors' 1998, 1999 and 2000 marine pharmacology reviews, classifies 106 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria, on the basis of peer-reviewed preclinical pharmacology. Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 56 marine chemicals. An additional 19 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as to possess anti-inflammatory and antidiabetic effects. Finally, 31 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2001--2002 pharmacological research with marine chemicals continued to contribute potentially novel chemical leads for the ongoing global search for therapeutic agents for the treatment of multiple disease categories.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois 60515, USA.
| | | |
Collapse
|
15
|
Abstract
The convergent total synthesis of the marine natural product (+)-bistramide C confirms the a priori assignments of its relative and absolute configurations, which were originally based on the combined application of [alpha]D analysis, NMR, and synthesis.
Collapse
Affiliation(s)
- Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
16
|
Markos F, Healy V, Harvey BJ. Aldosterone Rapidly Activates Na +/H + Exchange in M-1 Cortical Collecting Duct Cells via a PKC-MAPK Pathway. ACTA ACUST UNITED AC 2004; 99:p1-9. [PMID: 15637466 DOI: 10.1159/000081796] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Accepted: 08/16/2004] [Indexed: 11/19/2022]
Abstract
BACKGROUND In this study, the mechanism of the rapid non-genomic effect of aldosterone on Na(+)/H(+) exchanger (NHE)-mediated intracellular pH (pH(i)) recovery from an acid load in murine M-1 cortical collecting duct cells was assessed. METHODS Spectrofluorescence microscopy and Western blot analysis was carried out and NH(4)Cl was used to induce the acid load. RESULTS Aldosterone (10 nM) induced a rapid (<5 min) concentration-dependent increase in pH(i) recovery in M-1 cells, an effect mimicked by its precursor deoxycorticosterone (1 nM). This response was unaffected by the mineralocorticoid receptor (MR) antagonist spironolactone (10 microM) but was significantly reduced by the NHE antagonists 5'-(N-ethyl- N-isopropyl)amiloride (EIPA) (20 microM) and cariporide (1 microM). The PKC inhibitor chelerythrine chloride (1 microM) significantly attenuated the aldosterone-induced increase in NHE1 activity. HBDDE (80 microM), a PKC(alpha) inhibitor, inhibited the rapid aldosterone effect whereas rottlerin (15 microM), a PKC(delta) antagonist, did not. The glucocorticoid receptor agonists hydrocortisone (1 microM) and dexamethasone (100 nM) decreased NHE activity, whereas the synthetic mineralocorticoid fludrocortisone (1 nM) had no significant effect. MAPK inhibition using PD98059 (25 microM) significantly attenuated the rapid aldosterone effect; Western blot analysis showed that aldosterone activation of ERK 1/2 was unaffected by pretreatment with spironolactone but was inhibited following chelerythrine chloride. CONCLUSION Aldosterone causes a rapid non-genomic increase in NHE1 activity in M-1 cells via a PKC(alpha )/MAPK pathway independent of the classical MR.
Collapse
Affiliation(s)
- Farouk Markos
- Department of Physiology, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
17
|
Wheaton K, Riabowol K. Protein kinase C delta blocks immediate-early gene expression in senescent cells by inactivating serum response factor. Mol Cell Biol 2004; 24:7298-311. [PMID: 15282327 PMCID: PMC479731 DOI: 10.1128/mcb.24.16.7298-7311.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Fibroblasts lose the ability to replicate in response to growth factors and become unable to express growth-associated immediate-early genes, including c-fos and egr-1, as they become senescent. The serum response factor (SRF), a major transcriptional activator of immediate-early gene promoters, loses the ability to bind to the serum response element (SRE) and becomes hyperphosphorylated in senescent cells. We identify protein kinase C delta (PKC delta) as the kinase responsible for inactivation of SRF both in vitro and endogenously in senescent cells. This is due to a higher level of PKC delta activity as cells age, production of the PKC delta catalytic fragment, and its nuclear localization in senescent but not in low-passage-number cells. The phosphorylation of T160 of SRF by PKC delta in vitro and in vivo led to loss of SRF DNA binding activity. Both the PKC delta inhibitor rottlerin and ectopic expression of a dominant negative form of PKC delta independently restored SRE-dependent transcription and immediate-early gene expression in senescent cells. Modulation of PKC delta activity in vivo with rottlerin or bistratene A altered senescent- and young-cell morphology, respectively. These observations support the idea that the coordinate transcriptional inhibition of several growth-associated genes by PKC delta contributes to the senescent phenotype.
Collapse
Affiliation(s)
- Keith Wheaton
- Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Centre, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
18
|
Hassouna A, Matata BM, Galiñanes M. PKC-epsilon is upstream and PKC-alpha is downstream of mitoKATP channels in the signal transduction pathway of ischemic preconditioning of human myocardium. Am J Physiol Cell Physiol 2004; 287:C1418-25. [PMID: 15294852 DOI: 10.1152/ajpcell.00144.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein kinase C (PKC) is involved in the process of ischemic preconditioning (IPC), although the precise mechanism is still a subject of debate. Using specific PKC inhibitors, we investigated which PKC isoforms were involved in IPC of the human atrial myocardium sections and to determine their temporal relationship to the opening of mitochondrial potassium-sensitive ATP (mitoKATP) channels. Right atrial muscles obtained from patients undergoing elective cardiac surgery were equilibrated and then randomized to receive any of the following protocols: aerobic control, 90-min simulated ischemia/120-min reoxygenation, IPC using 5-min simulated ischemia/5-min reoxygenation followed by 90-min simulated ischemia/120-min reoxygenation and finally, PKC inhibitors were added 10 min before and 10 min during IPC followed by 90-min simulated ischemia/120-min reoxygenation. The PKC isoforms inhibitors investigated were V1-2 peptide, GO-6976, rottlerin, and LY-333531 for PKC-epsilon, -alpha, -delta and -beta, respectively. To investigate the relation of PKC isoforms to mitoKATP channels, PKC inhibitors found to be involved in IPC were added 10 min before and 10 min during preconditioning by diazoxide followed by 90-min simulated ischemia/120-min reoxygenation in a second experiment. Creatine kinase leakage and methylthiazoletetrazolium cell viability were measured. Phosphorylation of PKC isoforms after activation of the sample by either diazoxide or IPC was detected by using Western blot analysis and then analyzed by using Scion image software. PKC-alpha and -epsilon inhibitors blocked IPC, whereas PKC-delta and -beta inhibitors did not. The protection elicited by diazoxide, believed to be via mitoKATP channels opening, was blocked by the inhibition of PKC-alpha but not -epsilon isoforms. In addition, diazoxide caused increased phosphorylation of PKC-alpha to the same extent as IPC but did not affect the phosphorylation of PKC-epsilon, a process believed to be critical in PKC activation. The results demonstrate that PKC-alpha and -epsilon are involved in IPC of the human myocardium with PKC-epsilon being upstream and PKC-alpha being downstream of mitoKATP channels.
Collapse
Affiliation(s)
- Ashraf Hassouna
- Integrative Human Cardiovascular Physiology and Cardiac Surgery Unit, Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, United Kingdom
| | | | | |
Collapse
|
19
|
Harvey BJ, Alzamora R, Healy V, Renard C, Doolan CM. Rapid responses to steroid hormones: from frog skin to human colon. A homage to Hans Ussing. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1566:116-28. [PMID: 12421543 DOI: 10.1016/s0005-2736(02)00589-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fifty years ago, Hans Ussing described the mechanism by which ions are actively transported across frog skin. Since then, an enormous amount of effort has been invested in determining the cellular and molecular specifics of the transport mechanisms and their regulatory pathways. Ion transport in high-resistance epithelia is regulated by a variety of hormonal and non-hormonal factors. In vertebrates, steroid hormones such as mineralocorticoids, glucocorticoids and estrogens are major regulators of ion and water transport and hence are central to the control of extracellular fluid volume and blood pressure. Steroid hormones act through nuclear receptors to control the transcriptional activity of specific target genes, such as ion channels, ion transporters and ion pumps. These effects are observed after a latency of several hours and can last for days leading to cellular differentiation that allows a higher transport activity. This pathway is the so-called genomic phase. However, in the past 10 years, it has become apparent that steroid hormones can regulate electrolyte and water transport in tight epithelia independently of the transcription of these ion channels and transporters by regulating ion transporter activity in a non-genomic fashion via modulation of various signal transduction pathways. The molecular mechanisms underlying the steroid hormone-induced activation of signal transduction pathways such as protein kinase C (PKC), protein kinase A (PKA), intracellular calcium, intracellular pH and mitogen-activated protein kinases (MAPKs) and how non-genomic activation of these pathways influences epithelial ion transport will be discussed in this review.
Collapse
Affiliation(s)
- Brian J Harvey
- Molecular Medicine, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.
| | | | | | | | | |
Collapse
|
20
|
Shum JKS, Melendez JA, Jeffrey JJ. Serotonin-induced MMP-13 production is mediated via phospholipase C, protein kinase C, and ERK1/2 in rat uterine smooth muscle cells. J Biol Chem 2002; 277:42830-40. [PMID: 12213812 DOI: 10.1074/jbc.m205094200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Serotonin (5-hydroxytryptamine; 5-HT), acting via the 5-HT(2A) receptor, up-regulates the transcription and production of interstitial collagenase (matrix metalloproteinase-13; MMP-13), a critical enzyme responsible for maintaining the integrity of the uterus, after parturition. Serotonin treatment of rat uterine myometrial smooth muscle cells induced inositol phosphate (IP) turnover, which was abolished by the 5-HT(2A) receptor-specific antagonists ketanserin and spiperone. The phospholipase C (PLC) inhibitors and D609 attenuated serotonin-mediated-IP turnover with a corresponding inhibition of MMP-13 protein production. Subsequent recovery of both MMP-13 protein expression and IP generation was seen following the removal of D609. Protein kinase C (PKC) activators, the diacylglycerol analogue 1,2-dioctanoyl-sn-glycerol and phorbol myristate acetate (PMA), mimicked the effect of serotonin on MMP-13 protein expression; prolonged PMA treatment (which down-regulates PKC) lowered MMP-13 protein levels. The PKC-specific inhibitors bisindolylmaleimide I, calphostin C, CGP 41251, and the PKCdelta-selective inhibitor rottlerin were able to suppress serotonin up-regulation of MMP-13. Furthermore, the mitogen-activated protein kinase kinase (MEK) inhibitor PD98059 blocked serotonin-dependent activation of p44/42 MAPK (pERK1/2), a downstream effector of PKC and also down-regulated MMP-13 protein expression. Similarly, calphostin C and rottlerin depressed activation of p44/42 MAPK. From these studies, serotonin, binding through the 5-HT(2A) receptor, initiates a signaling cascade whereby stimulation of PLC leads to the activation of PKC and subsequently the ERK1/2 pathway, which ultimately results in MMP-13 production.
Collapse
Affiliation(s)
- Jenny K S Shum
- Centers for Cell Biology and Cancer Research and Immunology and Microbial Disease, MC-151, Albany Medical College, Albany, New York 12208, USA
| | | | | |
Collapse
|
21
|
Liedtke CM, Cole TS. Activation of NKCC1 by hyperosmotic stress in human tracheal epithelial cells involves PKC-delta and ERK. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1589:77-88. [PMID: 11909643 DOI: 10.1016/s0167-4889(01)00189-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hyperosmotic stress activates Na+-K+-2Cl- cotransport (NKCC1) in secretory epithelia of the airways. NKCC1 activation was studied as uptake of 36Cl or 86Rb in human tracheal epithelial cells (HTEC). Application of hypertonic sucrose or NaCl increased bumetanide-sensitive ion uptake but did not affect Na+/H+ and Cl-/OH-(HCO3-) exchange carriers. Hyperosmolarity decreased intracellular volume (Vi) after 10 min from 7.8 to 5.4 microl/mg protein and increased intracellular Cl- (Cl-i) from 353 to 532 nmol/mg protein. Treatment with an alpha-adrenergic agent rapidly increased Cl-i and Vi in a bumetanide-sensitive manner, indicating uptake of ions by NKCC1 followed by osmotically obligated water. These results indicate that HTEC act as osmometers but lose intracellular water slowly. Hyperosmotic stress also increased the activity of PKC-delta and of the extracellular signal-regulated kinase ERK subgroup of the MAPK family. Activity of stress-activated protein kinase JNK was not affected by hyperosmolarity. PD-98059, an inhibitor of the ERK cascade, reduced ERK activity and bumetanide-sensitive 36Cl uptake. PKC inhibitors blocked activation of ERK indicating that PKC may be a downstream activator of ERK. The results indicate that hyperosmotic stress activates NKCC1 and this activation is regulated by PKC-delta and ERK.
Collapse
Affiliation(s)
- Carole M Liedtke
- Cystic Fibrosis Center, Departments of Pediatrics, and Physiology and Biophysics, Pediatric Pulmonology, Case Western Reserve University, BRB, Room 824, 2109 Adelbert Rd., Cleveland, OH 44106-4948, USA.
| | | |
Collapse
|