1
|
Tripathi N, Bhardwaj N, Kumar S, Jain SK. Phytochemical and Pharmacological Aspects of Psoralen - A Bioactive Furanocoumarin from Psoralea corylifolia Linn. Chem Biodivers 2023; 20:e202300867. [PMID: 37752710 DOI: 10.1002/cbdv.202300867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Since long ago, medicinal plants have played a vital role in drug discovery. Being blessed and rich in chemovars with diverse scaffolds, they have unique characteristics of evolving based on the need. The World Health Organization also mentions that medicinal plants remain at the center for meeting primary healthcare needs as the population relies on them. The plant-derived natural products have remained an attractive choice for drug development owing to their specific biological functions relevant to human health and also the high degree of potency and specificity they offer. In this context, one such esteemed phytoconstituent with inexplicable biological potential is psoralen, a furanocoumarin. Psoralen was the first constituent isolated from the plant Psoralea corylifolia, commonly known as Bauchi. Despite being a life-saver for psoriasis, vitiligo, and leukoderma, it also showed immense anticancer, anti-inflammatory, and anti-osteoporotic potential. This review brings attention to the possible application of psoralen as an attractive target for rational drug design and medicinal chemistry. It discusses the various methods for the total synthesis of psoralen, its extraction, the pharmacological spectrum of psoralen, and the derivatization done on psoralen.
Collapse
Affiliation(s)
- Nancy Tripathi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi, 221005, India
| | - Nivedita Bhardwaj
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi, 221005, India
| | - Sanjay Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi, 221005, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi, 221005, India
| |
Collapse
|
2
|
Qaed E, Al-Hamyari B, Al-Maamari A, Qaid A, Alademy H, Almoiliqy M, Munyemana JC, Al-Nusaif M, Alafifi J, Alyafeai E, Safi M, Geng Z, Tang Z, Ma X. Fisetin's Promising Antitumor Effects: Uncovering Mechanisms and Targeting for Future Therapies. Glob Med Genet 2023; 10:205-220. [PMID: 37565061 PMCID: PMC10412067 DOI: 10.1055/s-0043-1772219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Background Cancer remains a critical global health challenge and a leading cause of mortality. Flavonoids found in fruits and vegetables have gained attention for their potential anti-cancer properties. Fisetin, abundantly present in strawberries, apples, onions, and other plant sources, has emerged as a promising candidate for cancer prevention. Epidemiological studies linking a diet rich in these foods to lower cancer risk have sparked extensive research on fisetin's efficacy. Objective This review aims to comprehensively explore the molecular mechanisms of fisetin's anticancer properties and investigate its potential synergistic effects with other anticancer drugs. Furthermore, the review examines the therapeutic and preventive effects of fisetin against various cancers. Methods A systematic analysis of the available scientific literature was conducted, including research articles, clinical trials, and review papers related to fisetin's anticancer properties. Reputable databases were searched, and selected studies were critically evaluated to extract essential information on fisetin's mechanisms of action and its interactions with other anticancer drugs. Results Preclinical trials have demonstrated that fisetin inhibits cancer cell growth through mechanisms such as cell cycle alteration, induction of apoptosis, and activation of the autophagy signaling pathway. Additionally, fisetin reduces reactive oxygen species levels, contributing to its overall anticancer potential. Investigation of its synergistic effects with other anticancer drugs suggests potential for combination therapies. Conclusion Fisetin, a bioactive flavonoid abundant in fruits and vegetables, exhibits promising anticancer properties through multiple mechanisms of action. Preclinical trials provide a foundation for further exploration in human clinical trials. Understanding fisetin's molecular mechanisms is vital for developing novel, safe, and effective cancer prevention and treatment strategies. The potential synergy with other anticancer drugs opens new avenues for combination therapies, enhancing cancer management approaches and global health outcomes.
Collapse
Affiliation(s)
- Eskandar Qaed
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, People's Republic of China
| | - Bandar Al-Hamyari
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, People's Republic of China
| | - Ahmed Al-Maamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Abdullah Qaid
- N.I. Pirogov Russian National Research Medical University, Russia
| | - Haneen Alademy
- Taiz University Faculty of Medicine and Health Science, Yemen
| | - Marwan Almoiliqy
- Department of Pharmacy, Faculty of Medicine and Health Sciences, University of Science and Technology, Aden, Yemen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Jean Claude Munyemana
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, People's Republic of China
| | - Murad Al-Nusaif
- Department of Neurology and Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, People's Republic of China
| | - Jameel Alafifi
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, People's Republic of China
| | - Eman Alyafeai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Mohammed Safi
- Department of Pharmacy, Dalian Medical University, Dalian, People's Republic of China
| | - Zhaohong Geng
- Department of Cardiology, 2nd Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Zeyao Tang
- Department of Pharmacy, Dalian Medical University, Dalian, People's Republic of China
| | - Xiaodong Ma
- Department of Pharmacy, Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
3
|
Wu Y, Li X, Ma M, Hu G, Fu X, Liu J. Characterization of the Dynamic Gastrointestinal Digests of the Preserved Eggs and Their Effect and Mechanism on HepG2 Cells. Foods 2023; 12:foods12040800. [PMID: 36832875 PMCID: PMC9955911 DOI: 10.3390/foods12040800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023] Open
Abstract
Preserved eggs, an alkaline-fermented food, have been widely searched for their anti-inflammatory activity. Their digestive characteristics in the human gastrointestinal tract and anti-cancer mechanism have not been well explained. In this study, we investigated the digestive characteristics and anti-tumor mechanisms of preserved eggs using an in vitro dynamic human gastrointestinal-IV (DHGI-IV) model. During digestion, the sample pH dynamically changed from 7.01 to 8.39. The samples were largely emptied in the stomach with a lag time of 45 min after 2 h. Protein and fat were significantly hydrolyzed with 90% and 87% digestibility, respectively. Moreover, preserved eggs digests (PED) significantly increased the free radical scavenging activity of ABTS, DPPH, FRAP and hydroxyl groups by 15, 14, 10 and 8 times more than the control group, respectively. PED significantly inhibited the growth, cloning and migration of HepG2 cells at concentrations of 250-1000 μg/mL. Meanwhile, it induced apoptosis by up/down-regulating the expression of the pro-apoptotic factor Bak and the anti-apoptotic gene Bcl-2 in the mitochondrial pathway. PED (1000 μg/mL) treatment resulted in 55% higher ROS production than the control, which also led to apoptosis. Furthermore, PED down-regulated the expression of the pro-angiogenic genes HIF-1α and VEGF. These findings provided a reliable scientific reference for the study of the anti-tumor activity of preserved eggs.
Collapse
Affiliation(s)
- Yan Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Egg Processing, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiujuan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meihu Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Egg Processing, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| | - Gan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Egg Processing, Huazhong Agricultural University, Wuhan 430070, China
| | - Xing Fu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Egg Processing, Huazhong Agricultural University, Wuhan 430070, China
| | - Jihong Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Hosseini SS, Ebrahimi SO, Haji Ghasem Kashani M, Reiisi S. Study of quercetin and fisetin synergistic effect on breast cancer and potentially involved signaling pathways. Cell Biol Int 2022; 47:98-109. [DOI: 10.1002/cbin.11942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/05/2022] [Accepted: 09/08/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Seyede Saba Hosseini
- Department of Cellular and Molecular Biology, School of Biology and Institute of Biological Sciences Damghan University Damghan Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences Shahrekord University Shahrekord Iran
| | - Maryam Haji Ghasem Kashani
- Department of Cellular and Molecular Biology, School of Biology and Institute of Biological Sciences Damghan University Damghan Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences Shahrekord University Shahrekord Iran
| |
Collapse
|
5
|
Li L, Wang M, Yang H, Li Y, Huang X, Guo J, Liu Z. Fisetin Inhibits Trypsin Activity and Suppresses the Growth of Colorectal Cancer in Vitro and in Vivo. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221115511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Colorectal cancer (CRC) is a malignant tumor with high incidence and bad prognosis. Therapies, which are more safe and effective, are urgently needed. Trypsin is proved to be crucial to cancer proliferation and migration, therefore, it is possible to control cancers by modulating its activity. Fisetin is a flavone with trypsin inhibition properties that was screened from more than 45 compounds derived from traditional Chinese medicine (TCM). However, the effects and mechanisms of fisetin on CRC have not been well investigated. In this study, we evaluated the effects of fisetin on 2 different CRC cell lines. Fisetin remarkably inhibited CRC cell proliferation and migration, as well as induced cell apoptosis and Go/G1 phase arrest in a dose-dependent manner. Mechanistic studies revealed that these effects were mediated partially through signaling pathways involving cell cycle regulators p21, p27, cyclinD1, and NF kappa B (NF-κB) p65. Administration of fisetin also significantly suppressed the tumor growth in tumor-bearing NOD/Shi-scid-IL2R gamma (null) (NOG) mice that had been inoculated with human HCT116 cells. Fisetin at the given dosage did not induce significant acute or chronic toxicity in rats. These data provide a potential therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Lin Li
- Jinan University, Guangzhou, China
| | - Min Wang
- Jinan University, Guangzhou, China
| | - Hongyan Yang
- School of Medicine, Foshan University, Foshan, China
| | | | | | - Jialiang Guo
- Jinan University, Guangzhou, China
- School of Medicine, Foshan University, Foshan, China
| | - Zheng Liu
- School of Medicine, Foshan University, Foshan, China
| |
Collapse
|
6
|
Kubina R, Krzykawski K, Kabała-Dzik A, Wojtyczka RD, Chodurek E, Dziedzic A. Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review. Nutrients 2022; 14:2604. [PMID: 35807785 PMCID: PMC9268460 DOI: 10.3390/nu14132604] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Diet plays a crucial role in homeostasis maintenance. Plants and spices containing flavonoids have been widely used in traditional medicine for thousands of years. Flavonols present in our diet may prevent cancer initiation, promotion and progression by modulating important enzymes and receptors in signal transduction pathways related to proliferation, differentiation, apoptosis, inflammation, angiogenesis, metastasis and reversal of multidrug resistance. The anticancer activity of fisetin has been widely documented in numerous in vitro and in vivo studies. This review summarizes the worldwide, evidence-based research on the activity of fisetin toward various types of cancerous conditions, while describing the chemopreventive and therapeutic effects, molecular targets and mechanisms that contribute to the observed anticancer activity of fisetin. In addition, this review synthesized the results from preclinical studies on the use of fisetin as an anticancer agent. Based on the available literature, it might be suggested that fisetin has a bioactive potential to become a complementary drug in the prevention and treatment of cancerous conditions. However, more in-depth research is required to validate current data, so that this compound or its derivatives can enter the clinical trial phase.
Collapse
Affiliation(s)
- Robert Kubina
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland;
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland;
| | - Kamil Krzykawski
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland;
| | - Agata Kabała-Dzik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland;
| | - Robert D. Wojtyczka
- Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland;
| | - Ewa Chodurek
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności Str., 41-208 Sosnowiec, Poland;
| | - Arkadiusz Dziedzic
- Department of Conservative Dentistry with Endodontics, Medical University of Silesia, 17 Akademicki Sq., 41-902 Bytom, Poland;
| |
Collapse
|
7
|
Banik K, Khatoon E, Harsha C, Rana V, Parama D, Thakur KK, Bishayee A, Kunnumakkara AB. Wogonin and its analogs for the prevention and treatment of cancer: A systematic review. Phytother Res 2022; 36:1854-1883. [DOI: 10.1002/ptr.7386] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/18/2021] [Accepted: 01/08/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Kishore Banik
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Elina Khatoon
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Choudhary Harsha
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Varsha Rana
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Dey Parama
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Anupam Bishayee
- College of Osteopathic medicine Lake Erie College of Osteopathic Medicine Bradenton Florida USA
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| |
Collapse
|
8
|
Chen YY, Liang JJ, Wang DL, Chen JB, Cao JP, Wang Y, Sun CD. Nobiletin as a chemopreventive natural product against cancer, a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:6309-6329. [PMID: 35089821 DOI: 10.1080/10408398.2022.2030297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As a leading cause of death, second only to heart disease, cancer has always been one of the burning topics in medical research. When targeting multiple signal pathways in tumorigenesis chemoprevention, using natural or synthetic anti-cancer drugs is a vital strategy to reduce cancer damage. However, toxic effects, multidrug resistance (MDR) as well as cancer stem cells (CSCs) all prominently limited the clinical application of conventional anticancer drugs. With low side effects, strong biological activity, unique mechanism, and wide range of targets, natural products derived from plants are considered significant sources for new drug development. Nobiletin is one of the most attractive compounds, a unique flavonoid primarily isolated from the peel of citrus fruits. Numerous studies in vitro and in vivo have suggested that nobiletin and its derivatives possess the eminent potential to become effective cancer chemoprevention agents through various cellular and molecular levels. This article aims to comprehensively review the anticancer efficacy and specific mechanisms of nobiletin, enhancing our understanding of its chemoprevention properties and providing the latest research findings. At the end of this review, we also give some discussion and future perspectives regarding the challenges and opportunities in nobiletin efficient exploitation.
Collapse
Affiliation(s)
- Yun-Yi Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jiao-Jiao Liang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Deng-Liang Wang
- Citrus Research Institute, Quzhou Academy of Agricultural Sciences, Quzhou, China
| | - Jie-Biao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jin-Ping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Chong-De Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Traditional Chinese medicine Bu-Shen-Jian-Pi-Fang attenuates glycolysis and immune escape in clear cell renal cell carcinoma: results based on network pharmacology. Biosci Rep 2021; 41:228654. [PMID: 34002799 PMCID: PMC8202066 DOI: 10.1042/bsr20204421] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common malignant type of kidney cancer. The present study aims to explore the underlying mechanism and potential targets of the traditional Chinese medicine Bu-Shen-Jian-Pi-Fang (BSJPF) in the treatment of ccRCC based on network pharmacology. After obtaining the complete composition information for BSJPF from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, we analyzed its chemical composition and molecular targets and then established a pharmacological interaction network. Twenty-four significantly differentially expressed genes and nine pathways mainly related to tumor proliferation were identified and screened. Functional enrichment analysis indicated that the potential targets might be significantly involved in glycolysis and the HIF-1 signaling pathway. To further confirm the effect of BSJPF on ccRCC cell proliferation, a BALB/c xenograft mouse model was constructed. Potential targets involved in regulating glycolysis and the tumor immune microenvironment were evaluated using RT-qPCR. VEGF-A expression levels were markedly decreased, and heparin binding-EGF expression was increased in the BSJPF group. BSJPF also inhibited tumor proliferation by enhancing GLUT1- and LDHA-related glycolysis and the expression of the immune checkpoint molecules PD-L1 and CTLA-4, thereby altering the immune-rejection status of the tumor microenvironment. In summary, the present study demonstrated that the mechanism of BSJPF involves multiple targets and signaling pathways related to tumorigenesis and glycolysis metabolism in ccRCC. Our research provides a novel theoretical basis for the treatment of tumors with traditional Chinese medicine and new strategies for immunotherapy in ccRCC patients.
Collapse
|
10
|
Sahebi Z, Emtyazjoo M, Mostafavi PG, Bonakdar S. Promising Chemoprevention of Colonic Aberrant Crypt Foci by Portunus segnis Muscle and Shell Extracts in Azoxymethane-Induced Colorectal Cancer in Rats. Anticancer Agents Med Chem 2021; 20:2041-2052. [PMID: 32532197 DOI: 10.2174/1871520620666200612144912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 10/07/2019] [Accepted: 02/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE This study subjected a rat model to the extracts of muscle and shell tissues from Portunus segnis to assess their therapeutic effects on the HT-29 colon cancer cells as well as on colonic Aberrant Crypt Foci (ACF) induced by Azoxymethane (AOM). METHODS The cell line was exposed to the extracts to compare the cytotoxicity of hexane, butanol, ethyl acetate, and water extract of muscle and ethanolic extract of the shell. Male rats (n=40) were assigned into control, positive, negative, and treatment groups. The animals were injected with AOM, except the control group, and then exposed to 250 and 500mg/kg of the crude extracts. Immunohistochemical localization of Bax and Bcl-2, as well as ACF and antioxidant enzymes, were evaluated in the rat colon. RESULTS The butanolic muscle extract and ethanolic shell one demonstrated an IC50 of 9.02±0.19μg/ml and 20.23±0.27μg/ml towards the cell line, respectively. Dietary exposure inhibited the ACF formation and crypt multiplicity in the colon compared to the cancer control group. The activity of SOD and CAT increased, while that of MDA decreased. The expression of Bax and Bcl-2 increased and decreased, respectively. CONCLUSION Taken together, the results show that both extractions were suggested to be suppressive to AOMinduced colon cancer.
Collapse
Affiliation(s)
- Zahra Sahebi
- Department of Marine Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mozhgan Emtyazjoo
- Department of Marine Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Pargol G Mostafavi
- Department of Marine Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Izuegbuna O. Leukemia Chemoprevention and Therapeutic Potentials: Selected Medicinal Plants with Anti-Leukemic Activities. Nutr Cancer 2021; 74:437-449. [PMID: 34060380 DOI: 10.1080/01635581.2021.1924209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Haematological malignancies account for more than one million cases of all cancers yearly worldwide. While survival has improved due to newer drugs used in their management, relapsed/refractory disease remains a challenge, and treatment modalities come with side effects and morbidities. The management of leukaemias with medicinal plants and their natural products remain a viable option. Numerous studies have shown the potentials and viability of medicinal plants and their natural products as good options against leukaemias. However many of these natural products face peculiar challenges such as low systemic bioavailability, hydrophobic nature and displayed toxicities when given at different pharmacologic doses, while the medicinal plants face the threat of extinction. The development of semi-synthetic analogues and better regulations have helped overcome some of these challenges. This review briefly analyzes four medicinal plants and their different natural products that are used traditionally in the management of cancers, and have been scientifically proven to have some form of activity against leukemia. These plants include Tanacetum parthenium, Garcinia hanburyi, Scutellaria baicalensis, and Combretum caffrum. This review discusses these medicinal plants and their natural products under the following headings: ethnobotany, phytochemistry, mechanism of action, antileukaemic activity and toxicity.
Collapse
|
12
|
Kumar R, Harilal S, Parambi DGT, Narayanan SE, Uddin MS, Marathakam A, Jose J, Mathew GE, Mathew B. Fascinating Chemopreventive Story of Wogonin: A Chance to Hit on the Head in Cancer Treatment. Curr Pharm Des 2021; 27:467-478. [PMID: 32338206 DOI: 10.2174/1385272824999200427083040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/30/2020] [Indexed: 11/22/2022]
Abstract
Cancer, global havoc, is a group of debilitating diseases that strikes family as well as society. Cancer cases are drastically increasing these days. Despite many therapies and surgical procedures available, cancer is still difficult to control due to limited effective therapies or targeted therapies. Natural products can produce lesser side effects to the normal cells, which are the major demerit of chemotherapies and radiation. Wogonin, a natural product extracted from the plant, Scutellaria baicalensis has been widely studied and found with a high caliber to tackle most of the cancers via several mechanisms that include intrinsic as well as extrinsic apoptosis signaling pathways, carcinogenesis diminution, telomerase activity inhibition, metastasis inhibition in the inflammatory microenvironment, anti-angiogenesis, cell growth inhibition and arrest of the cell cycle, increased generation of H2O2 and accumulation of Ca2+ and also as an adjuvant along with anticancer drugs. This article discusses the role of wogonin in various cancers, its synergism with various drugs, and the mechanism by which wogonin controls tumor growth.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Seetha Harilal
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Della G T Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Sakaka, Al Jouf, 2014, Saudi Arabia
| | - Siju E Narayanan
- P.G. Department of Pharmacology, College of Pharmaceutical Sciences, Government Medical College, Kannur-670503, India
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Akash Marathakam
- Department of Pharmaceutical Chemistry, National College of Pharmacy, Calicut, India
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Science, NITTE Deemed to be University, Manglore, 575018, India
| | - Githa E Mathew
- Department of Pharmacology, Grace College of Pharmacy, Palakkad, India
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, 678557, Kerala, India
| |
Collapse
|
13
|
Imran M, Saeed F, Gilani SA, Shariati MA, Imran A, Afzaal M, Atif M, Tufail T, Anjum FM. Fisetin: An anticancer perspective. Food Sci Nutr 2021; 9:3-16. [PMID: 33473265 PMCID: PMC7802565 DOI: 10.1002/fsn3.1872] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the provision of safe and cost-effective chemopreventive cancer approaches, still there are requirements to enhance their efficiency. The use of dietary agents as phytochemicals plays an imperative role against different human cancer cell lines. Among these novel dietary agents, fisetin (3,3',4',7-tetrahydroxyflavone) is present in different fruits and vegetables such as apple, persimmon, grape, strawberry, cucumber, and onion. Being a potent anticancer agent, fisetin has been used to inhibit stages in the cancer cells (proliferation, invasion), prevent cell cycle progression, inhibit cell growth, induce apoptosis, cause polymerase (PARP) cleavage, and modulate the expressions of Bcl-2 family proteins in different cancer cell lines (HT-29, U266, MDA-MB-231, BT549, and PC-3M-luc-6), respectively. Further, fisetin also suppresses the activation of the PKCα/ROS/ERK1/2 and p38 MAPK signaling pathways, reduces the NF-κB activation, and down-regulates the level of the oncoprotein securin. Fisetin also inhibited cell division and proliferation and invasion as well as lowered the TET1 expression levels. The current review article highlights and discusses the anticancer role of fisetin in cell cultures and animal and human studies. Conclusively, fisetin as a polyphenol with pleiotropic pharmacological properties showed promising anticancer activity in a wide range of cancers. Fisetin suppresses the cancer cell stages, prevents progression in cell cycle and cell growth, and induces apoptosis.
Collapse
Affiliation(s)
- Muhammad Imran
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Farhan Saeed
- Institute of Home & Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Syed Amir Gilani
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Mohammad Ali Shariati
- Laboratory of Biocontrol and Antimicrobial ResistanceOrel StateUniversity Named After I.S. TurgenevOrelRussia
| | - Ali Imran
- Institute of Home & Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Afzaal
- Institute of Home & Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Atif
- Department of Clinical Laboratory SciencesCollege of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Tabussam Tufail
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | | |
Collapse
|
14
|
Liu W, Xu W, Li C, Xu J, Huang K, Hu R, Huang H, Liu X. Network pharmacological systems study of Huang-Lian-Tang in the treatment of glioblastoma multiforme. Oncol Lett 2020; 21:18. [PMID: 33240424 PMCID: PMC7681198 DOI: 10.3892/ol.2020.12279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) has a poor prognosis and its recurrence and mortality rates are high. At present, there is no effective clinical method to control its progression and recurrence. Traditional Chinese Medicine has a high status not only in China, but also in the world. Certain drugs are also used in the clinical treatment of tumor diseases. In clinical practice, Huang-Lian-Tang (HLT) has proven efficacy in treating brain diseases and preventing tumor recurrence. However, the mechanisms of action have remained elusive. The present study explored the potential mechanisms of HLT in the treatment of gliomas based on network pharmacology. First, information on the composition of HLT was obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, and the composition and targets of the chemical substances contained in the herbs were analyzed. Subsequently, a pharmacological interaction network for HLT was built. Furthermore, the expressed genes of patients with GBM were obtained from Gene Expression Omnibus database and screened. A protein-protein interaction network was then constructed for both sets of data and they were combined with a topology method for analysis. Finally, the screened genes were subjected to enrichment analysis and pathway analysis. A total of 386 candidate targets and 7 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were screened, which were mainly associated with amino acid metabolism. Gene Ontology enrichment analysis and KEGG signal pathway analysis indicated that these targets are involved in anti-apoptosis, anti-oxidative stress, multicellular biological processes and other physiological and pathological processes related to the occurrence and development of GBM. In conclusion, the present results indicated that the mechanisms of action of HLT against GBM involve multiple targets and signaling pathways that are related to tumorigenesis and progression. The present study not only provided a novel theoretical basis for Traditional Chinese Medicine to treat tumors but also novel ideas for the treatment of GBM.
Collapse
Affiliation(s)
- Wangrui Liu
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China.,Clinical College of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 20032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, P.R. China
| | - Chuanyu Li
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China.,Clinical College of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Junfei Xu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Ke Huang
- Department of Obstetrics and Gynecology, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Renyue Hu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Haineng Huang
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China.,Clinical College of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Xiaojuan Liu
- Department of Pathogenic Biology, Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
15
|
Majumder M, Sharma M, Maiti S, Mukhopadhyay R. Edible Tuber Amorphophallus paeoniifolius (Dennst.) Extract Induces Apoptosis and Suppresses Migration of Breast Cancer Cells. Nutr Cancer 2020; 73:2477-2490. [PMID: 33034216 DOI: 10.1080/01635581.2020.1830127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Medicinal plants offer enormous possibilities in the quest of novel bioactive formulation for cancer therapy. Here, we studied the anticancer efficacy of the extract of edible tuber Amorphophallus paeoniifolius (Dennst.) (APTE) against estrogen positive MCF-7 and triple negative MDA-MB-231 breast cancer cell lines. APTE showed significant cytotoxic activity in both MCF-7 and MDA-MB-231 cells in a dose and time-dependent manner. The effect of APTE on metastatic parameters e.g., migration, adhesion, and invasion in MCF-7 and MDA-MB-231 cells were studied using wound healing, collagen adhesion, and transwell matrigel invasion assays, respectively. APTE significantly reduced migration in both the cell lines, however, its effect on the inhibition of adhesion and invasion was higher in MDA-MB-231 cells. Annexin V-Cy3 staining suggested that APTE induced apoptosis in these cells which was further validated by attenuation of antiapoptotic Bcl-2 and induction of pro-apoptotic Bax, Caspase-7 expression and cleavage of PARP. High resolution-liquid chromatography mass spectroscopy analysis with bioactive ethyl acetate and butanol fractions of APTE detected several compounds with anticancer activities. Overall, the study described the mechanism of anticancer activity of a common edible tuber A. paeoniifolius and contributes to growing list of naturally occurring chemo-preventive strategies.
Collapse
Affiliation(s)
- Munmi Majumder
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Manoj Sharma
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Siddhartha Maiti
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
16
|
Liang Y, He L, Zhang M, Liu X, Jin G, Jin Y, Ma M. Preserved egg digests promote the apoptosis of HT29 and HepG2 cells. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
Pak F, Oztopcu-Vatan P. Fisetin effects on cell proliferation and apoptosis in glioma cells. ACTA ACUST UNITED AC 2020; 74:295-302. [PMID: 31421049 DOI: 10.1515/znc-2019-0098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/18/2019] [Indexed: 12/26/2022]
Abstract
This research investigated the antiproliferative effects of 1-500 μM fisetin in T98G and BEAS-2B cells by MTT assay. The IC50 of fisetin in T98G cells for 24 and 48 h were 93 and 75 μM, respectively. Apoptotic alterations of fisetin-treated T98G cells were observed by transmission electron microscopy. BEAS-2B was then used in comparison to T98G cells to determine the cytotoxic effects of fisetin. The IC50 of fisetin for 24 and 48 h were recorded as 270 and 90 μM in BEAS-2B cells, respectively. Different concentrations of fisetin were selected to determine the apoptotic and necrotic effects. Consequently, fisetin was determined to have more apoptotic effects in T98G than BEAS-2B cells, dose- and time-dependently. Moreover, fisetin was found to have cytotoxicity at lower doses in T98G cells compared to carmustine, as positive control. CASPASE 3, CASPASE 9, CASPASE 8, and BAX expressions were increased by the selected fisetin doses of 25 and 50 μM, while that of BCL-2 and survivin was reduced in T98G cells. These results will serve as an essential basis of future in vitro and in vivo studies, in the continuous search for alternative treatment agents for gliomas.
Collapse
Affiliation(s)
- Fulya Pak
- Graduated School of Natural and Applied Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Pinar Oztopcu-Vatan
- Faculty of Arts and Sciences, Department of Biology, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey, Phone: +90 222 239 37 50
| |
Collapse
|
18
|
Klimaszewska-Wiśniewska A, Grzanka D, Czajkowska P, Hałas-Wiśniewska M, Durślewicz J, Antosik P, Grzanka A, Gagat M. Cellular and molecular alterations induced by low‑dose fisetin in human chronic myeloid leukemia cells. Int J Oncol 2019; 55:1261-1274. [PMID: 31638196 PMCID: PMC6831210 DOI: 10.3892/ijo.2019.4889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/11/2019] [Indexed: 12/23/2022] Open
Abstract
The present study aimed to evaluate the cellular and molecular effects of low concentrations of the flavonoid, fisetin, on K562 human chronic myeloid leukemia cells, in the context of both potential anti-proliferative and anti-metastatic effects. Thiazolyl blue tetrazolium bromide assay, Trypan blue exclusion assay, Annexin V/propidium iodide test, cell cycle analysis, Transwell migration and invasion assays, the fluorescence staining of β-catenin and F-actin as well as reverse transcription-quantitative polymerase chain reaction were performed to achieve the research goal. Furthermore, the nature of the interaction between fisetin and arsenic trioxide in the K562 cells was analyzed according to the Chou-Talalay median-effect method. We found that low concentrations of fisetin had not only a negligible effect on the viability and apoptosis of the K562 cells, but also modulated the mRNA levels of selected metastatic-related markers, accompanied by an increase in the migratory and invasive properties of these cancer cells. Although some markers of cell death were significantly elevated in response to fisetin treatment, these were counterbalanced through anti-apoptotic and pro-survival signals. With decreasing concentrations of fisetin and arsenic trioxide, the antagonistic interactions between the 2 agents increased. On the whole, the findings of this study suggest that careful consideration should be taken when advising cancer patients to take fisetin as a dietary supplement and when considering fisetin as a potential candidate for the treatment of chronic myeloid leukemia. Further more detailed studies are required to confirm our findings.
Collapse
Affiliation(s)
- Anna Klimaszewska-Wiśniewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| | - Paulina Czajkowska
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| | - Marta Hałas-Wiśniewska
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| |
Collapse
|
19
|
Milutinović MG, Maksimović VM, Cvetković DM, Nikodijević DD, Stanković MS, Pešić M, Marković SD. Potential of Teucrium chamaedrys L. to modulate apoptosis and biotransformation in colorectal carcinoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2019; 240:111951. [PMID: 31085226 DOI: 10.1016/j.jep.2019.111951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Teucrum chamaedrys L. is one of the known medicinal plants, useful for treatment of various health problems, especially digestive. In this study, we investigated methanol, ethyl-acetate and acetone extracts of T. chamaedrys in respect to their anticancer properties in SW480 colorectal cancer cells. MATERIALS AND METHODS Cytotoxicity and proapoptotic potential were assessed by MTT cell viability assay and AO/EB double staining. Molecular mechanisms of induced apoptosis were determined by monitoring Fas receptor protein expression through immunofluorescence, Caspase 8 and 9 activity, as well as concentrations of O2.- spectrophotometrically. Additionally, mRNA expression of biotransformation enzymes (CYP1A1, CYP1B1, GSTP1) and membrane transporters (MRP1 and MRP2) involved in drug resistance were investigated by qPCR method. Qualitative analysis of individual phenolic compounds was performed by reversed phase HPLC-MS analysis. RESULTS Methanol extract shows the best cytotoxicity and selectivity compared to ethyl-acetate and acetone extracts, mainly causing apoptosis of SW480 cells, without affecting normal HaCaT keratinocytes. The increased expression of Fas receptor protein and caspase 8 activity indicate that the death receptor-mediated pathway plays a crucial role in the observed apoptosis. The increased caspase 9 activity and O2.- concentration suggest that mitochondria are also involved in the apoptosis. T. chamaedrys methanol extract inhibits mRNA expression of CYP1A1, CYP1B1, GSTP1, MRP1 and MRP2 in SW480 cells. CONCLUSIONS Induction of apoptosis and inhibition of CYP1A1, CYP1B1, GSTP1, MRP1 and MRP2 mRNA expression implies that T. chamaedrys can serve as a valuable source of bioactive compounds as dietary supplements or selective anticancer agents, with the ability to induce apoptosis and modulate drug resistance in colorectal cancer cells.
Collapse
Affiliation(s)
- Milena G Milutinović
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia.
| | - Vuk M Maksimović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Danijela M Cvetković
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Danijela D Nikodijević
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Milan S Stanković
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Milica Pešić
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Snežana D Marković
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| |
Collapse
|
20
|
Chen J, Huang C, Liu F, Xu Z, Li L, Huang Z, Zhang H. Methylwogonin exerts anticancer effects in A375 human malignant melanoma cells through apoptosis induction, DNA damage, cell invasion inhibition and downregulation of the mTOR/PI3K/Akt signalling pathway. Arch Med Sci 2019; 15:1056-1064. [PMID: 31360200 PMCID: PMC6657243 DOI: 10.5114/aoms.2018.73711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/24/2017] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION The main purpose of the present research was to study the anticancer effects of methylwogonin in A375 human malignant melanoma cells by evaluating its effects on apoptosis, DNA fragmentation, cancer cell invasion and the mTOR/PI3K/AKT signalling pathway. MATERIAL AND METHODS Effects on cell cytotoxicity were evaluated by MTT assay while a clonogenic assay determined the effects of methylwogonin on colony formation. Fluorescence microscopy evaluated apoptotic effects of methylwogonin in these cells using acridine orange/propidium iodide and Hoechst 33342 staining dyes. Gel electrophoresis evaluated the effects of methylwogonin on DNA fragmentation while the Matrigel invasion assay evaluated the effects of the drug on cancer cell invasion. Effects of methylwogonin on the mTOR/PI3K/AKT signalling pathway were evaluated by western blot assay. RESULTS Methylwogonin induces concentration-dependent as well as time-dependent growth inhibitory effects inducing significant cytotoxicity in these cancer cells. Methylwogonin led to dose-dependent inhibition of colony formation in A375 human malignant melanoma cells. The number of cell colonies decreased significantly as the methylwogonin dose increased from 0, 50, 150, to 300 μM. Methylwogonin treatment of cells at lower doses led to yellow fluorescence (early apoptosis), which changed to red/orange fluorescence, indicating late apoptosis at higher doses. Similar results were obtained using Hoechst 33342 staining, revealing that 50, 150 and 300 μM doses of methylwogonin led to significant morphological changes including chromatin condensation, fragmented nuclei and cellular shrinkage. DNA ladder formation was also observed, and this effect increased with increasing doses of methylwogonin. Methylwogonin also inhibited cancer cell invasion in a dose-dependent manner. CONCLUSIONS Different doses of methylwogonin led to concentration-dependent downregulation of phosphorylated PI3K, AKT and mTOR.
Collapse
Affiliation(s)
- Jiaorong Chen
- Department of Anatomy and Histology and Embryology, Basic Medical College, Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Chunmei Huang
- Pathology Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangfang Liu
- Pathology Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihui Xu
- Endocrinology Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Pathology Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Huang
- Pathology Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongfeng Zhang
- Pathology Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Goh JXH, Tan LTH, Goh JK, Chan KG, Pusparajah P, Lee LH, Goh BH. Nobiletin and Derivatives: Functional Compounds from Citrus Fruit Peel for Colon Cancer Chemoprevention. Cancers (Basel) 2019; 11:E867. [PMID: 31234411 PMCID: PMC6627117 DOI: 10.3390/cancers11060867] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022] Open
Abstract
The search for effective methods of cancer treatment and prevention has been a continuous effort since the disease was discovered. Recently, there has been increasing interest in exploring plants and fruits for molecules that may have potential as either adjuvants or as chemopreventive agents against cancer. One of the promising compounds under extensive research is nobiletin (NOB), a polymethoxyflavone (PMF) extracted exclusively from citrus peel. Not only does nobiletin itself exhibit anti-cancer properties, but its derivatives are also promising chemopreventive agents; examples of derivatives with anti-cancer activity include 3'-demethylnobiletin (3'-DMN), 4'-demethylnobiletin (4'-DMN), 3',4'-didemethylnobiletin (3',4'-DMN) and 5-demethylnobiletin (5-DMN). In vitro studies have demonstrated differential efficacies and mechanisms of NOB and its derivatives in inhibiting and killing of colon cancer cells. The chemopreventive potential of NOB has also been well demonstrated in several in vivo colon carcinogenesis animal models. NOB and its derivatives target multiple pathways in cancer progression and inhibit several of the hallmark features of colorectal cancer (CRC) pathophysiology, including arresting the cell cycle, inhibiting cell proliferation, inducing apoptosis, preventing tumour formation, reducing inflammatory effects and limiting angiogenesis. However, these substances have low oral bioavailability that limits their clinical utility, hence there have been numerous efforts exploring better drug delivery strategies for NOB and these are part of this review. We also reviewed data related to patents involving NOB to illustrate the extensiveness of each research area and its direction of commercialisation. Furthermore, this review also provides suggested directions for future research to advance NOB as the next promising candidate in CRC chemoprevention.
Collapse
Affiliation(s)
- Joanna Xuan Hui Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Joo Kheng Goh
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China.
| | - Priyia Pusparajah
- Medical Health and Translational Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia.
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes (PICO), Health and Well-being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia.
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes (PICO), Health and Well-being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia.
| |
Collapse
|
22
|
Flavonoids are identified from the extract of Scutellariae Radix to suppress inflammatory-induced angiogenic responses in cultured RAW 264.7 macrophages. Sci Rep 2018; 8:17412. [PMID: 30479366 PMCID: PMC6258719 DOI: 10.1038/s41598-018-35817-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/09/2018] [Indexed: 12/24/2022] Open
Abstract
Scutellariae Radix (SR), also named Huangqin in China, is the dried root of Scutellaria baicalensis Georgi. Historically, the usage of SR was targeted to against inflammation. In fact, chronic inflammation has a close relationship with hypoxia and abnormal angiogenesis in tumor cells. Hence, we would like to probe the water extract of SR in suppressing the inflammation-induced angiogenesis. Prior to determine the pharmaceutical values of SR, the first step is to analysis the chemical compositions of SR according to China Pharmacopeia (2015). From the results, the amount of baicalin was 12.6% by weight. Furthermore, the anti-angiogenic properties of SR water extract were evaluated in lipopolysaccharide (LPS) pre-treated cultured macrophage RAW 264.7 cells by detecting the inflammatory markers, i.e. Cox-2, cytokine and iNOS, as well as the translocation activity of NFκB and angiogenic biomarker, i.e. VEGF. This herbal extract was capable of declining both inflammatory and angiogenic hallmarks in a concentration-dependent manner. Moreover, the SR-derived flavonoids, i.e. baicalin, baicalein, wogonin and wogonoside, were shown to be active chemicals in the anti-inflammatory-induced angiogenesis. Therefore, the inflammation-induced angiogenesis is believed to be suppressed by SR water extract, or its major ingredients. These results shed light in the benefiting role of SR in the inflammation-induced angiogenesis in vitro.
Collapse
|
23
|
Sanaei M, Kavoosi F, Roustazadeh A, Golestan F. Effect of Genistein in Comparison with Trichostatin A on Reactivation of DNMTs Genes in Hepatocellular Carcinoma. J Clin Transl Hepatol 2018; 6:141-146. [PMID: 29951358 PMCID: PMC6018304 DOI: 10.14218/jcth.2018.00002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 01/14/2023] Open
Abstract
Background and Aims: DNA methylation and histone modification are epigenetic modifications essential for normal function of mammalian cells. The processes are mediated by biochemical interactions between DNA methyltransferases (DNMTs) and histone deacetylases. Promoter hypermethylation and deacetylation of tumor suppressor genes play major roles in cancer induction, through transcriptional silencing of these genes. DNA hypermethylation is carried out by a family of DNMTs including DNMT1, DNMT3a and DNMT3b. In hepatocellular carcinoma, a significant positive correlation between over-expression of these genes and cancer induction has been reported. The DNA demethylating agent genistein (GE) has been demonstrated to reduce different cancers. Previously, we reported that GE can induce apoptosis and inhibit proliferation in hepatocellular carcinoma PLC/PRF5 and HepG2 cell lines. Besides, histone deacetylase inhibitors, such as trichostatin A (TSA), were successfully used to inhibit cancer cell growth. The present study was designed to assess the effect of GE in comparison with TSA on DNMT1, DNMT3a and DNMT3b gene expression, cell growth inhibition and apoptosis induction in the HepG2 cell line. Methods: Cells were seeded and treated with various doses of GE and TSA. The MTT assay, flow cytometry assay, and real-time RT-PCR were used to determine viability, apoptosis, and DNMT1, DNMT3a and DNMT3b gene expression respectively. Results: Both agents inhibited cell growth, induced apoptosis and reactivated DNMT1, DNMT3a and DNMT3b gene expression. Furthermore, TSA demonstrated a significantly greater apoptotic effect than the other agent, whereas GE improved gene expression more significantly than TSA. Conclusions: Our findings suggest that GE and TSA can significantly inhibit cell growth, induce apoptosis and restore DNMT1, DNMT3a and DNMT3b gene reactivation.
Collapse
Affiliation(s)
- Masumeh Sanaei
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Fars province, Iran
| | - Fraidoon Kavoosi
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Fars province, Iran
- *Correspondence to: Fraidoon Kavoosi, Jahrom University of Medical Sciences, Jahrom, Fars province, 74148-46199, Iran. Tel: +98-9173914117, E-mail:
| | - Abazar Roustazadeh
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Fars province, Iran
| | - Fatemeh Golestan
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Fars province, Iran
| |
Collapse
|
24
|
Wang K, Hu DN, Lin HW, Yang WE, Hsieh YH, Chien HW, Yang SF. Fisetin induces apoptosis through mitochondrial apoptosis pathway in human uveal melanoma cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:527-534. [PMID: 29383865 DOI: 10.1002/tox.22538] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 06/07/2023]
Abstract
Fisetin, a diatery flavonoid, been reported that possess anticancer effects in various cancers. The purpose of the study was to investigate the antitumor effects of fisetin in cultured uveal melanoma cell lines and compared with normal retinal pigment epithelial (RPE) cells. MTT assay was used for evaluating cytotoxic effects of fisetin. Flow cytometry study was used for the determination of apoptosis. JC-1 fluorescent reader was used to determine mitochondrial transmembrane potential changes. The results shown that fisetin dose-dependently decreased the cell viability of uveal melanoma cells but not influenced the cell viability of RPE cells. Apoptosis of uveal melanoma cells was induced by fisetin efficiently. Fisetin inhibited antiapoptotic Bcl-2 family proteins and damaged the mitochondrial transmembrane potential. The levels of proapoptotic Bcl-2 proteins, cytochrome c, and various caspase activities were increased by fisetin. In conclusion, fisetin induces apoptosis of uveal melanoma cells selectively and may be a promising agent to be explored for the treatment of uveal melanoma.
Collapse
Affiliation(s)
- Kai Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
| | - Dan-Ning Hu
- Tissue Culture Center, New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hui-Wen Lin
- Department of Optometry, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Hsiang-Wen Chien
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
25
|
Patil VM, Masand N. Anticancer Potential of Flavonoids: Chemistry, Biological Activities, and Future Perspectives. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64179-3.00012-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
A review on the chemotherapeutic potential of fisetin: In vitro evidences. Biomed Pharmacother 2018; 97:928-940. [DOI: 10.1016/j.biopha.2017.10.164] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/23/2017] [Accepted: 10/29/2017] [Indexed: 12/23/2022] Open
|
27
|
Juwita T, Melyani Puspitasari I, Levita J. Torch Ginger (<I>Etlingera elatior</I>): A Review on its Botanical Aspects, Phytoconstituents and Pharmacological Activities. Pak J Biol Sci 2018; 21:151-165. [PMID: 30311471 DOI: 10.3923/pjbs.2018.151.165] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In order to propose a prospective candidate for novel complementary phytopharmaceuticals, one of Zingiberaceae family plant, Etlingeraelatior or torch ginger, was being evaluated. The aim of this review was to provide a comprehensive literature research focused on the botanical aspects, nutritional quality, phytoconstituents and pharmacological activities of E. elatior. Researches on this particular plant were conducted in Malaysia (55.5%), Indonesia (33.3%), Thailand (8.3%) and Singapore (2.7%). This review article has revealed that the most prominent pharmacological activities were anti-microbial, anti-oxidant and anti-tumor activities in consistent with the dominated levels of flavonoids, terpenoids and phenols. However, extended and integrated research should be converged towards intensive investigations concerning to isolated phytoconstituents and its bioactivities, pharmacokinetics, bioavailability, molecular mechanism of its specific pharmacological activities, safety and efficacy studies for further development.
Collapse
|
28
|
Wang J, Huang S. Fisetin inhibits the growth and migration in the A549 human lung cancer cell line via the ERK1/2 pathway. Exp Ther Med 2017; 15:2667-2673. [PMID: 29467859 DOI: 10.3892/etm.2017.5666] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/02/2017] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is the most prevalent malignant tumor type in the developed world and the discovery of novel anti-tumor drugs is a research hotspot. Fisetin, a naturally occurring flavonoid, has been reported to have anti-cancer effects in multiple tumor types. The present study found that fisetin inhibited the growth and migration of non-small cell lung cancer in vitro. MTT, wound-healing, cell-matrix adhesion and Transwell assays were performed and demonstrated that fisetin suppressed proliferation, migration, adhesion and invasion, respectively. Flow cytometric analysis indicated that fisetin induced apoptosis in the A549 cell line by decreasing the expression of c-myc, cyclin-D1, cyclooxygenase-2, B cell lymphoma-2, CXC chemokine receptor type 4, cluster of differentiation 44 and metalloproteinase-2/9, increasing the expression of cyclin dependent kinase inhibitor (CDKN) 1A/B, CDKN2D and E-cadherin and increasing the activity of caspase-3/9 via targeting the extracellular signal-regulated kinase signaling pathway. The results provided comprehensive evidence for the anti-tumor effects of fisetin in non-small cell lung cancer in vitro, which may provide a novel approach for clinical treatment.
Collapse
Affiliation(s)
- Junjian Wang
- Department of Respiratory Medicine, Tianjin 5th Central Hospital, Tianjin 300450, P.R. China
| | - Shaoxiang Huang
- Department of Respiratory Medicine, Tianjin 5th Central Hospital, Tianjin 300450, P.R. China
| |
Collapse
|
29
|
Xu X, Zhang X, Liu Y, Yang L, Huang S, Lu L, Wang S, Guo Q, Zhao L. BM microenvironmental protection of CML cells from imatinib through Stat5/NF-κB signaling and reversal by Wogonin. Oncotarget 2017; 7:24436-54. [PMID: 27027438 PMCID: PMC5029713 DOI: 10.18632/oncotarget.8332] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/06/2016] [Indexed: 12/22/2022] Open
Abstract
Constitutive Stat5 activation enhanced cell survival and resistance to imatinib (IM) in chronic myelogenous leukemia (CML) cells. However, the mechanism of Stat5 activation in mediating resistance to IM in bone marrow (BM) microenvironment has not been evaluated precisely. In this study, we reported HS-5-derived conditioned medium (CM) significantly enhanced IM resistance in K562 and KU812. Interestingly, upregulation of the proportion of CD34+ subpopulation was found in CML cells. Subsequently, the BCR/ABL-independent activation of Stat5 increased P-glycoprotein (P-gp) activity in CM-mediated protection of CML stem cells (LSCs) from IM. Further research revealed Stat5 activation increased the DNA binding activity of NF-κB though binding of p-Stat5 and p-RelA in nucleus. Moreover, highly acetylated RelA was required for Stat5-mediated RelA nuclear binding. The study further confirmed that Wogonin potentiated the inhibitory effects of IM on leukemia development by suppressing Stat5 pathway both in CM model and the K562 xenograft model. In summary, results clearly demonstrated BCR/ABL-independent Stat5 survival pathway could contribute to resistance of CML LSCs to IM in BM microenvironment and suggested that natural durgs effectively inhibiting Stat5 may be an attractive approach to overcome resistance to BCR/ABL kinase inhibitors.
Collapse
Affiliation(s)
- Xuefen Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaobo Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yicheng Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lin Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shaoliang Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lu Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shuhao Wang
- Middle School of The City, Mei County, Baoji, Shaanxi 721000, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Li Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
30
|
Antioxidant properties of the flavonoid fisetin: An updated review of in vivo and in vitro studies. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Khan RU, Naz S, Abudabos AM. Towards a better understanding of the therapeutic applications and corresponding mechanisms of action of honey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27755-27766. [PMID: 29101693 DOI: 10.1007/s11356-017-0567-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Honey is a bee-derived supersaturated solution composed of complex contents mainly glucose, fructose, amino acids, vitamins, and minerals. Composition of honey may vary due to the difference in nectar, season, geography, and storage condition. Honey has been used since times immemorial in folk medicine and has recently been rediscovered as an excellent therapeutic agent. In the past, honey was used for a variety of ailments without knowing the scientific background and active ingredients of honey. Today, honey has been scientifically proven for its antioxidant, regulation of glycemic response, antitumor, antimicrobial, anti-inflammatory, and cardiovascular potentiating agent. It can be used as a wound dressing and healing substance. Honey is different in color, flavor, sensory perception, and medical response. Apart from highlighting the nutritional facts of honey, we collected the finding of the published literature to know the mechanism of action of honey in different diseases. This review covers the composition, physiochemical characteristics, and some medical uses.
Collapse
Affiliation(s)
- Rifat Ullah Khan
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
- Department of Animal Health, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan.
| | - Shabana Naz
- Department of Zoology, GC University, Faisalabad, Pakistan
| | - Alaeldein M Abudabos
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
32
|
Wang J, Li K, Li Y, Wang Y. Mediating macrophage immunity with wogonin in mice with vascular inflammation. Mol Med Rep 2017; 16:8434-8440. [PMID: 28983597 DOI: 10.3892/mmr.2017.7611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/02/2017] [Indexed: 11/05/2022] Open
Abstract
Vascular inflammation may induce a number of diseases, including organ damage or failure, heart attack and stroke. The present study aimed to investigate the use of wogonin, a compound extracted from herbs, to mediate inflammatory reactions in vascular inflammation. Wogonin was loaded in a well‑characterized polymeric biomaterial carrier. In mice with streptozotocin‑induced vascular inflammation, wogonin treatment regulated the production of inflammatory cytokines, including interleukin‑6, tumor necrosis factor‑α and granulocyte macrophage colony‑stimulating factor. To understand the impact of wogonin on major immune cells, macrophages were treated with wogonin in vitro. It was determined that wogonin did not affect macrophage viability, and that wogonin regulated the relative ratio of M1 versus M2 macrophages. In addition, in co‑culture, wogonin decreased inflammatory cytokine production and regulated the activation of macrophage surface markers including CD80, CD86 and CD40. Results from the present study may aid in our understanding of the effects of wogonin in regulating inflammation, especially its effects on macrophages.
Collapse
Affiliation(s)
- Jingwei Wang
- Department of Paediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250033, P.R. China
| | - Kunxia Li
- Department of Paediatrics, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Yupeng Li
- Department of Paediatrics, Rizhao People's Hospital, Rizhao, Shandong 276800, P.R. China
| | - Yulin Wang
- Department of Paediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
33
|
Amawi H, Ashby CR, Tiwari AK. Cancer chemoprevention through dietary flavonoids: what's limiting? CHINESE JOURNAL OF CANCER 2017. [PMID: 28629389 PMCID: PMC5477375 DOI: 10.1186/s40880-017-0217-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Flavonoids are polyphenols that are found in numerous edible plant species. Data obtained from preclinical and clinical studies suggest that specific flavonoids are chemo-preventive and cytotoxic against various cancers via a multitude of mechanisms. However, the clinical use of flavonoids is limited due to challenges associated with their effective use, including (1) the isolation and purification of flavonoids from their natural resources; (2) demonstration of the effects of flavonoids in reducing the risk of certain cancer, in tandem with the cost and time needed for epidemiological studies, and (3) numerous pharmacokinetic challenges (e.g., bioavailability, drug–drug interactions, and metabolic instability). Currently, numerous approaches are being used to surmount some of these challenges, thereby increasing the likelihood of flavonoids being used as chemo-preventive drugs in the clinic. In this review, we summarize the most important challenges and efforts that are being made to surmount these challenges.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Pharmacology and Systems Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43560, USA
| | - Charles R Ashby
- Pharmaceutical Sciences, College of Pharmacy, St. John's University, Queens, NY, 11432, USA
| | - Amit K Tiwari
- Department of Pharmacology and Systems Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43560, USA. .,Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
34
|
Ramos-Silva A, Tavares-Carreón F, Figueroa M, De la Torre-Zavala S, Gastelum-Arellanez A, Rodríguez-García A, Galán-Wong LJ, Avilés-Arnaut H. Anticancer potential of Thevetia peruviana fruit methanolic extract. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:241. [PMID: 28464893 PMCID: PMC5414213 DOI: 10.1186/s12906-017-1727-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/05/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Thevetia peruviana (Pers.) K. Schum or Cascabela peruviana (L.) Lippold (commonly known as ayoyote, codo de fraile, lucky nut, or yellow oleander), native to Mexico and Central America, is a medicinal plant used traditionally to cure diseases like ulcers, scabies, hemorrhoids and dissolve tumors. The purpose of this study was to evaluate the cytotoxic, antiproliferative and apoptotic activity of methanolic extract of T. peruviana fruits on human cancer cell lines. METHODS The cytotoxic activity of T. peruviana methanolic extract was carried out on human breast, colorectal, prostate and lung cancer cell lines and non-tumorigenic control cells (fibroblast and Vero), using the MTT assay. For proliferation and motility, clonogenic and wound-healing assays were performed. Morphological alterations were monitored by trypan blue exclusion, as well as DNA fragmentation and AO/EB double staining was performed to evaluate apoptosis. The extract was separated using flash chromatography, and the resulting fractions were evaluated on colorectal cancer cells for their cytotoxic activity. The active fractions were further analyzed through mass spectrometry. RESULTS The T. peruviana methanolic extract exhibited cytotoxic activity on four human cancer cell lines: prostate, breast, colorectal and lung, with values of IC50 1.91 ± 0.76, 5.78 ± 2.12, 6.30 ± 4.45 and 12.04 ± 3.43 μg/mL, respectively. The extract caused a significant reduction of cell motility and colony formation on all evaluated cancer cell lines. In addition, morphological examination displayed cell size reduction, membrane blebbing and detachment of cells, compared to non-treated cancer cell lines. The T. peruviana extract induced apoptotic cell death, which was confirmed by DNA fragmentation and AO/EB double staining. Fractions 4 and 5 showed the most effective cytotoxic activity and their MS analysis revealed the presence of the secondary metabolites: thevetiaflavone and cardiac glycosides. CONCLUSION T. peruviana extract has potential as natural anti-cancer product with critical effects in the proliferation, motility, and adhesion of human breast and colorectal cancer cells, and apoptosis induction in human prostate and lung cancer cell lines, with minimal effects on non-tumorigenic cell lines.
Collapse
|
35
|
Anti-tumor activity of wogonin, an extract from Scutellaria baicalensis, through regulating different signaling pathways. Chin J Nat Med 2017; 15:15-40. [PMID: 28259249 DOI: 10.1016/s1875-5364(17)30005-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/06/2016] [Indexed: 12/14/2022]
Abstract
Wogonin is a plant flavonoid compound extracted from Scutellaria baicalensis (Huang-Qin or Chinese skullcap) and has been studied thoroughly by many researchers till date for its anti-viral, anti-oxidant, anti-cancerous and neuro-protective properties. Numerous experiments conducted in vitro and in vivo have demonstrated wogonin's excellent tumor inhibitory properties. The anti-cancer mechanism of wogonin has been ascribed to modulation of various cell signaling pathways, including serine-threonine kinase Akt (also known as protein kinase B) and AMP-activated protein kinase (AMPK) pathways, p53-dependent/independent apoptosis, and inhibition of telomerase activity. Furthermore, wogonin also decreases DNA adduct formation with a carcinogenic compound 2-Aminofluorene and inhibits growth of drug resistant malignant cells and their migration and metastasis, without any side effects. Recently, newly synthesized wogonin derivatives have been developed with impressive anti-tumor activity. This review is the succinct appraisal of the pertinent articles on the mechanisms of anti-tumor properties of wogonin. We also summarize the potential of wogonin and its derivatives used alone or as an adjunct therapy for cancer treatment. Furthermore, pharmacokinetics and side effects of wogonin and its analogues have also been discussed.
Collapse
|
36
|
Chen F, Qin X, Xu G, Gou S, Jin X. Reversal of cisplatin resistance in human gastric cancer cells by a wogonin-conjugated Pt(IV) prodrug via attenuating Casein Kinase 2-mediated Nuclear Factor-κB pathways. Biochem Pharmacol 2017; 135:50-68. [PMID: 28288821 DOI: 10.1016/j.bcp.2017.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/07/2017] [Indexed: 01/02/2023]
Abstract
Pt(IV) prodrugs, with two additional coordination sites in contrast to Pt(II) drugs, have been actively studied nowadays, for they can perform well in enhancing the accumulation and retention of the corresponding Pt(II) drugs in cancer cells. Our designed Pt(II) drug, DN604, was recently found to exhibit significant anticancer activity and low toxicity, while, wogonin, a naturally O-methylated flavones, has been widely investigated for its tumor therapeutic potential. Thus, two Pt(IV)-based prodrugs were derived by addition of a wogonin unit to the axial position of DN604 and its analogue DN603 via a linker group. In vitro cytotoxicity assay indicated that the resulting compound 8 not only inherited the genotoxicity of DN604 on gastric cancer cells, but also obtained the COX inhibitory property arising from wogonin. Further studies revealed that compound 8 caused the accumulation of ROS production and decreased the mitochondrial membrane potential (ΔΨm). The CK2α kinase activity assay, ChIP and luciferase assays showed that CK2 plays an important role in the blockade of compound 8 on activated NF-κB survival pathways, which were established for sensitivity of cancer cells to platinum drugs. Similarly in vivo, in nude mice with SGC-7901/cDDP xenografts, compound 8 improved the effectiveness of DN604 via reversing tumor resistance and maintaining low toxicity. Overall, compound 8 is a promising Pt(IV) prodrug, which could be used to promote the anticancer activity of its counterpart Pt(II) species and reverse drug resistance via attenuating CK2-mediated NF-κB pathways during platinum-based chemotherapies.
Collapse
Affiliation(s)
- Feihong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Xiaodong Qin
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Gang Xu
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Xiufeng Jin
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
37
|
Qin X, Xu G, Chen F, Fang L, Gou S. Novel platinum(IV) complexes conjugated with a wogonin derivative as multi-targeted anticancer agents. Bioorg Med Chem 2017; 25:2507-2517. [PMID: 28314511 DOI: 10.1016/j.bmc.2017.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/05/2017] [Indexed: 12/01/2022]
Abstract
Platinum-based complexes like cisplatin and oxaliplatin are well known the mainstay of chemotherapy regimens on clinic. Wogonin, a natural product that possesses wide biological activities, is now in phase I clinical test as an anticancer agent in China. Herein reported are a series of novel Pt(IV) complexes that conjugated a wogonin derivative (compound 3) to the axial position via a linker group. After being tethered to the platinum(IV) complexes, the wogonin derivative provided multiple anticancer effects, especially in compound 10, a fusion containing wogonin and cisplatin units. Compound 10 not only inherited the genotoxicity from cisplatin, but also obtained the COX inhibitory property from the wogonin derivative. Further mechanistic investigation revealed that compound 10 caused the accumulation of ROS, decreased the mitochondrial membrane potential (ΔΨm) and then activated the p53 pathway. Overall, the research demonstrates that the "integrative" prodrug can be an effective strategy to promote the anticancer potency of Pt-based drugs for cancer treatment.
Collapse
Affiliation(s)
- Xiaodong Qin
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Gang Xu
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Feihong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Lei Fang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| |
Collapse
|
38
|
Deng L, Jiang L, Lin X, Tseng KF, Lu Z, Wang X. Luteolin, a novel p90 ribosomal S6 kinase inhibitor, suppresses proliferation and migration in leukemia cells. Oncol Lett 2017; 13:1370-1378. [PMID: 28454264 DOI: 10.3892/ol.2017.5597] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/01/2016] [Indexed: 01/06/2023] Open
Abstract
Ribosomal S6 kinases (RSKs) are directly regulated by extracellular signal-regulated kinase (ERK) signaling and are implicated in cell growth, survival, motility and senescence. The present study observed that RSK1 was overexpressed in primary untreated leukemia patient bone marrow samples compared with the expression at the complete remission stage, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In addition, a high RSK1 expression (relative expression ≥10) was associated with a significantly shorter overall survival (P=0.038) compared with that in patients with low RSK1 expression (relative expression <10). The current study also investigated the effect of luteolin, a novel p90 ribosomal S6 kinase (RSK) inhibitor extracted from Reseda odorata L., which shows strong biochemical functions including anti-allergy, anti-inflammation and anti-cancer functions, in MOLM-13 and Kasumi-1 leukemic cells. The cell viability, apoptosis and migration ability analysis were assessed by performing a cell counting kit-8 assay, Annexin V-FITC/PI double staining and migration filter assay, respectively. The results indicated that luteolin inhibited the growth of the leukemic cell lines through induction of apoptosis, while the migration ability was also suppressed. Overexpression of RSK1 by plasmid transfection was found to decrease the luteolin-induced apoptosis and migration capabilities. By contrast, knockdown of the RSK1 expression by small interfering RNA appeared to induce the same effect as luteolin on MOLM-13 and Kasumi-1 leukemic cells. In conclusion, these results suggest that luteolin inhibits leukemic cell proliferation and induces apoptosis by inhibition of the RSK1 pathways.
Collapse
Affiliation(s)
- Lan Deng
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 501282, P.R. China
| | - Ling Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xianghua Lin
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Kuo-Fu Tseng
- Department of Biophysics, Oregon State University, Corvallis, OR 97330, USA
| | - Zhigang Lu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 501282, P.R. China
| | - Xiuju Wang
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
39
|
Sak K, Everaus H. Established Human Cell Lines as Models to Study Anti-leukemic Effects of Flavonoids. Curr Genomics 2016; 18:3-26. [PMID: 28503087 PMCID: PMC5321770 DOI: 10.2174/1389202917666160803165447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 12/19/2022] Open
Abstract
Despite the extensive work on pathological mechanisms and some recent advances in the treatment of different hematological malignancies, leukemia continues to present a significant challenge being frequently considered as incurable disease. Therefore, the development of novel therapeutic agents with high efficacy and low toxicity is urgently needed to improve the overall survival rate of patients. In this comprehensive review article, the current knowledge about the anticancer activities of flavonoids as plant secondary polyphenolic metabolites in the most commonly used human established leukemia cell lines (HL-60, NB4, KG1a, U937, THP-1, K562, Jurkat, CCRF- CEM, MOLT-3, and MOLT-4) is compiled, revealing clear anti-proliferative, pro-apoptotic, cell cycle arresting, and differentiation inducing effects for certain compounds. Considering the low toxicity of these substances in normal blood cells, the presented data show a great potential of flavonoids to be developed into novel anti-leukemia agents applicable also in the malignant cells resistant to the current conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Katrin Sak
- Department of Hematology and Oncology, University of Tartu, Tartu, Estonia
| | - Hele Everaus
- Department of Hematology and Oncology, University of Tartu, Tartu, Estonia
| |
Collapse
|
40
|
Impellizzeri D, Cordaro M, Campolo M, Gugliandolo E, Esposito E, Benedetto F, Cuzzocrea S, Navarra M. Anti-inflammatory and Antioxidant Effects of Flavonoid-Rich Fraction of Bergamot Juice (BJe) in a Mouse Model of Intestinal Ischemia/Reperfusion Injury. Front Pharmacol 2016; 7:203. [PMID: 27471464 PMCID: PMC4945634 DOI: 10.3389/fphar.2016.00203] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/27/2016] [Indexed: 12/31/2022] Open
Abstract
The flavonoid-rich fraction of bergamot juice (BJe) has demonstrated anti-inflammatory and antioxidant activities. The aim of work was to test the beneficial effects of BJe on the modulation of the ileum inflammation caused by intestinal ischemia/reperfusion (I/R) injury in mice. To understand the cellular mechanisms by which BJe may decrease the development of intestinal I/R injury, we have evaluated the activation of signaling transduction pathways that can be induced by reactive oxygen species production. Superior mesenteric artery and celiac trunk were occluded for 30 min and reperfused for 1 h. The animals were sacrificed after 1 h of reperfusion, for both histological and molecular examinations of the ileum tissue. The experimental results demonstrated that BJe was able to reduce histological damage, cytokines production, adhesion molecules expression, neutrophil infiltration and oxidative stress by a mechanism involved both NF-κB and MAP kinases pathways. This study indicates that BJe could represent a new treatment against inflammatory events of intestinal I/R injury.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
| | - Filippo Benedetto
- Department of Vascular and Thoracic Surgery, University of MessinaMessina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
- Manchester Biomedical Research Centre, Manchester Royal Infirmary, School of Medicine, University of ManchesterManchester, UK
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
| |
Collapse
|
41
|
Lall RK, Adhami VM, Mukhtar H. Dietary flavonoid fisetin for cancer prevention and treatment. Mol Nutr Food Res 2016; 60:1396-405. [PMID: 27059089 DOI: 10.1002/mnfr.201600025] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 12/14/2022]
Abstract
Cancer remains a major public health concern and a significant cause of death worldwide. Identification of bioactive molecules that have the potential to inhibit carcinogenesis continues to garner interest among the scientific community. In particular, flavonoids from dietary sources are the most sought after because of their safety, cost-effectiveness, and feasibility of oral administration. Emerging data have provided newer insights into understanding the molecular mechanisms that are essential to identify novel mechanism-based strategies for cancer prevention and treatment. Dietary flavonoid fisetin (3,3',4',7-tetrahydroxyflavone) found in many fruits and vegetables has been shown in preclinical studies to inhibit cancer growth through alteration of cell cycle, inducing apoptosis, angiogenesis, invasion, and metastasis without causing any toxicity to normal cells. Although data from in-vitro and in-vivo studies look convincing, well-designed clinical trials in humans are needed to conclusively determine the efficacy across various cancers. This review highlights the chemopreventive and therapeutic effects, molecular targets, and mechanisms that contribute to the observed anticancer activity of fisetin against various cancers.
Collapse
Affiliation(s)
- Rahul K Lall
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA.,Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
42
|
Exploring the molecular targets of dietary flavonoid fisetin in cancer. Semin Cancer Biol 2016; 40-41:130-140. [PMID: 27163728 DOI: 10.1016/j.semcancer.2016.04.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/05/2016] [Accepted: 04/17/2016] [Indexed: 01/08/2023]
Abstract
The last few decades have seen a resurgence of interest among the scientific community in exploring the efficacy of natural compounds against various human cancers. Compounds of plant origin belonging to different groups such as alkaloids, flavonoids and polyphenols evaluated for their cancer preventive effects have yielded promising data, thereby offering a potential therapeutic alternative against this deadly disease. The flavonol fisetin (3,3',4',7-tetrahydroxyflavone), present in fruits and vegetables such as strawberries, apple, cucumber, persimmon, grape and onion, was shown to possess anti-microbial, anti-inflammatory, anti-oxidant and more significantly anti-carcinogenic activity when assessed in diverse cell culture and animal model systems. The purpose of this review is to update and discuss key findings obtained till date from in vitro and in vivo studies on fisetin, with special focus on its anti-cancer role. The molecular mechanism(s) described in the observed growth inhibitory effects of fisetin in different cancer cell types is also summarized. Moreover, an attempt is made to delineate the direction of future studies that could lead to the development of fisetin as a potent chemopreventive/chemotherapeutic agent against cancer.
Collapse
|
43
|
Yu C, Zeng J, Yan Z, Ma Z, Liu S, Huang Z. Baicalein antagonizes acute megakaryoblastic leukemia in vitro and in vivo by inducing cell cycle arrest. Cell Biosci 2016; 6:20. [PMID: 27042290 PMCID: PMC4818455 DOI: 10.1186/s13578-016-0084-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/18/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The prognosis of acute megakaryoblastic leukemia (AMKL) is really dismal, which urges for development of novel treatment. Baicalein is one type of flavonoids extracted from Scutellaria baicalensis Georgi (Huang Qin). It inhibited cell proliferation and subcutaneous tumor formation of many tumor cell lines. However, whether baicalein possesses anti-AMKL activities has not been tested. RESULTS We found that baicalein potently inhibited proliferation of multiple AMKL cells including CMK, CMY, Y10, 6133, and 6133 MPL/W515L due to apoptosis and cell cycle arrest at G1 phase. Unexpectedly, caspase inhibitor z-VAD-fmk did not restore cell proliferation. In contrast, ectopic expression of Cyclin D1 efficiently antagonized the inhibitory effect of baicalein. In addition, baicalein induced differentiation of 6133 MPL/W515L cells. Finally, baicalein promoted mice survival and reduced disease burden in a mouse model of AMKL. CONCLUSIONS Baicalein possesses potent anti-AMKL activity in vitro and in vivo. Baicalein may be a potent reagent for AMKL therapy.
Collapse
Affiliation(s)
- Chunjie Yu
- College of Life Sciences, Wuhan University, 16 Luo-Jia-Shan Road, Wuhan, 430072 Hubei People's Republic of China
| | - Jiancheng Zeng
- College of Life Sciences, Wuhan University, 16 Luo-Jia-Shan Road, Wuhan, 430072 Hubei People's Republic of China
| | - Zhenzhen Yan
- College of Life Sciences, Wuhan University, 16 Luo-Jia-Shan Road, Wuhan, 430072 Hubei People's Republic of China
| | - Zi Ma
- Department of Chinese Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei People's Republic of China
| | - Shangqin Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071 Hubei People's Republic of China
| | - Zan Huang
- College of Life Sciences, Wuhan University, 16 Luo-Jia-Shan Road, Wuhan, 430072 Hubei People's Republic of China
| |
Collapse
|
44
|
Klimaszewska-Wisniewska A, Halas-Wisniewska M, Tadrowski T, Gagat M, Grzanka D, Grzanka A. Paclitaxel and the dietary flavonoid fisetin: a synergistic combination that induces mitotic catastrophe and autophagic cell death in A549 non-small cell lung cancer cells. Cancer Cell Int 2016; 16:10. [PMID: 26884726 PMCID: PMC4754822 DOI: 10.1186/s12935-016-0288-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/06/2016] [Indexed: 01/22/2023] Open
Abstract
Background
The use of the dietary polyphenols as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention of scientists and clinicians as a plausible approach for overcoming the limitations of chemotherapy (e.g. drug resistance and cytotoxicity). The aim of this study was to investigate whether a naturally occurring diet-based flavonoid, fisetin, at physiologically attainable concentrations, could act synergistically with clinically achievable doses of paclitaxel to produce growth inhibitory and/or pro-death effects on A549 non-small cell lung cancer cells, and if it does, what mechanisms might be involved. Methods The drug–drug interactions were analyzed based on the combination index method of Chou and Talalay and the data from MTT assays. To provide some insights into the mechanism underlying the synergistic action of fisetin and paclitaxel, selected morphological, biochemical and molecular parameters were examined, including the morphology of cell nuclei and mitotic spindles, the pattern of LC3-II immunostaining, the formation of autophagic vacuoles at the electron and fluorescence microscopic level, the disruption of cell membrane asymmetry/integrity, cell cycle progression and the expression level of LC3-II, Bax, Bcl-2 and caspase-3 mRNA. Results Here, we reported the first experimental evidence for the existence of synergism between fisetin and paclitaxel in the in vitro model of non-small cell lung cancer. This synergism was, at least partially, ascribed to the induction of mitotic catastrophe. The switch from the cytoprotective autophagy to the autophagic cell death was also implicated in the mechanism of the synergistic action of fisetin and paclitaxel in the A549 cells. In addition, we revealed that the synergism between fisetin and paclitaxel was cell line-specific as well as that fisetin synergizes with arsenic trioxide, but not with mitoxantrone and methotrexate in the A549 cells. Conclusions Our results provide rationale for further testing of fisetin in the combination with paclitaxel or arsenic trioxide to obtain detailed insights into the mechanism of their synergistic action as well as to evaluate their toxicity towards normal cells in an animal model in vivo. We conclude that this study is potentially interesting for the development of novel chemotherapeutic approach to non-small cell lung cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12935-016-0288-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Klimaszewska-Wisniewska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Marta Halas-Wisniewska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Tadeusz Tadrowski
- Department and Clinic of Dermatology, Sexually Transmitted Diseases and Immunodermatology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department and Clinic of Dermatology, Sexually Transmitted Diseases and Immunodermatology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karlowicza 24, 85-092 Bydgoszcz, Poland
| |
Collapse
|
45
|
Shang LH, Yu Y, Che DH, Pan B, Jin S, Zou XL. Luffa echinata Roxb. Induced Apoptosis in Human Colon Cancer Cell (SW-480) in the Caspase-dependent Manner and Through a Mitochondrial Apoptosis Pathway. Pharmacogn Mag 2016; 12:25-30. [PMID: 27019558 PMCID: PMC4787332 DOI: 10.4103/0973-1296.176017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Luffa echinata Roxb. (LER) (Cucurbitaceae) showed tremendous medicinal importance and are being used for the treatment of different ailments. OBJECTIVE In this study, the antiproliferative properties and cell death mechanism induced by the extract of the fruits of LER were investigated. MATERIALS AND METHODS MTT and LDH assay were used to test the antiproliferative and cytotoxicity of LER extract, respectively. The intracellular ROS were measured by a fluorometric assay. The expression of several apoptotic-related proteins in SW-480 cells treated by LER was evaluated by Western blot analysis. RESULTS The methanolic extract of LER fruits inhibited the proliferation of human colon cancer cells (SW-480) in both dose- and time-dependent manners. The LER-treated cells showed obvious characteristics of cell apoptosis, including cell shrinkage, destruction of the monolayer, and condensed chromatin. In addition, treatments of various concentrations of LER extracts caused the release of lactate dehydrogenase as a dose-dependent manner via stimulation of the intracellular metabolic system. LER induced apoptosis, DNA fragmentation, and cellular ROS accumulation in SW-480 cells. Treatment of LER on SW-480 cells promoted the expression of caspases, Bax, Bad, and p53 proteins and decreased the levels of Bcl-2 and Bcl-XL. CONCLUSIONS These results indicated that treatment with LER-induced cell death in mitochondrial apoptosis pathway by regulating pro-apoptotic proteins via the up regulation of the p53 protein. These findings highlight the potentials of LER in the treatment of human colon cancer. SUMMARY LER induced apoptosis, DNA fragmentation, and cellular ROS accumulation in SW-480 cells. Treatment of LER on SW-480 cells promoted the expression of caspases, Bax, Bad, and p53 proteins and decreased the levels of Bcl-2 and Bcl-XL.
Collapse
Affiliation(s)
- Li-Hua Shang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Nangang District, Harbin, 150001, China
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Nangang District, Harbin, 150001, China
| | - De-Hai Che
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Nangang District, Harbin, 150001, China
| | - Bo Pan
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Nangang District, Harbin, 150001, China
| | - Shi Jin
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Nangang District, Harbin, 150001, China
| | - Xiao-Long Zou
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, 150001, China
| |
Collapse
|
46
|
Je HD, Sohn UD, La HO. Endothelium-Independent Effect of Fisetin on the Agonist-Induced Regulation of Vascular Contractility. Biomol Ther (Seoul) 2016; 24:57-61. [PMID: 26759702 PMCID: PMC4703353 DOI: 10.4062/biomolther.2015.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/03/2015] [Accepted: 08/07/2015] [Indexed: 01/16/2023] Open
Abstract
Fisetin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of fisetin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Fisetin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, fisetin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of fisetin on agonist-induced vascular contraction regardless of endothelial function.
Collapse
Affiliation(s)
- Hyun Dong Je
- Department of Pharmacology, College of Pharmacy, Catholic University of Daegu, Gyeongbuk 38430, Republic of Korea
| | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung Ang University, Seoul 06974, Republic of Korea
| | - Hyen-Oh La
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 14662, Republic of Korea
| |
Collapse
|
47
|
Natural products against hematological malignancies and identification of their targets. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1191-201. [DOI: 10.1007/s11427-015-4922-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/16/2015] [Indexed: 01/14/2023]
|
48
|
Lim JY, Lee JY, Byun BJ, Kim SH. Fisetin targets phosphatidylinositol-3-kinase and induces apoptosis of human B lymphoma Raji cells. Toxicol Rep 2015; 2:984-989. [PMID: 28962438 PMCID: PMC5598213 DOI: 10.1016/j.toxrep.2015.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/29/2015] [Accepted: 07/05/2015] [Indexed: 01/16/2023] Open
Abstract
Fisetin inhibits PI3K activity at the enzymatic and cellular levels. Fisetin induces the apoptosis of Raji cells by downregulating cIAP-2 protein expression. The pro-apoptotic activity of fisetin may be linked to a potential to inhibit mTOR signaling and to induce DNA damage.
Aberrant regulation of phosphatidylinositol-3-kinases (PI3Ks) is known to be involved in the progression of cancers. PI3K-binding flavonoids such as quercetin and myricetin have been shown to inhibit PI3K activity, but the direct targeting of fisetin to PI3K has not been established. Here, we carried out an in silico investigation of fisetin binding to PI3K and determined fisetin’s inhibitory activity in enzymatic and cell-based assays. In addition, fisetin induced apoptosis in human Burkitt’s lymphoma Raji cells by inhibiting both PI3Ks and mammalian target of rapamycin (mTOR). Our results indicate that fisetin may serve as a natural backbone for the development of novel dual inhibitors of PI3Ks and mTOR for the treatment of cancer.
Collapse
Affiliation(s)
- Ji Yeon Lim
- Laboratory of Translational Therapeutics, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Joo Yun Lee
- Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea
| | - Byung Jin Byun
- Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea
- Corresponding author.
| | - Seong Hwan Kim
- Laboratory of Translational Therapeutics, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 305-764, Republic of Korea
- Corresponding author at: Laboratory of Translational Therapeutics, Korea Research Institute of Chemical Technology, Daejeon 305 600, Republic of Korea.
| |
Collapse
|
49
|
Polypeptide Fraction from Arca subcrenata Induces Apoptosis and G2/M Phase Arrest in HeLa Cells via ROS-Mediated MAPKs Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:930249. [PMID: 26089952 PMCID: PMC4454769 DOI: 10.1155/2015/930249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/30/2015] [Indexed: 01/06/2023]
Abstract
Arca subcrenata is documented in the literature of marine Traditional Chinese Medicine. Polypeptide fraction from A. subcrenata, coded as P2, was demonstrated to possess significant antitumor activity in our previous study. However, the underlying mechanism remains undefined. The present study was carried out to investigate the underlying antitumor mechanism of P2 in human cervical cancer HeLa cells by MTT, FCM, LSCM, and western blot assays. The results revealed that P2 significantly induced apoptosis of HeLa cells in a concentration- and time-dependent manner. High level of ROS was provoked by P2, which was in turn responsible for induction of apoptosis through activation of intrinsic mitochondrial pathway and JNK1/2, p38 MAPK pathways, as well as inhibition of ERK1/2 pathway, as evidenced by the abrogation of P2's effect on HeLa cells preincubated with the ROS scavenger NAC. P2 also was observed to display significant effect on G2/M phase arrest by downregulating the expression of cyclin B1/cdc2 complex and upregulating the expression of p21. These findings demonstrate that P2 induces apoptosis and G2/M phase arrest in HeLa cells through ROS-mediated MAPKs pathways, suggesting that P2 would be worth investigating as a promising agent within the scope of marine drugs for treatment of cervical cancer.
Collapse
|
50
|
Sak K, Everaus H. Multi-Target Cytotoxic Actions of Flavonoids in Blood Cancer Cells. Asian Pac J Cancer Prev 2015; 16:4843-4847. [PMID: 26163601 DOI: 10.7314/apjcp.2015.16.12.4843] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
To date, cytotoxic effects of flavonoids in various cancer cells are well accepted. However, the intracellular signaling cascades triggered by these natural compounds remain largely unknown and elusive. In this mini- review, the multiplicity of molecular targets of flavonoids in blood cancer cells is discussed by demonstrating the involvement of various signaling pathways in induction of apoptotic responses. Although these data reveal a great potential of flavonoids for the development of novel agents against different types of hematological malignancies, the pleiotropic nature of these compounds in modulation of cellular processes and their interactions certainly need unraveling and further investigation.
Collapse
Affiliation(s)
- Katrin Sak
- Department of Hematology and Oncology, University of Tartu, Tartu, Estonia E-mail :
| | | |
Collapse
|