1
|
Liang YJ, Long DX, Wang S, Wang HP, Wu YJ. Metabolomic analysis of the serum and urine of rats exposed to diazinon, dimethoate, and cypermethrin alone or in combination. BMC Pharmacol Toxicol 2024; 25:3. [PMID: 38167230 PMCID: PMC10763016 DOI: 10.1186/s40360-023-00714-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Multiple pesticides are often used in combination for plant protection and public health. Therefore, it is important to analyze the physiological changes induced by multiple pesticides exposure. The objective of this study was to investigate the combined toxicity of the widely-used organophosphorus and pyrethroid pesticides diazinon, dimethoate, and cypermethrin. METHODS Male Wistar rats were administrated by gavage once daily with the three pesticides individual or in combination for consecutive 28 days. The metabolic components of serum and urine samples were detected by using 1H nuclear magnetic resonance (NMR)-based metabolomics method. Histopathological examination of liver and kidneys and serum biochemical determination were also carried out. RESULTS The results showed that after the 28-day subacute exposure, serum glutamic transaminase and albumin were significantly increased and blood urea nitrogen was significantly decreased in the rats exposed to the mixture of the pesticides compared with the control rats, suggesting that the co-exposure impaired liver and kidney function. Metabolomics analysis indicated that the indicators 14 metabolites were statistically significant altered in the rats after the exposure of the pesticides. The increase in 3-hydroxybutyric acid in urine or decrease of lactate and N-acetyl-L-cysteine in serum could be a potentially sensitive biomarker of the subchronic combined effects of the three insecticides. The reduction level of 2-oxoglutarate and creatinine in urine may be indicative of dysfunction of liver and kidneys. CONCLUSION In summary, the exposure of rats to pesticides diazinon, dimethoate, and cypermethrin could cause disorder of lipid and amino acid metabolism, induction of oxidative stress, and dysfunction of liver and kidneys, which contributes to the understanding of combined toxic effects of the pesticides revealed by using the metabolomics analysis of the urine and serum profiles.
Collapse
Affiliation(s)
- Yu-Jie Liang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, P. R. China
- School of Rehabilitation Medicine, Jining Medical University, 272067, Jining, Shandong, P. R. China
| | - Ding-Xin Long
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, P. R. China
- School of Public Health, University of South China, 421001, Hengyang, Hunan, P. R. China
| | - Shanshan Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 100081, Beijing, P. R. China
| | - Hui-Ping Wang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, P. R. China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, P. R. China.
| |
Collapse
|
2
|
Tressler CM, Ayyappan V, Nakuchima S, Yang E, Sonkar K, Tan Z, Glunde K. A multimodal pipeline using NMR spectroscopy and MALDI-TOF mass spectrometry imaging from the same tissue sample. NMR IN BIOMEDICINE 2023; 36:e4770. [PMID: 35538020 PMCID: PMC9867920 DOI: 10.1002/nbm.4770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 06/14/2023]
Abstract
NMR spectroscopy and matrix assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) are both commonly used to detect large numbers of metabolites and lipids in metabolomic and lipidomic studies. We have demonstrated a new workflow, highlighting the benefits of both techniques to obtain metabolomic and lipidomic data, which has realized for the first time the combination of these two complementary and powerful technologies. NMR spectroscopy is frequently used to obtain quantitative metabolite information from cells and tissues. Lipid detection is also possible with NMR spectroscopy, with changes being visible across entire classes of molecules. Meanwhile, MALDI MSI provides relative measures of metabolite and lipid concentrations, mapping spatial information of many specific metabolite and lipid molecules across cells or tissues. We have used these two complementary techniques in combination to obtain metabolomic and lipidomic measurements from triple-negative human breast cancer cells and tumor xenograft models. We have emphasized critical experimental procedures that ensured the success of achieving NMR spectroscopy and MALDI MSI in a combined workflow from the same sample. Our data show that several phospholipid metabolite species were differentially distributed in viable and necrotic regions of breast tumor xenografts. This study emphasizes the power of combined NMR spectroscopy-MALDI imaging to advance metabolomic and lipidomic studies.
Collapse
Affiliation(s)
- Caitlin M. Tressler
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vinay Ayyappan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sofia Nakuchima
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ethan Yang
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kanchan Sonkar
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zheqiong Tan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristine Glunde
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
MRI Detection of Hepatic N-Acetylcysteine Uptake in Mice. Biomedicines 2022; 10:biomedicines10092138. [PMID: 36140239 PMCID: PMC9495914 DOI: 10.3390/biomedicines10092138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
This proof-of-concept study looked at the feasibility of using a thiol–water proton exchange (i.e., CEST) MRI contrast to detect in vivo hepatic N-acetylcysteine (NAC) uptake. The feasibility of detecting NAC-induced glutathione (GSH) biosynthesis using CEST MRI was also investigated. The detectability of the GSH amide and NAC thiol CEST effect at B0 = 7 T was determined in phantom experiments and simulations. C57BL/6 mice were injected intravenously (IV) with 50 g L−1 NAC in PBS (pH 7) during MRI acquisition. The dynamic magnetisation transfer ratio (MTR) and partial Z-spectral data were generated from the acquisition of measurements of the upfield NAC thiol and downfield GSH amide CEST effects in the liver. The 1H-NMR spectroscopy on aqueous mouse liver extracts, post-NAC-injection, was performed to verify hepatic NAC uptake. The dynamic MTR and partial Z-spectral data revealed a significant attenuation of the mouse liver MR signal when a saturation pulse was applied at −2.7 ppm (i.e., NAC thiol proton resonance) after the IV injection of the NAC solution. The 1H-NMR data revealed the presence of hepatic NAC, which coincided strongly with the increased upfield MTR in the dynamic CEST data, providing strong evidence that hepatic NAC uptake was detected. However, this MTR enhancement was attributed to a combination of NAC thiol CEST and some other upfield MT-generating mechanism(s) to be identified in future studies. The detection of hepatic GSH via its amide CEST MRI contrast was inconclusive based on the current results.
Collapse
|
4
|
Gut microbiome and metabolic response in non-alcoholic fatty liver disease. Clin Chim Acta 2021; 523:304-314. [PMID: 34666025 DOI: 10.1016/j.cca.2021.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/19/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
Fatty liver disease (FLD) is one of the largest burdens to human health worldwide and is associated with gut microbiome and metabolite stability. Engineered liver tissues have shown promise in restoring liver functions in non-alcoholic FLD (NAFLD), hepatitis and cirrhosis. Fatty liver, largely noted in obesity and hepatic cancer, is highly fatal and has led to a global increase in death rates. It is associated with complex metabolic reprogramming too. A standard approach to therapy in the newly diagnosed setting includes surgery or identification of biomarkers/ metabolites for therapeutic purposes, which ultimately focus on improvement of liver health in patients. As such there are no standard procedures for patient care, but depending on the severity, systemic therapy with either genomic, proteomic or metabolomic profiling form potential options. Better comparisons and study of underlying mechanisms in gut microbiome-based metabolic functions in obesity are urgently required. Today, an emerging field, focusing on metabolomic approaches and metabolic phenotyping, involved in high-throughput identification of metabolome in obesity and gut disorders, is involved in biomarker and metabolite identification. There are supporting technologies and approaches in NAFLD that throw light on the metabolites and gut microbiome, and also on the understanding of the risk factors of obesity along with liver cancer metabolic reaction networks. We discuss the current state of NAFLD metabolites, gut micro-environmental changes, and the further challenges in digital metabolomics profiling. Innovative clinical trial designs, with biomarker-enrichment strategies that are required to improve the outcome of NAFLD in patients are also discussed.
Collapse
|
5
|
Raja G, Jung Y, Jung SH, Kim TJ. 1H-NMR-based metabolomics for cancer targeting and metabolic engineering –A review. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Liu Y, Xue Q, Li A, Li K, Qin X. Mechanisms exploration of herbal pair of HuangQi-DanShen on cerebral ischemia based on metabonomics and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112688. [PMID: 32101772 DOI: 10.1016/j.jep.2020.112688] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/04/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The herbal pair of HuangQi-DanShen (HD) is frequently used for treating brain injury caused by cerebral ischemia (CI) in traditional Chinese medicine (TCM). AIM OF THE STUDY The present work was designed to reveal the active mechanism of HD against CI. MATERIALS AND METHODS In our work, an integrated approach combined 1H-NMR based metabonomics and network pharmacology was applied to decipher the protection of HD against MCAO (middle cerebral artery occlusion)-induced CI rats. Meanwhile, the indicator of neurological deficit and TTC staining were used to estimate the efficacy of HD. RESULTS The results of neurological deficit test and TTC staining suggested HD could improve the brain injury in CI rats. The metabonomic result indicated that HD could significantly ameliorate 8 serum metabolites in CI rats, which were linked 71 corresponding targeted proteins obtained by Metscape. In addition, 84 targets related HD against CI were obtained by network pharmacology. At last, 5 important targets were screened as hopeful targets for the treatment of CI through integrating them. CONCLUSION The integrated method coupled 1H-NMR based metabonomics with network pharmacology provided the insights into the mechanisms of TCM in treating CI.
Collapse
Affiliation(s)
- YueTao Liu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China.
| | - QianQian Xue
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China
| | - AiPing Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China
| | - XueMei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China.
| |
Collapse
|
7
|
King A, Baginski M, Morikawa Y, Rainville PD, Gethings LA, Wilson ID, Plumb RS. Application of a Novel Mass Spectral Data Acquisition Approach to Lipidomic Analysis of Liver Extracts from Sitaxentan-Treated Liver-Humanized PXB Mice. J Proteome Res 2019; 18:4055-4064. [DOI: 10.1021/acs.jproteome.9b00334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Adam King
- Waters Corporation, Stamford Avenue, Wilmslow SK9 4AX, U.K
| | - Matthew Baginski
- PhoenixBio USA Corporation, 65 Broadway, Suite 605, New York, New York 10006, United States
| | - Yoshio Morikawa
- PhoenixBio USA Corporation, 65 Broadway, Suite 605, New York, New York 10006, United States
| | - Paul D. Rainville
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | | | - Ian D. Wilson
- Department of Surgery and Cancer, Imperial College, Exhibition Road, South Kensington, London SW7 2AZ, U.K
| | - Robert S. Plumb
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| |
Collapse
|
8
|
Wang X, Han W, Yang J, Westaway D, Li L. Development of chemical isotope labeling LC-MS for tissue metabolomics and its application for brain and liver metabolome profiling in Alzheimer's disease mouse model. Anal Chim Acta 2019; 1050:95-104. [DOI: 10.1016/j.aca.2018.10.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/18/2022]
|
9
|
Bonvallot N, Canlet C, Blas-Y-Estrada F, Gautier R, Tremblay-Franco M, Chevolleau S, Cordier S, Cravedi JP. Metabolome disruption of pregnant rats and their offspring resulting from repeated exposure to a pesticide mixture representative of environmental contamination in Brittany. PLoS One 2018; 13:e0198448. [PMID: 29924815 PMCID: PMC6010212 DOI: 10.1371/journal.pone.0198448] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 05/18/2018] [Indexed: 11/19/2022] Open
Abstract
The use of pesticides exposes humans to numerous harmful molecules. Exposure in early-life may be responsible for adverse effects in later life. This study aimed to assess the metabolic modifications induced in pregnant rats and their offspring by a pesticide mixture representative of human exposure. Ten pregnant rats were exposed to a mixture of eight pesticides: acetochlor (246 μg/kg bw/d) + bromoxynil (12 μg/kg bw/d) + carbofuran (22.5 μg/kg bw/d) + chlormequat (35 μg/kg bw/d) + ethephon (22.5 μg/kg bw/d) + fenpropimorph (15.5 μg/kg bw/d) + glyphosate (12 μg/kg bw/d) + imidacloprid (12.5 μg/kg bw/d) representing the main environmental pesticide exposure in Brittany (France) in 2004. Another group of 10 pregnant rats served as controls. Females were fed ad libitum from early pregnancy, which is from gestational day (GD) 4 to GD 21. Urine samples were collected at GD 15. At the end of the exposure, mothers and pups were euthanized and blood, liver, and brain samples collected. 1H NMR-based metabolomics and GC-FID analyses were performed and PCA and PLS-DA used to discriminate between control and exposed groups. Metabolites for which the levels were significantly modified were then identified using the Kruskal-Wallis test, and p-values were adjusted for multiple testing correction using the False Discovery Rate. The metabolomics analysis revealed many differences between dams of the two groups, especially in the plasma, liver and brain. The modified metabolites are involved in TCA cycle, energy production and storage, lipid and carbohydrate metabolism, and amino-acid metabolism. These modifications suggest that the pesticide mixture may induce oxidative stress associated with mitochondrial dysfunction and the impairment of glucose and lipid metabolism. These observations may reflect liver dysfunction with increased relative liver weight and total lipid content. Similar findings were observed for glucose and energy metabolism in the liver of the offspring, and oxidative stress was also suggested in the brains of male offspring.
Collapse
Affiliation(s)
- Nathalie Bonvallot
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
- INRA UMR 1331 Toxalim, University of Toulouse, INP, ENVT, EIP, UPS, UMR1331, Toulouse, France
| | - Cécile Canlet
- INRA UMR 1331 Toxalim, University of Toulouse, INP, ENVT, EIP, UPS, UMR1331, Toulouse, France
| | - Florence Blas-Y-Estrada
- INRA UMR 1331 Toxalim, University of Toulouse, INP, ENVT, EIP, UPS, UMR1331, Toulouse, France
| | - Roselyne Gautier
- INRA UMR 1331 Toxalim, University of Toulouse, INP, ENVT, EIP, UPS, UMR1331, Toulouse, France
| | - Marie Tremblay-Franco
- INRA UMR 1331 Toxalim, University of Toulouse, INP, ENVT, EIP, UPS, UMR1331, Toulouse, France
| | - Sylvie Chevolleau
- INRA UMR 1331 Toxalim, University of Toulouse, INP, ENVT, EIP, UPS, UMR1331, Toulouse, France
| | - Sylvaine Cordier
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
| | - Jean-Pierre Cravedi
- INRA UMR 1331 Toxalim, University of Toulouse, INP, ENVT, EIP, UPS, UMR1331, Toulouse, France
| |
Collapse
|
10
|
Quansah E, Ruiz-Rodado V, Grootveld M, Zetterström TSC. Methylphenidate alters monoaminergic and metabolic pathways in the cerebellum of adolescent rats. Eur Neuropsychopharmacol 2018; 28:513-528. [PMID: 29478746 DOI: 10.1016/j.euroneuro.2018.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 02/01/2018] [Accepted: 02/07/2018] [Indexed: 12/31/2022]
Abstract
Abnormalities in the cerebellar circuitry have been suggested to contribute to some of the symptoms associated with attention deficit hyperactivity disorder (ADHD). The psychostimulant methylphenidate (MPH) is the major drug for treating this condition. Here, the effects of acute (2.0 mg/kg and 5.0 mg/kg) and chronic (2.0 mg/kg, twice daily for 15 days) MPH treatments were investigated in adolescent (35-40 days old) rats on monoaminergic and metabolic markers in the cerebellum. Data acquired indicates that acute MPH treatment (2.0 mg/kg) decreased cerebellar vesicular monoamine transporter (VMAT2) density, while chronic treatment caused an increase. In contrast, protein levels of tyrosine hydroxylase (TH) and the dopamine D1 receptor were not significantly altered by neither acute nor chronic MPH treatment. In addition, while chronic but not acute MPH treatment significantly enhanced dopamine turnover (DOPAC/dopamine) in the cerebellum, levels of dopamine and homovanillic acid (HVA) were not altered. Acute MPH (5.0 mg/kg) significantly modified levels of a range of cerebellar metabolites with similar trends also detected for the lower dose (2.0 mg/kg). In this regard, acute MPH tended to decrease cerebellar metabolites associated with energy consumption and excitatory neurotransmission including glutamate, glutamine, N-acetyl aspartate, and inosine. Conversely, levels of some metabolites associated with inhibitory neurotransmission, including GABA and glycine were reduced by acute (5.0 mg/kg) MPH, together with acetate, aspartate and hypoxanthine. In conclusion, this study demonstrated that MPH alters cerebellar biochemistry, and that this effect depends on both dose and duration of treatment. The therapeutic significance of these results requires further investigation.
Collapse
Affiliation(s)
- Emmanuel Quansah
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Victor Ruiz-Rodado
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Martin Grootveld
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Tyra S C Zetterström
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
| |
Collapse
|
11
|
NMR-Based Identification of Metabolites in Polar and Non-Polar Extracts of Avian Liver. Metabolites 2017; 7:metabo7040061. [PMID: 29144418 PMCID: PMC5746741 DOI: 10.3390/metabo7040061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/03/2022] Open
Abstract
Metabolites present in liver provide important clues regarding the physiological state of an organism. The aim of this work was to evaluate a protocol for high-throughput NMR-based analysis of polar and non-polar metabolites from a small quantity of liver tissue. We extracted the tissue with a methanol/chloroform/water mixture and isolated the polar metabolites from the methanol/water layer and the non-polar metabolites from the chloroform layer. Following drying, we re-solubilized the fractions for analysis with a 600 MHz NMR spectrometer equipped with a 1.7 mm cryogenic probe. In order to evaluate the feasibility of this protocol for metabolomics studies, we analyzed the metabolic profile of livers from house sparrow (Passer domesticus) nestlings raised on two different diets: livers from 10 nestlings raised on a high protein diet (HP) for 4 d and livers from 12 nestlings raised on the HP diet for 3 d and then switched to a high carbohydrate diet (HC) for 1 d. The protocol enabled the detection of 52 polar and nine non-polar metabolites in 1H NMR spectra of the extracts. We analyzed the lipophilic metabolites by one-way ANOVA to assess statistically significant concentration differences between the two groups. The results of our studies demonstrate that the protocol described here can be exploited for high-throughput screening of small quantities of liver tissue (approx. 100 mg wet mass) obtainable from small animals.
Collapse
|
12
|
Lou D, Du Y, Huang D, Cai F, Zhang Y, Li T, Zhou W, Gao H, Song W. Traumatic Brain Injury Alters the Metabolism and Facilitates Alzheimer's Disease in a Murine Model. Mol Neurobiol 2017; 55:4928-4939. [PMID: 28776265 DOI: 10.1007/s12035-017-0687-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/11/2017] [Indexed: 12/14/2022]
Abstract
A majority of Alzheimer's disease (AD) cases are sporadic without known cause. People who suffered from traumatic brain injury (TBI) are more likely to develop neurodegeneration and cognitive impairments. However, the role of TBI in pathophysiology of AD remains elusive. The present study intended to explore the effect of TBI on metabolism and its role in AD pathogenesis. We subjected double transgenic AD model mice APP23/PS45 to TBI. We found that TBI promoted β-secretase cleavage of amyloid β precursor protein and amyloid β protein deposition, and exuberated the cognitive impairments in AD mouse models. 1H nuclear magnetic resonance (1H-NMR)-based metabolomics with multivariate analysis was performed to investigate the characteristic metabolites and the related metabolic pathways in the serum and urine samples of the mice. TBI affected the metabolic patterns, methylamine metabolism, and amino acid metabolism in serum samples. Urinary metabolites showed that glycolysis and the tricarboxylic acid (TCA) cycle were perturbed. The results indicate that TBI might facilitate Alzheimer's pathogenesis by altering metabolism and inducing mitochondrial dysfunction. The study suggests that metabolite changes could also serve as biomarkers for TBI-induced neurodegeneration.
Collapse
Affiliation(s)
- Dandan Lou
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yao Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Daochao Huang
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Yun Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Tinyu Li
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Weihui Zhou
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Weihong Song
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
13
|
Quansah E, Ruiz-Rodado V, Grootveld M, Probert F, Zetterström TSC. 1H NMR-based metabolomics reveals neurochemical alterations in the brain of adolescent rats following acute methylphenidate administration. Neurochem Int 2017; 108:109-120. [PMID: 28268188 DOI: 10.1016/j.neuint.2017.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/12/2017] [Accepted: 03/03/2017] [Indexed: 12/22/2022]
Abstract
The psychostimulant methylphenidate (MPH) is increasingly used in the treatment of attention deficit hyperactivity disorder (ADHD). While there is little evidence for common brain pathology in ADHD, some studies suggest a right hemisphere dysfunction among people diagnosed with the condition. However, in spite of the high usage of MPH in children and adolescents, its mechanism of action is poorly understood. Given that MPH blocks the neuronal transporters for dopamine and noradrenaline, most research into the effects of MPH on the brain has largely focused on these two monoamine neurotransmitter systems. Interestingly, recent studies have demonstrated metabolic changes in the brain of ADHD patients, but the impact of MPH on endogenous brain metabolites remains unclear. In this study, a proton nuclear magnetic resonance (1H NMR)-based metabolomics approach was employed to investigate the effects of MPH on brain biomolecules. Adolescent male Sprague Dawley rats were injected intraperitoneally with MPH (5.0 mg/kg) or saline (1.0 ml/kg), and cerebral extracts from the left and right hemispheres were analysed. A total of 22 variables (representing 13 distinct metabolites) were significantly increased in the MPH-treated samples relative to the saline-treated controls. The upregulated metabolites included: amino acid neurotransmitters such as GABA, glutamate and aspartate; large neutral amino acids (LNAA), including the aromatic amino acids (AAA) tyrosine and phenylalanine, both of which are involved in the metabolism of dopamine and noradrenaline; and metabolites associated with energy and cell membrane dynamics, such as creatine and myo-inositol. No significant differences in metabolite concentrations were found between the left and right cerebral hemispheres. These findings provide new insights into the mechanisms of action of the anti-ADHD drug MPH.
Collapse
Affiliation(s)
- Emmanuel Quansah
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Victor Ruiz-Rodado
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Martin Grootveld
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Fay Probert
- Department of Pharmacology, Oxford University, Mansfield Road, Oxford OX1 3QT, UK
| | - Tyra S C Zetterström
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
| |
Collapse
|
14
|
Le Roy CI, Mappley LJ, La Ragione RM, Woodward MJ, Claus SP. NMR-based metabolic characterization of chicken tissues and biofluids: a model for avian research. Metabolomics 2016; 12:157. [PMID: 27729831 PMCID: PMC5025519 DOI: 10.1007/s11306-016-1105-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/17/2016] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Poultry is one of the most consumed meat in the world and its related industry is always looking for ways to improve animal welfare and productivity. It is therefore essential to understand the metabolic response of the chicken to new feed formulas, various supplements, infections and treatments. OBJECTIVES As a basis for future research investigating the impact of diet and infections on chicken's metabolism, we established a high-resolution proton nuclear magnetic resonance (NMR)-based metabolic atlas of the healthy chicken (Gallus gallus). METHODS Metabolic extractions were performed prior to 1H-NMR and 2D NMR spectra acquisition on twelve biological matrices: liver, kidney, spleen, plasma, egg yolk and white, colon, caecum, faecal water, ileum, pectoral muscle and brain of 6 chickens. Metabolic profiles were then exhaustively characterized. RESULTS Nearly 80 metabolites were identified. A cross-comparison of these matrices was performed to determine metabolic variations between and within each section and highlighted that only eight core metabolites were systematically found in every matrice. CONCLUSION This work constitutes a database for future NMR-based metabolomic investigations in relation to avian production and health.
Collapse
Affiliation(s)
- Caroline Ivanne Le Roy
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP UK
| | - Luke John Mappley
- Department of cancer research, University College London, London, UK
| | - Roberto Marcello La Ragione
- Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guilford, Surrey, GU2 7AL UK
| | - Martin John Woodward
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP UK
| | - Sandrine Paule Claus
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP UK
| |
Collapse
|
15
|
Ju HK, Nam GM, Min JS, Pyo JS, Kang JS. Characterization of Carbon Monoxide Fatalities by Metabolomics. ANAL LETT 2016. [DOI: 10.1080/00032719.2015.1124110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Heijne WHM, Lamers RJAN, van Bladeren PJ, Groten JP, van Nesselrooij JHJ, van Ommen B. Profiles of Metabolites and Gene Expression in Rats with Chemically Induced Hepatic Necrosis. Toxicol Pathol 2016; 33:425-33. [PMID: 16036859 DOI: 10.1080/01926230590958146] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study investigated whether integrated analysis of transcriptomics and metabolomics data increased the sensitivity of detection and provided new insight in the mechanisms of hepatotoxicity. Metabolite levels in plasma or urine were analyzed in relation to changes in hepatic gene expression in rats that received bromobenzene to induce acute hepatic centrilobular necrosis. Bromobenzene-induced lesions were only observed after treatment with the highest of 3 dose levels. Multivariate statistical analysis showed that metabolite profiles of blood plasma were largely different from controls when the rats were treated with bromobenzene, also at doses that did not elicit histopathological changes. Changes in levels of genes and metabolites were related to the degree of necrosis, providing putative novel markers of hepatotoxicity. Levels of endogenous metabolites like alanine, lactate, tyrosine and dimethylglycine differed in plasma from treated and control rats. The metabolite profiles of urine were found to be reflective of the exposure levels. This integrated analysis of hepatic transcriptomics and plasma metabolomics was able to more sensitively detect changes related to hepatotoxicity and discover novel markers. The relation between gene expression and metabolite levels was explored and additional insight in the role of various biological pathways in bromobenzene-induced hepatic necrosis was obtained, including the involvement of apoptosis and changes in glycolysis and amino acid metabolism. The complete Table 2 is available as a supplemental file online at http://taylorandfrancis.metapress.com/openurlasp?genre=journal&issn=0192-6233 . To access the file, click on the issue link for 33(4), then select this article. A download option appears at the bottom of this abstract. In order to access the full article online, you must either have an individual subscription or a member subscription accessed through www.toxpath.org .
Collapse
|
17
|
ZHU C, LIANG QL, WANG YM, LUO GA, Vreeken RJ, Hankmeimer T. Advance in Analysis and Detection Technologies for Phospholipidomics. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60939-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Hong JH, Lee WC, Hsu YM, Liang HJ, Wan CH, Chien CL, Lin CY. Characterization of the biochemical effects of naphthalene on the mouse respiratory system using NMR-based metabolomics. J Appl Toxicol 2014; 34:1379-88. [PMID: 24478122 DOI: 10.1002/jat.2970] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/08/2013] [Accepted: 11/08/2013] [Indexed: 11/09/2022]
Abstract
Naphthalene is a ubiquitous environmental pollutant to which humans are exposed. Previous studies have demonstrated that naphthalene causes bronchiolar epithelial necrosis in the mouse distal airway, after parenteral administration. In this study, metabolic variations in the bronchoalveolar lavage fluid (BALF) and the lung tissues of naphthalene-treated mice and controls were examined using nuclear magnetic resonance (NMR)-based metabolomics to identify the toxic mechanism. Male ICR mice were treated with naphthalene [0, 50, 100 and 200 mg kg(-1), intraperitoneally (i.p.)]. After 24 h, BALF and lung tissues were collected and prepared for (1)H and J-resolved (JRES) NMR analysis after principal component analysis (PCA). PCA modeling of p-JRES spectra from the BALF, as well as hydrophilic and hydrophobic lung metabolites, enabled the high-dose group to be discriminated from the control group; increased levels of isopropanol, ethane, and acetone and lower levels of ethanol, acetate, formate, and glycerophosphocholine were detected in the BALF of mice treated with higher doses of naphthalene. Furthermore, increased isopropanol and phosphorylcholine-containing lipid levels and decreased succinate and glutamine levels were discovered in the lungs of naphthalene-exposed mice. These metabolic changes may be related to lipid peroxidation, disruptions of membrane components and imbalanced energy supply, and these results may partially explain the loss of cell membrane integrity in the airway epithelial cells of naphthalene-treated mice. We conclude that NMR-based metabolomic studies on BALF and lung tissues are a powerful tool to understand the mechanisms underlying respiratory toxicity.
Collapse
Affiliation(s)
- Jia-Huei Hong
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, 10055, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
19
|
Cai H, Chen Y, Cui X, Cai S, Chen Z. High-resolution 1H NMR spectroscopy of fish muscle, eggs and small whole fish via Hadamard-encoded intermolecular multiple-quantum coherence. PLoS One 2014; 9:e86422. [PMID: 24466083 PMCID: PMC3895039 DOI: 10.1371/journal.pone.0086422] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/10/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Nuclear magnetic resonance (NMR) spectroscopy has become an important technique for tissue studies. Since tissues are in semisolid-state, their high-resolution (HR) spectra cannot be obtained by conventional NMR spectroscopy. Because of this restriction, extraction and high-resolution magic angle spinning (HR MAS) are widely applied for HR NMR spectra of tissues. However, both of the methods are subject to limitations. In this study, the feasibility of HR (1)H NMR spectroscopy based on intermolecular multiple-quantum coherence (iMQC) technique is explored using fish muscle, fish eggs, and a whole fish as examples. MATERIALS AND METHODS Intact salmon muscle tissues, intact eggs from shishamo smelt and a whole fish (Siamese algae eater) are studied by using conventional 1D one-pulse sequence, Hadamard-encoded iMQC sequence, and HR MAS. RESULTS When we use the conventional 1D one-pulse sequence, hardly any useful spectral information can be obtained due to the severe field inhomogeneity. By contrast, HR NMR spectra can be obtained in a short period of time by using the Hadamard-encoded iMQC method without shimming. Most signals from fatty acids and small metabolites can be observed. Compared to HR MAS, the iMQC method is non-invasive, but the resolution and the sensitivity of resulting spectra are not as high as those of HR MAS spectra. CONCLUSION Due to the immunity to field inhomogeneity, the iMQC technique can be a proper supplement to HR MAS, and it provides an alternative for the investigation in cases with field distortions and with samples unsuitable for spinning. The acquisition time of the proposed method is greatly reduced by introduction of the Hadamard-encoded technique, in comparison with that of conventional iMQC method.
Collapse
Affiliation(s)
- Honghao Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| | - Yushan Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| | - Xiaohong Cui
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
- * E-mail: (ZC); (XC)
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
- * E-mail: (ZC); (XC)
| |
Collapse
|
20
|
Liang YJ, Wang HP, Long DX, Li W, Wu YJ. A metabonomic investigation of the effects of 60 days exposure of rats to two types of pyrethroid insecticides. Chem Biol Interact 2013; 206:302-8. [PMID: 24121187 DOI: 10.1016/j.cbi.2013.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/27/2013] [Accepted: 10/01/2013] [Indexed: 12/20/2022]
Abstract
Type I and II pyrethroid insecticides display different neurotoxicity. To investigate the long-term (60 days exposure) metabolic effect of the two types of pyrethroid insecticides deltamethrin and permethrin, (1)H nuclear magnetic resonance (NMR) spectroscopy-based metabonomics was used to analyze the biochemical composition of urine and serum samples from rats administrated daily with deltamethrin or permethrin for 60 consecutive days, and principal component analysis used to visualize similarities and differences in the resultant biochemical profiles. Rats treated with either deltamethrin or permethrin displayed increased levels of urinary acetate, dimethylamine, dimethylglycine, trimethylamine and serum free amino acids, and decreased urinary 2-oxoglutarate, all of which are indicative of kidney lesions and nephrotoxicity. The reduced excretion of tricarboxylic acid cycle intermediates, together with increased 3-D-hydroxybutyrate, acetate, and lactate in treated rats could suggest disturbance of the energy metabolism, including an increased rate of anaerobic glycolysis, enhanced fatty acid β-oxidation and ketogenesis. These results show that these two types of insecticides have similarities in the urine and serum spectra, indicating that similar metabolic pathways are perturbed by the insecticides, which induced hepatotoxicity and nephrotoxicity. This approach may lead to the discovery of novel biomarkers of pyrethroids toxicity and thereby provide new insights into the toxicological mechanisms of pesticides pyrethroids.
Collapse
Affiliation(s)
- Yu-Jie Liang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | |
Collapse
|
21
|
El Aidy S, Merrifield CA, Derrien M, van Baarlen P, Hooiveld G, Levenez F, Doré J, Dekker J, Holmes E, Claus SP, Reijngoud DJ, Kleerebezem M. The gut microbiota elicits a profound metabolic reorientation in the mouse jejunal mucosa during conventionalisation. Gut 2013; 62:1306-14. [PMID: 22722618 DOI: 10.1136/gutjnl-2011-301955] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Proper interactions between the intestinal mucosa, gut microbiota and nutrient flow are required to establish homoeostasis of the host. Since the proximal part of the small intestine is the first region where these interactions occur, and since most of the nutrient absorption occurs in the jejunum, it is important to understand the dynamics of metabolic responses of the mucosa in this intestinal region. DESIGN Germ-free mice aged 8-10 weeks were conventionalised with faecal microbiota, and responses of the jejunal mucosa to bacterial colonisation were followed over a 30-day time course. Combined transcriptome, histology, (1)H NMR metabonomics and microbiota phylogenetic profiling analyses were used. RESULTS The jejunal mucosa showed a two-phase response to the colonising microbiota. The acute-phase response, which had already started 1 day after conventionalisation, involved repression of the cell cycle and parts of the basal metabolism. The secondary-phase response, which was consolidated during conventionalisation (days 4-30), was characterised by a metabolic shift from an oxidative energy supply to anabolic metabolism, as inferred from the tissue transcriptome and metabonome changes. Detailed transcriptome analysis identified tissue transcriptional signatures for the dynamic control of the metabolic reorientation in the jejunum. The molecular components identified in the response signatures have known roles in human metabolic disorders, including insulin sensitivity and type 2 diabetes mellitus. CONCLUSION This study elucidates the dynamic jejunal response to the microbiota and supports a prominent role for the jejunum in metabolic control, including glucose and energy homoeostasis. The molecular signatures of this process may help to find risk markers in the declining insulin sensitivity seen in human type 2 diabetes mellitus, for instance.
Collapse
Affiliation(s)
- Sahar El Aidy
- Top Institute Food and Nutrition, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mining the brain metabolome to understand behavioural disruptions induced in mouse fed Hypochoeris radicata (L.), a neurotoxic plant for horse. Neurotoxicology 2013; 38:74-83. [PMID: 23811200 DOI: 10.1016/j.neuro.2013.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/19/2013] [Accepted: 06/19/2013] [Indexed: 11/20/2022]
Abstract
Mining the brain metabolome to understand behavioural disruptions induced in mouse fed Hypochoeris radicata (L.), a neurotoxic plant for horse. C57BL/6J mice orally exposed to 9% H. radicata (HR) are metabolically competent laboratory animals which can be used as model of Australian stringhalt, a neurological horse disease induced by HR ingestion. So, the present study was conducted to assess the brain metabolome and the behavioural performances of mice fed with a 9%-HR-based diet for 21 days. By the end of the period of exposure, mice were investigated for motor activity and coordination, anxiety level, learning and memory performances, social behaviour and rewarding properties of for the plant. Thus, the animals were sacrificed and the brain metabolome was studied using (1)H NMR spectroscopy. HR-exposed mice displayed a motor hyperactivity in several tasks, a less resignation in the forced swimming test, and paradigm place preference for the plant. A bootstrap-based regularized canonical analysis performed on merged behavioural and metabolic datasets showed a clear relationship in HR-treated mice between an increase in cerebral scyllo-inositol, an increased motor activity, and seemingly rewarding properties of HR. These results underlie the interest of such a dual approach to characterize functional end-points of a pathophysiological model of the Australian stringhalt in equine species.
Collapse
|
23
|
Cabaton NJ, Canlet C, Wadia PR, Tremblay-Franco M, Gautier R, Molina J, Sonnenschein C, Cravedi JP, Rubin BS, Soto AM, Zalko D. Effects of low doses of bisphenol A on the metabolome of perinatally exposed CD-1 mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:586-93. [PMID: 23425943 PMCID: PMC3673190 DOI: 10.1289/ehp.1205588] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/04/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is a well-known endocrine disruptor used to manufacture polycarbonate plastics and epoxy resins. Exposure of pregnant rodents to low doses of BPA results in pleiotropic effects in their offspring. OBJECTIVE We used metabolomics--a method for determining metabolic changes in response to nutritional, pharmacological, or toxic stimuli--to examine metabolic shifts induced in vivo by perinatal exposure to low doses of BPA in CD-1 mice. METHODS Male offspring born to pregnant CD-1 mice that were exposed to vehicle or to 0.025, 0.25, or 25 µg BPA/kg body weight/day, from gestation day 8 through day 16 of lactation, were examined on postnatal day (PND) 2 or PND21. Aqueous extracts of newborns (PND2, whole animal) and of livers, brains, and serum samples from PND21 pups were submitted to (1)H nuclear magnetic resonance spectroscopy. Data were analyzed using partial least squares discriminant analysis. RESULTS Examination of endogenous metabolic fingerprints revealed remarkable discrimination in whole extracts of the four PND2 newborn treatment groups, strongly suggesting changes in the global metabolism. Furthermore, statistical analyses of liver, serum, and brain samples collected on PND21 successfully discriminated among treatment groups. Variations in glucose, pyruvate, some amino acids, and neurotransmitters (γ-aminobutyric acid and glutamate) were identified. CONCLUSIONS Low doses of BPA disrupt global metabolism, including energy metabolism and brain function, in perinatally exposed CD-1 mouse pups. Metabolomics can be used to highlight the effects of low doses of endocrine disruptors by linking perinatal exposure to changes in global metabolism.
Collapse
Affiliation(s)
- Nicolas J Cabaton
- Institut National de la Recherche Agronomique, UMR1331, TOXALIM (Research Centre in Food Toxicology), Toulouse, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
de Castro NM, Yaqoob P, de la Fuente M, Baeza I, Claus SP. Premature Impairment of Methylation Pathway and Cardiac Metabolic Dysfunction in fa/fa Obese Zucker Rats. J Proteome Res 2013; 12:1935-45. [DOI: 10.1021/pr400025y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nuria M. de Castro
- Department of Animal Physiology,
Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Parveen Yaqoob
- Department of Food and Nutritional
Sciences, The University of Reading, Whiteknights
campus, P.O. Box 226, Reading RG6 6AP, U.K
| | - Mónica de la Fuente
- Department of Animal Physiology,
Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Isabel Baeza
- Department of Animal Physiology,
Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sandrine P. Claus
- Department of Food and Nutritional
Sciences, The University of Reading, Whiteknights
campus, P.O. Box 226, Reading RG6 6AP, U.K
| |
Collapse
|
25
|
Yao AM, Ma FF, Zhang LL, Feng F. Effect of aqueous extract and fractions of Zhi-Zi-Hou-Pu decoction against depression in inescapable stressed mice: Restoration of monoamine neurotransmitters in discrete brain regions. PHARMACEUTICAL BIOLOGY 2013; 51:213-220. [PMID: 23116150 DOI: 10.3109/13880209.2012.717087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Zhi-Zi-Hou-Pu decoction (ZZHPD) is a traditional prescription which has been used to treat "Yu-syndrome" (depression and melancholia) in Chinese herbal medication. OBJECTIVE To evaluate antidepressant activities of ZZHPD, its fractions and possible mechanism(s) of action. MATERIALS AND METHODS ZZHPD (1241, 2482 and 4964 mg/kg), n-butanol fraction (ZH-BA, 1454 mg/kg), cyclohexane fraction (ZH-CH, 17 mg/kg) and aqueous fraction (ZH-AQ, 3493 mg/kg) were administered orally to different groups of mice for seven consecutive days. Forced Swimming Test (FST) and Tail Suspension Test (TST) were conducted 60 min after the last administration to evaluate the antidepressant effect. Norepinephrine, dopamine and 5-hydroxytryptamine levels in discrete brain parts were determined by HPLC-FD immediately after behavioral tests. RESULTS ZZHPD at 2482, 4964 mg/kg, ZH-BA (1454 mg/kg), ZH-CH (17 mg/kg) or clomipramine hydrochloride (20 mg/kg) significantly (p < 0.05) reduced the duration of immobility in FST and TST without affecting locomotor activities in the open field test. Observed from score plot of principle component analysis of monoamine levels in different groups, the monoamine profile of ZZHPD-treated mice were similar to that of the normal control mice. HPLC-UV analysis indicated that iridoid glycosides, flavones and neolignans might be the active chemicals. DISCUSSION AND CONCLUSION The results demonstrated significant antidepressant-like effect of ZZHPD in mice which was related to monoaminergic system, ZH-BA and ZH-CH could be the active fractions responsible for the antidepressant effect of ZZHPD.
Collapse
MESH Headings
- 1-Butanol/chemistry
- Administration, Oral
- Animals
- Antidepressive Agents/administration & dosage
- Antidepressive Agents/analysis
- Antidepressive Agents/pharmacology
- Behavior, Animal/drug effects
- Biogenic Monoamines/metabolism
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Chromatography, High Pressure Liquid
- Cyclohexanes/chemistry
- Depression/drug therapy
- Depression/etiology
- Depression/metabolism
- Depression/physiopathology
- Depression/psychology
- Disease Models, Animal
- Dopamine/metabolism
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/analysis
- Drugs, Chinese Herbal/pharmacology
- Hindlimb Suspension/psychology
- Iridoids/administration & dosage
- Iridoids/analysis
- Iridoids/pharmacology
- Male
- Mice
- Motor Activity/drug effects
- Norepinephrine/metabolism
- Plants, Medicinal
- Principal Component Analysis
- Serotonin/metabolism
- Solvents/chemistry
- Spectrophotometry, Ultraviolet
- Stress, Psychological/drug therapy
- Stress, Psychological/etiology
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Stress, Psychological/psychology
- Time Factors
- Water/chemistry
Collapse
Affiliation(s)
- Ai-Min Yao
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | | | | | | |
Collapse
|
26
|
Specific metabolic fingerprint of a dietary exposure to a very low dose of endosulfan. J Toxicol 2013; 2013:545802. [PMID: 23431292 PMCID: PMC3569910 DOI: 10.1155/2013/545802] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 11/20/2012] [Indexed: 02/04/2023] Open
Abstract
Like other persistent organochlorine pesticides, endosulfan residues have been detected in foods including fruit, vegetables, and fish. The aim of our study was to assess the impact of a dietary exposure to low doses of endosulfan from foetal development until adult age on metabolic homeostasis in mice and to identify biomarkers of exposure using an 1H-NMR-based metabonomic approach in various tissues and biofluids. We report in both genders an increase in plasma glucose as well as changes in levels of factors involved in the regulation of liver oxidative stress, confirming the prooxidant activities of this compound. Some metabolic changes were distinct in males and females. For example in plasma, a decrease in lipid LDL and choline content was only observed in female. Lactate levels in males were significantly increased. In conclusion, our results show that metabolic changes in liver could be linked to the onset of pathologies like diabetes and insulin resistance. Moreover from our results it appears that the NMR-based metabonomic approach could be useful for the characterization in plasma of a dietary exposure to low dose of pesticide in human.
Collapse
|
27
|
Gut bacteria-host metabolic interplay during conventionalisation of the mouse germfree colon. ISME JOURNAL 2012. [PMID: 23178667 DOI: 10.1038/ismej.2012.142] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The interplay between dietary nutrients, gut microbiota and mammalian host tissues of the gastrointestinal tract is recognised as highly relevant for host health. Combined transcriptome, metabonome and microbial profiling tools were employed to analyse the dynamic responses of germfree mouse colonic mucosa to colonisation by normal mouse microbiota (conventionalisation) at different time-points during 16 days. The colonising microbiota showed a shift from early (days 1 and 2) to later colonisers (days 8 and 16). The dynamic changes in the microbial community were rapidly reflected by the urine metabolic profiles (day 1) and at later stages (day 4 onward) by the colon mucosa transcriptome and metabolic profiles. Correlations of host transcriptomes, metabolite patterns and microbiota composition revealed associations between Bacilli and Proteobacteria, and differential expression of host genes involved in energy and anabolic metabolism. Differential gene expression correlated with scyllo- and myo-inositol, glutamine, glycine and alanine levels in colonic tissues during the time span of conventionalisation. Our combined time-resolved analyses may help to expand the understanding of host-microbe molecular interactions during the microbial establishment.
Collapse
|
28
|
Validation of interventional fiber optic spectroscopy with MR spectroscopy, MAS-NMR spectroscopy, high-performance thin-layer chromatography, and histopathology for accurate hepatic fat quantification. Invest Radiol 2012; 47:209-16. [PMID: 22233757 DOI: 10.1097/rli.0b013e318237527b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To validate near-infrared (NIR)-based optical spectroscopy measurements of hepatic fat content using a minimally invasive needle-like probe with integrated optical fibers, enabling real-time feedback during percutaneous interventions. The results were compared with magnetic resonance spectroscopy (MRS) as validation and with histopathology, being the clinical gold standard. Additionally, ex vivo magic angle spinning nuclear magnetic resonance spectroscopy and high-performance thin-layer chromatography were performed for comparison. MATERIALS AND METHODS Ten mice were used for the study, of which half received a regular chow diet and the other half received a high-fat diet to induce obesity and hepatosteatosis. The mice were imaged with a clinical 3-Tesla MR to select a region of interest within the right and left lobes of the liver, where MRS measurements were acquired in vivo. Subsequently, optical spectra were measured ex vivo at the surface of the liver at 6 different positions immediately after resection. Additionally, hepatic fat was determined by magic angle spinning nuclear magnetic resonance spectroscopy and high-performance thin-layer chromatography. Histopathologic analyses were performed and used as the reference standard. Pearson correlation and linear regression analyses were performed to assess the correlation of the various techniques with NIR. A 1-way analysis of variance including post hoc Tukey multiple comparison tests was used to study the difference in fat estimation between the various techniques. RESULTS For both the mice groups, the estimated fat fractions by the various techniques were significantly similar (P = 0.072 and 0.627 for chow diet and high-fat diet group, respectively). The Pearson correlation value between NIR and the other techniques for fat determination showed the same strong linear correlation (P above 0.990; P < 0.001), whereas for histopathologic analyses, which is a rather qualitative measure, the Pearson correlation value was slightly lower (P = 0.925, P < 0.001) . Linear regression coefficient computed to compare NIR with the other techniques resulted in values close to unity with MRS having the narrowest confidence interval (r = 0.935, 95% confidence interval: 0.860-1.009), demonstrating highly correlating results between NIR and MRS. CONCLUSIONS NIR spectroscopy measurements from a needle-like probe with integrated optical fibers for sensing at the tip of the needle can quickly and accurately determine hepatic fat content during an interventional procedure and might therefore be a promising novel diagnosing tool in the clinic.
Collapse
|
29
|
Liang YJ, Wang HP, Long DX, Wu YJ. (1)H NMR-based metabonomic profiling of rat serum and urine to characterize the subacute effects of carbamate insecticide propoxur. Biomarkers 2012; 17:566-74. [PMID: 22780197 DOI: 10.3109/1354750x.2012.704527] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Carbamate insecticide propoxur is widely used in agriculture and public health programs. To prevent adverse health effects arising from exposure to this insecticide, sensitive methods for detection of early stage organismal changes are necessary. We present here an integrative metabonomic approach to investigate toxic effects of pesticide in experimental animals. Results showed that propoxur even at low dose levels can induce oxidative stress, impair liver function, enhance ketogenesis and fatty acid β-oxidation, and increase glycolysis, which contribute to the hepatotoxocity. These findings highlight the applicability of (1)H NMR spectroscopy and multivariate statistics in elucidating the toxic effects of propoxur.
Collapse
Affiliation(s)
- Yu-Jie Liang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | |
Collapse
|
30
|
Jang ZH, Chung HC, Ahn YG, Kwon YK, Kim JS, Ryu JH, Ryu DH, Kim CH, Hwang GS. Metabolic profiling of an alcoholic fatty liver in zebrafish (Danio rerio). MOLECULAR BIOSYSTEMS 2012; 8:2001-9. [PMID: 22532405 DOI: 10.1039/c2mb25073j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Zebrafish (Danio rerio) is becoming a popular developmental biology model to study diseases and for drug discovery. In this study, we performed proton nuclear magnetic resonance spectroscopy ((1)H-NMR)- and gas chromatography-mass spectrometry (GC/MS)-based metabolic profiling of an alcoholic fatty liver using a zebrafish disease model. We examined metabolic differences between the control and alcoholic fatty liver groups in zebrafish to determine how metabolism in an alcoholic fatty liver is regulated. Multivariate statistical analysis showed a significant difference between the control and alcoholic fatty liver groups. The alcoholic fatty liver group showed increased excretion of isoleucine, acetate, succinate, choline, creatine, acetoacetate, 3-hydroxybutyrate (3HB), ethyl glucuronide (EtG), lactate/pyruvate ratio, fatty acids, and cholesterol, and decreased excretion of citrate, aspartate, tyrosine, glycine, glucose, alanine, betaine, and maltose. Metabolites identified in the fatty liver groups were associated with long-term alcohol consumption, which causes both oxidation-reduction (redox) changes and oxidative stress. This study suggests that global metabolite profiling in a zebrafish model can provide insights into the metabolic changes in an alcoholic fatty liver.
Collapse
Affiliation(s)
- Zi-Hey Jang
- Seoul Centre, Korea Basic Science Institute, Seoul 136-713, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Application of ex vivo 1H NMR metabonomics to the characterization and possible detection of renal cell carcinoma metastases. J Cancer Res Clin Oncol 2012; 138:753-61. [DOI: 10.1007/s00432-011-1134-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
|
32
|
Bertram HC, Larsen LB, Chen X, Jeppesen PB. Impact of high-fat and high-carbohydrate diets on liver metabolism studied in a rat model with a systems biology approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:676-684. [PMID: 22224854 DOI: 10.1021/jf203994k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The aim of the present study was to investigate the use of an integrated metabolomics and proteomics approach in the elucidation of diet-induced effects on hepatic metabolism in a rat model. Nuclear magnetic resonance (NMR)-based metabolomics of liver extracts revealed a pronounced effect of a high-fat diet on the hepatic betaine content, whereas a carbohydrate-rich diet induced increases in hepatic glucose. In addition, the metabolomic investigations revealed that the high-fat diet was associated with increased hepatic lipid levels, which was not evident with the carbohydrate-rich diet. The proteomic investigations revealed strong high-fat diet effects on the expression of 186 proteins in the liver including malate dehydrogenase. Comparison of malate dehydrogenase expression determined by proteomics and NMR metabolite profiles revealed correlations between malate dehydrogenase and lactate, glucose, and glutamine/glutamate signals, thereby demonstrating a diet-induced regulation that was evident at both proteomic and metabolomic levels.
Collapse
|
33
|
Solanky BS, Sanchez-Canon GJ, Cobbold JFL, Taylor-Robinson SD, Bell JD, Scudamore CL, Ross E, Holder JC, So PW, Cox IJ. Metabolic profiling of the rat liver after chronic ingestion of alpha-naphthylisothiocyanate using in vivo and ex vivo magnetic resonance spectroscopy. Toxicol Sci 2012; 126:306-16. [PMID: 22262563 DOI: 10.1093/toxsci/kfs019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Certain human diseases affecting the biliary tree can be modeled in rats by ingestion of the hepatobiliary toxin alpha-naphthylisothiocyanate (ANIT). Phosphorus magnetic resonance spectroscopy (MRS) allows the noninvasive monitoring of cell dynamics through detection of phosphodiesters (PDE) and phosphomonoesters (PME). Hepatic (31)P MRS techniques were therefore used to study the toxic effects of low-dose chronic ANIT ingestion, with a view toward providing biomarkers sensitive to hepatobiliary dysfunction and cholestatic liver injury. Rats were fed an ANIT supplemented diet at three doses (ANIT_0.05%, ANIT_0.04%, and ANIT_0.025%) for 2 weeks. Data from in vivo MRS were compared with results from pair-fed controls (PFCs). Blood and tissue samples were collected at 2 weeks for clinical chemistry, histology, and (1)H magic angle spinning MRS. Increases in PDE, relative to total phosphorus (tPh), were detected in both the ANIT_0.05% and ANIT_0.04% groups (0.07 ± 0.01 and 0.08 ± 0.01, respectively) relative to PFC groups (0.03 ± 0.01 and 0.05 ± 0.01, respectively). An increase in PME/tPh was observed in the ANIT_0.05% group only (0.17 ± 0.02) relative to PFC_0.05% (0.12 ± 0.01). Ex vivo (1)H MRS findings supported this, wherein measured phosphocholines (PCs) were increased in ANIT_0.05% and ANIT_0.04% groups. Increases in relative total choline (tCho) distinguished the ANIT_0.05% group from the ANIT_0.04% group. Markers of hepatotoxicity such as raised total bilirubin and alkaline phosphatase were found at all ANIT doses. Histological findings included a dose-related increase in both severity of biliary hyperplasia and focal hepatocellular necrosis. Here, we found that ANIT-induced moderate hepatobiliary dysfunction was associated with a relative increase in phosphodiesters in vivo and PCs ex vivo. Raised PME/tPh in vivo and tCho ex vivo were also present at high doses corresponding to a higher incidence of marked biliary hyperplasia and moderate hepatocellular necrosis.
Collapse
Affiliation(s)
- Bhavana S Solanky
- Imaging Sciences Department, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
A comparison of the metabolic profile on intact tissue and extracts of muscle and liver of juvenile Atlantic salmon (Salmo salar L.) – Application to a short feeding study. Food Chem 2011. [DOI: 10.1016/j.foodchem.2011.05.081] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Najbjerg H, Young JF, Bertram HC. NMR-based metabolomics reveals that conjugated double bond content and lipid storage efficiency in HepG2 cells are affected by fatty acid cis/trans configuration and chain length. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:8994-9000. [PMID: 21786785 DOI: 10.1021/jf201489b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In the present study the metabolic response to various fatty acids was investigated in HepG2 cells by using a (1)H NMR-based approach. To elucidate the effect of cis/trans configuration, the cells were exposed to either oleic acid (C18:1 cis-9), elaidic acid (C18:1 trans-9), vaccenic acid (C18:1 trans-11), linoleic acid (C18:2), or palmitic acid (C16:0), and multivariate data analysis revealed a strong effect of fatty acid on the lipophilic metabolite fraction. Inspection of the spectra revealed that the difference between the observed responses could be ascribed to the appearance of resonances from conjugated double bonds (5.65, 5.94, and 6.28 ppm) in cells exposed to vaccenic acid, revealing that vaccenic acid upon uptake by the HepG2 cells is converted into a conjugated fatty acid. Upon exposure of the HepG2 cells to either butyric acid (C4:0), caproic acid (C6:0), lauric acid (C12:0), myristic acid (C14:0), or palmitic acid (C16:0), an effect of fatty acid length was also evident, and data indicated that short-chain fatty acids (C4-C6) are immediately converted, whereas medium-long-chain fatty acids (C12-16) are incorporated into triglycerides and deposited in the cells. In conclusion, the present study demonstrates that (1)H NMR spectroscopy is a useful method for studying the uptake of fatty acids in in vitro cells.
Collapse
Affiliation(s)
- Heidi Najbjerg
- Department of Food Science, Aarhus University, Research Centre Foulum, Tjele, Denmark
| | | | | |
Collapse
|
36
|
Strategy for choosing extraction procedures for NMR-based metabolomic analysis of mammalian cells. Anal Bioanal Chem 2011; 401:2133-42. [DOI: 10.1007/s00216-011-5310-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/29/2011] [Accepted: 08/02/2011] [Indexed: 11/30/2022]
|
37
|
Watanabe M, Sheriff S, Ramelot TA, Kadeer N, Cho J, Lewis KB, Balasubramaniam A, Kennedy MA. NMR Based Metabonomics Study of DAG Treatment in a C2C12 Mouse Skeletal Muscle Cell Line Myotube Model of Burn-Injury. Int J Pept Res Ther 2011. [DOI: 10.1007/s10989-011-9264-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Zhang H, Ding L, Fang X, Shi Z, Zhang Y, Chen H, Yan X, Dai J. Biological responses to perfluorododecanoic acid exposure in rat kidneys as determined by integrated proteomic and metabonomic studies. PLoS One 2011; 6:e20862. [PMID: 21677784 PMCID: PMC3108999 DOI: 10.1371/journal.pone.0020862] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 05/15/2011] [Indexed: 11/19/2022] Open
Abstract
Background Perfluorododecanoic acid (PFDoA) is a perfluorinated carboxylic chemical (PFC) that has broad applications and distribution in the environment. While many studies have focused on hepatotoxicity, immunotoxicity, and reproductive toxicity of PFCAs, few have investigated renal toxicity. Methodology/Principal Findings Here, we used comparative proteomic and metabonomic technologies to provide a global perspective on renal response to PFDoA. Male rats were exposed to 0, 0.05, 0.2, and 0.5 mg/kg/day of PFDoA for 110 days. After 2-D DIGE and MALDI TOF/TOF analysis, 79 differentially expressed proteins between the control and the PFDoA treated rats (0.2 and 0.5 mg-dosed groups) were successfully identified. These proteins were mainly involved in amino acid metabolism, the tricarboxylic acid cycle, gluconeogenesis, glycolysis, electron transport, and stress response. Nuclear magnetic resonance-based metabonomic analysis showed an increase in pyruvate, lactate, acetate, choline, and a variety of amino acids in the highest dose group. Furthermore, the profiles of free amino acids in the PFDoA treated groups were investigated quantitatively by high-coverage quantitative iTRAQ-LC MS/MS, which showed levels of sarcosine, asparagine, histidine, 1-methylhistidine, Ile, Leu, Val, Trp, Tyr, Phe, Cys, and Met increased markedly in the 0.5 mg dosed group, while homocitrulline, α-aminoadipic acid, β-alanine, and cystathionine decreased. Conclusion/Significance These observations provide evidence that disorders in glucose and amino acid metabolism may contribute to PFDoA nephrotoxicity. Additionally, α2u globulin may play an important role in protecting the kidneys from PFDoA toxicity.
Collapse
Affiliation(s)
- Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lina Ding
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xuemei Fang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhimin Shi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yating Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hebing Chen
- National Center of Biomedical Analysis, Beijing, People's Republic of China
| | - Xianzhong Yan
- National Center of Biomedical Analysis, Beijing, People's Republic of China
- * E-mail: (XY); (JD)
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail: (XY); (JD)
| |
Collapse
|
39
|
Moazzami AA, Andersson R, Kamal-Eldin A. Changes in the metabolic profile of rat liver after α-tocopherol deficiency as revealed by metabolomics analysis. NMR IN BIOMEDICINE 2011; 24:499-505. [PMID: 21674651 DOI: 10.1002/nbm.1615] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 06/01/2010] [Accepted: 08/03/2010] [Indexed: 05/30/2023]
Abstract
Metabolomics is an approach in which the profiles of metabolites in different tissues and/or biofluids are investigated to understand the changes induced following a modulation. We used this approach to investigate the biochemical effects of α-tocopherol in the liver using a rat model. Rats (21-day-old) were fed either an α-tocopherol-sufficient control (n = 10) or an α-tocopherol-deficient (n = 10) diet for 2 months before sacrifice. Livers were homogenized in methanol-chloroform-water (3 : 1 : 1, v/v/v), and the polar phase extracts of the liver samples were analyzed using (1) H NMR. Multivariate statistical analysis of the data was performed using principal component analysis and orthogonal partial least squares-discriminant analysis. Identification of (1) H NMR signals was performed primarily using the Human Metabolome Database, Biological Magnetic Resonance Data Bank and previous literature, and confirmed by spiking with metabolites and applying two-dimensional NMR. The statistical analysis revealed that α-tocopherol deficiency caused an increase in carnitine, choline, L-valine, L-lysine, tyrosine and inosine content and a reduction in glucose and uridine 5'-monophosphate content. Changes in carnitine and glucose suggest a possible shift in energy metabolism.
Collapse
Affiliation(s)
- Ali A Moazzami
- Department of Food Science, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | |
Collapse
|
40
|
Wu H, Liu T, Ma C, Xue R, Deng C, Zeng H, Shen X. GC/MS-based metabolomic approach to validate the role of urinary sarcosine and target biomarkers for human prostate cancer by microwave-assisted derivatization. Anal Bioanal Chem 2011; 401:635-46. [PMID: 21626193 DOI: 10.1007/s00216-011-5098-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 12/11/2022]
Abstract
A recent study showed that sarcosine may be potentially useful for the diagnosis and prognosis of prostate cancer (PCa). The aim of this study was to validate diagnostic value of sarcosine for PCa, to evaluate urine metabolomic profiles in patients with PCa in comparison of non-cancerous control, and to further explore the other potential metabolic biomarkers for PCa. Isotope dilution gas chromatography/mass spectrometry (ID GC/MS) metabolomic approach was applied to evaluate sarcosine using [methyl-D(3)]-sarcosine as an internal standard. Microwave-assisted derivatization (MAD) together with GC/MS was utilized to obtain the urinary metabolomic information in 20 PCa patients compared with eight patients with benign prostate hypertrophy and 20 healthy men. Acquired metabolomic data were analyzed using a two-sample t test. Diagnostic models for PCa were constructed using principal component analysis and were assessed with receiver-operating characteristic curves. Results showed that the urinary sarcosine level has no statistical difference between the PCa group and the control group. In addition, nine metabolomic markers between the PCa group and the healthy male group were selected, which constructed a diagnostic model with a high area under the curve value of 0.9425. We conclude that although urinary sarcosine value has limited potential in the diagnostic algorithm of PCa, urinary metabolomic panel based on GC/MS assay following MAD may potentially become a diagnostic tool for PCa.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastroenterology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Wang J, Ma C, Liao Z, Tian B, Lu JP. Study on chronic pancreatitis and pancreatic cancer using MRS and pancreatic juice samples. World J Gastroenterol 2011; 17:2126-30. [PMID: 21547133 PMCID: PMC3084399 DOI: 10.3748/wjg.v17.i16.2126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 12/10/2010] [Accepted: 12/17/2010] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the markers of pancreatic diseases and provide basic data and experimental methods for the diagnosis of pancreatic diseases.
METHODS: There were 15 patients in the present study, among whom 10 had pancreatic cancer and 5, chronic pancreatitis. In all patients, pancreatic cancer or chronic pancreatitis was located on the head of the pancreas. Pathology data of all patients was confirmed by biopsy and surgery. Among the 10 patients with pancreatic cancer, 3 people had a medical history of long-term alcohol consumption. Of 5 patients with chronic pancreatitis, 4 men suffered from alcoholic chronic pancreatitis. Pancreatic juice samples were obtained from patients by endoscopic retrograde cholangio-pancreatography. Magnetic resonance spectroscopyn was performed on an 11.7-T scanner (Bruker DRX-500) using Call-Purcell-Meiboom-Gill pulse sequences. The parameters were as follows: spectral width, 15 KHz; time domain, 64 K; number of scans, 512; and acquisition time, 2.128 s.
RESULTS: The main component of pancreatic juice included leucine, iso-leucine, valine, lactate, alanine, acetate, aspartate, lysine, glycine, threonine, tyrosine, histidine, tryptophan, and phenylalanine. On performing 1D 1H and 2D total correlation spectroscopy, we found a triplet peak at the chemical shift of 1.19 ppm, which only appeared in the spectra of pancreatic juice obtained from patients with alcoholic chronic pancreatitis. This triplet peak was considered the resonance of the methyl of ethoxy group, which may be associated with the metabolism of alcohol in the pancreas.
CONCLUSION: The triplet peak, at the chemical shift of 1.19 ppm is likely to be the characteristic metabolite of alcoholic chronic pancreatitis.
Collapse
|
42
|
Al Faraj A, Fauvelle F, Luciani N, Lacroix G, Levy M, Crémillieux Y, Canet-Soulas E. In vivo biodistribution and biological impact of injected carbon nanotubes using magnetic resonance techniques. Int J Nanomedicine 2011; 6:351-61. [PMID: 21499425 PMCID: PMC3075901 DOI: 10.2147/ijn.s16653] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Indexed: 11/29/2022] Open
Abstract
Background: Single-walled carbon nanotubes (SWCNT) hold promise for applications as contrast agents and target delivery carriers in the field of nanomedicine. When administered in vivo, their biodistribution and pharmacological profile needs to be fully characterized. The tissue distribution of carbon nanotubes and their potential impact on metabolism depend on their shape, coating, and metallic impurities. Because standard radiolabeled or fluorescently-labeled pharmaceuticals are not well suited for long-term in vivo follow-up of carbon nanotubes, alternative methods are required. Methods: In this study, noninvasive in vivo magnetic resonance imaging (MRI) investigations combined with high-resolution magic angle spinning (HR-MAS), Raman spectroscopy, iron assays, and histological analysis ex vivo were proposed and applied to assess the biodistribution and biological impact of intravenously injected pristine (raw and purified) and functionalized SWCNT in a 2-week longitudinal study. Iron impurities allowed raw detection of SWCNT in vivo by susceptibility-weighted MRI. Results: A transitional accumulation in the spleen and liver was observed by MRI. Raman spectroscopy, iron assays, and histological findings confirmed the MRI readouts. Moreover, no acute toxicological effect on the liver metabolic profile was observed using the HR-MAS technique, as confirmed by quantitative real-time polymerase chain reaction analysis. Conclusion: This study illustrates the potential of noninvasive MRI protocols for longitudinal assessment of the biodistribution of SWCNT with associated intrinsic metal impurities. The same approach can be used for any other magnetically-labeled nanoparticles.
Collapse
|
43
|
Padilla S, Cowden J, Hinton DE, Yuen B, Law S, Kullman SW, Johnson R, Hardman RC, Flynn K, Au DWT. Use of medaka in toxicity testing. ACTA ACUST UNITED AC 2011; Chapter 1:Unit1.10. [PMID: 20922755 DOI: 10.1002/0471140856.tx0110s39] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Small aquarium fishes are increasingly used as animal models, and one of these, the Japanese Medaka (Oryzias latipes), is frequently utilized for toxicity testing. While these vertebrates have many similarities with their terrestrial counterparts, there are differences that must be considered if these organisms are to be used to their highest potential. Commonly, testing may employ either the developing embryo or adults; both are easy to use and work with. To illustrate the utility and breadth of toxicity testing possible using medaka fish, we present protocols for assessing neurotoxicity in developing embryos, evaluating toxicant effects on sexual phenotype after treatment with endocrine-disrupting chemicals by sexual genotyping, and measuring hepatotoxicity in adult fish after treatment with a model hepatotoxicant. The methods run the gamut from immunohistology through PCR to basic histological techniques.
Collapse
Affiliation(s)
- Stephanie Padilla
- United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Coen M. A metabonomic approach for mechanistic exploration of pre-clinical toxicology. Toxicology 2010; 278:326-40. [DOI: 10.1016/j.tox.2010.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 12/17/2022]
|
45
|
Brougham DF, Ivanova G, Gottschalk M, Collins DM, Eustace AJ, O'Connor R, Havel J. Artificial neural networks for classification in metabolomic studies of whole cells using 1H nuclear magnetic resonance. J Biomed Biotechnol 2010; 2011:158094. [PMID: 20886062 PMCID: PMC2945645 DOI: 10.1155/2011/158094] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/14/2010] [Accepted: 07/23/2010] [Indexed: 11/17/2022] Open
Abstract
We report the successful classification, by artificial neural networks (ANNs), of (1)H NMR spectroscopic data recorded on whole-cell culture samples of four different lung carcinoma cell lines, which display different drug resistance patterns. The robustness of the approach was demonstrated by its ability to classify the cell line correctly in 100% of cases, despite the demonstrated presence of operator-induced sources of variation, and irrespective of which spectra are used for training and for validation. The study demonstrates the potential of ANN for lung carcinoma classification in realistic situations.
Collapse
Affiliation(s)
- D F Brougham
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland.
| | | | | | | | | | | | | |
Collapse
|
46
|
A metabonomic approach to analyze the dexamethasone-induced cleft palate in mice. J Biomed Biotechnol 2010; 2011. [PMID: 20814536 PMCID: PMC2931396 DOI: 10.1155/2011/509043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 04/03/2010] [Accepted: 06/08/2010] [Indexed: 12/01/2022] Open
Abstract
Mice models are an important way to understand the relation between the fetus with cleft palate and changes of maternal biofluid. This paper aims to develop a metabonomics approach to analyze dexamethasone-induced cleft palate in pregnant C57BL/6J mice and to study the relationship between the change of endogenous small molecular metabolites in maternal plasma and the incidence of cleft palate. To do so, pregnant mice were randomly divided into two groups. The one group was injected with dexamethasone. On E17.5th day, the incident rates of cleft palate from embryos in two groups were calculated. The 1H-NMR spectra from the metabolites in plasma in two groups was collected at same time. Then the data were analyzed using metabonomics methods (PCA and SIMCA). The results showed that the data from the two groups displayed distinctive characters, and the incidence of cleft palate were significantly different (P < .005). To conclude, this study demonstrates that the metabonomics approach is a powerful and effective method in detecting the abnormal metabolites from mother in the earlier period of embryos, and supports the idea that a change from dexamethasone induced in maternal metabolites plays an important role in the incidence of cleft palate.
Collapse
|
47
|
Scribner DM, Witowski NE, Mulier KE, Lusczek ER, Wasiluk KR, Beilman GJ. Liver metabolomic changes identify biochemical pathways in hemorrhagic shock. J Surg Res 2010; 164:e131-9. [PMID: 20855081 DOI: 10.1016/j.jss.2010.07.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/06/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Despite ongoing advances in treatment, thousands of patients still die annually from complications due to hemorrhagic shock, a condition causing dramatic physiologic and metabolic changes as cells switch to anaerobic metabolism in response to oxygen deprivation. As the shift from aerobic to anaerobic metabolism occurs in the peripheral tissues during shock, the liver must increase production of endogenous glucose as well as process excess lactate produced in the periphery. This places the liver at the center of metabolic regulation in the body during hemorrhagic shock. Therefore, we hypothesized that liver tissue from pigs during an in vivo model of hemorrhagic shock (n = 6) would reflect resultant metabolic changes. MATERIALS AND METHODS The in vivo model of shock consisted of 45 min of shock followed by 8 h of hypotensive resuscitation (80 mmHg) and subsequent normotensive resuscitation (90 mmHg) ending 48 h after the shock period. Control groups of pigs (n = 3) (1) shock with no resuscitation, and (2) only anesthesia and instrumentation, also were included. Metabolic changes within the liver after shock and during resuscitation were investigated using both proton ((1)H) and phosphorous ((31)P) nuclear magnetic resonance (NMR) spectroscopy. RESULTS Concentrations of glycerylphosphorylcholine (GPC) and glycerylphosphorylethanolamine (GPE) were significantly lower at 8 h after shock, with recovery to baseline by 23 and 48 h after shock. Uridine diphosphate-glucose (UDP-glucose), and phosphoenolpyruvate (PEP) were elevated 23 h after shock. CONCLUSIONS These results indicate that (1)H and (31)P NMR spectroscopy can be used to identify differences in liver metabolites in an in vivo model of hemorrhagic shock, indicating that metabolomic analysis can be used to elucidate biochemical events occurring during this complex disease process.
Collapse
Affiliation(s)
- Drew M Scribner
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
48
|
Beckonert O, Coen M, Keun HC, Wang Y, Ebbels TMD, Holmes E, Lindon JC, Nicholson JK. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat Protoc 2010; 5:1019-32. [PMID: 20539278 DOI: 10.1038/nprot.2010.45] [Citation(s) in RCA: 302] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metabolic profiling, metabolomic and metabonomic studies require robust study protocols for any large-scale comparisons and evaluations. Detailed methods for solution-state NMR spectroscopy have been summarized in an earlier protocol. This protocol details the analysis of intact tissue samples by means of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy and we provide a detailed description of sample collection, preparation and analysis. Described here are (1)H NMR spectroscopic techniques such as the standard one-dimensional, relaxation-edited, diffusion-edited and two-dimensional J-resolved pulse experiments, as well as one-dimensional (31)P NMR spectroscopy. These are used to monitor different groups of metabolites, e.g., sugars, amino acids and osmolytes as well as larger molecules such as lipids, non-invasively. Through the use of NMR-based diffusion coefficient and relaxation times measurements, information on molecular compartmentation and mobility can be gleaned. The NMR methods are often combined with statistical analysis for further metabonomics analysis and biomarker identification. The standard acquisition time per sample is 8-10 min for a simple one-dimensional (1)H NMR spectrum, giving access to metabolite information while retaining tissue integrity and hence allowing direct comparison with histopathology and MRI/MRS findings or the evaluation together with biofluid metabolic-profiling data.
Collapse
Affiliation(s)
- Olaf Beckonert
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Gu S, A J, Wang G, Zha W, Yan B, Zhang Y, Ren H, Cao B, Liu L. Metabonomic profiling of liver metabolites by gas chromatography-mass spectrometry and its application to characterizing hyperlipidemia. Biomed Chromatogr 2010; 24:245-52. [PMID: 19606418 DOI: 10.1002/bmc.1279] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The measurement of metabolites in tissues is of great importance in metabonomic research in the biomedical sciences, providing more relevant information than is available from systemic biofluids. The liver is the most important organ/tissue for most biochemical reactions, and the metabolites in the liver are of great interest to scientists. To develop an optimized extraction method and comprehensive profiling technique for liver metabolites, organic solvents of various compositions were designed using design of experiments to extract metabolites from the liver, and the metabolites were profiled by gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS). The resolved peak areas were processed by principle components analysis, partial least-squares projections to latent structures, and discriminant analysis. The results suggest the highest extraction efficiency was for methanol-water, which maximized the majority of GC/TOF-MS responses. The optimal solvent was applied to extract metabolites in liver of hyperlipidemia hamster and the control. The GC/TOF-MS profiles of liver metabolites showed obvious differences between hyperlipidemic hamsters and controls. A comparison of liver and serum data from the same animals identified common biomarkers and presented complementary information. Our results suggest that liver metabonomics is a valuable technique and that the combined analysis of systematic biofluids and local tissues is meaningful and complementary, recovering more comprehensive metabonomic data than either analysis alone.
Collapse
Affiliation(s)
- Shenghua Gu
- China Pharmaceutical University, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pan L, Qiu Y, Chen T, Lin J, Chi Y, Su M, Zhao A, Jia W. An optimized procedure for metabonomic analysis of rat liver tissue using gas chromatography/time-of-flight mass spectrometry. J Pharm Biomed Anal 2010; 52:589-96. [PMID: 20185264 DOI: 10.1016/j.jpba.2010.01.046] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 02/08/2023]
Abstract
In this paper, we present a tissue metabonomic method with an optimized extraction procedure followed by instrumental analysis with gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) and spectral data analysis with multivariate statistics. Metabolite extractions were carried out using three solvents: chloroform, methanol, and water, with design of experiment (DOE) theory and multivariate statistical analysis. A two-step metabolite extraction procedure was optimized using a mixed solvent of chloroform-methanol-water (1:2:1, v/v/v) and then followed by methanol alone. This approach was subsequently validated using standard compounds and liver tissues. Calibration curves were obtained in the range of 0.50-125.0mug/mL for standards and 0.02-0.25g/mL acceptable for liver tissue samples. For most of the metabolites investigated, relative standard deviations (RSD) were below 10% within a day (reproducibility) and below 15% within a week (stability). Rat liver tissues of carbon tetrachloride-induced acute liver injury models (n=10) and healthy control rats (n=10) were analyzed which demonstrated the applicability of the developed procedure for the tissue metabonomic study.
Collapse
Affiliation(s)
- Li Pan
- Shanghai Center for Systems Biomedicine, College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | | | | | | | | | | | | | | |
Collapse
|