1
|
Wong SL, Shih CL, Cho HY, Wu SN. Effective suppression of I h and I Na caused by capsazepine, known to be a blocker of TRPV1 receptor. Brain Res 2024; 1839:149008. [PMID: 38761846 DOI: 10.1016/j.brainres.2024.149008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
A synthetic inhibitor of capsaicin-induced TRPV1 channel activation is called capsazepine (CPZ). In this study, we aimed to explore the effects of CPZ on hyperpolarization-activated cationic current (Ih) and voltage-gated Na + current (INa) in pituitary tumor (GH3) cells. Through patch-clamp recordings, we found that CPZ concentration-dependently inhibited Ih amplitude and slowed its activation time course. The IC50 and KD values were 3.1 and 3.16 μM, respectively. CPZ also shifted the steady-state activation curve of Ih towards a more hyperpolarized potential. However, there was no change in the gating charge of the curve. A modified Markovian model predicted the CPZ-induced decrease in the voltage-dependent hysteresis of Ih. CPZ suppressed INa in GH3 cells, without altering its activation or inactivation time course. Additionally, exposure to CPZ reduced spontaneous firing. These findings suggest that CPZ's inhibitory effects on Ih and INa are direct and not dependent on vanilloid receptor binding. This could provide light on an unidentified ionic mechanism influencing the membrane excitability of neurons and endocrine or neuroendocrine cells in vivo.
Collapse
Affiliation(s)
- Siew-Lee Wong
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Chia-Lung Shih
- Clinical Research Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan.
| | - Hsin-Yen Cho
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; Department of Research and Education, An Nan Hospital, China Medical University, Tainan 709040, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 804201 Taiwan.
| |
Collapse
|
2
|
Oz M, Lorke DE, Howarth FC. Transient receptor potential vanilloid 1 (TRPV1)-independent actions of capsaicin on cellular excitability and ion transport. Med Res Rev 2023. [PMID: 36916676 DOI: 10.1002/med.21945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/17/2023] [Accepted: 02/26/2023] [Indexed: 03/15/2023]
Abstract
Capsaicin is a naturally occurring alkaloid derived from chili pepper that is responsible for its hot pungent taste. Capsaicin is known to exert multiple pharmacological actions, including analgesia, anticancer, anti-inflammatory, antiobesity, and antioxidant effects. The transient receptor potential vanilloid subfamily member 1 (TRPV1) is the main receptor mediating the majority of the capsaicin effects. However, numerous studies suggest that the TRPV1 receptor is not the only target for capsaicin. An increasing number of studies indicates that capsaicin, at low to mid µM ranges, not only indirectly through TRPV1-mediated Ca2+ increases, but also directly modulates the functions of voltage-gated Na+ , K+ , and Ca2+ channels, as well as ligand-gated ion channels and other ion transporters and enzymes involved in cellular excitability. These TRPV1-independent effects are mediated by alterations of the biophysical properties of the lipid membrane and subsequent modulation of the functional properties of ion channels and by direct binding of capsaicin to the channels. The present study, for the first time, systematically categorizes this diverse range of non-TRPV1 targets and discusses cellular and molecular mechanisms mediating TRPV1-independent effects of capsaicin in excitable, as well as nonexcitable cells.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Dietrich E Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Frank C Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Lin YF. Potassium channels as molecular targets of endocannabinoids. Channels (Austin) 2021; 15:408-423. [PMID: 34282702 PMCID: PMC8293965 DOI: 10.1080/19336950.2021.1910461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 10/25/2022] Open
Abstract
Endocannabinoids are a group of endogenous mediators derived from membrane lipids, which are implicated in a wide variety of physiological functions such as blood pressure regulation, immunity, pain, memory, reward, perception, reproduction, and sleep. N-Arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG) represent two major endocannabinoids in the human body and they exert many of their cellular and organ system effects by activating the Gi/o protein-coupled, cannabinoid type 1 (CB1) and type 2 (CB2) receptors. However, not all effects of cannabinoids are ascribable to their interaction with CB1 and CB2 receptors; indeed, macromolecules like other types of receptors, ion channels, transcription factors, enzymes, transporters, and cellular structure have been suggested to mediate the functional effects of cannabinoids. Among the proposed molecular targets of endocannabinoids, potassium channels constitute an intriguing group, because these channels not only are crucial in shaping action potentials and controlling the membrane potential and cell excitability, thereby regulating a wide array of physiological processes, but also serve as potential therapeutic targets for the treatment of cancer and metabolic, neurological and cardiovascular disorders. This review sought to survey evidence pertaining to the CB1 and CB2 receptor-independent actions of endocannabinoids on ion channels, with an emphasis on AEA and potassium channels. To better understand the functional roles as well as potential medicinal uses of cannabinoids in human health and disease, further mechanistic studies to delineate interactions between various types of cannabinoids and ion channels, including members in the potassium channel superfamily, are warranted.
Collapse
Affiliation(s)
- Yu-Fung Lin
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
- Department of Anesthesiology and Pain Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
4
|
Boczek T, Zylinska L. Receptor-Dependent and Independent Regulation of Voltage-Gated Ca 2+ Channels and Ca 2+-Permeable Channels by Endocannabinoids in the Brain. Int J Mol Sci 2021; 22:ijms22158168. [PMID: 34360934 PMCID: PMC8348342 DOI: 10.3390/ijms22158168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022] Open
Abstract
The activity of specific populations of neurons in different brain areas makes decisions regarding proper synaptic transmission, the ability to make adaptations in response to different external signals, as well as the triggering of specific regulatory pathways to sustain neural function. The endocannabinoid system (ECS) appears to be a very important, highly expressed, and active system of control in the central nervous system (CNS). Functionally, it allows the cells to respond quickly to processes that occur during synaptic transmission, but can also induce long-term changes. The endocannabinoids (eCBs) belong to a large family of bioactive lipid mediators that includes amides, esters, and ethers of long-chain polyunsaturated fatty acids. They are produced “on demand” from the precursors located in the membranes, exhibit a short half-life, and play a key role as retrograde messengers. eCBs act mainly through two receptors, CB1R and CB2R, which belong to the G-protein coupled receptor superfamily (GPCRs), but can also exert their action via multiple non-receptor pathways. The action of eCBs depends on Ca2+, but eCBs can also regulate downstream Ca2+ signaling. In this short review, we focus on the regulation of neuronal calcium channels by the most effective members of eCBs-2-arachidonoylglycerol (2-AG), anandamide (AEA) and originating from AEA-N-arachidonoylglycine (NAGly), to better understand the contribution of ECS to brain function under physiological conditions.
Collapse
|
5
|
Wu SN, Yang WH, Yeh CC, Huang HC. The inhibition by di(2-ethylhexyl)-phthalate of erg-mediated K⁺ current in pituitary tumor (GH₃) cells. Arch Toxicol 2012; 86:713-23. [PMID: 22314968 DOI: 10.1007/s00204-012-0805-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 01/11/2012] [Indexed: 12/24/2022]
Abstract
DEHP (bis(2-ethylhexyl)-phthalate) known to be an endocrine-disrupting chemical is a widely used phthalate. Little information regarding the effects of phthalate esters on ion currents is available. In this study, the effects of DEHP and other phthalate esters (DBEP: di(2-butoxyethyl)-phthalate and DMGP: di(2-methylglycol)-phthalate) on ion currents were investigated in pituitary GH₃ cells. Hyperpolarization-elicited K⁺ currents in GH3 cells bathed in high-K⁺, Ca²⁺-free solution were examined to evaluate the effects of DEHP, DBEP, and DMGP on the ether-a`-go-go-related-gene (erg) K⁺ current (IK(erg)). Addition of DEHP to GH₃ cells suppressed the amplitude of IK(erg) in a concentration-dependent manner with an IC₅₀ value of 16.3 μM. With a two-pulse protocol, addition of DEHP shifted the activation curve of IK(erg) to a depolarized potential by approximately 10 mV with no change in the rate of IK(erg) deactivation. This compound did not have any effects on delayed rectifier K⁺ current in GH₃ cells, while 4-aminopyridine-3-methanol (100 μM) suppressed this current significantly. DBEP (30 μM) had little or no effect on IK(erg), while DMGP (30 μM) slightly reduced it. In inside-out configuration, DEHP (30 μM) applied to the bath slightly reduced the activity of large-conductance Ca²⁺-activated K⁺ channels. DEHP (30 μM) increased the frequency of spontaneous action potentials (APs); however, this compound at the same concentration had no effect on AP firing in KCNH2 siRNA-transfected GH₃ cells. The effects described herein can contribute to their actions on functional activity of endocrine or neuroendocrine cells if similar results are found in vivo.
Collapse
Affiliation(s)
- Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, No. 1 University Road, Tainan City 70101, Taiwan.
| | | | | | | |
Collapse
|
6
|
The mechanisms of propofol-induced block on ion currents in differentiated H9c2 cardiac cells. Eur J Pharmacol 2008; 590:93-8. [DOI: 10.1016/j.ejphar.2008.05.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 05/09/2008] [Accepted: 05/22/2008] [Indexed: 11/20/2022]
|
7
|
Kopczyńska B. Role of VR1 and CB1 receptors in modelling of cardio-respiratory response to arvanil, an endocannabinoid and vanilloid hybrid, in rats. Life Sci 2008; 83:85-91. [DOI: 10.1016/j.lfs.2008.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 04/04/2008] [Accepted: 04/04/2008] [Indexed: 10/22/2022]
|
8
|
Wu SN, Chen BS, Lin MW, Liu YC. Contribution of slowly inactivating potassium current to delayed firing of action potentials in NG108-15 neuronal cells: Experimental and theoretical studies. J Theor Biol 2008; 252:711-21. [DOI: 10.1016/j.jtbi.2008.01.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 01/31/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
|
9
|
Lin MW, Wang YJ, Liu SI, Lin AA, Lo YC, Wu SN. Characterization of aconitine-induced block of delayed rectifier K+ current in differentiated NG108-15 neuronal cells. Neuropharmacology 2008; 54:912-23. [PMID: 18336846 DOI: 10.1016/j.neuropharm.2008.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/21/2007] [Accepted: 01/28/2008] [Indexed: 11/24/2022]
Abstract
The effects of aconitine (ACO), a highly toxic alkaloid, on ion currents in differentiated NG108-15 neuronal cells were investigated in this study. ACO (0.3-30 microM) suppressed the amplitude of delayed rectifier K+ current (I K(DR)) in a concentration-dependent manner with an IC50 value of 3.1 microM. The presence of ACO enhanced the rate and extent of I K(DR) inactivation, although it had no effect on the initial activation phase of I K(DR). It could shift the inactivation curve of I K(DR) to a hyperpolarized potential with no change in the slope factor. Cumulative inactivation for I K(DR) was also enhanced by ACO. Orphenadrine (30 microM) or methyllycaconitine (30 microM) slightly suppressed I K(DR) without modifying current decay. ACO (10 microM) had an inhibitory effect on voltage-dependent Na+ current (I Na). Under current-clamp recordings, ACO increased the firing and widening of action potentials in these cells. With the aid of the minimal binding scheme, the ACO actions on I K(DR) was quantitatively provided with a dissociation constant of 0.6 microM. A modeled cell was designed to duplicate its inhibitory effect on spontaneous pacemaking. ACO also blocked I K(DR) in neuroblastoma SH-SY5Y cells. Taken together, the experimental data and simulations show that ACO can block delayed rectifier K+ channels of neurons in a concentration- and state-dependent manner. Changes in action potentials induced by ACO in neurons in vivo can be explained mainly by its blocking actions on I K(DR) and I Na.
Collapse
Affiliation(s)
- Ming-Wei Lin
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
10
|
Duan Y, Zheng J, Nicholson RA. Vanilloid (subtype 1) receptor-modulatory drugs inhibit [3H]batrachotoxinin-A 20-alpha-benzoate binding to Na+ channels. Basic Clin Pharmacol Toxicol 2007; 100:91-5. [PMID: 17244257 DOI: 10.1111/j.1742-7843.2006.00010.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This investigation was conducted to provide further insight into the effects of vanilloid (subtype 1) receptor (VR1) drugs at voltage-gated sodium channels and examine the potential of this interaction to influence release of neurotransmitters from synaptosomes prepared from mammalian brain. The VR1 modulatory drugs capsaicin, olvanil and capsazepine inhibited the binding of batrachotoxinin-A 20-alpha-benzoate ([(3)H]BTX-B) to receptor site 2 of voltage-gated sodium channels. All drugs reduced the affinity of radioligand for sodium channels, and capsazepine also decreased the number of [(3)H]BTX-B binding sites. In kinetic experiments, no reduction in radioligand association rate was found, but capsaicin, olvanil and capsazepine all enhanced the dissociation rate of [(3)H]BTX-B. All drugs inhibited veratridine-evoked release of L-glutamic acid, gamma-amino butyric acid and L-aspartic acid from synaptosomes; however, their inhibitory effects on transmitter release were much weaker when 35 mM potassium chloride was used to depolarize synaptosomes. The study compounds, in common with other central nervous system depressants, interact with a region on the voltage-gated sodium channel that permits negative allosteric coupling with receptor site 2 and this mechanism likely accounts for blockade of sodium channel-activated transmitter release.
Collapse
Affiliation(s)
- Yin Duan
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | |
Collapse
|
11
|
Oz M. Receptor-independent actions of cannabinoids on cell membranes: Focus on endocannabinoids. Pharmacol Ther 2006; 111:114-44. [PMID: 16584786 DOI: 10.1016/j.pharmthera.2005.09.009] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 09/30/2005] [Indexed: 01/08/2023]
Abstract
Cannabinoids are a structurally diverse group of mostly lipophilic molecules that bind to cannabinoid receptors. In fact, endogenous cannabinoids (endocannabinoids) are a class of signaling lipids consisting of amides and esters of long-chain polyunsaturated fatty acids. They are synthesized from lipid precursors in plasma membranes via Ca(2+) or G-protein-dependent processes and exhibit cannabinoid-like actions by binding to cannabinoid receptors. However, endocannabinoids can produce effects that are not mediated by these receptors. In pharmacologically relevant concentrations, endocannabinoids modulate the functional properties of voltage-gated ion channels including Ca(2+) channels, Na(+) channels, various types of K(+) channels, and ligand-gated ion channels such as serotonin type 3, nicotinic acetylcholine, and glycine receptors. In addition, modulatory effects of endocannabinoids on other ion-transporting membrane proteins such as transient potential receptor-class channels, gap junctions and transporters for neurotransmitters have also been demonstrated. Furthermore, functional properties of G-protein-coupled receptors for different types of neurotransmitters and neuropeptides are altered by direct actions of endocannabinoids. Although the mechanisms of these effects are currently not clear, it is likely that these direct actions of endocannabinoids are due to their lipophilic structures. These findings indicate that additional molecular targets for endocannabinoids exist and that these targets may represent novel sites for cannabinoids to alter either the excitability of the neurons or the response of the neuronal systems. This review focuses on the results of recent studies indicating that beyond their receptor-mediated effects, endocannabinoids alter the functions of ion channels and other integral membrane proteins directly.
Collapse
Affiliation(s)
- Murat Oz
- National Institute on Drug Abuse, NIH/DHHS, Intramural Research Program, Cellular Neurobiology Branch, 5500 Nathan Shock Drive, Baltimore MD, 21224, USA.
| |
Collapse
|
12
|
Appendino G, Szallasi A. 4 Clinically Useful Vanilloid Receptor TRPV1 Antagonists: Just around the Corner (or too Early to Tell)? PROGRESS IN MEDICINAL CHEMISTRY 2006; 44:145-80. [PMID: 16697897 DOI: 10.1016/s0079-6468(05)44404-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Giovanni Appendino
- Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche, Università del Piemonte Orientale, Novara, Italy
| | | |
Collapse
|
13
|
Movahed P, Evilevitch V, Andersson TLG, Jönsson BAG, Wollmer P, Zygmunt PM, Högestätt ED. Vascular effects of anandamide and N-acylvanillylamines in the human forearm and skin microcirculation. Br J Pharmacol 2005; 146:171-9. [PMID: 15997233 PMCID: PMC1576264 DOI: 10.1038/sj.bjp.0706313] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The endocannabinoid anandamide is an emerging potential signalling molecule in the cardiovascular system. Anandamide causes vasodilatation, bradycardia and hypotension in animals and has been implicated in the pathophysiology of endotoxic, haemorrhagic and cardiogenic shock, but its vascular effects have not been studied in man. Human forearm blood flow and skin microcirculatory flow were recorded using venous occlusion plethysmography and laser-Doppler perfusion imaging (LDPI), respectively. Each test drug was infused into the brachial artery or applied topically on the skin followed by a standardized pin-prick to disrupt the epidermal barrier. Anandamide failed to affect forearm blood flow when administered intra-arterially at infusion rates of 0.3-300 nmol min(-1). The highest infusion rate led to an anandamide concentration of approximately 1 microM in venous blood as measured by mass spectrometry. Dermal application of anandamide significantly increased skin microcirculatory flow and coapplication of the transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine inhibited this effect. The TRPV1 agonists capsaicin, olvanil and arvanil all induced concentration-dependent increases in skin blood flow and burning pain when administered dermally. Coapplication of capsazepine inhibited blood flow and pain responses to all three TRPV1 agonists. This study shows that locally applied anandamide is a vasodilator in the human skin microcirculation. The results are consistent with this lipid being an activator of TRPV1 on primary sensory nerves, but do not support a role for anandamide as a circulating vasoactive hormone in the human forearm vascular bed.
Collapse
Affiliation(s)
- Pouya Movahed
- Department of Clinical and Experimental Pharmacology, Lund University Hospital, SE-221 85 Lund, Sweden
| | - Vladimir Evilevitch
- Department of Clinical Physiology, Malmö University Hospital, SE-205 02 Malmö, Sweden
| | - Tomas L G Andersson
- Department of Clinical and Experimental Pharmacology, Lund University Hospital, SE-221 85 Lund, Sweden
| | - Bo A G Jönsson
- Department of Occupational and Environmental Medicine, Lund University Hospital, SE-221 85 Lund, Sweden
| | - Per Wollmer
- Department of Clinical Physiology, Malmö University Hospital, SE-205 02 Malmö, Sweden
| | - Peter M Zygmunt
- Department of Clinical and Experimental Pharmacology, Lund University Hospital, SE-221 85 Lund, Sweden
- Author for correspondence:
| | - Edward D Högestätt
- Department of Clinical and Experimental Pharmacology, Lund University Hospital, SE-221 85 Lund, Sweden
| |
Collapse
|
14
|
Lundbaek JA, Birn P, Tape SE, Toombes GES, Søgaard R, Koeppe RE, Gruner SM, Hansen AJ, Andersen OS. Capsaicin regulates voltage-dependent sodium channels by altering lipid bilayer elasticity. Mol Pharmacol 2005; 68:680-9. [PMID: 15967874 DOI: 10.1124/mol.105.013573] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
At submicromolar concentrations, capsaicin specifically activates the TRPV1 receptor involved in nociception. At micro- to millimolar concentrations, commonly used in clinical and in vitro studies, capsaicin also modulates the function of a large number of seemingly unrelated membrane proteins, many of which are similarly modulated by the capsaicin antagonist capsazepine. The mechanism(s) underlying this widespread regulation of protein function are not understood. We investigated whether capsaicin could regulate membrane protein function by changing the elasticity of the host lipid bilayer. This was done by studying capsaicin's effects on lipid bilayer stiffness, measured using gramicidin A (gA) channels as molecular force-transducers, and on voltage-dependent sodium channels (VDSC) known to be regulated by bilayer elasticity. Capsaicin and capsazepine (10-100 microM) increase gA channel appearance rate and lifetime without measurably altering bilayer thickness or channel conductance, meaning that the changes in bilayer elasticity are sufficient to alter the conformation of an embedded protein. Capsaicin and capsazepine promote VDSC inactivation, similar to other amphiphiles that decrease bilayer stiffness, producing use-dependent current inhibition. For capsaicin, the quantitative relation between the decrease in bilayer stiffness and the hyperpolarizing shift in inactivation conforms to that previously found for other amphiphiles. Capsaicin's effects on gA channels and VDSC are similar to those of Triton X-100, although these amphiphiles promote opposite lipid monolayer curvature. We conclude that capsaicin can regulate VDSC function by altering bilayer elasticity. This mechanism may underlie the promiscuous regulation of membrane protein function by capsaicin and capsazepine-and by amphiphilic drugs generally.
Collapse
|
15
|
Kelley BG, Thayer SA. Anandamide transport inhibitor AM404 and structurally related compounds inhibit synaptic transmission between rat hippocampal neurons in culture independent of cannabinoid CB1 receptors. Eur J Pharmacol 2005; 496:33-9. [PMID: 15288572 DOI: 10.1016/j.ejphar.2004.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 06/03/2004] [Accepted: 06/08/2004] [Indexed: 10/26/2022]
Abstract
N-(hydroxyphenyl)-arachidonamide (AM404) is an inhibitor of endocannabinoid transport. We examined the effects of AM404 on glutamatergic synaptic transmission using network-driven increases in intracellular Ca2+ concentration ([Ca2+] spikes) as an assay. At a concentration of 1 microM AM404 inhibited [Ca2+]i spiking by 73+/-8%. The cannabinoid CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride (SR141716A), the vanilloid VR1 receptor antagonist capsazepine (CPZ), and treatment with pertussis toxin failed to block AM404-mediated inhibition. AM404 (3 microM) inhibited action-potential-evoked Ca2+ influx by 58+/-3% but failed to affect calcium influx evoked by depolarization with 30 mM K+, suggesting that the inhibition of electrically evoked [Ca2+]i increases and that [Ca2+]i spiking was due to inhibition of Na+ channels. Palmitoylethanolamide (PMEA), capsaicin (CAP) and (5Z,8Z,11Z,14Z)-N-(4-hydroxy-2-methylphenyl)-5,8,11,14-eicosatetraenamide (VDM11), compounds structurally similar to AM404, inhibited [Ca2+]i spiking by 34+/-10%, 42+/-18% and 67+/-12%, respectively. Thus, AM404 and related compounds inhibit depolarization-induced Ca2+ influx independent of cannabinoid receptors, suggesting caution when using these agents as pharmacological probes to study synaptic transmission.
Collapse
Affiliation(s)
- Brooke G Kelley
- Department of Pharmacology University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | | |
Collapse
|