1
|
Drif AI, Yücer R, Damiescu R, Ali NT, Abu Hagar TH, Avula B, Khan IA, Efferth T. Anti-Inflammatory and Cancer-Preventive Potential of Chamomile ( Matricaria chamomilla L.): A Comprehensive In Silico and In Vitro Study. Biomedicines 2024; 12:1484. [PMID: 39062057 PMCID: PMC11275008 DOI: 10.3390/biomedicines12071484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND AND AIM Chamomile tea, renowned for its exquisite taste, has been appreciated for centuries not only for its flavor but also for its myriad health benefits. In this study, we investigated the preventive potential of chamomile (Matricaria chamomilla L.) towards cancer by focusing on its anti-inflammatory activity. METHODS AND RESULTS A virtual drug screening of 212 phytochemicals from chamomile revealed β-amyrin, β-eudesmol, β-sitosterol, apigenin, daucosterol, and myricetin as potent NF-κB inhibitors. The in silico results were verified through microscale thermophoresis, reporter cell line experiments, and flow cytometric determination of reactive oxygen species and mitochondrial membrane potential. An oncobiogram generated through comparison of 91 anticancer agents with known modes of action using the NCI tumor cell line panel revealed significant relationships of cytotoxic chamomile compounds, lupeol, and quercetin to microtubule inhibitors. This hypothesis was verified by confocal microscopy using α-tubulin-GFP-transfected U2OS cells and molecular docking of lupeol and quercetin to tubulins. Both compounds induced G2/M cell cycle arrest and necrosis rather than apoptosis. Interestingly, lupeol and quercetin were not involved in major mechanisms of resistance to established anticancer drugs (ABC transporters, TP53, or EGFR). Performing hierarchical cluster analyses of proteomic expression data of the NCI cell line panel identified two sets of 40 proteins determining sensitivity and resistance to lupeol and quercetin, further pointing to the multi-specific nature of chamomile compounds. Furthermore, lupeol, quercetin, and β-amyrin inhibited the mRNA expression of the proinflammatory cytokines IL-1β and IL6 in NF-κB reporter cells (HEK-Blue Null1). Moreover, Kaplan-Meier-based survival analyses with NF-κB as the target protein of these compounds were performed by mining the TCGA-based KM-Plotter repository with 7489 cancer patients. Renal clear cell carcinomas (grade 3, low mutational rate, low neoantigen load) were significantly associated with shorter survival of patients, indicating that these subgroups of tumors might benefit from NF-κB inhibition by chamomile compounds. CONCLUSION This study revealed the potential of chamomile, positioning it as a promising preventive agent against inflammation and cancer. Further research and clinical studies are recommended.
Collapse
Affiliation(s)
- Assia I. Drif
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Rümeysa Yücer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Roxana Damiescu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Nadeen T. Ali
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Tobias H. Abu Hagar
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Bharati Avula
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (B.A.); (I.A.K.)
| | - Ikhlas A. Khan
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (B.A.); (I.A.K.)
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| |
Collapse
|
2
|
Bistué-Rovira À, Rico LG, Bardina J, Juncà J, Granada I, Bradford JA, Ward MD, Salvia R, Solé F, Petriz J. Persistence of Chronic Lymphocytic Leukemia Stem-like Populations under Simultaneous In Vitro Treatment with Curcumin, Fludarabine, and Ibrutinib: Implications for Therapy Resistance. Int J Mol Sci 2024; 25:1994. [PMID: 38396682 PMCID: PMC10888954 DOI: 10.3390/ijms25041994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Leukemic stem cells (LSCs) possess similar characteristics to normal hematopoietic stem cells, including self-renewal capacity, quiescence, ability to initiate leukemia, and drug resistance. These cells play a significant role in leukemia relapse, persisting even after apparent remission. LSCs were first described in 1994 by Lapidot et al. Although they have been extensively studied in acute leukemia, more LSC research is still needed in chronic lymphocytic leukemia (CLL) to understand if reduced apoptosis in mature cells should still be considered as the major cause of this disease. Here, we provide new evidence suggesting the existence of stem-like cell populations in CLL, which may help to understand the disease as well as to develop effective treatments. In this study, we identified a potential leukemic stem cell subpopulation using the tetraploid CLL cell line I83. This subpopulation is characterized by diploid cells that were capable of generating the I83 tetraploid population. Furthermore, we adapted a novel flow cytometry analysis protocol to detect CLL subpopulations with stem cell properties in peripheral blood samples and primary cultures from CLL patients. These cells were identified by their co-expression of CD19 and CD5, characteristic markers of CLL cells. As previously described, increased alkaline phosphatase (ALP) activity is indicative of stemness and pluripotency. Moreover, we used this method to investigate the potential synergistic effect of curcumin in combination with fludarabine and ibrutinib to deplete this subpopulation. Our results confirmed the effectiveness of this ALP-based analysis protocol in detecting and monitoring leukemic stem-like cells in CLL. This analysis also identified limitations in eradicating these populations using in vitro testing. Furthermore, our findings demonstrated that curcumin significantly enhanced the effects of fludarabine and ibrutinib on the leukemic fraction, exhibiting synergistic effects (combination drug index, CDI 0.97 and 0.37, respectively). Our results lend support to the existence of potential stem-like populations in CLL cell lines, and to the idea that curcumin could serve as an effective adjuvant in therapies aimed at eliminating these populations and improving treatment efficacy.
Collapse
Affiliation(s)
- Àngel Bistué-Rovira
- Departament de Farmacologia, Terapèutica i Toxicologia, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain;
| | - Laura G. Rico
- Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (L.G.R.); (R.S.)
| | - Jorge Bardina
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Jordi Juncà
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08916 Badalona, Spain; (J.J.); (I.G.); (F.S.)
| | - Isabel Granada
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08916 Badalona, Spain; (J.J.); (I.G.); (F.S.)
| | - Jolene A. Bradford
- Thermo Fisher Scientific, Fort Collins, CO 80524, USA; (J.A.B.); (M.D.W.)
| | - Michael D. Ward
- Thermo Fisher Scientific, Fort Collins, CO 80524, USA; (J.A.B.); (M.D.W.)
| | - Roser Salvia
- Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (L.G.R.); (R.S.)
| | - Francesc Solé
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08916 Badalona, Spain; (J.J.); (I.G.); (F.S.)
| | - Jordi Petriz
- Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (L.G.R.); (R.S.)
| |
Collapse
|
3
|
Bettiol A, Urban ML, Emmi G, Galora S, Argento FR, Fini E, Borghi S, Bagni G, Mattioli I, Prisco D, Fiorillo C, Becatti M. SIRT1 and thrombosis. Front Mol Biosci 2024; 10:1325002. [PMID: 38304233 PMCID: PMC10833004 DOI: 10.3389/fmolb.2023.1325002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
Thrombosis is a major cause of morbidity and mortality worldwide, with a complex and multifactorial pathogenesis. Recent studies have shown that SIRT1, a member of the sirtuin family of NAD + -dependent deacetylases, plays a crucial role in regulating thrombosis, modulating key pathways including endothelial activation, platelet aggregation, and coagulation. Furthermore, SIRT1 displays anti-inflammatory activity both in vitro, in vivo and in clinical studies, particularly via the reduction of oxidative stress. On these bases, several studies have investigated the therapeutic potential of targeting SIRT1 for the prevention of thrombosis. This review provides a comprehensive and critical overview of the main preclinical and clinical studies and of the current understanding of the role of SIRT1 in thrombosis.
Collapse
Affiliation(s)
- Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Maria Letizia Urban
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Silvia Galora
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Giacomo Bagni
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Irene Mattioli
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| |
Collapse
|
4
|
Sailo BL, Liu L, Chauhan S, Girisa S, Hegde M, Liang L, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Harnessing Sulforaphane Potential as a Chemosensitizing Agent: A Comprehensive Review. Cancers (Basel) 2024; 16:244. [PMID: 38254735 PMCID: PMC10814109 DOI: 10.3390/cancers16020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Recent advances in oncological research have highlighted the potential of naturally derived compounds in cancer prevention and treatment. Notably, sulforaphane (SFN), an isothiocyanate derived from cruciferous vegetables including broccoli and cabbage, has exhibited potent chemosensitizing capabilities across diverse cancer types of bone, brain, breast, lung, skin, etc. Chemosensitization refers to the enhancement of cancer cell sensitivity to chemotherapy agents, counteracting the chemoresistance often developed by tumor cells. Mechanistically, SFN orchestrates this sensitization by modulating an array of cellular signaling pathways (e.g., Akt/mTOR, NF-κB, Wnt/β-catenin), and regulating the expression and activity of pivotal genes, proteins, and enzymes (e.g., p53, p21, survivin, Bcl-2, caspases). When combined with conventional chemotherapeutic agents, SFN synergistically inhibits cancer cell proliferation, invasion, migration, and metastasis while potentiating drug-induced apoptosis. This positions SFN as a potential adjunct in cancer therapy to augment the efficacy of standard treatments. Ongoing preclinical and clinical investigations aim to further delineate the therapeutic potential of SFN in oncology. This review illuminates the multifaceted role of this phytochemical, emphasizing its potential to enhance the therapeutic efficacy of anti-cancer agents, suggesting its prospective contributions to cancer chemosensitization and management.
Collapse
Affiliation(s)
- Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; (B.L.S.); (S.C.); (S.G.); (M.H.)
| | - Le Liu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen 518001, China;
| | - Suravi Chauhan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; (B.L.S.); (S.C.); (S.G.); (M.H.)
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; (B.L.S.); (S.C.); (S.G.); (M.H.)
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; (B.L.S.); (S.C.); (S.G.); (M.H.)
| | - Liping Liang
- Guangzhou Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China;
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; (B.L.S.); (S.C.); (S.G.); (M.H.)
| |
Collapse
|
5
|
Khan A, Singh D, Waidha K, Sisodiya S, Gopinath P, Hussian S, Tanwar P, Katare DP. Analysis of Inhibition Potential of Nimbin and its Analogs against NF-κB Subunits p50 and p65: A Molecular Docking and Molecular Dynamics Study. Anticancer Agents Med Chem 2024; 24:280-287. [PMID: 37694791 DOI: 10.2174/1871520623666230908101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/23/2023] [Accepted: 07/07/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Cancer remains the major cause of morbidity and mortality. The nuclear factor kappa-B (NF- κB) plays an indispensable role in cancer cell proliferation and drug resistance. The role of NF-κB is not only limited to tumor cell proliferation and suppression of apoptotic genes but it also induces EMT transition responsible for metastasis. Inhibition of the NF-κB pathway in cancer cells by herbal derivatives makes it a favorable yet promising target for cancer therapeutics. AIM The purpose of the study is to explore the inhibition potential of Nimbin and its analogs against NF-κB subunits p50 and p65. METHODS In the present study, an herbal compound Nimbin and its derivative analogs were investigated to examine their impact on the p50 and p65 subunits of the NF-κB signaling pathway using in silico tools, namely molecular docking and simulation. RESULTS The molecular docking analysis revealed that Nimbin and its analogs may bind to p50 and p65 subunits with dG bind values ranging from -33.23 to -50.49 Kcal/mol. Interestingly, molecular dynamic simulation for the NO5-p65 complex displayed a stable conformation and convergence when compared to the NO4-p50 complex. CONCLUSION These results indicate that NO5 may have a potential inhibitory effect against NF-κB subunit p65, which needs to be further validated in in vitro and in vivo systems. Also, the results obtained emphasize and pave the way for exploring the Nimbin scaffold against NF-κB inhibition for cancer therapeutics.
Collapse
Affiliation(s)
- Asiya Khan
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
- Laboratory Oncology Unit, Rotary Cancer Center, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Divyam Singh
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Ministry of Health & Family Welfare, Noida, India
| | - Kamran Waidha
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Ministry of Health & Family Welfare, Noida, India
| | - Sandeep Sisodiya
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Ministry of Health & Family Welfare, Noida, India
| | - Pushparathinam Gopinath
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Showket Hussian
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Ministry of Health & Family Welfare, Noida, India
| | - Pranay Tanwar
- Laboratory Oncology Unit, Rotary Cancer Center, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Deepshikha Pande Katare
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
6
|
Cotino-Nájera S, Herrera LA, Domínguez-Gómez G, Díaz-Chávez J. Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer. Front Pharmacol 2023; 14:1287505. [PMID: 38026933 PMCID: PMC10667487 DOI: 10.3389/fphar.2023.1287505] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
One of the primary diseases that cause death worldwide is cancer. Cancer cells can be intrinsically resistant or acquire resistance to therapies and drugs used for cancer treatment through multiple mechanisms of action that favor cell survival and proliferation, becoming one of the leading causes of treatment failure against cancer. A promising strategy to overcome chemoresistance and radioresistance is the co-administration of anticancer agents and natural compounds with anticancer properties, such as the polyphenolic compound resveratrol (RSV). RSV has been reported to be able to sensitize cancer cells to chemotherapeutic agents and radiotherapy, promoting cancer cell death. This review describes the reported molecular mechanisms by which RSV sensitizes tumor cells to radiotherapy and chemotherapy treatment.
Collapse
Affiliation(s)
- Sandra Cotino-Nájera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Luis A. Herrera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
- Escuela de Medicina y Ciencias de la Salud-Tecnológico de Monterrey, México City, Mexico
| | - Guadalupe Domínguez-Gómez
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología (INCAN), Ciudad de México, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación en Cáncer, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| |
Collapse
|
7
|
Kannampuzha S, Gopalakrishnan AV. Cancer chemoresistance and its mechanisms: Associated molecular factors and its regulatory role. Med Oncol 2023; 40:264. [PMID: 37550533 DOI: 10.1007/s12032-023-02138-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023]
Abstract
Cancer therapy has advanced from tradition chemotherapy methods to targeted therapy, novel drug delivery mechanisms, combination therapies etc. Although several novel chemotherapy strategies have been introduced, chemoresistance still remains as one of the major barriers in cancer treatments. Chemoresistance can lead to relapse and hinder the development of improved clinical results for cancer patients, and this continues to be the major hurdle in cancer therapy. Anticancer drugs acquire chemoresistance through different mechanisms. Understanding these mechanisms is crucial to overcome and increase the efficiency of the cancer therapies that are employed. The potential molecular pathways behind chemoresistance include tumor heterogeneity, elevated drug efflux, multidrug resistance, interconnected signaling pathways, and other factors. To surpass this limitation, new clinical tactics are to be introduced. This review aims to compile the most recent information on the molecular pathways that regulate chemoresistance in cancers, which will aid in development of new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
8
|
Ahmadi M, Valizadeh A, Bazavar M, Yousefi B. Investigating the Role of Quercetin in Increasing the Rate of Cisplatin-Induced Apoptosis Via the NF-κB Pathway in MG-63 Cancer Cells. Drug Res (Stuttg) 2022; 72:385-389. [PMID: 35785813 DOI: 10.1055/a-1842-7424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Numerous studies suggest that the co-treatment of chemotherapeutic agents with flavonoids such as Quercetin (Que) may enhance tumor cells' susceptibility to these agents. Hence, in the current study, we investigated Que's role in combination with Cisplatin to promote cell apoptosis by focusing on the NF-κB signaling pathway in the osteosarcoma cell lines. METHODS The Que, Cisplatin, and their combination's general cytotoxicity effects were evaluated using an MTT assay for 72 hrs. The protein expression levels of NF-κB were detected by an enzyme-linked immunosorbent assay (ELISA) Kit. Flow cytometry was used to evaluate cell apoptosis. RESULTS Que considerably elevated the cytotoxicity of Cisplatin (P<0.05). Que also dramatically down-regulated the expression levels of NF-κB in MG-63 cells compared to mono-treatment (P<0.05). Besides, Que promotes cisplatin-induced apoptosis in MG-63 cells. CONCLUSION Our study's findings provide an exact point in the field of adjuvant therapy in osteosarcoma. In other words, this study could provide new insights into a better understanding of the role of Que in elevating cisplatin-induced apoptosis with NF-κB down-regulation.
Collapse
Affiliation(s)
- Mehran Ahmadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Valizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Bazavar
- Department of Orthopedic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Wang F, Li S, Rosencrans WM, Cheng KW, Stott GM, Mroczkowski B, Chou TF. Sulforaphane is Synergistic with CB-5083 and Inhibits Colony Formation of CB-5083-Resistant HCT116 Cells. ChemMedChem 2022; 17:e202200030. [PMID: 35451199 DOI: 10.1002/cmdc.202200030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/04/2022] [Indexed: 11/09/2022]
Abstract
Human p97 is a potential drug target in oncology. Mutation-driven drug resistance is an obstacle to the long-term efficacy of targeted therapy. We found that the ATPase activity for one of the CB-5083-resistant p97 mutants was reduced, which also attenuated the degradation of K48 ubiquitinated proteins in cells. To understand how p97 mutant cells with significantly reduced ATPase activity can still grow, we discovered reduced levels of CHOP and NF-κB activation in the p97 mutant cells and these cellular changes can potentially protect HCT116 cells from death due to lowered p97 activity. In addition, the NF-kB inhibitor Sulforaphane reduces proliferation of CB-5083 resistant cells and acts synergistically with CB-5083 to block proliferation of the parental HCT116 cells. The combination of Sulforaphane and CB-5083 may be a useful treatment strategy to combat CB-5083 resistance.
Collapse
Affiliation(s)
- Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - William M Rosencrans
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Gordon M Stott
- NExT Program Support, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Barbara Mroczkowski
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
10
|
Jamialahmadi T, Guest PC, Afshari AR, Majeed M, Sahebkar A. Testing the Effect of Curcumin on Proliferative Capacity of Colorectal Cancer Cells. Methods Mol Biol 2022; 2343:287-298. [PMID: 34473331 DOI: 10.1007/978-1-0716-1558-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
This chapter presents a protocol for studying the effects of curcumin in a colorectal cell line and a mouse model of colitis-associated colon carcinogenesis. The protocol using the CT26 cell line incorporates cell proliferation, migration, invasion, spheroid formation, cell cycle, polymerase chain reaction (PCR), and western blot analyses. For the mouse model, this involved a macroscopic and histological examination of the colon and assays for oxidative damage markers.
Collapse
Affiliation(s)
- Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Charlesworth House, Debden, Essex, UK
| | - Amir R Afshari
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Martinez-Balibrea E, Ciribilli Y. Editorial: Transcriptional Regulation as a Key Player in Cancer Cells Drug Resistance. Front Oncol 2021; 11:764506. [PMID: 34765559 PMCID: PMC8576526 DOI: 10.3389/fonc.2021.764506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/20/2021] [Indexed: 12/30/2022] Open
Affiliation(s)
- Eva Martinez-Balibrea
- Germans Trias i Pujol Research Institute (IGTP), ProCURE program, Catalan Institute of Oncology, Badalona, Spain
| | - Yari Ciribilli
- Laboratory of Molecular Cancer Research, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
12
|
Karimi F, Mollaei H. Potential of miRNAs in cervical cancer chemoresistance. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Combination Therapy with Nanomicellar-Curcumin and Temozolomide for In Vitro Therapy of Glioblastoma Multiforme via Wnt Signaling Pathways. J Mol Neurosci 2020; 70:1471-1483. [PMID: 32666415 DOI: 10.1007/s12031-020-01639-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/16/2020] [Indexed: 01/22/2023]
Abstract
Glioblastoma (GBM) is the most serious brain tumor and shows a high rate of drug resistance. Wnt signaling is a very important pathway in GBM that can activate/inhibit other pathways, such as apoptosis and autophagy. In this study, we evaluated the efficacy of a combination of temozolomide (TMZ) plus curcumin or nanomicellar-curcumin on the inhibition of GBM growth in vitro, via effects on autophagy, apoptosis, and the Wnt signaling pathway. Two concentrations of curcumin and nanomicellar-curcumin (i.e., 20 μM and 50 μM) alone, and in combination with TMZ (50 μM) were used to induce cytotoxicity in the U87 GBM cell line. Wnt signaling-, autophagy-, and apoptosis-related genes were assessed by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and Western blots. All treatments (except 20 μM curcumin alone) significantly decreased the viability of U87 cells compared to controls. Curcumin (50 μM), nanomicellar-curcumin alone and in combination with TMZ significantly decreased the invasion and migration of U87 cells. Autophagy-related proteins (Beclin 1, LC3-I, LC3-II) were significantly increased. Apoptosis-related proteins (Bcl-2 and caspase 8) were also significantly increased, while Bax protein was significantly decreased. The expression levels of Wnt pathway-associated genes (β-catenin, cyclin D1, Twist, and ZEB1) were significantly reduced.
Collapse
|
14
|
Dimitrakopoulos FID, Kottorou AE, Kalofonou M, Kalofonos HP. The Fire Within: NF-κB Involvement in Non-Small Cell Lung Cancer. Cancer Res 2020; 80:4025-4036. [PMID: 32616502 DOI: 10.1158/0008-5472.can-19-3578] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/01/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022]
Abstract
Thirty-four years since its discovery, NF-κB remains a transcription factor with great potential for cancer therapy. However, NF-κB-targeted therapies have yet to find a way to be clinically translatable. Here, we focus exclusively on the role of NF-κB in non-small cell lung cancer (NSCLC) and discuss its contributing effect on cancer hallmarks such as inflammation, proliferation, survival, apoptosis, angiogenesis, epithelial-mesenchymal transition, metastasis, stemness, metabolism, and therapy resistance. In addition, we present our current knowledge of the clinical significance of NF-κB and its involvement in the treatment of patients with NSCLC with chemotherapy, targeted therapies, and immunotherapy.
Collapse
Affiliation(s)
- Foteinos-Ioannis D Dimitrakopoulos
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Anastasia E Kottorou
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Melpomeni Kalofonou
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Haralabos P Kalofonos
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece.
| |
Collapse
|
15
|
Debreli Coskun M, Sudha T, Bharali DJ, Celikler S, Davis PJ, Mousa SA. αvβ3 Integrin Antagonists Enhance Chemotherapy Response in an Orthotopic Pancreatic Cancer Model. Front Pharmacol 2020; 11:95. [PMID: 32174830 PMCID: PMC7056702 DOI: 10.3389/fphar.2020.00095] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer decreases survival time and quality of life because of drug resistance and peripheral neuropathy during conventional treatment. This study was undertaken to investigate whether αvβ3 integrin receptor antagonist compounds NDAT and XT199 can suppress the development of cisplatin resistance and cisplatin-induced peripheral neuropathy in an orthotopic pancreatic SUIT2-luc cancer cell mouse model. Anticancer effects of these compounds and their combination with cisplatin were assessed in this tumor mouse model with bioluminescent signaling and histopathology, and a cytokine assay was used to examine expression of inflammatory cytokines IL-1β, IL-6, IL-10, and TNF-α from plasma samples. To determine the neuroprotective effects of the compounds on cisplatin-induced peripheral neuropathy, behavioral hind-limb posture of the mice was evaluated. The combination therapy of NDAT or XT199 with cisplatin elicited greater inhibition of tumor growth and increased tumor necrosis compared to cisplatin alone. NDAT and XT199 in combination with cisplatin significantly decreased expression of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α and significantly increased expression of anti-inflammatory cytokine IL-10 in comparison to cisplatin alone. Cisplatin-treated groups showed stocking-glove hind-limb posture, whereas NDAT and XT199 with cisplatin-treated groups displayed normal hind-limb posture. Results clearly suggest that NDAT and XT199 treatment with cisplatin that inactivates NF-κB may contribute to increased antitumor and anti-inflammatory efficacy as well as alleviate cisplatin-mediated loss of motor function in this pancreatic tumor mouse model.
Collapse
Affiliation(s)
- Melis Debreli Coskun
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States.,Department of Biology, Faculty of Arts and Sciences, Uludag University, Bursa, Turkey
| | - Thangirala Sudha
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Dhruba J Bharali
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Serap Celikler
- Department of Biology, Faculty of Arts and Sciences, Uludag University, Bursa, Turkey
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States.,Department of Medicine, Albany Medical College, Albany, NY, United States
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| |
Collapse
|
16
|
Jo E, Jang HJ, Yang KE, Jang MS, Huh YH, Yoo HS, Park JS, Jang IS, Park SJ. Cordyceps militaris induces apoptosis in ovarian cancer cells through TNF-α/TNFR1-mediated inhibition of NF-κB phosphorylation. BMC Complement Med Ther 2020; 20:1. [PMID: 32020859 PMCID: PMC7076896 DOI: 10.1186/s12906-019-2780-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/29/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Cordyceps militaris (L.) Fr. (C. militaris) exhibits pharmacological activities, including antitumor properties, through the regulation of the nuclear factor kappa B (NF-κB) signaling. Tumor Necrosis Factor (TNF) and TNF-α modulates cell survival and apoptosis through NF- κB signaling. However, the mechanism underlying its mode of action on the NF-κB pathway is unclear. METHODS Here, we analyzed the effect of C. militaris extract (CME) on the proliferation of ovarian cancer cells by confirming viability, morphological changes, migration assay. Additionally, CME induced apoptosis was determined by apoptosis assay and apoptotic body formation under TEM. The mechanisms of CME were determined through microarray, immunoblotting and immunocytochemistry. RESULTS CME reduced the viability of cells in a dose-dependent manner and induced morphological changes. We confirmed the decrease in the migration activity of SKOV-3 cells after treatment with CME and the consequent induction of apoptosis. Immunoblotting results showed that the CME-mediated upregulation of tumor necrosis factor receptor 1 (TNFR1) expression induced apoptosis of SKOV-3 cells via the serial activation of caspases. Moreover, CME negatively modulated NF-κB activation via TNFR expression, suggestive of the activation of the extrinsic apoptotic pathway. The binding of TNF-α to TNFR results in the disassociation of IκB from NF-κB and the subsequent translocation of the active NF-κB to the nucleus. CME clearly suppressed NF-κB translocation induced by interleukin (IL-1β) from the cytosol into the nucleus. The decrease in the expression levels of B cell lymphoma (Bcl)-xL and Bcl-2 led to a marked increase in cell apoptosis. CONCLUSION These results suggest that C. militaris inhibited ovarian cancer cell proliferation, survival, and migration, possibly through the coordination between TNF-α/TNFR1 signaling and NF-κB activation. Taken together, our findings provide a new insight into a novel treatment strategy for ovarian cancer using C. militaris.
Collapse
Affiliation(s)
- Eunbi Jo
- Division of Analytical Science, Korea Basic Science Institute, Gwahangno 113, Yuseong-gu, Daejeon, 305-333, Republic of Korea
| | - Hyun-Jin Jang
- Division of Analytical Science, Korea Basic Science Institute, Gwahangno 113, Yuseong-gu, Daejeon, 305-333, Republic of Korea.,Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyeong Eun Yang
- Division of Analytical Science, Korea Basic Science Institute, Gwahangno 113, Yuseong-gu, Daejeon, 305-333, Republic of Korea
| | - Min Su Jang
- Division of Biological Science and Technology, Yonsei University, Wonju, 220-100, Republic of Korea
| | - Yang Hoon Huh
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Hwa-Seung Yoo
- East-West Cancer Center, Daejeon University, Daejeon, 302-120, South Korea
| | - Jun Soo Park
- Division of Biological Science and Technology, Yonsei University, Wonju, 220-100, Republic of Korea
| | - Ik-Soon Jang
- Division of Analytical Science, Korea Basic Science Institute, Gwahangno 113, Yuseong-gu, Daejeon, 305-333, Republic of Korea. .,Division of Analytical Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Soo Jung Park
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Woosuk University, Wanju, Jeonbuk, 55338, Republic of Korea.
| |
Collapse
|
17
|
Huang K, Liu X, Li Y, Wang Q, Zhou J, Wang Y, Dong F, Yang C, Sun Z, Fang C, Liu C, Tan Y, Wu X, Jiang T, Kang C. Genome-Wide CRISPR-Cas9 Screening Identifies NF-κB/E2F6 Responsible for EGFRvIII-Associated Temozolomide Resistance in Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900782. [PMID: 31508283 PMCID: PMC6724471 DOI: 10.1002/advs.201900782] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/10/2019] [Indexed: 06/10/2023]
Abstract
Amplification of epidermal growth factor receptor (EGFR) and active mutant EGFRvIII occurs frequently in glioblastoma (GBM) and contributes to chemo/radio-resistance in various cancers, especially in GBM. Elucidating the underlying molecular mechanism of temozolomide (TMZ) resistance in GBM could benefit cancer patients. A genome-wide screening under a clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 library is conducted to identify the genes that confer resistance to TMZ in EGFRvIII-expressing GBM cells. Deep sgRNA sequencing reveals 191 candidate genes that are responsible for TMZ resistance in EGFRvIII-expressing GBM cells. Notably, E2F6 is proven to drive a TMZ resistance, and E2F6 expression is controlled by the EGFRvIII/AKT/NF-κB pathway. Furthermore, E2F6 is shown as a promising therapeutic target for TMZ resistance in orthotopic GBM cell line xenografts and GBM patient-derived xenografts models. After integrating clinical data with paired primary-recurrent RNA sequencing data from 134 GBM patients who received TMZ treatment after surgery, it has been revealed that the E2F6 expression level is a predictive marker for TMZ response. Therefore, the inhibition of E2F6 is a promising strategy to conquer TMZ resistance in GBM.
Collapse
Affiliation(s)
- Kai Huang
- Tianjin Neurological InstituteKey Laboratory of Post‐Neurotrauma Neuro‐Repair and Regeneration in Central Nervous SystemMinistry of Education and Tianjin CityTianjin300052China
- Department of NeurosurgeryTianjin Medical University General HospitalTianjin300052China
| | - Xing Liu
- Beijing Neurosurgical InstituteDepartment of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijing100050China
| | - Yansheng Li
- Tianjin Neurological InstituteKey Laboratory of Post‐Neurotrauma Neuro‐Repair and Regeneration in Central Nervous SystemMinistry of Education and Tianjin CityTianjin300052China
- Department of NeurosurgeryTianjin Medical University General HospitalTianjin300052China
| | - Qixue Wang
- Tianjin Neurological InstituteKey Laboratory of Post‐Neurotrauma Neuro‐Repair and Regeneration in Central Nervous SystemMinistry of Education and Tianjin CityTianjin300052China
- Department of NeurosurgeryTianjin Medical University General HospitalTianjin300052China
| | - Junhu Zhou
- Tianjin Neurological InstituteKey Laboratory of Post‐Neurotrauma Neuro‐Repair and Regeneration in Central Nervous SystemMinistry of Education and Tianjin CityTianjin300052China
- Department of NeurosurgeryTianjin Medical University General HospitalTianjin300052China
| | - Yunfei Wang
- Tianjin Neurological InstituteKey Laboratory of Post‐Neurotrauma Neuro‐Repair and Regeneration in Central Nervous SystemMinistry of Education and Tianjin CityTianjin300052China
- Department of NeurosurgeryTianjin Medical University General HospitalTianjin300052China
| | - Feng Dong
- Department of Cell Biology2011 Collaborative Innovation Center of Tianjin for Medical EpigeneticsTianjin Key Laboratory of Medical EpigeneticsTianjin Medical UniversityTianjin300070China
| | - Chao Yang
- Tianjin Neurological InstituteKey Laboratory of Post‐Neurotrauma Neuro‐Repair and Regeneration in Central Nervous SystemMinistry of Education and Tianjin CityTianjin300052China
- Department of NeurosurgeryTianjin Medical University General HospitalTianjin300052China
| | - Zhiyan Sun
- Beijing Neurosurgical InstituteDepartment of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijing100050China
| | - Chuan Fang
- Department of NeurosurgeryAffiliated Hospital of Hebei UniversityBaoding071000China
| | - Chaoyong Liu
- Tianjin Neurological InstituteKey Laboratory of Post‐Neurotrauma Neuro‐Repair and Regeneration in Central Nervous SystemMinistry of Education and Tianjin CityTianjin300052China
- Department of NeurosurgeryTianjin Medical University General HospitalTianjin300052China
| | - Yanli Tan
- Department of PathologyAffiliated Hospital of Hebei UniversityBaoding071000China
| | - Xudong Wu
- Department of Cell Biology2011 Collaborative Innovation Center of Tianjin for Medical EpigeneticsTianjin Key Laboratory of Medical EpigeneticsTianjin Medical UniversityTianjin300070China
| | - Tao Jiang
- Beijing Neurosurgical InstituteDepartment of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijing100050China
| | - Chunsheng Kang
- Tianjin Neurological InstituteKey Laboratory of Post‐Neurotrauma Neuro‐Repair and Regeneration in Central Nervous SystemMinistry of Education and Tianjin CityTianjin300052China
- Department of NeurosurgeryTianjin Medical University General HospitalTianjin300052China
| |
Collapse
|
18
|
Negrette-Guzmán M. Combinations of the antioxidants sulforaphane or curcumin and the conventional antineoplastics cisplatin or doxorubicin as prospects for anticancer chemotherapy. Eur J Pharmacol 2019; 859:172513. [PMID: 31260654 DOI: 10.1016/j.ejphar.2019.172513] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
Drugs used in clinical oncology have narrow therapeutic indices with adverse toxicity often involving oxidative damage. Chemoresistance to these conventional antineoplastics is usually mediated by oxidative stress-upregulated pathways such as those of nuclear factor-kappa B (NF-κB) and hypoxia-inducible factor-1 alpha (HIF-1α). Accordingly, the use of antioxidants in combinational approaches has begun to be considered for fighting cancer because of both the protective role against adverse effects and the ability to sensitize chemoresistant cancer cells. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been identified as a mediator of the cytoprotection but it is not regularly associated with tumor chemosensitization. However, some Nrf2 inducers could be exerting cytoprotective and chemosensitizing roles through a simple integrated mechanism in which the cellular level of reactive oxygen species is controlled, thus inhibiting the oxidative damage in non-target tissues and the tumor chemoresistance mediated by NF-κB or HIF-1α. As examples to show the general idea of this antioxidant combination chemotherapy, this review explores the preclinical information available for four combinations, each composed by a paradigmatic oncological drug (cisplatin or doxorubicin) and a recognized antioxidant (sulforaphane or curcumin). The issues for translating these outcomes to clinical trials are briefly discussed.
Collapse
Affiliation(s)
- Mario Negrette-Guzmán
- Centro de Investigaciones en Enfermedades Tropicales (CINTROP), Departamento de Ciencias Básicas, Escuela de Medicina, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, 68002, Colombia.
| |
Collapse
|
19
|
Zhu Y, Howard GA, Pittman K, Boykin C, Herring LE, Wilkerson EM, Verbanac K, Lu Q. Therapeutic Effect of Y-27632 on Tumorigenesis and Cisplatin-Induced Peripheral Sensory Loss through RhoA-NF-κB. Mol Cancer Res 2019; 17:1910-1919. [PMID: 31189689 DOI: 10.1158/1541-7786.mcr-19-0024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/23/2019] [Accepted: 06/07/2019] [Indexed: 12/18/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect of cancer therapy that frequently requires a reduction or cessation of treatments and negatively impacts the patient's quality of life. There is currently no effective means to prevent or treat CIPN. In this study, we developed and applied CIPN in an immunocompetent, syngeneic murine Lewis Lung Carcinoma (LLCab) model that enabled the elucidation of both tumor and host responses to cisplatin and treatments of Y-27632, a selective inhibitor of Rho kinase/p160ROCK. Y-27632 not only preserved cisplatin's efficacy toward tumor suppression but also the combination treatment inhibited tumor cell proliferation and increased cellular apoptosis. By alleviating the cisplatin-induced loss of epidermal nerve fibers (ENFs), Y-27632 protected tumor-bearing mice from cisplatin-induced reduction of touch sensation. Furthermore, quantitative proteomic analysis revealed the striking cisplatin-induced dysregulation in cellular stress (inflammation, mitochondrial deficiency, DNA repair, etc.)-associated proteins. Y-27632 was able to reverse the changes of these proteins that are associated with Rho GTPase and NF-κB signaling network, and also decreased cisplatin-induced NF-κB hyperactivation in both footpad tissues and tumor. Therefore, Y-27632 is an effective adjuvant in tumor suppression and peripheral neuroprotection. These studies highlight the potential of targeting the RhoA-NF-κB axis as a combination therapy to treat CIPN. IMPLICATIONS: This study, for the first time, demonstrated the dual antineoplastic and neuroprotective effects of Rho kinase/p160ROCK inhibition in a syngeneic immunocompetent tumor-bearing mouse model, opening the door for further clinical adjuvant development of RhoA-NF-κB axis to improve chemotherapeutic outcomes.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Anatomy and Cell Biology, The Brody School of Medicine at East Carolina University, Greenville, North Carolina
- The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Diseases Research, The Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - George A Howard
- Department of Surgery, The Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Keith Pittman
- Department of Surgery, The Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Christi Boykin
- Department of Anatomy and Cell Biology, The Brody School of Medicine at East Carolina University, Greenville, North Carolina
- The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Diseases Research, The Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Michael Hooker UNC Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Emily M Wilkerson
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Michael Hooker UNC Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kathryn Verbanac
- Department of Surgery, The Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Qun Lu
- Department of Anatomy and Cell Biology, The Brody School of Medicine at East Carolina University, Greenville, North Carolina.
- The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Diseases Research, The Brody School of Medicine at East Carolina University, Greenville, North Carolina
| |
Collapse
|
20
|
Quiñones-Lombraña A, Intini A, Blanco JG. Insights into the transcriptional regulation of the anthracycline reductase AKR7A2 in human cardiomyocytes. Toxicol Lett 2019; 307:11-16. [PMID: 30817976 DOI: 10.1016/j.toxlet.2019.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/19/2019] [Accepted: 02/23/2019] [Indexed: 12/22/2022]
Abstract
Aldo-Keto Reductase Family 7 Member A2 (AKR7A2) is the most abundant anthracycline metabolizing enzyme in human myocardium. Myocardial AKR7A2 contributes to the synthesis of cardiotoxic C-13 anthracycline alcohol metabolites (e.g., doxorubicinol). The factors that govern the transcription of human AKR7A2 in cardiomyocytes remain largely unexplored. In this study, we performed the functional characterization of the AKR7A2 gene promoter in human AC16 cardiomyocytes. Experiments with gene reporter constructs and chromatin immunoprecipitation assays suggest that NF-κB binds to specific regions in the AKR7A2 promoter. Doxorubicin treatment modified the cellular levels of NF-κB and the expression of AKR7A2. Moreover, doxorubicin treatment led to changes in the pattern of AKR7A2 phosphorylation status. Our results suggest that AKR7A2 expression in human cardiomyocytes is mediated by NF-κB through conserved response elements in the proximal gene promoter region. This study provides the first insights into the functional characteristics of the human AKR7A2 gene promoter.
Collapse
Affiliation(s)
- Adolfo Quiñones-Lombraña
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Amy Intini
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Javier G Blanco
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA.
| |
Collapse
|
21
|
Scheurer MJJ, Brands RC, El-Mesery M, Hartmann S, Müller-Richter UDA, Kübler AC, Seher A. The Selection of NFκB Inhibitors to Block Inflammation and Induce Sensitisation to FasL-Induced Apoptosis in HNSCC Cell Lines Is Critical for Their Use as a Prospective Cancer Therapy. Int J Mol Sci 2019; 20:ijms20061306. [PMID: 30875877 PMCID: PMC6471923 DOI: 10.3390/ijms20061306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 02/02/2023] Open
Abstract
Inflammation is a central aspect of tumour biology and can contribute significantly to both the origination and progression of tumours. The NFκB pathway is one of the most important signal transduction pathways in inflammation and is, therefore, an excellent target for cancer therapy. In this work, we examined the influence of four NFκB inhibitors—Cortisol, MLN4924, QNZ and TPCA1—on proliferation, inflammation and sensitisation to apoptosis mediated by the death ligand FasL in the HNSCC cell lines PCI1, PCI9, PCI13, PCI52 and SCC25 and in the human dermal keratinocyte cell line HaCaT. We found that the selection of the inhibitor is critical to ensure that cells do not respond by inducing counteracting activities in the context of cancer therapy, e.g., the extreme IL-8 induction mediated by MLN4924 or FasL resistance mediated by Cortisol. However, TPCA1 was qualified by this in vitro study as an excellent therapeutic mediator in HNSCC by four positive qualities: (1) proliferation was inhibited at low μM-range concentrations; (2) TNFα-induced IL-8 secretion was blocked; (3) HNSCC cells were sensitized to TNFα-induced cell death; and (4) FasL-mediated apoptosis was not disrupted.
Collapse
Affiliation(s)
| | - Roman Camillus Brands
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, D-97080 Würzburg, Germany.
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura E-35516, Egypt.
| | - Stefan Hartmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.
- Interdisciplinary Center for Clinical Research, University Hospital Würzburg, D-97070 Würzburg, Germany.
| | | | - Alexander Christian Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.
| | - Axel Seher
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.
| |
Collapse
|
22
|
Hesari A, Rezaei M, Rezaei M, Dashtiahangar M, Fathi M, Rad JG, Momeni F, Avan A, Ghasemi F. Effect of curcumin on glioblastoma cells. J Cell Physiol 2018; 234:10281-10288. [DOI: 10.1002/jcp.27933] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Affiliation(s)
- AmiReza Hesari
- Molecular and Medicine Research Center, Department of Biotechnology, Faculty of Medicine Arak University of Medical Sciences Arak Iran
| | - Marzieh Rezaei
- Department of Biology, Science and Research Branch Islamic Azad University Tehran Iran
| | - Maryam Rezaei
- Department of Biology, Science and Research Branch Islamic Azad University Tehran Iran
| | - Maryam Dashtiahangar
- Department of Biology, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| | - Mozhgan Fathi
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Jeyran Ganji Rad
- Department of Biology Islamic Azad University of Science Researchs Gorgan Iran
| | - Fatemeh Momeni
- Thalassemia & Hemoglobinopathy Research Center Health Research Institute, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Amir Avan
- Department of Modern Sciences and Technologies School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Faezeh Ghasemi
- Molecular and Medicine Research Center, Department of Biotechnology, Faculty of Medicine Arak University of Medical Sciences Arak Iran
- Blood Transfusion Research Center High Institute for Research and Education in Transfusion Medicine Tehran Iran
| |
Collapse
|
23
|
Sulforaphane from Cruciferous Vegetables: Recent Advances to Improve Glioblastoma Treatment. Nutrients 2018; 10:nu10111755. [PMID: 30441761 PMCID: PMC6267435 DOI: 10.3390/nu10111755] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023] Open
Abstract
Sulforaphane (SFN), an isothiocyanate (ITC) derived from cruciferous vegetables, particularly broccoli and broccoli sprouts, has been widely investigated due to its promising health-promoting properties in disease, and low toxicity in normal tissue. Although not yet fully understood, many mechanisms of anticancer activity at each step of cancer development have been attributed to this ITC. Given the promising data available regarding SFN, this review aimed to provide an overview on the potential activities of SFN related to the cellular mechanisms involved in glioblastoma (GBM) progression. GBM is the most frequent malignant brain tumor among adults and is currently an incurable disease due mostly to its highly invasive phenotype, and the poor efficacy of the available therapies. Despite all efforts, the median overall survival of GBM patients remains approximately 1.5 years under therapy. Therefore, there is an urgent need to provide support for translating the progress in understanding the molecular background of GBM into more complex, but promising therapeutic strategies, in which SFN may find a leading role.
Collapse
|
24
|
Zendedel E, Butler AE, Atkin SL, Sahebkar A. Impact of curcumin on sirtuins: A review. J Cell Biochem 2018; 119:10291-10300. [PMID: 30145851 DOI: 10.1002/jcb.27371] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022]
Abstract
Curcumin is a bioactive phytochemical that modulates several physiological and cellular processes leading to therapeutic effects against different diseases. Sirtuins are highly conserved nicotine adenine dinucleotide-dependent proteins that regulate the activity of target enzymes and transcription factors by deacetylation. Curcumin possesses both antioxidant and anti-inflammatory properties and has been shown to increase sirtuin-1 (SIRT1) by activating small molecules. Upregulation of SIRT1 by curcumin has been reported to confer protective effects against a range of neurological disorders including glutamate excitotoxicity, β-amyloid-induced cell death in cortical neurons, cerebral ischemic damage, and stroke. Activation of AMPK and SIRT1 by curcumin has also been noted to mediate the protective effects of curcumin against ischemia/reperfusion injury, cardiac fibrosis, diabetes, and lipid metabolism abnormalities. These protective effects of SIRT1 activation are partly mediated by the deacetylation of p53 and reduction of apoptosis. In this review, we summarize the role of SIRT1 in mediating the pharmacological effects of curcumin in several diseases.
Collapse
Affiliation(s)
- Elham Zendedel
- Department of Biology, Faculty of Sciences, Islamic Azad University-Mashhad Branch, Mashhad, Iran
| | - Alexandra E Butler
- Life Sciences Research Division, Anti-Doping Laboratory Qatar, Doha, Qatar
| | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Marjaneh RM, Rahmani F, Hassanian SM, Rezaei N, Hashemzehi M, Bahrami A, Ariakia F, Fiuji H, Sahebkar A, Avan A, Khazaei M. Phytosomal curcumin inhibits tumor growth in colitis‐associated colorectal cancer. J Cell Physiol 2018; 233:6785-6798. [DOI: 10.1002/jcp.26538] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/06/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Reyhaneh Moradi Marjaneh
- Department of Physiology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Farzad Rahmani
- Department of Medical Biochemistry, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Metabolic syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Nastaran Rezaei
- Department of Physiology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Milad Hashemzehi
- Department of Physiology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Afsane Bahrami
- Cellular and Molecular Research Center Birjand University of Medical Sciences Birjnad Iran
| | - Fatemeh Ariakia
- Medical Toxicology Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Hamid Fiuji
- Metabolic syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Amirhosein Sahebkar
- Department of Medical Biotechnology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Amir Avan
- Metabolic syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Cancer Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Metabolic syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
26
|
Sesarman A, Tefas L, Sylvester B, Licarete E, Rauca V, Luput L, Patras L, Banciu M, Porfire A. Anti-angiogenic and anti-inflammatory effects of long-circulating liposomes co-encapsulating curcumin and doxorubicin on C26 murine colon cancer cells. Pharmacol Rep 2018; 70:331-339. [DOI: 10.1016/j.pharep.2017.10.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 09/19/2017] [Accepted: 10/13/2017] [Indexed: 01/03/2023]
|
27
|
Li J, Guo A, Wang Q, Li Y, Zhao J, Lu J, Pei G. NF‐κB directly regulates β‐arrestin‐1 expression and forms a negative feedback circuit in TNF‐α‐induced cell death. FASEB J 2018; 32:4096-4106. [DOI: 10.1096/fj.201700642rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Juan Li
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- St. Giles Laboratory of Human Genetics of Infectious DiseasesRockefeller BranchThe Rockefeller UniversityNew YorkNYUSA
| | - Ao Guo
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Qinying Wang
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Yuanyuan Li
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Jian Zhao
- Translational Medical Center for Stem Cell TherapyShanghai East HospitalSchool of MedicineShanghaiChina
| | - Jing Lu
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Gang Pei
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- Collaborative Innovation Center for Brain ScienceSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| |
Collapse
|
28
|
Microfluidic cell sorting by stiffness to examine heterogenic responses of cancer cells to chemotherapy. Cell Death Dis 2018; 9:239. [PMID: 29445159 PMCID: PMC5833447 DOI: 10.1038/s41419-018-0266-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022]
Abstract
Cancers consist of a heterogeneous populations of cells that may respond differently to treatment through drug-resistant sub-populations. The scarcity of these resistant sub-populations makes it challenging to understand how to counter their resistance. We report a label-free microfluidic approach to separate cancer cells treated with chemotherapy into sub-populations enriched in chemoresistant and chemosensitive cells based on the differences in cellular stiffness. The sorting approach enabled analysis of the molecular distinctions between resistant and sensitive cells. Consequently, the role of multiple mechanisms of drug resistance was identified, including decreased sensitivity to apoptosis, enhanced metabolism, and extrusion of drugs, and, for the first time, the role of estrogen receptor in drug resistance of leukemia cells. To validate these findings, several inhibitors for the identified resistance pathways were tested with chemotherapy to increase cytotoxicity sevenfold. Thus, microfluidic sorting can identify molecular mechanisms of drug resistance to examine heterogeneous responses of cancers to therapies.
Collapse
|
29
|
Cavaleri F. Presenting a New Standard Drug Model for Turmeric and Its Prized Extract, Curcumin. Int J Inflam 2018; 2018:5023429. [PMID: 29568482 PMCID: PMC5820622 DOI: 10.1155/2018/5023429] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/06/2017] [Indexed: 02/07/2023] Open
Abstract
Various parts of the turmeric plant have been used as medicinal treatment for various conditions from ulcers and arthritis to cardiovascular disease and neuroinflammation. The rhizome's curcumin extract is the most studied active constituent, which exhibits an expansive polypharmacology with influence on many key inflammatory markers. Despite the expansive reports of curcucmin's therapeutic value, clinical reliability and research repeatability with curcumin treatment are still poor. The pharmacology must be better understood and reliably mapped if curcumin is to be accepted and used in modern medical applications. Although the polypharmacology of this extract has been considered, in mainstream medicine, to be a drawback, a perspective change reveals a comprehensive and even synergistic shaping of the NF-kB pathway, including transactivation. Much of the inconsistent research data and unreliable clinical outcomes may be due to a lack of standardization which also pervades research standard samples. The possibility of other well-known curcumin by-products contributing in the polypharmacology is also discussed. A new flowchart of crosstalk in transduction pathways that lead to shaping of nuclear NF-kB transactivation is generated and a new calibration or standardization protocol for the extract is proposed which could lead to more consistent data extraction and improved reliability in therapy.
Collapse
Affiliation(s)
- Franco Cavaleri
- Biologic Pharmamedical Research, 688-2397 King George Blvd., White Rock, BC, Canada V4A7E9
| |
Collapse
|
30
|
Mohajeri M, Sahebkar A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit Rev Oncol Hematol 2017; 122:30-51. [PMID: 29458788 DOI: 10.1016/j.critrevonc.2017.12.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/28/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023] Open
Abstract
Doxorubicin (DOX)-induced toxicity and resistance are major obstacles in chemotherapeutic approaches. Despite effective in the treatment of numerous malignancies, some clinicians have voiced concern that DOX has the potential to cause debilitating consequences in organ tissues, especially the heart. The mechanisms of toxicity and resistance are respectively related to induction of reactive oxygen species (ROS) and up-regulation of ATP-binding cassette (ABC) transporter. Curcumin (CUR) with several biological and pharmacological properties is expected to restore DOX-mediated impairments to tissues. This review is intended to address the current knowledge on DOX adverse effects and CUR protective actions in the heart, kidneys, liver, brain, and reproductive organs. Coadministration of CUR and DOX is capable of ameliorating DOX toxicity pertained to antioxidant, apoptosis, autophagy, and mitochondrial permeability.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Novel Molecular Targets for Chemoprevention in Malignancies of the Head and Neck. Cancers (Basel) 2017; 9:cancers9090113. [PMID: 28858212 PMCID: PMC5615328 DOI: 10.3390/cancers9090113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/17/2022] Open
Abstract
Cancers of the head and neck region are among the leading causes of cancer-related mortalities worldwide. Oral leukoplakia and erythroplakia are identified as precursor lesions to malignancy. Patients cured of an initial primary head and neck cancer are also susceptible to developing second primary tumors due to cancerization of their mucosal field. Multi-step acquisition of genetic mutations leading to tumorigenesis and development of invasive cancer has been previously described. Recently, whole exome sequencing of tumor specimens has helped to identify driver mutations in this disease. For these reasons, chemoprevention or the use of systemic or biologic agents to prevent carcinogenesis is an attractive concept in head and neck cancers. Nonetheless, despite extensive clinical research in this field over the past couple decades, no standard of care option has emerged. This review article reports on targeted interventions that have been attempted in clinical trials to date, and focuses on novel molecular pathways and drugs in development that are worthy of being tested for this indication as part of future endeavors.
Collapse
|
32
|
Borg NA, Dixit VM. Ubiquitin in Cell-Cycle Regulation and Dysregulation in Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2017. [DOI: 10.1146/annurev-cancerbio-040716-075607] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Uncontrolled cell proliferation and genomic instability are common features of cancer and can arise from, respectively, the loss of cell-cycle control and defective checkpoints. Ubiquitin-mediated proteolysis, ultimately executed by ubiquitin-ligating enzymes (E3s), plays a key part in cell-cycle regulation and is dominated by two multisubunit E3s, the anaphase-promoting complex (or cyclosome) (APC/C) and SKP1–cullin-1–F-box (SCF) complex. We highlight the role of APC/C and the SCF bound to F-box proteins, FBXW7, SKP2, and β-TrCP, in regulating the abundance of select fundamental proteins, primarily during the cell cycle, that are associated with human cancer. The clinical success of the first proteasome inhibitor, bortezomib, in treating multiple myeloma and mantle-cell lymphoma set the precedent for viewing the ubiquitin–proteasome system as a druggable target for cancer. Given that there are more E3s than kinases, selective, small-molecule E3 inhibitors have the potential of opening up another dimension in the therapeutic armamentarium for the treatment of cancer.
Collapse
Affiliation(s)
- Natalie A. Borg
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Vishva M. Dixit
- Department of Physiological Chemistry, Genentech Inc., South San Francisco, California 94080
| |
Collapse
|
33
|
Ayers D, Vandesompele J. Influence of microRNAs and Long Non-Coding RNAs in Cancer Chemoresistance. Genes (Basel) 2017; 8:genes8030095. [PMID: 28273813 PMCID: PMC5368699 DOI: 10.3390/genes8030095] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022] Open
Abstract
Innate and acquired chemoresistance exhibited by most tumours exposed to conventional chemotherapeutic agents account for the majority of relapse cases in cancer patients. Such chemoresistance phenotypes are of a multi-factorial nature from multiple key molecular players. The discovery of the RNA interference pathway in 1998 and the widespread gene regulatory influences exerted by microRNAs (miRNAs) and other non-coding RNAs have certainly expanded the level of intricacy present for the development of any single physiological phenotype, including cancer chemoresistance. This review article focuses on the latest research efforts in identifying and validating specific key molecular players from the two main families of non-coding RNAs, namely miRNAs and long non-coding RNAs (lncRNAs), having direct or indirect influences in the development of cancer drug resistance properties and how such knowledge can be utilised for novel theranostics in oncology.
Collapse
Affiliation(s)
- Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M1 7DN, UK.
| | - Jo Vandesompele
- Center for Medical Genetics Ghent, Ghent University, Ghent 9000, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
34
|
Durand JK, Baldwin AS. Targeting IKK and NF-κB for Therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 107:77-115. [PMID: 28215229 DOI: 10.1016/bs.apcsb.2016.11.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to regulating immune responses, the NF-κB family of transcription factors also promotes cellular proliferation and survival. NF-κB and its activating kinase, IKK, have become appealing therapeutic targets because of their critical roles in the progression of many diseases including chronic inflammation and cancer. Here, we discuss the conditions that lead to pathway activation, the effects of constitutive activation, and some of the strategies used to inhibit NF-κB signaling.
Collapse
Affiliation(s)
- J K Durand
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - A S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
35
|
Interferon β improves the efficacy of low dose cisplatin by inhibiting NF-κB/p-Akt signaling on HeLa cells. Biomed Pharmacother 2016; 82:124-32. [PMID: 27470347 DOI: 10.1016/j.biopha.2016.04.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 01/23/2023] Open
Abstract
The purpose of this study was to evaluate the anticancer efficacy of interferon β in combination with low dose of cisplatin on human cervical cancer progression, as well as its principal action mechanism. The combination treatment synergistically potentiated the effect of interferon β on cell growth inhibition and DNA damage on HeLa cells by repressing NF-κB/p-Akt signaling. Synergistic targeting of these pathways has a therapeutic potential. Further, the combination treatment ameliorated the expression of pro-apoptotic Bax, and decreased the expression of anti-apoptotic protein Bcl-2. Additionally, the expression of active PARP was significantly increased and MMP-9 level was decreased in combination group as compared to the expression seen for the treatment with interferon β or cisplatin alone. Results demonstrate that the synergistic inhibitory effects of interferon β and low dose of cisplatin on human cervical cancer cells and also suggest that the inhibition of NF-κB/p-Akt signaling pathway plays a critical role in the anticancer effects of combination treatment along with the induction of PARP. Therefore, the combination of interferon β and cisplatin may be a useful treatment for human cervical cancer, with a greater effectiveness than other treatments.
Collapse
|
36
|
Das A, Durrant D, Mitchell C, Dent P, Batra SK, Kukreja RC. Sildenafil (Viagra) sensitizes prostate cancer cells to doxorubicin-mediated apoptosis through CD95. Oncotarget 2016; 7:4399-413. [PMID: 26716643 PMCID: PMC4826214 DOI: 10.18632/oncotarget.6749] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/26/2015] [Indexed: 01/16/2023] Open
Abstract
We previously reported that Sildenafil enhances apoptosis and antitumor efficacy of doxorubicin (DOX) while attenuating its cardiotoxic effect in prostate cancer. In the present study, we investigated the mechanism by which sildenafil sensitizes DOX in killing of prostate cancer (PCa) cells, DU145. The death receptor Fas (APO-1 or CD95) induces apoptosis in many carcinoma cells, which is negatively regulated by anti-apoptotic molecules such as FLIP (Fas-associated death domain (FADD) interleukin-1-converting enzyme (FLICE)-like inhibitory protein). Co-treatment of PCa cells with sildenafil and DOX for 48 hours showed reduced expression of both long and short forms of FLIP (FLIP-L and -S) as compared to individual drug treatment. Over-expression of FLIP-s with an adenoviral vector attentuated the enhanced cell-killing effect of DOX and sildenafil. Colony formation assays also confirmed that FLIP-S over-expression inhibited the DOX and sildenafil-induced synergistic killing effect as compared to the cells infected with an empty vector. Moreover, siRNA knock-down of CD95 abolished the effect of sildenafil in enhancing DOX lethality in cells, but had no effect on cell killing after treatment with a single agent. Sildenafil co-treatment with DOX inhibited DOX-induced NF-κB activity by reducing phosphorylation of IκB and nuclear translocation of the p65 subunit, in addition to down regulation of FAP-1 (Fas associated phosphatase-1, a known inhibitor of CD95-mediated apoptosis) expression. This data provides evidence that the CD95 is a key regulator of sildenafil and DOX mediated enhanced cell death in prostate cancer.
Collapse
Affiliation(s)
- Anindita Das
- Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - David Durrant
- Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Clint Mitchell
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rakesh C. Kukreja
- Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
37
|
Li F, Shanmugam MK, Siveen KS, Wang F, Ong TH, Loo SY, Swamy MMM, Mandal S, Kumar AP, Goh BC, Kundu T, Ahn KS, Wang LZ, Hui KM, Sethi G. Garcinol sensitizes human head and neck carcinoma to cisplatin in a xenograft mouse model despite downregulation of proliferative biomarkers. Oncotarget 2016; 6:5147-63. [PMID: 25762616 PMCID: PMC4467139 DOI: 10.18632/oncotarget.2881] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 12/08/2014] [Indexed: 01/07/2023] Open
Abstract
Platinum compounds such as cisplatin and carboplatin are frequently used as the first-line chemotherapy for the treatment of the head and neck squamous cell carcinoma (HNSCC). In the present study, we investigated whether garcinol, a polyisoprenylated benzophenone can chemosensitize HNSCC to cisplatin. We found that garcinol inhibited the viability of a panel of diverse HNSCC cell lines, enhanced the apoptotic effect of cisplatin, suppressed constitutive as well as cisplatin-induced NF-κB activation, and downregulated the expression of various oncogenic gene products (cyclin D1, Bcl-2, survivin and VEGF). In vivo study showed that administration of garcinol alone (0.5 mg/kg body weight, i.p. five times/week) significantly suppressed the growth of the tumor, and this effect was further increased by cisplatin. Both the markers of proliferation index (Ki-67) and microvessel density (CD31) were downregulated in tumor tissues by the combination of cisplatin and garcinol. The pharmacokinetic results of garcinol indicated that good systemic exposure was achievable after i.p. administration of garcinol at 0.5 mg/kg and 2 mg/kg with mean peak concentration (Cmax) of 1825.4 and 6635.7 nM in the mouse serum, respectively. Overall, our results suggest that garcinol can indeed potentiate the effects of cisplatin by negative regulation of various inflammatory and proliferative biomarkers.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Fan Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore
| | - Tina H Ong
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore
| | - Ser Yue Loo
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Mahadeva M M Swamy
- Jawaharlal Nehru Centre for Advanced Scientific Research, Molecular Biology and Genetics Unit, Transcription and Disease Laboratory, Bangalore, India
| | - Somnath Mandal
- Jawaharlal Nehru Centre for Advanced Scientific Research, Molecular Biology and Genetics Unit, Transcription and Disease Laboratory, Bangalore, India
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore.,School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Western Australia, Australia.,Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Boon Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore.,Department of Haematology-Oncology, National University Health System, Singapore
| | - Tapas Kundu
- Jawaharlal Nehru Centre for Advanced Scientific Research, Molecular Biology and Genetics Unit, Transcription and Disease Laboratory, Bangalore, India
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ling Zhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Western Australia, Australia
| |
Collapse
|
38
|
Shakibaei M, Kraehe P, Popper B, Shayan P, Goel A, Buhrmann C. Curcumin potentiates antitumor activity of 5-fluorouracil in a 3D alginate tumor microenvironment of colorectal cancer. BMC Cancer 2015; 15:250. [PMID: 25884903 PMCID: PMC4406109 DOI: 10.1186/s12885-015-1291-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/30/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To overcome the limitations of animal-based experiments, 3D culture models mimicking the tumor microenvironment in vivo are gaining attention. Herein, we investigated an alginate-based 3D scaffold for screening of 5-fluorouracil (5-FU) or/and curcumin on malignancy of colorectal cancer cells (CRC). METHODS The potentiation effects of curcumin on 5-FU against proliferation and metastasis of HCT116 cell and its corresponding isogenic 5-FU-chemoresistant cells (HCT116R) were examined in a 3D-alginate tumor model. RESULTS CRC cells encapsulated in alginate were able to proliferate in 3D-colonospheres in a vivo-like phenotype and invaded from alginate. During cultivation of cells in alginate, we could isolate 3 stages of cells, (1) alginate proliferating (2) invasive and (3) adherent cells. Tumor-promoting factors (CXCR4, MMP-9, NF-κB) were significantly increased in the proliferating and invasive compared to the adherent cells, however HCT116R cells overexpressed factors in comparison to the parental HCT116, suggesting an increase in malignancy behavior. In alginate, curcumin potentiated 5-FU-induced decreased capacity for proliferation, invasion and increased more sensitivity to 5-FU of HCT116R compared to the HCT116 cells. IC50 for HCT116 to 5-FU was 8nM, but co-treatment with 5 μM curcumin significantly reduced 5-FU concentrations in HCT116 and HCT116R cells (0.8nM, 0.1nM, respectively) and these effects were accompanied by down-regulation of NF-κB activation and NF-κB-regulated gene products. CONCLUSIONS Our results demonstrate that the alginate provides an excellent tumor microenvironment and indicate that curcumin potentiates and chemosensitizes HCT116R cells to 5-FU-based chemotherapy that may be useful for the treatment of CRC and to overcome drug resistance.
Collapse
Affiliation(s)
- Mehdi Shakibaei
- Institute of Anatomy, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336, Munich, Germany.
| | - Patricia Kraehe
- Institute of Anatomy, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336, Munich, Germany.
| | - Bastian Popper
- Department of Anatomy and Cell Biology, Ludwig-Maximilian-University Munich, D-80336, Munich, Germany.
| | - Parviz Shayan
- Investigating Institute of Molecular Biological System Transfer, Tehran, 1417863171, Iran.
- Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran, Tehran, 141556453, Iran.
| | - Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Baylor Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA.
| | - Constanze Buhrmann
- Institute of Anatomy, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336, Munich, Germany.
| |
Collapse
|
39
|
Gobec M, Prijatelj M, Delić J, Markovič T, Mlinarič-Raščan I. Chemo-sensitizing effects of EP4 receptor-induced inactivation of nuclear factor-κB. Eur J Pharmacol 2014; 742:81-8. [DOI: 10.1016/j.ejphar.2014.08.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 08/22/2014] [Accepted: 08/27/2014] [Indexed: 12/14/2022]
|
40
|
Apoptosis and molecular targeting therapy in cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:150845. [PMID: 25013758 PMCID: PMC4075070 DOI: 10.1155/2014/150845] [Citation(s) in RCA: 737] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/11/2014] [Indexed: 12/22/2022]
Abstract
Apoptosis is the programmed cell death which maintains the healthy survival/death balance in metazoan cells. Defect in apoptosis can cause cancer or autoimmunity, while enhanced apoptosis may cause degenerative diseases. The apoptotic signals contribute into safeguarding the genomic integrity while defective apoptosis may promote carcinogenesis. The apoptotic signals are complicated and they are regulated at several levels. The signals of carcinogenesis modulate the central control points of the apoptotic pathways, including inhibitor of apoptosis (IAP) proteins and FLICE-inhibitory protein (c-FLIP). The tumor cells may use some of several molecular mechanisms to suppress apoptosis and acquire resistance to apoptotic agents, for example, by the expression of antiapoptotic proteins such as Bcl-2 or by the downregulation or mutation of proapoptotic proteins such as BAX. In this review, we provide the main regulatory molecules that govern the main basic mechanisms, extrinsic and intrinsic, of apoptosis in normal cells. We discuss how carcinogenesis could be developed via defective apoptotic pathways or their convergence. We listed some molecules which could be targeted to stimulate apoptosis in different cancers. Together, we briefly discuss the development of some promising cancer treatment strategies which target apoptotic inhibitors including Bcl-2 family proteins, IAPs, and c-FLIP for apoptosis induction.
Collapse
|
41
|
Shetzer Y, Solomon H, Koifman G, Molchadsky A, Horesh S, Rotter V. The paradigm of mutant p53-expressing cancer stem cells and drug resistance. Carcinogenesis 2014; 35:1196-208. [PMID: 24658181 DOI: 10.1093/carcin/bgu073] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is well accepted that expression of mutant p53 involves the gain of oncogenic-specific activities accentuating the malignant phenotype. Depending on the specific cancer type, mutant p53 can contribute to either the early or the late events of the multiphase process underlying the transformation of a normal cell into a cancerous one. This multifactorial system is evident in ~50% of human cancers. Mutant p53 was shown to interfere with a variety of cellular functions that lead to augmented cell survival, cellular plasticity, aberration of DNA repair machinery and other effects. All these effects culminate in the acquisition of drug resistance often seen in cancer cells. Interestingly, drug resistance has also been suggested to be associated with cancer stem cells (CSCs), which reside within growing tumors. The notion that p53 plays a regulatory role in the life of stem cells, coupled with the observations that p53 mutations may contribute to the evolvement of CSCs makes it challenging to speculate that drug resistance and cancer recurrence are mediated by CSCs expressing mutant p53.
Collapse
Affiliation(s)
- Yoav Shetzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hilla Solomon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gabriela Koifman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alina Molchadsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Stav Horesh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
42
|
Tamoxifen as an effective neuroprotectant against early brain injury and learning deficits induced by subarachnoid hemorrhage: possible involvement of inflammatory signaling. J Neuroinflammation 2013; 10:157. [PMID: 24373431 PMCID: PMC3881500 DOI: 10.1186/1742-2094-10-157] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 12/08/2013] [Indexed: 12/26/2022] Open
Abstract
Background Tamoxifen, a selective estrogen receptor modulator, has successfully been used to treat several animal models of brain injury, but the underlying mechanisms remain unclear. This study was undertaken to evaluate the effect of tamoxifen on the toll-like receptor 4 (TLR4)- and nuclear factor-κB (NF-κB)-related inflammatory signaling pathway and secondary brain injury in rats after subarachnoid hemorrhage (SAH). Methods Adult male Sprague-Dawley rats were divided into four groups: (1) control group (n = 28); (2) SAH group (n = 28); (3) SAH + vehicle group (n = 28); and (4) SAH + tamoxifen group (n = 28). All SAH animals were subjected to injection of autologous blood into the prechiasmatic cistern once on day 0. In SAH + tamoxifen group, tamoxifen was administered intraperitoneally at a dose of 5 mg/kg at 2 h, 12 h, and 36 h after SAH. In the first set of experiments, brain samples were extracted and evaluated at 48 h after SAH. In the second set of experiments, the Morris water maze was used to investigate cognitive and memory changes. Results We found that treatment with tamoxifen markedly inhibited the protein expressions of TLR4, NF-κB and the downstream inflammatory agents, such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and intercellular adhesion molecule-1 (ICAM-1). Administration of tamoxifen following SAH significantly ameliorated the early brain injury (EBI), such as brain edema, blood-brain barrier (BBB) impairment, and clinical behavior scale. Learning deficits induced by SAH were markedly alleviated after tamoxifen treatment. Conclusions Post-SAH tamoxifen administration may attenuate TLR4/NF-kappaB-mediated inflammatory response in the rat brain and result in abatement of the development of EBI and cognitive dysfunction after SAH.
Collapse
|
43
|
Cameron KS, Howard CB, Izevbigie EB, Hill BJ, Tchounwou PB. Sensitivity and mechanisms of taxol-resistant prostate adenocarcinoma cells to Vernonia amygdalina extract. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2013; 65:759-65. [PMID: 23238229 PMCID: PMC3652909 DOI: 10.1016/j.etp.2012.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 11/08/2012] [Indexed: 12/13/2022]
Abstract
Prostate cancer (PC) patients once Paclitaxel (TAX) treatment responsive later develop hormone refractory PC, thus becoming TAX-insensitive. This underscores the urgent need to develop novel anti-PC therapies. Vernonia amygdalina (VA) could be one such candidate agent. We have shown that androgen-independent PC-3 cells are sensitive to VA treatment in vitro. VA extract (0.01, 0.1 and 1 mg/ml) inhibited DNA synthesis by 12%, 45% (p<0.05), and 73% (p<0.01) respectively. In contrast, TAX (0.01, 0.1, and 1 μM) failed to significantly affect cell growth, suggesting TAX resistance. We tested molecular mechanisms which may lend to the observed PC-3 cell VA sensitivity/TAX resistance. Though both VA and TAX stimulated MAPK activity, VA's induction was more intense, but transient, compared to TAX's sustained action. NF-κB activation was inhibited on average by 50% by either 1 mg/ml VA or 1 μM TAX. VA extract caused 35% and 45% increases in c-Myc activity at 10 and 60 min intervals respectively, with the highest stimulation attained 1h after treatment. In contrast, similar levels were attained by TAX rapidly (within 5 min) and were sustained compared to the slow/multi-phasic action of VA. VA extract treatments had no effect on AKT gene expression, while TAX treatments yielded a four-fold (P<0.01) increase; and P-glycoprotein (P-gp) activity was inhibited by VA and stimulated by TAX, compared to control (basal ATPase activity). This study shows that TAX-resistant PC-3 cells are sensitive to VA, perhaps explained by differential regulatory patterns of MAPK, c-Myc, AKT, and Pgp activities/expressions.
Collapse
Affiliation(s)
- Keyuna S. Cameron
- The Laboratory of Cellular Signaling, Phytoceuticals, and Cancer Prevention and Therapies, Jackson State University, Jackson, Mississippi
- NIH-Center for Environmental Health, College of Science Engineering and Technology, Jackson State University, Jackson, Mississippi
| | - Carolyn B. Howard
- JSU-RCMI Breast Cancer Research Laboratory, Jackson State University, Jackson, Mississippi
- NIH-Center for Environmental Health, College of Science Engineering and Technology, Jackson State University, Jackson, Mississippi
- Department of Biology, Jackson State University, Jackson, Mississippi
| | - Ernest B. Izevbigie
- The Laboratory of Cellular Signaling, Phytoceuticals, and Cancer Prevention and Therapies, Jackson State University, Jackson, Mississippi
- NIH-Center for Environmental Health, College of Science Engineering and Technology, Jackson State University, Jackson, Mississippi
- Department of Biology, Jackson State University, Jackson, Mississippi
| | - Brandon J. Hill
- The Laboratory of Cellular Signaling, Phytoceuticals, and Cancer Prevention and Therapies, Jackson State University, Jackson, Mississippi
- NIH-Center for Environmental Health, College of Science Engineering and Technology, Jackson State University, Jackson, Mississippi
- Department of Biology, Jackson State University, Jackson, Mississippi
| | - Paul B. Tchounwou
- JSU-RCMI Breast Cancer Research Laboratory, Jackson State University, Jackson, Mississippi
| |
Collapse
|
44
|
Yang SH, Hsu CH, Lee JC, Tien YW, Kuo SH, Cheng AL. Nuclear expression of glioma-associated oncogene homolog 1 and nuclear factor-κB is associated with a poor prognosis of pancreatic cancer. Oncology 2013; 85:86-94. [PMID: 23860225 DOI: 10.1159/000353452] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/31/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVE We investigated the association of the hedgehog pathway with nuclear factor (NF)-κB and clinical outcomes in pancreatic cancer patients. METHODS We analyzed tissue samples for the expression of NF-κB (RelA/p65), sonic hedgehog (Shh) and glioma-associated oncogene homolog 1 (Gli1) by immunohistochemistry and investigated their expression in association with clinical outcomes. RESULTS Eighty-one patients with pancreatic cancer were investigated. Expression of Shh and nuclear expression of Gli1 and NF-κB were found in 63 of 66 (96%), 28 of 68 (41%) and 22 of 68 cases (32%), respectively. Nuclear Gli1 expression was closely associated with nuclear expression of NF-κB (p < 0.001). Patients with nuclear Gli1 had significantly worse prognoses than those without (median survival 7.9 vs. 13.9 months; p = 0.009). Similarly, patients with nuclear expression of NF-κB had shorter overall survival than those with negative or cytoplasmic expression of NF-κB (median survival 5.5 vs. 13.9 months; p < 0.001). Shh expression had no prognostic significance. In the multivariate analysis, NF-κB nuclear expression was closely associated with unfavorable overall survival (p = 0.02). CONCLUSION Our results indicate that nuclear expression of Gli1 or NF-κB is a strong predictor of poor prognosis in pancreatic cancer. Additional investigation of the biologic significance of this association is warranted.
Collapse
Affiliation(s)
- Shih-Hung Yang
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
45
|
Godwin P, Baird AM, Heavey S, Barr MP, O'Byrne KJ, Gately K. Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front Oncol 2013; 3:120. [PMID: 23720710 PMCID: PMC3655421 DOI: 10.3389/fonc.2013.00120] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 04/28/2013] [Indexed: 12/29/2022] Open
Abstract
Intrinsic or acquired resistance to chemotherapeutic agents is a common phenomenon and a major challenge in the treatment of cancer patients. Chemoresistance is defined by a complex network of factors including multi-drug resistance proteins, reduced cellular uptake of the drug, enhanced DNA repair, intracellular drug inactivation, and evasion of apoptosis. Pre-clinical models have demonstrated that many chemotherapy drugs, such as platinum-based agents, antracyclines, and taxanes, promote the activation of the NF-κB pathway. NF-κB is a key transcription factor, playing a role in the development and progression of cancer and chemoresistance through the activation of a multitude of mediators including anti-apoptotic genes. Consequently, NF-κB has emerged as a promising anti-cancer target. Here, we describe the role of NF-κB in cancer and in the development of resistance, particularly cisplatin. Additionally, the potential benefits and disadvantages of targeting NF-κB signaling by pharmacological intervention will be addressed.
Collapse
Affiliation(s)
- P Godwin
- Department of Clinical Medicine, Thoracic Oncology Research Group, Trinity College Dublin, St. James's Hospital Ireland Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
46
|
Ayers D, Nasti A. Utilisation of nanoparticle technology in cancer chemoresistance. JOURNAL OF DRUG DELIVERY 2012; 2012:265691. [PMID: 23213536 PMCID: PMC3505656 DOI: 10.1155/2012/265691] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/11/2012] [Accepted: 10/11/2012] [Indexed: 01/08/2023]
Abstract
The implementation of cytotoxic chemotherapeutic drugs in the fight against cancer has played an invariably essential role for minimizing the extent of tumour progression and/or metastases in the patient and thus allowing for longer event free survival periods following chemotherapy. However, such therapeutics are nonspecific and bring with them dose-dependent cumulative adverse effects which can severely exacerbate patient suffering. In addition, the emergence of innate and/or acquired chemoresistance to the exposed cytotoxic agents undoubtedly serves to thwart effective clinical efficacy of chemotherapy in the cancer patient. The advent of nanotechnology has led to the development of a myriad of nanoparticle-based strategies with the specific goal to overcome such therapeutic hurdles in multiple cancer conditions. This paper aims to provide a brief overview and recollection of all the latest advances in the last few years concerning the application of nanoparticle technology to enhance the safe and effective delivery of chemotherapeutic agents to the tumour site, together with providing possible solutions to circumvent cancer chemoresistance in the clinical setting.
Collapse
Affiliation(s)
- Duncan Ayers
- Department of Pathology, Faculty of Medicine & Surgery, University of Malta, Msida MSD 2060, Malta
| | - Alessandro Nasti
- School of Medicine, Kanazawa University Hospital, University of Kanazawa, Kanazawa 920-1192, Japan
| |
Collapse
|
47
|
Kim J, Kim SY, Kang S, Yoon HR, Sun BK, Kang D, Kim JH, Song JJ. HSP27 modulates survival signaling networks in cells treated with curcumin and TRAIL. Cell Signal 2012; 24:1444-52. [PMID: 22449710 DOI: 10.1016/j.cellsig.2012.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 03/08/2012] [Accepted: 03/08/2012] [Indexed: 01/08/2023]
Abstract
The combination of curcumin and TRAIL and their role in enhancing apoptotic cell death has been reported by many studies. However, the exact molecular mechanism of apoptosis mediated by curcumin and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is not yet completely understood. In this study, we observed a close connection between dephosphorylated Akt and an increase in phosphorylated heat shock protein 27 (HSP27) during combined treatment with curcumin and TRAIL. Akt dephosphorylation was cumulatively regulated by protein phosphatase 1 (PP1), phosphoinositide-dependent kinase-1 (PDK1), and src. PP1 and PDK1 directly interacted with HSP27, whereas src indirectly interacted with HSP27 via the tumor necrosis factor receptor-associated factor 6 complex. In conclusion, HSP27 modulated cell survival by its interactions with various binding partners, depending on the level of phosphorylated HSP27.
Collapse
Affiliation(s)
- Jina Kim
- Institute for Cancer Research, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Mahon KL, Henshall SM, Sutherland RL, Horvath LG. Pathways of chemotherapy resistance in castration-resistant prostate cancer. Endocr Relat Cancer 2011; 18:R103-23. [PMID: 21565970 DOI: 10.1530/erc-10-0343] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chemotherapy remains the major treatment option for castration-resistant prostate cancer (CRPC) and limited cytotoxic options are available. Inherent chemotherapy resistance occurs in half of all patients and inevitably develops even in those who initially respond. Docetaxel has been the mainstay of therapy for 6 years, providing a small survival benefit at the cost of significant toxicity. Cabazitaxel is a promising second-line agent; however, it is no less toxic, whereas mitoxantrone provides only symptomatic benefit. Multiple cellular pathways involving apoptosis, inflammation, angiogenesis, signalling intermediaries, drug efflux pumps and tubulin are implicated in the development of chemoresistance. A thorough understanding of these pathways is needed to identify biomarkers that predict chemotherapy resistance with the aim to avoid unwarranted toxicities in patients who will not benefit from treatment. Until recently, the search for predictive biomarkers has been disappointing; however, the recent discovery of macrophage inhibitory cytokine 1 as a marker of chemoresistance may herald a new era of biomarker discovery in CRPC. Understanding the interface between this complex array of chemoresistance pathways rather than their study in isolation will be required to effectively predict response and target the late stages of advanced disease. The pre-clinical evidence for these resistance pathways and their progress through clinical trials as therapeutic targets is reviewed in this study.
Collapse
Affiliation(s)
- Kate L Mahon
- Department of Medical Oncology, Sydney Cancer Centre, Missenden Road, Camperdown, New South Wales 2050, Australia.
| | | | | | | |
Collapse
|
49
|
Curcumin promotes apoptosis, increases chemosensitivity, and inhibits nuclear factor kappaB in esophageal adenocarcinoma. Transl Oncol 2011; 3:99-108. [PMID: 20360934 DOI: 10.1593/tlo.09235] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 11/22/2009] [Accepted: 11/25/2009] [Indexed: 12/20/2022] Open
Abstract
The transcription factor, nuclear factor kappaB (NF-kappaB), plays a central role as a key mediator of cell survival and proliferation, and its activation may confer increased tumor chemoresistance. Curcumin, an orally available naturally occurring compound, has been shown to inhibit NF-kappaB and has a potential role in cancer chemoprevention. We investigated the effects of curcumin on NF-kappaB activity, on cell viability, and as a chemosensitizing agent with 5-fluorouracil (5-FU) or cisplatin (CDDP) in esophageal adenocarcinoma (EAC). Oligonucleotide microarray analysis of 46 cases, consisting of Barrett metaplasia, low-grade dysplasia, high-grade dysplasia and EAC, showed increased expression of NF-kappaB and IkappaB kinase subunits and decreased effector caspase expression in EAC compared with Barrett metaplasia. Stromal expression of both IkappaB and phospho-IkappaB was detected in several EAC samples by tissue microarray analysis. Curcumin alone inhibited NF-kappaB activity and induced apoptosis in both Flo-1 and OE33 EAC cell lines as determined by Western blot analysis, NF-kappaB reporter assays, and Caspase-Glo 3/7 assays. It also increased 5-FU- and CDDP-induced apoptosis in both cell lines. These data suggest that activation of NF-kappaB and inhibition of apoptosis may play a role in the progression from Barrett metaplasia to EAC. In addition, curcumin, a well-known inhibitor of NF-kappaB activity, was shown to increase apoptosis and enhance both 5-FU- and CDDP-mediated chemosensitivity, suggesting that it may have potential application in the therapy of patients with EAC.
Collapse
|
50
|
Nuclear Factor-kappa B as a Resistance Factor to Platinum-Based Antineoplasic Drugs. Met Based Drugs 2011; 2008:576104. [PMID: 18414584 PMCID: PMC2291150 DOI: 10.1155/2008/576104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 12/18/2007] [Indexed: 11/27/2022] Open
Abstract
Platinum drugs continue to be major chemotherapy drugs for cancer treatment. Nevertheless, acquired or intrinsic resistance to these compounds is common in human tumors. One important mechanism for this resistance is the avoidance of cells entering the apoptotic pathway. Nuclear factor-kappa B (NF-kappa B, NF-κB) is a pleiotropic transcription factor key in determining the death threshold of human cells. This factor is important in the final response of cells to platinum drugs, as exemplified by in vitro and in vivo models showing that inhibition of NF-κB sensitizes cancer cells to the effects of these drugs. New approaches focusing on the inhibition of NF-κB could help to minimize or even eliminate intrinsic or acquired resistance to platinum drugs.
Collapse
|