1
|
Williamson G, Clifford MN. A critical examination of human data for the biological activity of quercetin and its phase-2 conjugates. Crit Rev Food Sci Nutr 2024; 65:1669-1705. [PMID: 38189312 DOI: 10.1080/10408398.2023.2299329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
This critical review examines evidence for beneficial effects of quercetin phase-2 conjugates from clinical intervention studies, volunteer feeding trials, and in vitro work. Plasma concentrations of quercetin-3-O-glucuronide (Q3G) and 3'-methylquercetin-3-O-glucuronide (3'MQ3G) after supplementation may produce beneficial effects in macrophages and endothelial cells, respectively, especially if endogenous deglucuronidation occurs, and lower blood uric acid concentration via quercetin-3'-O-sulfate (Q3'S). Unsupplemented diets produce much lower concentrations (<50 nmol/l) rarely investigated in vitro. At 10 nmol/l, Q3'S and Q3G stimulate or suppress, respectively, angiogenesis in endothelial cells. Statistically significant effects have been reported at 100 nmol/l in breast cancer cells (Q3G), primary neuron cultures (Q3G), lymphocytes (Q3G and3'MQ3G) and HUVECs (QG/QS mixture), but it is unclear whether these translate to a health benefit in vivo. More sensitive and more precise methods to measure clinically significant endpoints are required before a conclusion can be drawn regarding effects at normal dietary concentrations. Future requirements include better understanding of inter-individual and temporal variation in plasma quercetin phase-2 conjugates, their mechanisms of action including deglucuronidation and desulfation both in vitro and in vivo, tissue accumulation and washout, as well as potential for synergy or antagonism with other quercetin metabolites and metabolites of other dietary phytochemicals.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics and Food, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Michael N Clifford
- Department of Nutrition, Dietetics and Food, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
2
|
Li L, Peng P, Ding N, Jia W, Huang C, Tang Y. Oxidative Stress, Inflammation, Gut Dysbiosis: What Can Polyphenols Do in Inflammatory Bowel Disease? Antioxidants (Basel) 2023; 12:antiox12040967. [PMID: 37107341 PMCID: PMC10135842 DOI: 10.3390/antiox12040967] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a long-term, progressive, and recurrent intestinal inflammatory disorder. The pathogenic mechanisms of IBD are multifaceted and associated with oxidative stress, unbalanced gut microbiota, and aberrant immune response. Indeed, oxidative stress can affect the progression and development of IBD by regulating the homeostasis of the gut microbiota and immune response. Therefore, redox-targeted therapy is a promising treatment option for IBD. Recent evidence has verified that Chinese herbal medicine (CHM)-derived polyphenols, natural antioxidants, are able to maintain redox equilibrium in the intestinal tract to prevent abnormal gut microbiota and radical inflammatory responses. Here, we provide a comprehensive perspective for implementing natural antioxidants as potential IBD candidate medications. In addition, we demonstrate novel technologies and stratagems for promoting the antioxidative properties of CHM-derived polyphenols, including novel delivery systems, chemical modifications, and combination strategies.
Collapse
Affiliation(s)
- Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peilan Peng
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ning Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenhui Jia
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yong Tang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
3
|
Nedić O, Penezić A, Minić S, Radomirović M, Nikolić M, Ćirković Veličković T, Gligorijević N. Food Antioxidants and Their Interaction with Human Proteins. Antioxidants (Basel) 2023; 12:antiox12040815. [PMID: 37107190 PMCID: PMC10135064 DOI: 10.3390/antiox12040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Common to all biological systems and living organisms are molecular interactions, which may lead to specific physiological events. Most often, a cascade of events occurs, establishing an equilibrium between possibly competing and/or synergistic processes. Biochemical pathways that sustain life depend on multiple intrinsic and extrinsic factors contributing to aging and/or diseases. This article deals with food antioxidants and human proteins from the circulation, their interaction, their effect on the structure, properties, and function of antioxidant-bound proteins, and the possible impact of complex formation on antioxidants. An overview of studies examining interactions between individual antioxidant compounds and major blood proteins is presented with findings. Investigating antioxidant/protein interactions at the level of the human organism and determining antioxidant distribution between proteins and involvement in the particular physiological role is a very complex and challenging task. However, by knowing the role of a particular protein in certain pathology or aging, and the effect exerted by a particular antioxidant bound to it, it is possible to recommend specific food intake or resistance to it to improve the condition or slow down the process.
Collapse
Affiliation(s)
- Olgica Nedić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
- Correspondence:
| | - Ana Penezić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Simeon Minić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Mirjana Radomirović
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Nikolić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Tanja Ćirković Veličković
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Nikola Gligorijević
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| |
Collapse
|
4
|
Bioactivity, Molecular Mechanism, and Targeted Delivery of Flavonoids for Bone Loss. Nutrients 2023; 15:nu15040919. [PMID: 36839278 PMCID: PMC9960663 DOI: 10.3390/nu15040919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Skeletal disabilities are a prominent burden on the present population with an increasing life span. Advances in osteopathy have provided various medical support for bone-related diseases, including pharmacological and prosthesis interventions. However, therapeutics and post-surgery complications are often reported due to side effects associated with modern-day therapies. Thus, therapies utilizing natural means with fewer toxic or other side effects are the key to acceptable interventions. Flavonoids constitute a class of bioactive compounds found in dietary supplements, and their pharmacological attributes have been well appreciated. Recently, flavonoids' role is gaining renowned interest for its effect on bone remodeling. A wide range of flavonoids has been found to play a pivotal role in the major bone signaling pathways, such as wingless-related integration site (Wnt)/β-catenin, bone morphogenetic protein (BMP)/transforming growth factor (TGF)-β, mitogen-activated protein kinase (MAPK), etc. However, the reduced bioavailability and the absorption of flavonoids are the major limitations inhibiting their use against bone-related complications. Recent utilization of nanotechnological approaches and other delivery methods (biomaterial scaffolds, micelles) to target and control release can enhance the absorption and bioavailability of flavonoids. Thus, we have tried to recapitulate the understanding of the role of flavonoids in regulating signaling mechanisms affecting bone remodeling and various delivery methods utilized to enhance their therapeutical potential in treating bone loss.
Collapse
|
5
|
Biological Activities Underlying the Therapeutic Effect of Quercetin on Inflammatory Bowel Disease. Mediators Inflamm 2022; 2022:5665778. [PMID: 35915741 PMCID: PMC9338876 DOI: 10.1155/2022/5665778] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic autoimmune disorder stemming from unrestrained immune activation and subsequent destruction of colon tissue. Genetic susceptibility, microbiota remodeling, and environmental cues are involved in IBD pathogenesis. Up to now, there are limited treatment options for IBD, so better therapies for IBD are eagerly needed. The therapeutic effects of naturally occurring compounds have been extensively investigated, among which quercetin becomes an attractive candidate owing to its unique biochemical properties. To facilitate the clinical translation of quercetin, we aimed to get a comprehensive understanding of the cellular and molecular mechanisms underlying the anti-IBD role of quercetin. We summarized that quercetin exerts the anti-IBD effect through consolidating the intestinal mucosal barrier, enhancing the diversity of colonic microbiota, restoring local immune homeostasis, and restraining the oxidative stress response. We also delineated the effect of quercetin on gut microbiome and discussed the potential side effects of quercetin administration. Besides, quercetin could serve as a prodrug, and the bioavailability of quercetin is improved through chemical modifications or the utilization of effective drug delivery systems. Altogether, these lines of evidence hint the feasibility of quercetin as a candidate compound for IBD treatment.
Collapse
|
6
|
Ali K, Mishra P, Kumar A, Reddy DN, Chowdhury S, Panda G. Reactivity vs. selectivity of quinone methides: synthesis of pharmaceutically important molecules, toxicity and biological applications. Chem Commun (Camb) 2022; 58:6160-6175. [PMID: 35522910 DOI: 10.1039/d2cc00838f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quinone methides (QMs) are considered to be highly reactive intermediates because of their aromatization both in chemical and biological systems. Being highly accessible, quinone methides (QMs) have been widely exploited and their concurrent use has been manifested for the synthesis of tertiary and quaternary carbon centers of bioactives, drugs and drug-like molecules. In this feature article, the synthetic routes, structure-reactivity relationships and synthetic applications of quinone methides are discussed. Formation of the intermediates during bioactivation of different chemical entities and possible chemical manifestations leading to their toxicity in biological systems are also covered.
Collapse
Affiliation(s)
- Kasim Ali
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, UP, India. .,Academy of Scientific & Industrial Research (AcSIR), Ghaziabad, Uttar Pradesh-201 002, India
| | - Prajjval Mishra
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, UP, India.
| | - Awnish Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, UP, India.
| | - Damodara N Reddy
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, UP, India. .,Academy of Scientific & Industrial Research (AcSIR), Ghaziabad, Uttar Pradesh-201 002, India
| | - Sushobhan Chowdhury
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, UP, India.
| | - Gautam Panda
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, UP, India. .,Academy of Scientific & Industrial Research (AcSIR), Ghaziabad, Uttar Pradesh-201 002, India
| |
Collapse
|
7
|
Liu H, Chang G, Wang W, Ji Z, Cui J, Peng Y. Pharmacokinetics, Prostate Distribution and Metabolic Characteristics of Four Representative Flavones after Oral Administration of the Aerial Part of Glycyrrhiza uralensis in Rats. Molecules 2022; 27:molecules27103245. [PMID: 35630722 PMCID: PMC9144537 DOI: 10.3390/molecules27103245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The aerial part of G. uralensis had pharmacological effects against chronic non-bacterial prostatitis (CNP), and flavonoids are the main efficacy components. The purpose of this study was to obtain the pharmacokinetics, prostate distribution and metabolic characteristics of some flavonoids in rats. (2) Methods: The prototype flavones and the metabolites of four representative flavonoids, namely puerarin, luteolin, kaempferol and pinocembrin in plasma, prostate, urine and feces of rats were analyzed by UPLC-Q-Exactive Orbitrap-MS. In addition, the pharmacokinetic parameters in plasma and distribution of prostate of four components were analyzed by HPLC-MS/MS. (3) Results: In total, 22, 17, 22 and 11 prototype flavones were detected in the prostate, plasma, urine and feces, respectively. The metabolites of puerarin in the prostate are hydrolysis and glucose-conjugated products, the metabolites of kaempferol and luteolin in the prostate are methylation and glucuronidation, and the metabolites of pinocembrin in the prostate are naringenin, oxidation, sulfation, methylation and glucuronidation products. The t1/2 of puerarin, luteolin, kaempferol and pinocembrin was 6.43 ± 0.20, 31.08 ± 1.17, 18.98 ± 1.46 and 13.18 ± 0.72 h, respectively. The concentrations of the four flavonoids in prostate were ranked as kaempferol > pinocembrin > luteolin > puerarin. (4) Conclusions: Methylation and glucuronidation metabolites were the main metabolites detected in the prostate. A sensitive and validated HPLC−MS/MS method for simultaneous determination of puerarin, luteolin, kaempferol and pinocembrin in rat plasma and prostate was described, and it was successfully applied to the pharmacokinetic and prostate distribution studies.
Collapse
Affiliation(s)
- Haifan Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.L.); (J.C.)
| | - Guanhua Chang
- Beijing Wehand-Bio Pharmaceutical Co., Ltd., Beijing 102629, China;
| | - Wenquan Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.L.); (J.C.)
- Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing 100102, China
- Correspondence: (W.W.); (Z.J.); Tel.: +86-15811588577 (W.W.); +86-13999841009 (Z.J.)
| | - Zuen Ji
- Xinjiang Key Laboratory for Reserch of Licorice and Products, Korla 841011, China;
- Xinjiang Quanan Pharmaceutical Co., Ltd., Korla 841011, China
- Correspondence: (W.W.); (Z.J.); Tel.: +86-15811588577 (W.W.); +86-13999841009 (Z.J.)
| | - Jie Cui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.L.); (J.C.)
| | - Yifeng Peng
- Xinjiang Key Laboratory for Reserch of Licorice and Products, Korla 841011, China;
- Xinjiang Quanan Pharmaceutical Co., Ltd., Korla 841011, China
| |
Collapse
|
8
|
Xiao F, Qiu J, Zhao Y. Exploring the Potential Toxicological Mechanisms of Vine Tea on the Liver Based on Network Toxicology and Transcriptomics. Front Pharmacol 2022; 13:855926. [PMID: 35392562 PMCID: PMC8981030 DOI: 10.3389/fphar.2022.855926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/01/2022] [Indexed: 01/01/2023] Open
Abstract
Objective: This study focuses on whether vine tea contains potentially toxic components that trigger hepatotoxicity as a mechanism of action, which further provides some reference for the consumption and guides future product development of vine tea. Methods: The chemical components of vine tea were collected from the reported literature and the toxicological information matched with the CTD database was collected, and the dataset of potential toxic components was established. The toxic components were submitted to the PharmMapper server to obtain potential targets. At the same time, the relevant targets were searched in the CTD database and GeneCards database with keywords such as “Hepatic Toxicity,” “Liver Damage,” and “Drug-induced liver injury.” After intersection, the potential hepatotoxic targets of vine tea were obtained. The protein interactions of potential hepatotoxic targets of vine tea were analyzed by the STRING database. Protein–protein interaction (PPI) networks were constructed by Cytoscape3.6.1 software. The GO molecular function and KEGG pathway of hepatotoxic targets were enriched by the R package to screen the key targets. The role of the components and key targets was analyzed by the LEDOCK program. The data from GEO database were mined for the functional correlation characterized by cell transcriptional expression caused by vine tea as a disturbance factor. Results: This study has searched 34 potential toxic components and 57 potential hepatotoxic targets of vine tea, and the result showed that these targets were mainly involved in oxidative stress, cell metabolism, and apoptosis to affect the liver. Conclusion: Vine tea has the interrelationship of multi-components, multi-targets, and multi-pathways. At the cellular level, the toxic components of vine tea, mainly flavonoids, may promote oxidative stress, promote oxidation to produce free radicals, guide apoptosis, and affect cell metabolism and other cytotoxic mechanisms. However, this hepatotoxicity is related to the dose, duration of vine tea, and individual differences. This study revealed the potential hepatotoxic components of vine tea and provides a reference for further research and development of related functional products.
Collapse
Affiliation(s)
- Fangyu Xiao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jihua Qiu
- South China Agricultural University, Guangzhou, China
| | - Ying Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Bartosova L, Horvath C, Galis P, Ferenczyova K, Kalocayova B, Szobi A, Duris-Adameova A, Bartekova M, Rajtik T. Quercetin alleviates diastolic dysfunction and suppresses adverse pro-hypertrophic signaling in diabetic rats. Front Endocrinol (Lausanne) 2022; 13:1029750. [PMID: 36568083 PMCID: PMC9772025 DOI: 10.3389/fendo.2022.1029750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Quercetin (Que) is a potent anti-inflammatory and antioxidant flavonoid with cardioprotective potential. However, very little is known about the signaling pathways and gene regulatory proteins Que may interfere with, especially in diabetic cardiomyopathy. Therefore, we aimed to study the potential cardioprotective effects of Que on the cardiac phenotype of type 2 diabetes mellitus (T2DM) accompanied by obesity. METHODS For this experiment, we used Zucker Diabetic Fatty rats (fa/fa) and their age-matched lean controls (fa/+) that were treated with either vehicle or 20 mg/kg/day of Que for 6 weeks. Animals underwent echocardiographic (echo) examination before the first administration of Que and after 6 weeks. RESULTS After the initial echo examination, the diabetic rats showed increased E/A ratio, a marker of left ventricular (LV) diastolic dysfunction, in comparison to the control group which was selectively reversed by Que. Following the echo analysis, Que reduced LV wall thickness and exhibited an opposite effect on LV luminal area. In support of these results, the total collagen content measured by hydroxyproline assay was decreased in the LVs of diabetic rats treated with Que. The follow-up immunoblot analysis of proteins conveying cardiac remodeling pathways revealed that Que was able to interfere with cardiac pro-hypertrophic signaling. In fact, Que reduced relative protein expression of pro-hypertrophic transcriptional factor MEF2 and its counter-regulator HDAC4 along with pSer246-HDAC4. Furthermore, Que showed potency to decrease GATA4 transcription factor, NFAT3 and calcineurin, as well as upstream extracellular signal-regulated kinase Erk5 which orchestrates several pro-hypertrophic pathways. DISCUSSION In summary, we showed for the first time that Que ameliorated pro-hypertrophic signaling on the level of epigenetic regulation and targeted specific upstream pathways which provoked inhibition of pro-hypertrophic signals in ZDF rats. Moreover, Que mitigated T2DM and obesity-induced diastolic dysfunction, therefore, might represent an interesting target for future research on novel cardioprotective agents.
Collapse
Affiliation(s)
- Linda Bartosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Csaba Horvath
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Peter Galis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Kristina Ferenczyova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Kalocayova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Adrian Szobi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Adriana Duris-Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- *Correspondence: Tomas Rajtik, ; Monika Bartekova,
| | - Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- *Correspondence: Tomas Rajtik, ; Monika Bartekova,
| |
Collapse
|
10
|
Joyner PM. Protein Adducts and Protein Oxidation as Molecular Mechanisms of Flavonoid Bioactivity. Molecules 2021; 26:molecules26165102. [PMID: 34443698 PMCID: PMC8401221 DOI: 10.3390/molecules26165102] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 02/05/2023] Open
Abstract
There are tens of thousands of scientific papers about flavonoids and their impacts on human health. However, despite the vast amount of energy that has been put toward studying these compounds, a unified molecular mechanism that explains their bioactivity remains elusive. One contributing factor to the absence of a general mechanistic explanation of their bioactivity is the complexity of flavonoid chemistry in aqueous solutions at neutral pH. Flavonoids have acidic protons, are redox active, and frequently auto-oxidize to produce an array of degradation products including electrophilic quinones. Flavonoids are also known to interact with specificity and high affinity with a variety of proteins, and there is evidence that some of these interactions may be covalent. This review summarizes the mechanisms of flavonoid oxidation in aqueous solutions at neutral pH and proposes the formation of protein-flavonoid adducts or flavonoid-induced protein oxidation as putative mechanisms of flavonoid bioactivity in cells. Nucleophilic residues in proteins may be able to form covalent bonds with flavonoid quinones; alternatively, specific amino acid residues such as cysteine, methionine, or tyrosine in proteins could be oxidized by flavonoids. In either case, these protein-flavonoid interactions would likely occur at specific binding sites and the formation of these types of products could effectively explain how flavonoids modify proteins in cells to induce downstream biochemical and cellular changes.
Collapse
Affiliation(s)
- P Matthew Joyner
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA 90263, USA
| |
Collapse
|
11
|
Sotillo WS, Tarqui S, Huang X, Almanza G, Oredsson S. Breast cancer cell line toxicity of a flavonoid isolated from Baccharis densiflora. BMC Complement Med Ther 2021; 21:188. [PMID: 34215226 PMCID: PMC8254278 DOI: 10.1186/s12906-021-03349-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/08/2021] [Indexed: 12/25/2022] Open
Abstract
Background Flavonoids are compounds of interest in the search for new anti-cancer therapies. We have previously isolated the methoxyflavones 5,4′-dihydroxy-6,7,8,3′-tetramethoxyflavone (8-methoxycirsilineol), 5,4′-dihydroxy-6,7,8-trimethoxyflavone (xanthomicrol), and 5,4,'3′-trihydroxy-6,7,8-trimethoxyflavone (sideritoflavone) from Baccharis densiflora. Herein, we investigate the toxicity of these methoxyflavones in human breast-derived cell line. Our main aim was to focus on the cancer stem cell (CSC) sub-population of JIMT-1 breast cancer cells. Methods Initially, dose response experiments yielding inhibitory concentration 50 (IC50) values were performed using MCF-7, HCC1937, and JIMT-1 breast cancer, and the MCF-10A normal-like breast cell lines to get an understanding of toxic ranges. Due to a clear difference in the toxicity of the flavones, only sideritoflavone was selected for further studies using the JIMT-1 cell line. Effects on the CSC sub-population was investigated using flow cytometry-based methods. A wound healing assay and digital holographic microscopy were used to investigate effects on cell movement. A reporter assay was used to study effects on signal transduction pathways and Western blot for protein expression. Results The dose response data showed that 8-methoxycirsilineol was non-toxic at concentrations below 100 μM, that the IC50 of xanthomicrol was between 50 and 100 μM, while sideritoflavone was highly toxic with a single digit μM IC50 in all cell lines. Treatment of the JIMT-1 cells with 2 μM sideritoflavone did not selectively effect the CSC sub-population. Instead, sideritoflavone treatment inhibited the proliferation of both the non-CSC and the CSC sub-populations to the same extent. The inhibition of cell proliferation resulted in an accumulation of cells in the G2 phase of the cell cycle and the treated cells showed an increased level of γ-H2A histone family member X indicating DNA double strand breaks. Analysis of the effect of sideritoflavone treatment on signal transduction pathways showed activation of the Wnt, Myc/Max, and transforming growth factor-β pathways. The level of p65/nuclear factor kappa-light-chain-enhancer of activated Β cells was increased in sideritoflavone-treated cells. Cell movement was decreased by sideritoflavone treatment. Conclusions Altogether our data show that the methoxyflavone sideritoflavone has favourable anti-cancer effects that may be exploited for development to be used in combination with CSC specific compounds. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03349-4.
Collapse
Affiliation(s)
- Wendy Soria Sotillo
- Department of Biology, Lund University, Lund, Sweden.,Molecular Biology and Biotechnology Institute, University Major of San Andres, La Paz, Bolivia
| | - Santiago Tarqui
- Chemical Research Institute, University Major of San Andres, La Paz, Bolivia
| | - Xiaoli Huang
- Department of Biology, Lund University, Lund, Sweden
| | - Giovanna Almanza
- Chemical Research Institute, University Major of San Andres, La Paz, Bolivia
| | | |
Collapse
|
12
|
Flavonoids-Macromolecules Interactions in Human Diseases with Focus on Alzheimer, Atherosclerosis and Cancer. Antioxidants (Basel) 2021; 10:antiox10030423. [PMID: 33802084 PMCID: PMC7999194 DOI: 10.3390/antiox10030423] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Flavonoids, a class of polyphenols, consumed daily in our diet, are associated with a reduced risk for oxidative stress (OS)-related chronic diseases, such as cardiovascular disease, neurodegenerative diseases, cancer, and inflammation. The involvement of flavonoids with OS-related chronic diseases have been traditionally attributed to their antioxidant activity. However, evidence from recent studies indicate that flavonoids' beneficial impact may be assigned to their interaction with cellular macromolecules, rather than exerting a direct antioxidant effect. This review provides an overview of the recent evolving research on interactions between the flavonoids and lipoproteins, proteins, chromatin, DNA, and cell-signaling molecules that are involved in the OS-related chronic diseases; it focuses on the mechanisms by which flavonoids attenuate the development of the aforementioned chronic diseases via direct and indirect effects on gene expression and cellular functions. The current review summarizes data from the literature and from our recent research and then compares specific flavonoids' interactions with their targets, focusing on flavonoid structure-activity relationships. In addition, the various methods of evaluating flavonoid-protein and flavonoid-DNA interactions are presented. Our aim is to shed light on flavonoids action in the body, beyond their well-established, direct antioxidant activity, and to provide insights into the mechanisms by which these small molecules, consumed daily, influence cellular functions.
Collapse
|
13
|
Ozkan G, Kostka T, Esatbeyoglu T, Capanoglu E. Effects of Lipid-Based Encapsulation on the Bioaccessibility and Bioavailability of Phenolic Compounds. Molecules 2020; 25:E5545. [PMID: 33256012 PMCID: PMC7731217 DOI: 10.3390/molecules25235545] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Phenolic compounds (quercetin, rutin, cyanidin, tangeretin, hesperetin, curcumin, resveratrol, etc.) are known to have health-promoting effects and they are accepted as one of the main proposed nutraceutical group. However, their application is limited owing to the problems related with their stability and water solubility as well as their low bioaccessibility and bioavailability. These limitations can be overcome by encapsulating phenolic compounds by physical, physicochemical and chemical encapsulation techniques. This review focuses on the effects of encapsulation, especially lipid-based techniques (emulsion/nanoemulsion, solid lipid nanoparticles, liposomes/nanoliposomes, etc.), on the digestibility characteristics of phenolic compounds in terms of bioaccessibility and bioavailability.
Collapse
Affiliation(s)
- Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (G.O.); (E.C.)
| | - Tina Kostka
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany;
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany;
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (G.O.); (E.C.)
| |
Collapse
|
14
|
Fernandes IDAA, Maciel GM, Oliveira ALMS, Miorim AJF, Fontana JD, Ribeiro VR, Haminiuk CWI. Hybrid bacterial cellulose‐collagen membranes production in culture media enriched with antioxidant compounds from plant extracts. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Giselle Maria Maciel
- Laboratório de Biotecnologia Universidade Tecnológica Federal do Paraná (UTFPR) Curitiba Brazil
| | | | - Avany Judith Ferraro Miorim
- Departamento Acadêmico de Química e Biologia (DAQBi) Universidade Tecnológica Federal do Paraná Curitiba Brazil
| | | | - Valéria Rampazzo Ribeiro
- Programa de Pós‐Graduação em Engenharia de Alimentos (PPGEAL) Universidade Federal do Paraná (UFPR) Curitiba Brazil
| | | |
Collapse
|
15
|
Siddiqui T, Zia MK, Ahsan H, Khan FH. Quercetin-induced inactivation and conformational alterations of alpha-2-macroglobulin: multi-spectroscopic and calorimetric study. J Biomol Struct Dyn 2019; 38:4107-4118. [PMID: 31543004 DOI: 10.1080/07391102.2019.1671232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Quercetin is a widely used bioflavonoid found in onions, grapes, berries and citrus fruits. Under certain conditions, quercetin acts as a pro-oxidant thereby generating reactive oxygen species and promoting the oxidation of molecules. Our study investigates the effect of quercetin on the structure and function of alpha-2-macroglobulin (α2M) by employing various biophysical techniques and trypsin inhibitory assay. α2M is the major antiproteinase present in the plasma of vertebrates. Results of activity assay indicated that α2M loses its 56% of inhibitory activity on treatment with quercetin in the presence of light. UV spectroscopy reveals hyper chromaticity in absorption spectra of protein on interaction with quercetin suggesting structural change. The intrinsic fluorescence studies showed quenching of α2M spectra in the presence of quercetin, and the mode of quenching was found to be static in nature. Synchronous fluorescence indicated the alteration in the microenvironment of tryptophan residues. CD and FTIR spectroscopy confirms concentration-dependent alterations in secondary structure of α2M instigated by quercetin. The magnitude of binding constant, enthalpy change, entropy change and free energy change during the interaction process was determined by isothermal titration calorimetry. Hydrogen bonding and hydrophobic interaction were the main intermolecular forces involved during the process. This study identifies and signifies the damage induced by quercetin to α2M due to its pro-oxidant action. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tooba Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohammad Khalid Zia
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Fahim Halim Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
16
|
Silva-Junior EA, Paludo CR, Amaral JG, Gallon ME, Gobbo-Neto L, Nascimento FS, Lopes NP. Chemical Diversity in a Stingless Bee-Plant Symbiosis. ACS OMEGA 2019; 4:15208-15214. [PMID: 31552366 PMCID: PMC6751719 DOI: 10.1021/acsomega.9b02096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Bees are essential pollinators on earth, supporting forest equilibrium and human agriculture. The chemistry of the stingless bee-plant symbiosis is a complex and not completely understood phenomenon. Here, we combined untargeted tandem mass spectrometry, molecular networking, and multivariate statistical analysis to investigate the chemical diversity in colonies of the stingless bee Scaptotrigona depilis. Flavonoids were the most representative and diverse group of plant metabolites detected, indicating the importance of these biologically active natural products to the bees. We unveiled the metabolome, mapped the distribution of plant metabolites in stingless bee colonies, and digitized the chemical data into a public database.
Collapse
Affiliation(s)
- Eduardo A Silva-Junior
- NPPNS, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil
- Centro Universitário de Vale do Araguaia, Barra do Garças, MT 78600-000, Brazil
| | - Camila R Paludo
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
- Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Barra do Garças, MT 78600-000, Brazil
| | - Juliano G Amaral
- NPPNS, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA 45029-094, Brazil
| | - Marília E Gallon
- NPPNS, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Leonardo Gobbo-Neto
- NPPNS, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Fabio S Nascimento
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Norberto P Lopes
- NPPNS, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| |
Collapse
|
17
|
Atrahimovich D, Samson AO, Barsheshet Y, Vaya J, Khatib S, Reuveni E. Genome-wide localization of the polyphenol quercetin in human monocytes. BMC Genomics 2019; 20:606. [PMID: 31337340 PMCID: PMC6652105 DOI: 10.1186/s12864-019-5966-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/10/2019] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Quercetin is a polyphenol of great interest given its antioxidant activity and involvement in the immune response. Although quercetin has been well studied at the molecular level as a gene regulator and an activator of specific cellular pathways, not much attention has been given to its mechanism of action at the genome-wide level. The present study aims to characterize quercetin's interaction with cellular DNA and to show its subsequent effect on downstream transcription. RESULTS Two massive parallel DNA-sequencing technologies were used: Chem-seq and RNA-seq. We demonstrate that upon binding to DNA or genome-associated proteins, quercetin acts as a cis-regulatory transcription factor for the expression of genes that are involved in the cell cycle, differentiation and development. CONCLUSIONS Such findings could provide new and important insights into the mechanisms by which the dietary polyphenol quercetin influences cellular functions.
Collapse
Affiliation(s)
- Dana Atrahimovich
- Department of Oxidative Stress and Human Diseases, MIGAL – Galilee Research Institute, 11016 Kiryat Shmona, Israel
- Faculty of Medicine in the Galilee, Bar-Ilan University, 1311502 Safed, Israel
| | - Avraham O. Samson
- Faculty of Medicine in the Galilee, Bar-Ilan University, 1311502 Safed, Israel
| | - Yifthah Barsheshet
- Faculty of Medicine in the Galilee, Bar-Ilan University, 1311502 Safed, Israel
| | - Jacob Vaya
- Department of Oxidative Stress and Human Diseases, MIGAL – Galilee Research Institute, 11016 Kiryat Shmona, Israel
- Tel-Hai College, 12208 Upper Galilee, Israel
| | - Soliman Khatib
- Department of Oxidative Stress and Human Diseases, MIGAL – Galilee Research Institute, 11016 Kiryat Shmona, Israel
- Tel-Hai College, 12208 Upper Galilee, Israel
| | - Eli Reuveni
- Faculty of Medicine in the Galilee, Bar-Ilan University, 1311502 Safed, Israel
| |
Collapse
|
18
|
Boniface PK, Elizabeth FI. Flavonoid-derived Privileged Scaffolds in anti-Trypanosoma brucei Drug Discovery. Curr Drug Targets 2019; 20:1295-1314. [PMID: 31215385 DOI: 10.2174/1389450120666190618114857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Human African Trypanosomiasis (HAT), also known as sleeping sickness is one of the 20 neglected tropical diseases listed by the World Health Organization, which lead to death if left untreated. This disease is caused by Trypanosoma brucei gambiense, which is the chronic form of the disease present in western and central Africa, and by T. brucei rhodesiense, which is the acute form of the disease located in eastern and southern Africa. Many reports have highlighted the effectiveness of flavonoid-based compounds against T. brucei. OBJECTIVE The present review summarizes the current standings and perspectives for the use of flavonoids as lead compounds for the potential treatment of HAT. METHODS A literature search was conducted for naturally occurring and synthetic anti-T brucei flavonoids by referencing textbooks and scientific databases (SciFinder, PubMed, Science Direct, Wiley, ACS, SciELO, Google Scholar, Springer, among others) from their inception until February 2019. RESULTS Flavonoids isolated from different parts of plants and species were reported to exhibit moderate to high in vitro antitrypanosomal activity against T. brucei. In addition, synthetic flavonoids revealed anti-T. brucei activity. Molecular interactions of bioactive flavonoids with T. brucei protein targets showed promising results. CONCLUSION According to in vitro anti-T brucei studies, there is evidence that flavonoids might be lead compounds for the potential treatment of HAT. However, toxicological studies, as well as the mechanism of action of the in vitro active flavonoids are needed to support their use as potential leads for the treatment of HAT.
Collapse
Affiliation(s)
- Pone Kamdem Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ferreira Igne Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
19
|
β-Cyclodextrin Does not Alter the Bioaccessibility and the Uptake by Caco-2 Cells of Olive By-Product Phenolic Compounds. Nutrients 2018; 10:nu10111653. [PMID: 30400310 PMCID: PMC6266305 DOI: 10.3390/nu10111653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022] Open
Abstract
Alperujo—a two-phase olive mill waste that is composed of olive vegetation water and solid skin, pulp, and seed fragments - is a highly valuable olive by-product due to its high content in phenolic compounds. In this study, we assessed whether β-cyclodextrin (β-CD), which is used to extract and protect alpejuro phenolic compounds (hydroxytyrosol-O-glucoside, tyrosol, caffeic, and p-coumaric acids) could impact on their bioaccessibility (i.e., the percentage of molecule found in the aqueous phase of the digesta) and uptake by intestinal cells, by using an in vitro digestion model and Caco-2 TC7 cells in culture, respectively. Our results showed that β-CD did not change the bioaccessibility of the selected phenols. Hydroxytyrosol-O-glucoside and caffeic did not cross Caco-2 cell monolayers. Conversely ferulic acid, identified as the main caffeic acid intestinal metabolite, was absorbed through intestinal cell monolayers (~20%). Interestingly, β-CD moderately but significantly improved the local absorption of tyrosol and p-coumaric acid (2.3 + 1.4% and 8.5 ± 4.2%, respectively, p < 0.05), even if their final bioavailability (expressed as bioaccessibility × absorption by Caco-2 cells) was not modified (16.2 ± 0.6% vs. 16.8 ± 0.5% for tyrosol and 32.0 ± 3.2% vs. 37.2 ± 3.2% for p-coumaric acid, from pure alperujo and alperujo complexed with β-CD, respectively). Overall, our results show that β-CD is an interesting extraction and storage agent for phenolic compounds that does not alter their in vitro bioavailability.
Collapse
|
20
|
Bolton JL, Dunlap TL, Dietz BM. Formation and biological targets of botanical o-quinones. Food Chem Toxicol 2018; 120:700-707. [PMID: 30063944 PMCID: PMC6643002 DOI: 10.1016/j.fct.2018.07.050] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 01/12/2023]
Abstract
The formation of o-quinones from direct 2-electron oxidation of catechols and/or two successive one electron oxidations could explain the cytotoxic/genotoxic and/or chemopreventive effects of several phenolic botanical extracts. For example, poison ivy contains urushiol, an oily mixture, which is oxidized to various o-quinones likely resulting in skin toxicity through oxidative stress and alkylation mechanisms resulting in immune responses. Green tea contains catechins which are directly oxidized to o-quinones by various oxidative enzymes. Alternatively, phenolic botanicals could be o-hydroxylated by P450 to form catechols in vivo which are oxidized to o-quinones. Examples include, resveratrol which is oxidized to piceatannol and further oxidized to the o-quinone. Finally, botanical o-quinones can be formed by O-dealkylation of O-alkoxy groups or methylenedioxy rings resulting in catechols which are further oxidized to o-quinones. Examples include safrole, eugenol, podophyllotoxin and etoposide, as well as methysticin. Once formed these o-quinones have a variety of biological targets in vivo resulting in various biological effects ranging from chemoprevention - > no effect - > toxicity. This U-shaped biological effect curve has been described for a number of reactive intermediates including o-quinones. The current review summarizes the latest data on the formation and biological targets of botanical o-quinones.
Collapse
Affiliation(s)
- Judy L Bolton
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833S. Wood Street, Chicago, IL, 60612-7231, United States.
| | - Tareisha L Dunlap
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833S. Wood Street, Chicago, IL, 60612-7231, United States
| | - Birgit M Dietz
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833S. Wood Street, Chicago, IL, 60612-7231, United States
| |
Collapse
|
21
|
Li S, Zhao Q, Wang B, Yuan S, Wang X, Li K. Quercetin reversed MDR in breast cancer cells through down-regulating P-gp expression and eliminating cancer stem cells mediated by YB-1 nuclear translocation. Phytother Res 2018; 32:1530-1536. [PMID: 29635751 DOI: 10.1002/ptr.6081] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/19/2018] [Accepted: 03/07/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Shizheng Li
- Department of General Surgery; The First Affiliated Hospital of Jinzhou Medical University; Jinzhou Liaoning 121001 China
| | - Qian Zhao
- Department of Clinical Laboratory; The First Affiliated Hospital of Jinzhou Medical University; Jinzhou Liaoning 121001 China
| | - Bo Wang
- Department of Clinical Laboratory; The First Affiliated Hospital of Jinzhou Medical University; Jinzhou Liaoning 121001 China
| | - Song Yuan
- Department of Clinical Laboratory; The First Affiliated Hospital of Jinzhou Medical University; Jinzhou Liaoning 121001 China
| | - Xiuyan Wang
- Department of Clinical Laboratory; The First Affiliated Hospital of Jinzhou Medical University; Jinzhou Liaoning 121001 China
| | - Kun Li
- Department of Clinical Laboratory; The First Affiliated Hospital of Jinzhou Medical University; Jinzhou Liaoning 121001 China
| |
Collapse
|
22
|
Abdel Aziz RL, Abdel-Wahab A, Abo El-Ela FI, Hassan NEHY, El-Nahass ES, Ibrahim MA, Khalil ATAY. Dose- dependent ameliorative effects of quercetin and l-Carnitine against atrazine- induced reproductive toxicity in adult male Albino rats. Biomed Pharmacother 2018; 102:855-864. [PMID: 29710542 DOI: 10.1016/j.biopha.2018.03.136] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/20/2022] Open
Abstract
This study aimed to determine the protective effects of co-administration of Quercetin (QT) or l-Carnitine (LC) against the oxidative stress induced by Atrazine (ATZ) in the reproductive system of intact male Albino rats. 36 rats were divided equally into 6 groups. Rats in the control negative "CNT" group received 1.5 ml distilled water for 21 days. All rats in the other groups received ATZ (120 mg/kg bw) through gavage. Groups 3 and 4 were co-administered with either low or high dose of QT (10 "ATZLQT" and 50 "ATZHQT" mg/kg bw, respectively). Groups 5 and 6 were co-administered with either low or high dose of LC (200 "ATZLLC" and 400 "ATZHLC" mg/kg bw, respectively). At the end of the experiment, animals were sacrificed and all samples were collected. ATZ significantly increased serum level of malondialdehyde (MDA) and decreased total antioxidant capacity (TAC). Also, ATZ increased significantly the sperm cell abnormalities and reduced both testicular IgA and serum testosterone levels. Testicular DNA laddering % and CYP17A1 mRNA expression were significantly reduced in ATZ group. Interestingly, co-administration with low dose QT or different doses of LC succeeded to counteract the negative toxic effects of ATZ on serum oxidative stress indicators, serum testosterone levels, testicular IgA level and improved testicular CYP17A1 mRNA expression. In conclusion, QT in low dose and LC in both low and high doses exerted a significant protective action against the reproductive toxicity of ATZ, while higher dose of QT failed induce immune-stimulant effect against ATZ in adult male Albino rats.
Collapse
Affiliation(s)
- Rabie L Abdel Aziz
- Department of Theriogenology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - Ahmed Abdel-Wahab
- Department of Physiology, Faculty of Veterinary Medicine, Minia University, El-Minia, Egypt.
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Nour El-Houda Y Hassan
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - El-Shaymaa El-Nahass
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - Marwa A Ibrahim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Abdel-Tawab A Y Khalil
- Department of Theriogenology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
23
|
Quercetin enhances chemotherapeutic effect of doxorubicin against human breast cancer cells while reducing toxic side effects of it. Biomed Pharmacother 2018; 100:441-447. [DOI: 10.1016/j.biopha.2018.02.055] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 11/22/2022] Open
|
24
|
Andreucci M, Faga T, Pisani A, Serra R, Russo D, De Sarro G, Michael A. Quercetin protects against radiocontrast medium toxicity in human renal proximal tubular cells. J Cell Physiol 2017; 233:4116-4125. [PMID: 29044520 DOI: 10.1002/jcp.26213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/12/2017] [Indexed: 11/08/2022]
Abstract
Radiocontrast media (RCM)-induced acute kidney injury (CI-AKI) is a major clinical problem whose pathophysiology is not well understood. Direct toxic effects on renal cells, possibly mediated by reactive oxygen species, have been postulated as contributing to CI-AKI. We investigated the effect of quercetin on human renal proximal tubular (HK-2) cells treated with the radiocontrast medium (RCM) sodium diatrizoate. Quercetin is the most widely studied flavonoid, and the most abundant flavonol present in foods. It has been suggested to have many health benefits, including angioprotective properties and anti-cancer effects. These beneficial effects have been attributed to its antioxidant properties and its ability to modulate cell signaling pathways. Incubation of HK-2 cells with 100 μM quercetin caused a decrease in cell viability and pre-treatment of HK-2 cells with 100 μM quercetin followed by incubation with 75 mgI/ml sodium diatrizoate for 2 hr caused a decrease in cell viability which was worse than in cells treated with diatrizoate alone. However, further incubation of the cells (for 22 hr) after removal of the diatrizoate and quercetin caused a recovery in cell viability in those cells previously treated with quercetin + diatrizoate and quercetin alone. Analysis of signaling molecules by Western blotting showed that in RCM-treated cells receiving initial pre-treatment with quercetin, followed by its removal, an increase in phosphorylation of Akt (Ser473), pSTAT3 (Tyr705), and FoxO3a (Thr32) as well as an induction of Pim-1 and decrease in PARP1 cleavage were observed. Quercetin may alleviate the longer-term toxic effects of RCM toxicity and its possible beneficial effects should be further investigated.
Collapse
Affiliation(s)
- Michele Andreucci
- Department of Health Sciences (Nephrology Unit), "Magna Graecia" University, Catanzaro, Italy
| | - Teresa Faga
- Department of Health Sciences (Nephrology Unit), "Magna Graecia" University, Catanzaro, Italy
| | - Antonio Pisani
- Department of Public Health (Nephrology Unit), "Federico II" University, Naples, Italy
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Domenico Russo
- Department of Public Health (Nephrology Unit), "Federico II" University, Naples, Italy
| | - Giovambattista De Sarro
- Department of Health Sciences (Pharmacology Unit), "Magna Graecia" University, Catanzaro, Italy
| | - Ashour Michael
- Department of Health Sciences (Nephrology Unit), "Magna Graecia" University, Catanzaro, Italy
| |
Collapse
|
25
|
Miltonprabu S, Tomczyk M, Skalicka-Woźniak K, Rastrelli L, Daglia M, Nabavi SF, Alavian SM, Nabavi SM. Hepatoprotective effect of quercetin: From chemistry to medicine. Food Chem Toxicol 2017; 108:365-374. [DOI: 10.1016/j.fct.2016.08.034] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/04/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
|
26
|
Ujah GA, Nna VU, Agah MI, Omue LO, Leku CB, Osim EE. Effect of quercetin on cadmium chloride-induced impairments in sexual behaviour and steroidogenesis in male Wistar rats. Andrologia 2017; 50. [PMID: 28703286 DOI: 10.1111/and.12866] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2017] [Indexed: 12/19/2022] Open
Abstract
Cadmium chloride (CdCl2 ) has been reported to cause reproductive toxicity in male rats, mainly through oxidative stress. This study examined its effect on sexual behaviour, as one of the mechanisms of reproductive dysfunction, as well as the possible ameliorative effect of quercetin (QE) on same. Thirty male Wistar rats (10 weeks old), weighing 270-300 g, were used for this study. They were either orally administered 2% DMSO, CdCl2 (5 mg/kg b.w.), QE (20 mg/kg b.w.) or CdCl2 +QE, once daily for 4 weeks, before sexual behavioural studies. The 5th group received CdCl2 for 4 weeks and allowed 4-week recovery period, before sexual behavioural test. Rats were sacrificed after sexual behavioural studies. The blood, testis and penis were collected for biochemical assays. Cadmium increased mount, intromission and ejaculatory latencies, but reduced their frequencies, compared to control. Serum nitric oxide increased, while penile cyclic guanosine monophosphate reduced in the CdCl2 -exposed rats, compared to control. CdCl2 increased testicular cholesterol, but reduced 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-HSD activities, and testosterone concentration. QE better attenuated these negative changes compared to withdrawal of CdCl2 treatment. In conclusion, CdCl2 suppressed steroidogenesis, penile erection and sexual behaviour, with poor reversal following withdrawal, while QE attenuated these effects.
Collapse
Affiliation(s)
- G A Ujah
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - V U Nna
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria.,Department of Physiology, School of Medical Sciences, University Sains Malaysia, Kelantan, Malaysia
| | - M I Agah
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - L O Omue
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - C B Leku
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - E E Osim
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| |
Collapse
|
27
|
Sthijns MM, Schiffers PM, Janssen GM, Lemmens KJ, Ides B, Vangrieken P, Bouwman FG, Mariman EC, Pader I, Arnér ES, Johansson K, Bast A, Haenen GR. Rutin protects against H 2 O 2 -triggered impaired relaxation of placental arterioles and induces Nrf2-mediated adaptation in Human Umbilical Vein Endothelial Cells exposed to oxidative stress. Biochim Biophys Acta Gen Subj 2017; 1861:1177-1189. [DOI: 10.1016/j.bbagen.2017.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/15/2017] [Accepted: 03/06/2017] [Indexed: 01/06/2023]
|
28
|
de Oliveira MR, Nabavi SM, Braidy N, Setzer WN, Ahmed T, Nabavi SF. Quercetin and the mitochondria: A mechanistic view. Biotechnol Adv 2015; 34:532-549. [PMID: 26740171 DOI: 10.1016/j.biotechadv.2015.12.014] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/24/2015] [Accepted: 12/26/2015] [Indexed: 12/24/2022]
Abstract
Quercetin is an important flavonoid that is ubiquitously present in the diet in a variety of fruits and vegetables. It has been traditionally viewed as a potent antioxidant and anti-inflammatory molecule. However, recent studies have suggested that quercetin may exert its beneficial effects independent of its free radical-scavenging properties. Attention has been placed on the effect of quercetin on an array of mitochondrial processes. Quercetin is now recognized as a phytochemical that can modulate pathways associated with mitochondrial biogenesis, mitochondrial membrane potential, oxidative respiration and ATP anabolism, intra-mitochondrial redox status, and subsequently, mitochondria-induced apoptosis. The present review evaluates recent evidence on the ability of quercetin to interact with the abovementioned pathways, and critically analyses how, such interactions can exert protection against mitochondrial damage in response to toxicity induced by several exogenously and endogenously-produced cellular stressors, and oxidative stress in particular.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry, ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900, Cuiabá, MT, Brazil.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Touqeer Ahmed
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Domitrović R, Potočnjak I. A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives. Arch Toxicol 2015; 90:39-79. [DOI: 10.1007/s00204-015-1580-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
|
30
|
Mendes V, Costa V, Mateus N. Involvement of the modulation of cancer cell redox status in the anti-tumoral effect of phenolic compounds. RSC Adv 2015. [DOI: 10.1039/c4ra10590g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The association between the anti-tumoral properties of phenolics, the generation of ROS in culture medium and modulation of redox homeostasis was analyzed. In AGS cells, the anti-proliferative effect of quercetin was not reverted by catalase or SOD.
Collapse
Affiliation(s)
- Vanda Mendes
- Centro de Investigação em Química
- Faculdade de Ciências da Universidade do Porto
- 4169-007 Porto
- Portugal
- IBMC
| | - Vítor Costa
- IBMC
- Instituto de Biologia Molecular e Celular
- Universidade do Porto
- 4150-180 Porto
- Portugal
| | - Nuno Mateus
- Centro de Investigação em Química
- Faculdade de Ciências da Universidade do Porto
- 4169-007 Porto
- Portugal
| |
Collapse
|
31
|
Abarikwu SO, Farombi EO. Quercetin ameliorates atrazine-induced changes in the testicular function of rats. Toxicol Ind Health 2014; 32:1278-85. [PMID: 25427686 DOI: 10.1177/0748233714555389] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The protective effect of quercetin (QT) on atrazine (ATZ)-induced testicular damage in rats was investigated. Sexually mature male Wistar rats (weighing 220-250 g) divided into four groups with six animals in each group were given ATZ (120 mg kg(-1); 1/16 of the median lethal dose for an oral dose) and/or QT (10 mg kg(-1)) daily via gavage for 16 days. By the end of day 16, rats given ATZ alone had significantly lower sperm counts, daily spermatozoa production, and sperm motility and significantly higher abnormal sperm numbers than the untreated control rats. The rats given ATZ alone also had significantly decreased 3β-hydroxtsteroid dehydrogenase (HSD) and 17β-HSD activities than the control rats. Lactate dehydrogenase activity and malondialdehyde levels were significantly increased, whereas superoxide dismutase activity decreased but glutathione levels remain unaffected after ATZ exposure. These changes were reversed toward control values in the QT + ATZ-treated animals, though the sperm motility was 28% below the control levels but was still higher than in the ATZ-treated rats. The results indicate that QT might improve testicular function of rats exposed to ATZ, but its protective effect on sperm motility might be partial.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- Department of Biochemistry, College of Natural and Applied Sciences, University of Port Harcourt, Choba, Nigeria
| | - Ebenezer O Farombi
- Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
32
|
Mangiferin induces cell death against rhabdomyosarcoma through sustained oxidative stress. Integr Med Res 2014; 4:66-75. [PMID: 28664112 PMCID: PMC5481771 DOI: 10.1016/j.imr.2014.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Embryonic rhabdomyosarcoma (RD) is the most prevalent type of cancer among children. The present study aimed to investigate cell death induced by mangiferin in RD cells. METHODS The Inhibitory concentration (IC50) value of mangiferin was determined by an MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. Cell death induced by mangiferin against RD cells was determined through lactate dehydrogenase and nitric oxide release, intracellular calcium levels, reactive oxygen species generation, antioxidant status, mitochondrial calcium level, and mitochondrial membrane potential. Furthermore, acridine orange/ethidium bromide staining was performed to determine early/late apoptotic event. RESULTS Mangiferin induced cell death in RD cells with an IC50 value of 70 μM. The cytotoxic effect was reflected in a dose-dependent increase in lactate dehydrogenase leakage and nitric oxide release during mangiferin treatment. Mangiferin caused dose dependent increase in reactive oxygen species generation, intracellular calcium levels with subsequent decrease in antioxidant status (catalase, superoxide dismutase, glutathione-S-transferase, and glutathione) and loss of mitochondrial membrane potential in RD cells. Further data from fluorescence microscopy suggest that mangiferin caused cell shrinkage and nuclear condensation along with the occurrence of a late event of apoptosis. CONCLUSION Results of the present study shows that mangiferin can act as a promising chemopreventive agent against RD by inducing sustained oxidative stress.
Collapse
|
33
|
McCrane MP, Hutchinson MA, Ad O, Rokita SE. Oxidative quenching of quinone methide adducts reveals transient products of reversible alkylation in duplex DNA. Chem Res Toxicol 2014; 27:1282-93. [PMID: 24896651 DOI: 10.1021/tx500152d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ortho-Quinone methides (ortho-QM) and para-quinone methides are generated by xenobiotic metabolism of numerous compounds including environmental toxins and therapeutic agents. These intermediates are highly electrophilic and have the potential to alkylate DNA. Assessing their genotoxicity can be difficult when all or some of their resulting adducts form reversibly. Stable adducts are most easily detected but are not necessarily the most prevalent products formed initially as DNA repair commences. Selective oxidation of ortho-QM-DNA adducts by bis[(trifluoroacetoxy)iodo]benzene (BTI) rapidly quenches their reversibility to prevent QM regeneration and allows for observation of the kinetic products. The resulting derivatives persist through standard enzymatic digestion, chromatography, and mass spectral analysis. The structural standards required for this approach have been synthesized and confirmed by two-dimensional NMR spectroscopy. The adducts of dA N(6), dG N1, dG N(2), and guanine N7 are converted to the expected para-quinol derivatives within 5 min after addition of BTI under aqueous conditions (pH 7). Concurrently, the adduct of dA N1 forms a spiro derivative comparable to that characterized previously after oxidation of the corresponding dC N3 adduct. By application of this oxidative quenching strategy, the dC N3 and dA N1 adducts have been identified as the dominant products formed by both single- and double-stranded DNA under initial conditions. As expected, however, these labile adducts dissipate within 24 h if not quenched with BTI. Still, the products favored by kinetics are responsible for inducing the first response to ortho-QM exposure in cells, and hence, they are also key to establishing the relationship between biological activity and molecular structure.
Collapse
Affiliation(s)
- Michael P McCrane
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742 United States
| | | | | | | |
Collapse
|
34
|
Hussein RH, Khalifa FK. The protective role of ellagitannins flavonoids pretreatment against N-nitrosodiethylamine induced-hepatocellular carcinoma. Saudi J Biol Sci 2014; 21:589-96. [PMID: 25473368 DOI: 10.1016/j.sjbs.2014.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/18/2014] [Accepted: 03/23/2014] [Indexed: 11/18/2022] Open
Abstract
Ellagitannins are esters of glucose with hexahydroxydiphenic acid; when hydrolyzed, they yield ellagic acid (EA), the dilactone of hexahydroxydiphenic acid. EA has been receiving the most attention, because it has potent antioxidant activity, radical scavenging capacity, chemopreventive and antiapoptotic properties. Hepatocellular carcinoma (HCC) is the most frequent primary malignancy of liver, and accounts for as many as one million deaths worldwide in a year. The aim of the present study was to evaluate the antioxidant and chemopreventive efficiency of ellagic acid against N-nitrosodiethylamine (NDEA) induced hepatocarcinogenesis in rats. Rats were classified into four groups as follows: normal control group, group injected i.p. with a single dose (200 mg/kg b.wt.) of NDEA, third group daily administered orally EA with a dose of 50 mg/kg b.wt. for 7 days before and 14 days after NDEA administration, and fourth group received a similar dose of EA for 21 days after the dose of NDEA administration. The model of NDEA-injected hepatocellular carcinomic (HCC) rats elicited significant declines in liver antioxidant enzyme activities; glutathione peroxidase (GPX), gamma glutamyl transferase (γ-GT) and glutathione-S-transferase (GST), with a reduction in reduced glutathione (GSH) and serum total protein with concomitant significant elevations in tumor markers arginase and α-l-fucosidase, and liver enzymes; aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and glutathione-S-transferase (GST), glucose-6-phosphate dehydrogenase (G6PD), direct and total bilirubin. The oral administration of EA as a protective agent, produced significant increases in tested antioxidant enzyme activities and serum total protein concomitant with significant decreases in the levels of tumor markers arginase and α-l-fucosidase as well as liver enzymes, direct and total bilirubin. Similarly, the oral administration of EA, as a curative agent produced similar changes to those when EA was used as a protective agent, but to a lesser extent. In addition, it was noted that HCC rats exhibited a degree of DNA fragmentation; however, EA administration partially inhibited the DNA fragmentation. Therefore, EA has the ability to scavenge free radicals, prevent DNA fragmentation, reduce liver injury and protect against oxidative stress.
Collapse
Affiliation(s)
- Rasha H Hussein
- Biochemistry Department, King Abdulaziz University, Faculty of Science, Jeddah, Saudi Arabia
| | - Fares K Khalifa
- Biochemistry Department, King Abdulaziz University, Faculty of Science, Jeddah, Saudi Arabia
| |
Collapse
|
35
|
Abstract
The formation of quinone methides (QMs) from either direct 2-electron oxidation of 2- or 4-alkylphenols, isomerization of o-quinones, or elimination of a good leaving group could explain the cytotoxic/cytoprotective effects of several drugs, natural products, as well as endogenous compounds. For example, the antiretroviral drug nevirapine and the antidiabetic agent troglitazone both induce idiosyncratic hepatotoxicity through mechanisms involving quinone methide formation. The anesthetic phencyclidine induces psychological side effects potentially through quinone methide mediated covalent modification of crucial macromolecules in the brain. Selective estrogen receptor modulators (SERMs) such as tamoxifen, toremifene, and raloxifene are metabolized to quinone methides which could potentially contribute to endometrial carcinogenic properties and/or induce detoxification enzymes and enhance the chemopreventive effects of these SERMs. Endogenous estrogens and/or estrogens present in estrogen replacement formulations are also metabolized to catechols and further oxidized to o-quinones which can isomerize to quinone methides. Both estrogen quinoids could cause DNA damage which could enhance hormone dependent cancer risk. Natural products such as the food and flavor agent eugenol can be directly oxidized to a quinone methide which may explain the toxic effects of this natural compound. Oral toxicities associated with chewing areca quid could be the result of exposure to hydroxychavicol through initial oxidation to an o-quinone which isomerizes to a p-quinone methide. Similar o-quinone to p-quinone methide isomerization reactions have been reported for the ubiquitous flavonoid quercetin which needs to be taken into consideration when evaluating risk-benefit assessments of these natural products. The resulting reaction of these quinone methides with proteins, DNA, and/or resulting modulation of gene expression may explain the toxic and/or beneficial effects of the parent compounds.
Collapse
Affiliation(s)
- Judy L. Bolton
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781) College of Pharmacy University of Illinois at Chicago 833 S. Wood Street Chicago, Illinois 60612-7231
| |
Collapse
|
36
|
Huang C, Lee SY, Lin CL, Tu TH, Chen LH, Chen YJ, Huang HC. Co-treatment with quercetin and 1,2,3,4,6-penta-O-galloyl-β-D-glucose causes cell cycle arrest and apoptosis in human breast cancer MDA-MB-231 and AU565 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6430-6445. [PMID: 23731217 DOI: 10.1021/jf305253m] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Breast cancer is the most universal cancer in women, but the medications for breast cancer usually cause serious side effects and offer no effective treatment for triple-negative breast cancer. Here, we investigated the growth inhibitory effects of gallic acid (GA), (-)-epigallocatechin gallate (EGCG), or 1,2,3,4,6-penta-O-galloyl-β-D-glucose (5GG) combined with quercetin (Que) on breast cancer cells. In this study, we tested the combined effects of these compounds on estrogen receptor (ER)/human epidermal growth factor 2 (Her2)-negative (MDA-MB-231), ER-positive/Her2-negative (BT483), and ER-negative/Her2-positive (AU565) breast cancer cells. After treatment of each cell line with these compounds, we found that Que combined with 5GG induced S-phase arrest and apoptosis in MDA-BM-231 cells through downregulation of S-phase kinase protein 2 expression, but induced G2/M-phase arrest and apoptosis in AU565 cells through downregulation of Her2 expression. Additionally, Que combined with 5GG was more effective in inhibiting MDA-MB-231 cell growth than Que combined with EGCG (5GG analogue) or GA. The combination of 5GG and Que can offer great potential for the chemoprevention of ER-negative breast cancer.
Collapse
Affiliation(s)
- Cheng Huang
- National Research Institute of Chinese Medicine, Taipei 11221, Taiwan
| | | | | | | | | | | | | |
Collapse
|
37
|
Kropat C, Betz M, Kulozik U, Leick S, Rehage H, Boettler U, Teller N, Marko D. Effect of microformulation on the bioactivity of an anthocyanin-rich bilberry pomace extract ( Vaccinium myrtillus L.) in vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4873-4881. [PMID: 23581244 DOI: 10.1021/jf305180j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In cell culture were compared the different release rates of anthocyanins from a bilberry pomace extract encapsulated either in food grade whey protein-based matrix capsules (WPC) or in pectin amid-based hollow spherical capsules (PHS). The impact of the formulations on typical anthocyanin-associated biological end points such as inhibition of the epidermal growth factor receptor (EGFR) and suppression of cell growth in HT29 colon carcinoma cells was assessed. The purpose was to find whether the release rates are sufficient to maintain biological activity and whether encapsulation affected EGFR inhibitory and growth suppressive properties of the extract. Even though anthocyanin release from extract-loaded capsules was proven under cell culture conditions, the inhibitory potential toward the EGFR was diminished. However, nonencapsulated extract as well as both extract-loaded encapsulation systems diminished the growth of HT29 cells to a comparable extent. The loss of EGFR inhibitory properties by encapsulation despite anthocyanin release indicates substantial contribution of other further constituents not monitored so far. Taken together, both applied encapsulation strategies allowed anthocyanin release and maintained biological activity with respect to growth inhibitory properties. However, the loss of EGFR inhibitory effects emphasizes the need for biological profiling to estimate process-induced changes of plant constituent's beneficial potencies.
Collapse
Affiliation(s)
- Christopher Kropat
- Department of Food Chemistry and Toxicology, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Toxicological aspects of the use of phenolic compounds in disease prevention. Interdiscip Toxicol 2012; 4:173-83. [PMID: 22319251 PMCID: PMC3274725 DOI: 10.2478/v10102-011-0027-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 12/22/2022] Open
Abstract
The consumption of a diet low in fat and enhanced by fruits and vegetables, especially rich in phenolic compounds, may reduce risks of many civilization diseases. The use of traditional medicines, mainly derived from plant sources, has become an attractive segment in the management of many lifestyle diseases. Concerning the application of dietary supplements (based on phenolic compounds) in common practice, the ongoing debate over possible adverse effects of certain nutrients and dosage levels is of great importance. Since dietary supplements are not classified as drugs, their potential toxicities and interactions have not been thoroughly evaluated. First, this review will introduce phenolic compounds as natural substances beneficial for human health. Second, the potential dual mode of action of flavonoids will be outlined. Third, potential deleterious impacts of phenolic compounds utilization will be discussed: pro-oxidant and estrogenic activities, cancerogenic potential, cytotoxic effects, apoptosis induction and flavonoid-drug interaction. Finally, future trends within the research field will be indicated.
Collapse
|
39
|
Lee J, Ebeler SE, Zweigenbaum JA, Mitchell AE. UHPLC-(ESI)QTOF MS/MS profiling of quercetin metabolites in human plasma postconsumption of applesauce enriched with apple peel and onion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8510-8520. [PMID: 22867437 DOI: 10.1021/jf302637t] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
An ultrahigh pressure liquid chromatography accurate mass quadrupole time-of-flight mass spectrometry with electrospray ionization (UHPLC-(ESI)QTOF MS/MS) method was developed for measuring individual quercetin metabolites in human plasma with high sensitivity and high selectivity. Quercetin (3,3',4',5,7-pentahydroxyflavone) occurs as glycosides in foods. The composition of glycosides is species and cultivar specific. In humans, quercetin undergoes extensive biotransformation, resulting in a range of metabolites. The bioactivity of quercetin metabolites will depend on the type and position of the conjugates. Herein, individual quercetin metabolites (i.e., sulfate, glucuronide or methyl conjugates) were identified by accurate mass MS in human plasma (females = 8 and males = 8) over 24 h after consumption of applesauce enriched with either micronized apple peel (AP) or onion powder (OP). The AP and OP contained ~180 μmol of quercetin glycosides. The relative amounts of quercetin metabolites were quantified in plasma. The complement of identified quercetin metabolites was similar after consumption of AP and OP. Primary metabolites included the following: quercetin sulfate, quercetin glucuronide, and quercetin diglucuronide. A quercetin glutathione adduct was identified in negative ion mode but not apparent in positive ion mode. The pharmacokinetic parameters for AUC0-24 h and Cmax were significantly different for AP and OP. For example, consumption of the AP resulted in Cmax of quercetin sulfate, 4.6 ng/mL; quercetin glucuronide, 15.5 ng/mL; quercetin diglucuronide, 9.3 ng/mL; quercetin glucuronide sulfate, 1.3 ng/mL; methyl quercetin glucuronide, 7.5 ng/mL; and methyl quercetin diglucuronide, 3.6 ng/mL, whereas the OP resulted in Cmax of quercetin sulfate, 37.3 ng/mL; quercetin glucuronide, 212.8 ng/mL; quercetin diglucuronide, 168.8 ng/mL; quercetin glucuronide sulfate, 43.0 ng/mL; methyl quercetin glucuronide, 90.1 ng/mL; methyl quercetin diglucuronide, 65.4 ng/mL. Gender-related differences in the AUC0-24 h for quercetin sulfate and quercetin sulfate glucuronide metabolites were also observed.
Collapse
Affiliation(s)
- Jihyun Lee
- Department of Food Science and Technology and §Department of Viticulture and Enology, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | | | | | | |
Collapse
|
40
|
Farombi EO, Abarikwu SO, Adesiyan AC, Oyejola TO. Quercetin exacerbates the effects of subacute treatment of atrazine on reproductive tissue antioxidant defence system, lipid peroxidation and sperm quality in rats. Andrologia 2012; 45:256-65. [DOI: 10.1111/and.12001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2012] [Indexed: 11/30/2022] Open
Affiliation(s)
- E. O. Farombi
- Department of Biochemistry; Drug Metabolism and Toxicology Research Laboratories; College of Medicine; University of Ibadan; Ibadan; Nigeria
| | - S. O. Abarikwu
- Department of Biochemistry; Drug Metabolism and Toxicology Research Laboratories; College of Medicine; University of Ibadan; Ibadan; Nigeria
| | - A. C. Adesiyan
- Department of Biochemistry; Drug Metabolism and Toxicology Research Laboratories; College of Medicine; University of Ibadan; Ibadan; Nigeria
| | - T. O. Oyejola
- Department of Biochemistry; Drug Metabolism and Toxicology Research Laboratories; College of Medicine; University of Ibadan; Ibadan; Nigeria
| |
Collapse
|
41
|
Mülazımoğlu AD, Yılmaz E, Mülazımoğlu IE. Dithiooxamide modified glassy carbon electrode for the studies of non-aqueous media: electrochemical behaviors of quercetin on the electrode surface. SENSORS 2012; 12:3916-28. [PMID: 22666010 PMCID: PMC3355391 DOI: 10.3390/s120403916] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 11/16/2022]
Abstract
Electrochemical oxidation of quercetin, as an important biological molecule, has been studied in non-aqueous media using cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. To investigate the electrochemical properties of quercetin, an important flavonoid derivative, on a different surface, a new glassy carbon electrode has been developed using dithiooxamide as modifier in non-aqueous media. The surface modification of glassy carbon electrode has been performed within the 0.0 mV and +800 mV potential range with 20 cycles using 1 mM dithioxamide solution in acetonitrile. However, the modification of quercetin to both bare glassy carbon and dithiooxamide modified glassy carbon electrode surface was carried out in a wide +300 mV and +2,800 mV potential range with 10 cycles. Following the modification process, cyclic voltammetry has been used for the surface characterization in aqueous and non-aqueous media whereas electrochemical impedance spectroscopy has been used in aqueous media. Scanning electron microscopy has also been used to support the surface analysis. The obtained data from the characterization and modification studies of dithioxamide modified and quercetin grafted glassy carbon electrode showed that the developed electrode can be used for the quantitative determination of quercetin and antioxidant capacity determination as a chemical sensor electrode.
Collapse
Affiliation(s)
- Ayşen Demir Mülazımoğlu
- Department of Chemistry, Ahmet Keleşoğlu Education Faculty, Konya University, 42099 Konya, Turkey.
| | | | | |
Collapse
|
42
|
Hosseinimehr SJ, Tolmachev V, Stenerlöw B. 125I-labeled quercetin as a novel DNA-targeted radiotracer. Cancer Biother Radiopharm 2011; 26:469-75. [PMID: 21797673 DOI: 10.1089/cbr.2010.0951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Quercetin is a major flavonoid that is found in most plants; it can intercalate with DNA. The purpose of this study was to investigate radiolabeling of qurecetin with (125)I, DNA binding and cellular process. In this work, quercetin was labeled with Auger emitting nuclide (125)I using chloramine-T. DNA binding of (125)I-quercetin ((125)I-Q) was investigated using cell-free in vitro assay with naked human genomic DNA in agarose plugs. Cellular uptake and nuclei accumulation were evaluated in human prostate cancer cell lines (DU 145). The internalization of (125)I-Q was evaluated with fluorescence microscopy. Cellular damage was monitored by using apoptosis assay. Quercetin was successfully labeled with (125)I, and it was taken up rapidly with cells and accumulated in the cellular nuclei. (125)I-Q-DNA binding was tight with long retention time, and it potentially induced DNA damage. These findings provide for using of (125)I-labeled quercetin as a carrier of Auger electron emitting radionuclide to the cell nuclei for targeted radiotherapy.
Collapse
Affiliation(s)
- Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, 17 Kilometers Khazar abad Boulevard, Sari, Iran.
| | | | | |
Collapse
|
43
|
Tanaka T, Ishii T, Mizuno D, Mori T, Yamaji R, Nakamura Y, Kumazawa S, Nakayama T, Akagawa M. (-)-Epigallocatechin-3-gallate suppresses growth of AZ521 human gastric cancer cells by targeting the DEAD-box RNA helicase p68. Free Radic Biol Med 2011; 50:1324-35. [PMID: 21277973 DOI: 10.1016/j.freeradbiomed.2011.01.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/13/2010] [Accepted: 01/17/2011] [Indexed: 02/05/2023]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG), the most abundant and biologically active polyphenol in green tea, induces apoptosis and suppresses proliferation of cancer cells by modulating multiple signal transduction pathways. However, the fundamental mechanisms responsible for these cancer-preventive effects have not been clearly elucidated. Recently, we found that EGCG can covalently bind to cysteine residues in proteins through autoxidation and subsequently modulate protein function. In this study, we demonstrate the direct binding of EGCG to cellular proteins in AZ521 human gastric cancer cells by redox-cycle staining. We comprehensively explored the binding targets of EGCG from EGCG-treated AZ521 cells by proteomics techniques combined with the boronate-affinity pull-down method. The DEAD-box RNA helicase p68, which is overexpressed in a variety of tumor cells and plays an important role in cancer development and progression, was identified as a novel EGCG-binding target. Exposure of AZ521 cells to EGCG lowered the p68 level dose dependently. The present findings show that EGCG inhibits AZ521 cell proliferation by preventing β-catenin oncogenic signaling through proteasomal degradation of p68 and provide a new perspective on the molecular mechanism of EGCG action.
Collapse
Affiliation(s)
- Tomoko Tanaka
- Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Naka-ku, Sakai 599-8531, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mazumdar M, Giri S, Giri A. Role of quercetin on mitomycin C induced genotoxicity: Analysis of micronucleus and chromosome aberrations in vivo. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 721:147-52. [DOI: 10.1016/j.mrgentox.2011.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 01/04/2011] [Accepted: 01/16/2011] [Indexed: 10/18/2022]
|
45
|
Zhou Q, Qu Y, Mangrum JB, Wang X. DNA Alkylation with N-Methylquinolinium Quinone Methide to N2-dG Adducts Resulting in Extensive Stops in Primer Extension with DNA Polymerases and Subsequent Suppression of GFP Expression in A549 Cells. Chem Res Toxicol 2011; 24:402-11. [PMID: 21306116 DOI: 10.1021/tx100351c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Qibing Zhou
- Institute of Materia Medica, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
- Department of medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, Virginia 23298, United States
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
| | - Yun Qu
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
| | - John B. Mangrum
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
| | - Xing Wang
- Institute of Materia Medica, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| |
Collapse
|
46
|
Rietjens IMCM, Al Huseiny W, Boersma MG. Flavonoids and alkenylbenzenes: New concepts in bioactivation studies. Chem Biol Interact 2010; 192:87-95. [PMID: 20863818 DOI: 10.1016/j.cbi.2010.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/08/2010] [Accepted: 09/14/2010] [Indexed: 11/30/2022]
Abstract
The present paper focuses on the biological reactive intermediates formed from two categories of botanical ingredients: flavonoids and alkenylbenzenes. The paper especially presents an overview of three concepts in bioactivation studies on flavonoids and alkenylbenzenes elucidated by our recent studies. These new concepts include (i) the fact that reactive electrophilic quinone/quinone methide type metabolites of flavonoids may be the intermediates required for the induction of the beneficial gene expression through electrophile responsive element (EpRE)-mediated pathways, pointing at a possible beneficial effect of a reactive intermediate, (ii) the development of physiologically based kinetic (PBK) and physiologically based dynamic (PBD) models providing a new way to obtain insight in levels of formation of biologically reactive and unstable intermediates in vivo at high but also more realistic low dose levels, and (iii) the concept of the matrix effect that should be taken into account when studying the bioactivation of food-borne genotoxic carcinogens including the alkenylbenzenes, the bioactivation of which was shown to be inhibited by flavonoids. Together the results presented reveal that by studying the mode of action (MOA) new concepts in bioactivation studies of importance for future risk assessment and/or risk-benefit assessment of the flavonoids and alkenylbenzenes are obtained.
Collapse
Affiliation(s)
- Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE, Wageningen, The Netherlands.
| | | | | |
Collapse
|
47
|
|
48
|
Dueñas M, González-Manzano S, González-Paramás A, Santos-Buelga C. Antioxidant evaluation of O-methylated metabolites of catechin, epicatechin and quercetin. J Pharm Biomed Anal 2010; 51:443-9. [DOI: 10.1016/j.jpba.2009.04.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 04/02/2009] [Accepted: 04/06/2009] [Indexed: 11/28/2022]
|
49
|
Liu PY, Li K, Zhang J, Zhang DW, Lin HH, Yu XQ. Who Is the King? Theα-Hydroxy-β-oxo-α,β-enone Moiety or the Catechol B Ring: Relationship between the Structure of Quercetin Derivatives and Their Pro-Oxidative Abilities. Chem Biodivers 2010; 7:236-44. [DOI: 10.1002/cbdv.200900032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Sergent T, Dupont I, Van Der Heiden E, Scippo ML, Pussemier L, Larondelle Y, Schneider YJ. CYP1A1 and CYP3A4 modulation by dietary flavonoids in human intestinal Caco-2 cells. Toxicol Lett 2009; 191:216-22. [DOI: 10.1016/j.toxlet.2009.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 02/07/2023]
|