1
|
Myers AL, Kawedia JD, Nader A, Westin JR, Shank BR. A rare case of methotrexate and primaquine co-administration in a mantle cell lymphoma patient. J Clin Pharm Ther 2019; 44:800-804. [PMID: 31111511 DOI: 10.1111/jcpt.12849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 04/24/2019] [Indexed: 11/29/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE High-dose methotrexate (HD-MTX) is associated with a plethora of adverse drug reactions and potential drug interactions (DIs). But there is a paucity of information regarding the safety of co-administering primaquine with HD-MTX. CASE SUMMARY A 65-year-old male patient was diagnosed with mantle cell lymphoma (MCL) with CNS involvement and treated with three cycles of IV HD-MTX. His case was further complicated by fungal pneumonia treated with primaquine during cycle-2. Serial blood sampling and subsequent population pharmacokinetics (PK) modelling suggests a possible distribution-mediated DI between the two drugs. WHAT IS NEW AND CONCLUSION This is the first case report to highlight the safe co-administration of MTX and primaquine, despite a possible PK interaction.
Collapse
Affiliation(s)
- Alan L Myers
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Sciences Center, School of Dentistry, Houston, Texas.,Department of Pharmacy Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Jitesh D Kawedia
- Department of Pharmacy Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | | | - Jason R Westin
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Brandon R Shank
- Department of Pharmacy Clinical Services, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
2
|
Hydroxystilbenes and methoxystilbenes activate human aryl hydrocarbon receptor and induce CYP1A genes in human hepatoma cells and human hepatocytes. Food Chem Toxicol 2017; 103:122-132. [PMID: 28279696 DOI: 10.1016/j.fct.2017.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/18/2017] [Accepted: 03/03/2017] [Indexed: 12/27/2022]
Abstract
Natural polyphenol resveratrol (trihydroxystilbene) is a partial agonist of human aryl hydrocarbon receptor AhR, thereby, displaying a plethora of biological effects. Biological activities of metoxylated and hydroxylated stilbenes were studied in the past. The aim of the current study was to describe the effects of 13 different hydroxy- and methoxystilbenes, including their cis/trans isomers on the transcriptional activity of AhR and the expression of CYP1A genes in hepatic cancer cells HepG2 and in primary human hepatocytes. Techniques of gene reporter assays, qRT-PCR, Simple Western blotting by Sally Sue™ and electrophoretic mobility shift assay EMSA were employed. All compounds activated AhR, but their efficacies, potencies and dose-response profiles differed substantially. The strongest activators of AhR and inducers of CYP1A1 in HepG2 cells were DMU-212 ((E)-3,4,5,4´-tetramethoxystilbene), trans-piceatannol, cis-piceatannol, trans-trismethoxyresveratrol and trans-pinostilbene. While DMU-212 and trans-trismethoxyresveratrol also induced CYP1A1 and CYP1A2 in primary human hepatocytes, the effects of trans-piceatannol, cis-piceatannol and trans-pinostilbene weaned off. On the other hand, trans-4-methoxystilbene was strong CYP1A inducer in hepatocytes but not in HepG2 cells. Differences between effects of stilbenes in HepG2 cells and human hepatocytes are probably due to the extensive phase I and phase II xenobiotic metabolism in human hepatocytes. The data obtained may be of toxicological relevance.
Collapse
|
3
|
Xuan J, Chen S, Ning B, Tolleson WH, Guo L. Development of HepG2-derived cells expressing cytochrome P450s for assessing metabolism-associated drug-induced liver toxicity. Chem Biol Interact 2015; 255:63-73. [PMID: 26477383 DOI: 10.1016/j.cbi.2015.10.009] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 01/08/2023]
Abstract
The generation of reactive metabolites from therapeutic agents is one of the major mechanisms of drug-induced liver injury (DILI). In order to evaluate metabolism-related toxicity and improve drug efficacy and safety, we generated a battery of HepG2-derived cell lines that express 14 cytochrome P450s (CYPs) (1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, 3A5 and 3A7) individually using a lentiviral expression system. The expression/production of a specific CYP in each cell line was confirmed by an increased abundance of the CYP at both mRNA and protein levels. Moreover, the enzymatic activities of representative CYPs in the corresponding cell lines were also measured. Using our CYP-expressed HepG2 cells, the toxicity of three drugs that could induce DILI (amiodarone, chlorpromazine and primaquine) was assessed, and all of them showed altered (increased or decreased) toxicity compared to the toxicity in drug-treated wild-type HepG2 cells. CYP-mediated drug toxicity examined in our cell system is consistent with previous reports, demonstrating the potential of these cells for assessing metabolism-related drug toxicity. This cell system provides a practical in vitro approach for drug metabolism screening and for early detection of drug toxicity. It is also a surrogate enzyme source for the enzymatic characterization of a particular CYP that contributes to drug-induced liver toxicity.
Collapse
Affiliation(s)
- Jiekun Xuan
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Baitang Ning
- Division of System Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - William H Tolleson
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
4
|
Maayah ZH, Ghebeh H, Alhaider AA, El-Kadi AO, Soshilov AA, Denison MS, Ansari MA, Korashy HM. Metformin inhibits 7,12-dimethylbenz[a]anthracene-induced breast carcinogenesis and adduct formation in human breast cells by inhibiting the cytochrome P4501A1/aryl hydrocarbon receptor signaling pathway. Toxicol Appl Pharmacol 2015; 284:217-26. [DOI: 10.1016/j.taap.2015.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
|
5
|
El Gendy MAM, Soshilov AA, Denison MS, El-Kadi AOS. Harmaline and harmalol inhibit the carcinogen-activating enzyme CYP1A1 via transcriptional and posttranslational mechanisms. Food Chem Toxicol 2011; 50:353-62. [PMID: 22037238 DOI: 10.1016/j.fct.2011.10.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 09/03/2011] [Accepted: 10/14/2011] [Indexed: 01/28/2023]
Abstract
Dioxins are known to cause several human cancers through activation of the aryl hydrocarbon receptor (AhR). Harmaline and harmalol are dihydro-β-carboline compounds present in several medicinal plants such as Peganum harmala. We have previously demonstrated the ability of P. harmala extract to inhibit TCDD-mediated induction of Cyp1a1 in murine hepatoma Hepa 1c1c7 cells. Therefore, the aim of this study is to examine the effect of harmaline and its main metabolite, harmalol, on dioxin-mediated induction of CYP1A1 in human hepatoma HepG2 cells. Our results showed that harmaline and harmalol at concentrations of (0.5-12.5μM) significantly inhibited the dioxin-induced CYP1A1 at mRNA, protein and activity levels in a concentration-dependent manner. The role of AhR was determined by the inhibition of the TCDD-mediated induction of AhR-dependent luciferase activity and the AhR/ARNT/XRE formation by both harmaline and harmalol. In addition, harmaline significantly displaced [(3)H]TCDD in the competitive ligand binding assay. At posttranslational level, both harmaline and harmalol decreased the protein stability of CYP1A1, suggesting that posttranslational modifications are involved. Moreover, the posttranslational modifications of harmaline and harmalol involve ubiquitin-proteasomal pathway and direct inhibitory effects of both compounds on CYP1A1 enzyme. These data suggest that harmaline and harmalol are promising agents for preventing dioxin-mediated effects.
Collapse
Affiliation(s)
- Mohamed A M El Gendy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8
| | | | | | | |
Collapse
|
6
|
Induction of cytochromes P450 1A1 and 1A2 by tanshinones in human HepG2 hepatoma cell line. Toxicol Appl Pharmacol 2011; 252:18-27. [PMID: 21262253 DOI: 10.1016/j.taap.2011.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/12/2011] [Accepted: 01/17/2011] [Indexed: 12/31/2022]
Abstract
Diterpenoid tanshinones including tanshinone IIA (TIIA), cryptotanshinone (CTS), tanshinone I (TI) and dihydrotanshinone I (DHTI) are the major bioactive components from Danshen. The major aim of our present study was to investigate the induction potential of these four main components of tanshinones (TIIA, CTS, TI, and DHTI) on the expression of CYP1A1 and CYP1A2 in HepG2 cells. Our results showed that all of these four tanshinones caused a significant time- and concentration-dependent increase in the amount of CYP1A1/2 expression in HepG2 cells. These induction effects were further characterized through transcriptional regulation: the induction of CYP1A1/2 mRNA level by tanshinones was completely blocked by the transcription inhibitor actinomycin D; the expression of CYP1A1/2 heterogeneous nuclear RNA was induced by tanshinone treatment; and CYP1A1 mRNA stability was not influenced by these tanshinones. Interestingly, tanshinones plus B[a]P produced additive/synergistic effect on CYP1A1/2 induction. In addition, the tanshinone-induced CYP1A1/2 expression was abolished by the aryl hydrocarbon receptor (AhR) antagonist resveratrol, suggesting an AhR dependent transcription mechanism. In the reporter gene assay, while TI and DHTI significantly induced AhR-dependent luciferase activity, TIIA and CTS failed to induce this activity. Collectively, the tanshinones could induce CYP1A1 and CYP1A2 expression through transcriptional activation mechanism and exert differential effects on activating AhR in HepG2 cells. Our findings suggest that rational administration of tanshinones should be considered with respect to their effect on AhR and CYP1A1/2 expression.
Collapse
|
7
|
Zhou SF, Wang B, Yang LP, Liu JP. Structure, function, regulation and polymorphism and the clinical significance of human cytochrome P450 1A2. Drug Metab Rev 2010; 42:268-354. [PMID: 19961320 DOI: 10.3109/03602530903286476] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human CYP1A2 is one of the major CYPs in human liver and metabolizes a number of clinical drugs (e.g., clozapine, tacrine, tizanidine, and theophylline; n > 110), a number of procarcinogens (e.g., benzo[a]pyrene and aromatic amines), and several important endogenous compounds (e.g., steroids). CYP1A2 is subject to reversible and/or irreversible inhibition by a number of drugs, natural substances, and other compounds. The CYP1A gene cluster has been mapped on to chromosome 15q24.1, with close link between CYP1A1 and 1A2 sharing a common 5'-flanking region. The human CYP1A2 gene spans almost 7.8 kb comprising seven exons and six introns and codes a 515-residue protein with a molecular mass of 58,294 Da. The recently resolved CYP1A2 structure has a relatively compact, planar active site cavity that is highly adapted for the size and shape of its substrates. The architecture of the active site of 1A2 is characterized by multiple residues on helices F and I that constitutes two parallel substrate binding platforms on either side of the cavity. A large interindividual variability in the expression and activity of CYP1A2 has been observed, which is largely caused by genetic, epigenetic and environmental factors (e.g., smoking). CYP1A2 is primarily regulated by the aromatic hydrocarbon receptor (AhR) and CYP1A2 is induced through AhR-mediated transactivation following ligand binding and nuclear translocation. Induction or inhibition of CYP1A2 may provide partial explanation for some clinical drug interactions. To date, more than 15 variant alleles and a series of subvariants of the CYP1A2 gene have been identified and some of them have been associated with altered drug clearance and response and disease susceptibility. Further studies are warranted to explore the clinical and toxicological significance of altered CYP1A2 expression and activity caused by genetic, epigenetic, and environmental factors.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- Discpline of Chinese Medicine, School of Health Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| | | | | | | |
Collapse
|
8
|
TSU-16, (Z)-3-[(2,4-dimethylpyrrol-5-yl)methylidenyl]-2-indolinone, is a potent activator of aryl hydrocarbon receptor and increases CYP1A1 and CYP1A2 expression in human hepatocytes. Chem Biol Interact 2010; 185:33-41. [DOI: 10.1016/j.cbi.2010.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/27/2010] [Accepted: 02/07/2010] [Indexed: 11/18/2022]
|
9
|
Yoshinari K, Ueda R, Kusano K, Yoshimura T, Nagata K, Yamazoe Y. Omeprazole transactivates human CYP1A1 and CYP1A2 expression through the common regulatory region containing multiple xenobiotic-responsive elements. Biochem Pharmacol 2008; 76:139-45. [PMID: 18502397 DOI: 10.1016/j.bcp.2008.04.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 04/08/2008] [Accepted: 04/10/2008] [Indexed: 11/28/2022]
Abstract
Omeprazole induces human CYP1A1 and CYP1A2 in human hepatoma cells and human liver. Aryl hydrocarbon receptor (AHR) is shown to be involved in this induction. However, its precise molecular mechanism remains unknown because the chemical activates AHR without its direct binding in contrast to typical AHR ligands such as 3-methylcholanthrene (3MC) and beta-naphthoflavone (BNF). Human CYP1A1 and CYP1A2 genes are located in a head-to-head orientation sharing about 23 kb 5'-flanking region. Recently, we succeeded to measure CYP1A1 and CYP1A2 transcriptional activities simultaneously using dual reporter gene constructs containing the 23 kb sequence. In this study, transient transfection assays have been performed using numbers of single and dual reporter constructs to identify omeprazole-responsive region for CYP1A1 and CYP1A2 induction. Reporter assays with deletion constructs have demonstrated that the omeprazole-induced expression of both CYP1A1 and CYP1A2 is mediated via the common regulatory region containing multiple AHR-binding motifs (the nucleotides from -464 to -1829 of human CYP1A1), which is identical with the region for BNF and 3MC induction. Interestingly, omeprazole activated the transcription of CYP1A1 and CYP1A2 to similar extents while BNF and 3MC preferred CYP1A1 expression. We have also found that primaquine is an omeprazole-like CYP1A inducer, while lansoprazole and albendazole are 3MC/BNF-like in terms of the CYP1A1/CYP1A2 preference. The present results suggest that omeprazole as well as BNF and 3MC activates both human CYP1A1 and CYP1A2 expression through the common regulatory region despite that omeprazole may involve a different cellular signal(s) from BNF and 3MC.
Collapse
Affiliation(s)
- Kouichi Yoshinari
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Nguyen LP, Bradfield CA. The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol 2007; 21:102-16. [PMID: 18076143 DOI: 10.1021/tx7001965] [Citation(s) in RCA: 561] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The primary design of this perspective is to describe the major ligand classes of the aryl hydrocarbon receptor (AHR). A grander objective is to provide models that may help define the physiological activator or "endogenous ligand" of the AHR. We present evidence supporting a developmental role for the AHR and propose mechanisms by which an endogenous ligand and consequent AHR activation might be important during normal physiology and development. From this vista, we survey the known xenobiotic, endogenous, dietary, and "unconventional" activators of the AHR, including, when possible, information about their induction potency, receptor binding affinity, and potential for exposure. In light of the essential function of the AHR in embryonic development, we discuss the candidacy of each of these compounds as physiologically important activators.
Collapse
Affiliation(s)
- Linh P Nguyen
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
11
|
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates many of the biological and toxic effects of halogenated aromatic hydrocarbons (HAHs), polycyclic aromatic hydrocarbons (PAHs), and other structurally diverse ligands. While HAHs are several orders of magnitude more potent in producing AhR-dependent biochemical effects than PAHs or other AhR agonists, only the HAHs have been observed to produce AhR-dependent toxicity in vivo. Here we have characterized the dissociation of a prototypical HAH ligand ([(3)H] 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]) and PAH-like ligand ([(3)H] beta-naphthoflavone [betaNF]) from the guinea pig, hamster, mouse, and rat hepatic cytosolic AhR in order to elucidate the relationship between the apparent ligand-binding affinities and the divergent potency of these chemicals. Both compounds dissociated very slowly from the AhR with the amount of specific binding remaining at 96 h ranging from 53% to 70% for [(3)H]TCDD and 26% to 85% for [(3)H] betaNF, depending upon the species examined. The rate of ligand dissociation was unaffected by protein concentration or incubation temperature. Preincubation of cytosol with 2,3,7,8-tetrachlorodibenzofuran, carbaryl, or primaquine, prior to the addition of [(3)H]TCDD, shifted the apparent IC(50) of these compounds as competitive AhR ligands by approximately 10- to 50-fold. Our results support the need for reassessment of previous AhR ligand-binding affinity calculations and competitive binding analysis since these measurements are not carried out at equilibrium binding conditions. Our studies suggest that AhR binding affinity/occupancy has little effect on the observed differences in the persistence of gene expression by HAHs and PAHs.
Collapse
Affiliation(s)
| | - Michael S. Denison
- Department of Environmental Toxicology, University of California, Davis, CA 95616
| |
Collapse
|
12
|
Hu W, Sorrentino C, Denison MS, Kolaja K, Fielden MR. Induction of Cyp1a1 Is a Nonspecific Biomarker of Aryl Hydrocarbon Receptor Activation: Results of Large Scale Screening of Pharmaceuticals and Toxicants in Vivo and in Vitro. Mol Pharmacol 2007; 71:1475-86. [PMID: 17327465 DOI: 10.1124/mol.106.032748] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression of Cyp1a1 and its related enzyme activity have long been used as a biomarker for aryl hydrocarbon receptor (AhR) activation and a warning of dioxin-like toxicity. As a result, induction of Cyp1a1 by pharmaceutical drug candidates or environmental contaminants raises significant concern in risk assessment. The current study evaluates the specificity of Cyp1a1 induction as a marker for AhR affinity and activation and provides context to assess the relevancy of AhR activation to risk assessment. In vivo experiments examined the expression of Cyp1a1 and other AhR-regulated genes in liver, kidney, and heart in response to 596 compounds. From this data set, a subset of 147 compounds was then evaluated for their ability to activate or bind to the AhR using a combination of gel shift, reporter gene, and competitive receptor binding assays. Whereas in vivo Cyp1a1 mRNA expression is a sensitive marker for AhR activation, it lacks specificity, because 81 (59%) of 137 compounds were found to significantly induce Cyp1a1 in vivo but were not verified to bind or activate the AhR in vitro. Combining in vivo and in vitro findings, we identified nine AhR agonists, six of which are marketed therapeutics and have been approved by the U.S. Food and Drug Administration, including leflunomide, flutamide, and nimodipine. These drugs do not produce dioxin-like toxicity in rats or in humans. These data demonstrate that induction of Cyp1a1 is a nonspecific biomarker of direct AhR affinity and activation and lend further support to the hypothesis that Cyp1a1 induction and/or AhR activation is not synonymous with dioxin-like toxicity.
Collapse
Affiliation(s)
- Wenyue Hu
- Iconix Biosciences, Inc., 325 E. Middlefield Road, Mountain View, CA 94043, USA
| | | | | | | | | |
Collapse
|
13
|
Persson KP, Ekehed S, Otter C, Lutz ESM, McPheat J, Masimirembwa CM, Andersson TB. Evaluation of Human Liver Slices and Reporter Gene Assays as Systems for Predicting the Cytochrome P450 Induction Potential of Drugs in Vivo in Humans. Pharm Res 2006; 23:56-69. [PMID: 16328606 DOI: 10.1007/s11095-005-8812-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 09/28/2005] [Indexed: 01/29/2023]
Abstract
PURPOSE The aim of the study was to investigate the feasibility of predicting human in vivo cytochrome P450 (CYP) induction properties of drugs using in vitro methods. METHODS The CYP induction potential of compounds was tested in human liver slices and in reporter gene assays for the aryl hydrocarbon receptor (AhR) and the pregnane X receptor (PXR). RESULTS In human liver slices, CYP activities decreased dramatically over the experimental period, whereas mRNA levels could reliably be used to investigate CYP1A, 2C9, and 3A4 induction. However, the interindividual variations and demanding experimentation limit the use of liver slices in screening programs. Reporter gene assays are robust and reliable assays, amenable to high throughput screening. Several compounds activated AhR. The relevance of this activation, however, needs to be further investigated since there are no clear reports on drugs inducing CYP1A in vivo. The results from the PXR assay could be used to correctly classify compounds with known CYP3A induction properties when relating in vivo AUCtot to PXR EC50 values. CONCLUSIONS Liver slices are a valuable model to study the regulation of a larger number of enzymes by single compounds. The PXR reporter gene assay could be used as a reliable screening method to predict CYP3A induction in vivo.
Collapse
Affiliation(s)
- Kajsa P Persson
- DMPK & Bioanalytical Chemistry, AstraZeneca R&D Mölndal, 431 83, Mölndal, Sweden.
| | | | | | | | | | | | | |
Collapse
|
14
|
Jinno A, Maruyama Y, Ishizuka M, Kazusaka A, Nakamura A, Fujita S. Induction of cytochrome P450-1A by the equine estrogen equilenin, a new endogenous aryl hydrocarbon receptor ligand. J Steroid Biochem Mol Biol 2006; 98:48-55. [PMID: 16191477 DOI: 10.1016/j.jsbmb.2005.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Accepted: 07/25/2005] [Indexed: 10/25/2022]
Abstract
Equilenin is one of 10 kinds of estrogens that are found in pregnant mares' urine. It has been used extensively for estrogen replacement therapy in postmenopausal women. Typical inducers of the cytochrome P4501A1 (CYP1A1), such as TCDD, benzo(a)pyrene (B(a)P) and 3-methylcholanthrene, have a planar molecular structure in common and bind to the aryl hydrocarbon receptor (AhR). The structure of equilenin differs from classic estrogens by the presence of two additional double bonds in ring B of the steroid nucleus, and it is planar. This structural similarity of equilenin to the typical AhR agonist prompted us to investigate the capability of equilenin to induce CYP1A1 expression. Administration of equilenin to two mouse strains (C57BL and DBA) that exhibit different degrees of responsiveness to an Ah-receptor agonist and showed that equilenin was capable of dose-dependently increasing both the ethoxyresorufin O-deethylase activity and CYP1a proteins in both strains of mice. Equilenin also induced CYP1A1 mRNA in treated HepG2 cell lines and transcriptional activity in an XRE-directed luciferase reporter gene. Competitive binding studies using C57BL AhR indicated equilenin weakly displaced (3)H-B(a)P from AhR. Together, these data show that equilenin, an equine steroid hormone, served as an AhR ligand in the present study.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/enzymology
- Cytochrome P-450 CYP1A1/biosynthesis
- Cytochrome P-450 CYP1A1/genetics
- Enzyme Induction/drug effects
- Equilenin/pharmacology
- Gene Expression Regulation, Enzymologic
- Horses
- Humans
- Kidney/drug effects
- Kidney/enzymology
- Ligands
- Luciferases/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Microsomes, Liver/drug effects
- Microsomes, Liver/enzymology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Aryl Hydrocarbon/metabolism
- Transcription, Genetic
- Transcriptional Activation/drug effects
Collapse
Affiliation(s)
- Asumi Jinno
- Laboratory of Toxicology, Department of Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Sapporo 060-0818, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Zhao B, Baston DS, Hammock B, Denison MS. Interaction of diuron and related substituted phenylureas with the Ah receptor pathway. J Biochem Mol Toxicol 2006; 20:103-13. [PMID: 16788953 PMCID: PMC3032054 DOI: 10.1002/jbt.20126] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates many of the biological and toxicological actions of structurally diverse chemicals, including the ubiquitous environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin. Here, we have examined the ability of diuron, a widely used herbicide, and several structurally related substituted phenylureas to bind to and activate/inhibit the AhR and AhR signal transduction. Diuron induced CYP1A1 mRNA levels in mouse hepatoma (Hepa1c1c7) cells and AhR-dependent luciferase reporter gene expression in stably transfected mouse, rat, guinea pig, and human cell lines. In addition, ligand binding and gel retardation analysis demonstrated the ability of diuron to competitively bind to and stimulate AhR transformation and DNA binding in vitro and in intact cells. Several structurally related substituted phenylureas competitively bound to the guinea pig hepatic cytosolic AhR, inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced AhR-dependent luciferase reporter gene expression in a species-specific manner and stimulated AhR transformation and DNA binding, consistent with their role as partial AhR agonists. These results demonstrate not only that diuron and related substituted phenylureas are AhR ligands but also that exposure to these chemicals could induce/inhibit AhR-dependent biological effects.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Environmental Toxicology, University of California, Davis, CA 95616-8588, USA
| | - David S. Baston
- Department of Environmental Toxicology, University of California, Davis, CA 95616-8588, USA
| | - Bruce Hammock
- Department of Entomology, University of California, Davis, CA, USA
- University of California Davis Cancer Center, Sacramento, CA, USA
| | - Michael S. Denison
- Department of Environmental Toxicology, University of California, Davis, CA 95616-8588, USA
| |
Collapse
|
16
|
Tamaki H, Sakuma T, Uchida YI, Jaruchotikamol A, Nemoto N. Activation of CYP1A1 gene expression during primary culture of mouse hepatocytes. Toxicology 2005; 216:224-31. [PMID: 16169145 DOI: 10.1016/j.tox.2005.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Revised: 08/12/2005] [Accepted: 08/12/2005] [Indexed: 11/21/2022]
Abstract
Expression of CYP1A1 mRNA in mouse hepatocytes in primary culture was investigated. The expression was obvious on day 3 of culture without addition of any known ligands of the aryl hydrocarbon receptor and increased with culture period. Removal of insulin from and addition of hydrogen peroxide to the medium enhanced and suppressed the expression, respectively. The CYP1A1 mRNA expression was also enhanced in the presence of anti-oxidant, t-butylhydroquinone, in the medium. Several kinds of kinase inhibitors markedly increased the CYP1A1 mRNA expression. In contrast, the inhibitory expression was prolonged in the presence of okadaic acid, a potent inhibitor of serine/threonine phosphatase PP1 and PP2. These observations suggest that there might be a repressive pathway in the regulation of CYP1A1 mRNA expression and that the presently observed expression pathway differs at several points from those previously reported, such as ligand-activated aryl hydrocarbon receptor- or omeprazole-mediated expression. Modulation of CYP1A2 mRNA expression after exposing hepatocytes to agents affecting phosphorylation pathways differed from that of CYP1A1 mRNA. This implies that regulatory pathways for CYP1A1 and CYP1A2 expression may differ.
Collapse
Affiliation(s)
- Hisako Tamaki
- Department of Toxicology, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Sugitani 2630, Toyama 930-0194, Japan
| | | | | | | | | |
Collapse
|
17
|
Arguelho MLPM, Zanoni MVB, Stradiotto NR. Electrochemical Oxidation and Voltammetric Determination of the Antimalaria Drug Primaquine. ANAL LETT 2005. [DOI: 10.1081/al-200062218] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Tuvesson H, Hallin I, Persson R, Sparre B, Gunnarsson PO, Seidegård J. CYTOCHROME P450 3A4 IS THE MAJOR ENZYME RESPONSIBLE FOR THE METABOLISM OF LAQUINIMOD, A NOVEL IMMUNOMODULATOR. Drug Metab Dispos 2005; 33:866-72. [PMID: 15764719 DOI: 10.1124/dmd.104.002238] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, the involvement of cytochrome P450 enzyme(s) in the primary metabolism of laquinimod, a new orally active immunomodulator, has been investigated in human liver microsomes. Hydroxylated and dealkylated metabolites were formed. The metabolite formation exhibited single enzyme Michaelis-Menten kinetics with apparent KM in the range of 0.09 to 1.9 mM and Vmax from 22 to 120 pmol/mg/min. A strong correlation between the formation rate of metabolites and 6beta-hydroxylation of testosterone was obtained within a panel of liver microsomes from 15 individuals (r2 = 0.6 to 0.94). Moreover, ketoconazole and troleandomycin, specific inhibitors of CYP3A4 metabolism, demonstrated a significant inhibition of laquinimod metabolism. Furthermore, in incubations with recombinant CYP3A4, all the primary metabolites were formed. In vitro interaction studies with CYP3A4 substrates and possible concomitant medication demonstrated that laquinimod inhibits the metabolism of ethinyl estradiol with an IC50 value of about 150 microM, which is high above the plasma level of laquinimod after clinically relevant doses. Ketoconazole, troleandomycin, erythromycin, prednisolone, and ethinyl estradiol inhibited the metabolism of laquinimod, and IC50 values of 0.2, 11, 24, 87, and 235 microM, respectively, were calculated. In conclusion, the present study demonstrates that laquinimod is a low affinity substrate for CYP3A4 in human liver microsomes. The likelihood for in vivo effects of laquinimod on the metabolism of other CYP3A4 substrates is minor. However, inhibitory effects on the metabolism of laquinimod by potent and specific inhibitors of CYP3A4, such as ketoconazole, are anticipated and should be considered in the continued clinical program for laquinimod.
Collapse
Affiliation(s)
- Helén Tuvesson
- Preclinical Development, Active Biotech Research AB, Box 724, SE-220 07 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
19
|
Lemaire G, Delescluse C, Pralavorio M, Ledirac N, Lesca P, Rahmani R. The role of protein tyrosine kinases in CYP1A1 induction by omeprazole and thiabendazole in rat hepatocytes. Life Sci 2004; 74:2265-78. [PMID: 14987951 DOI: 10.1016/j.lfs.2003.09.056] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2003] [Accepted: 09/22/2003] [Indexed: 10/26/2022]
Abstract
Benzimidazoles compounds like omeprazole (OME) and thiabendazole (TBZ) mediate CYP1A1 induction differently from classical aryl hydrocarbon receptor (AhR) ligands, 3-methylcholanthrene (3-MC) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). To clarify the involvement of an intracellular signal pathway in CYP1A1 induction by OME and TBZ, the TBZ, OME and 3-MC signal-transducing pathways were compared by using specific protein tyrosine kinase inhibitors in primary culture of rat hepatocytes. The effect of OME and TBZ (75-250 microM) on cytochrome P450 1A1 (CYP1A1) expression was therefore studied in primary cultures of rat hepatocytes after 24 h, 48 h and 72 h of exposure. Both compounds provoked a dose- and time-dependent increase in CYP1A1 (EROD activity, protein and mRNA levels), but OME was less effective at all the concentrations and times tested. The mechanism of benzimidazole-mediated induction of CYP1A1 was investigated by comparison with 3-MC, a prototypical AhR ligand. As expected, OME and TBZ were unable to displace [(3)H]-TCDD from its binding sites to the AhR in competitive binding studies. Moreover, classic tyrosine kinase inhibitor herbimycin A (HA) inhibited the two benzimidazoles-mediated CYP1A1 inductions, but only partially inhibited the 3-MC-mediated one. Another two tyrosine kinase inhibitors, Lavendustin A (LA) and genistein (GEN), had no effect on CYP1A1 induction by benzimidazoles and 3-MC. These results are consistent with the implication of a tyrosine kinase, most probably the Src tyrosine kinase, in the mechanism of CYP1A1 induction in rat hepatocytes.
Collapse
Affiliation(s)
- G Lemaire
- Laboratoire de Pharmaco-toxicologie cellulaire et moléculaire, INRA, B.P. 2078, 06606, Antibes, France.
| | | | | | | | | | | |
Collapse
|
20
|
Backlund M, Ingelman-Sundberg M. Different structural requirements of the ligand binding domain of the aryl hydrocarbon receptor for high- and low-affinity ligand binding and receptor activation. Mol Pharmacol 2004; 65:416-25. [PMID: 14742684 DOI: 10.1124/mol.65.2.416] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) functions as a ligand-activated transcription factor that is responsible for the regulation of several response genes, of which the best characterized is the CYP1A1 gene. The present study was undertaken to elucidate the mechanism of activation of the AhR by omeprazole (OME), 2-mercapto-5-methoxybenzimidazole (MMB), and primaquine (PRQ), compounds that have previously been reported to induce CYP1A1 expression but that are not typical AhR ligands. All compounds caused a significant increase in luciferase activity in rat H4IIE and human HepG2 hepatoma cells transfected with a Gal4-AhR construct and the corresponding Gal4-Luc reporter gene. Furthermore, MMB and PRQ, but not OME, were capable of transforming cytosolic AhR to a DNA-binding form and displacing AhR-bound [3H]TCDD in rat hepatic cytosol in vitro. By performing site-directed mutagenesis of residues in the ligand-binding domain of the Gal4-AhR, a construct containing a Y320F substitution was found to be resistant to activation by OME, MMB, and PRQ, but not by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Comparable affinities of [3H]TCDD-binding to the wild-type and the Y320F mutant Gal4-proteins, expressed in human embryonic kidney 293 cells, were obtained in the ligand-binding assay. In contrast, the competition of receptor-bound [3H]TCDD by PRQ was absent from Gal4-Y320F but not from Gal4-AhR cell extracts. The results of this study confirm that MMB and PRQ are low-affinity ligands for the AhR and suggest that high- and low-affinity ligands interact with different residues of the AhR ligand-binding pocket. In addition, the data presented here indicate that Tyr320 plays an important role in AhR activation.
Collapse
Affiliation(s)
- Maria Backlund
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
21
|
Denison MS, Nagy SR. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 2003; 43:309-34. [PMID: 12540743 DOI: 10.1146/annurev.pharmtox.43.100901.135828] [Citation(s) in RCA: 1323] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The induction of expression of genes for xenobiotic metabolizing enzymes in response to chemical insult is an adaptive response found in most organisms. In vertebrates, the AhR is one of several chemical/ligand-dependent intracellular receptors that can stimulate gene transcription in response to xenobiotics. The ability of the AhR to bind and be activated by a range of structurally divergent chemicals suggests that the AhR contains a rather promiscuous ligand binding site. In addition to synthetic and environmental chemicals, numerous naturally occurring dietary and endogenous AhR ligands have also been identified. In this review, we describe evidence for the structural promiscuity of AhR ligand binding and discuss the current state of knowledge with regards to the activation of the AhR signaling pathway by naturally occurring exogenous and endogenous ligands.
Collapse
Affiliation(s)
- Michael S Denison
- Department of Environmental Toxicology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
22
|
Krusekopf S, Roots I, Hildebrandt AG, Kleeberg U. Time-dependent transcriptional induction of CYP1A1, CYP1A2 and CYP1B1 mRNAs by H+/K+ -ATPase inhibitors and other xenobiotics. Xenobiotica 2003; 33:107-18. [PMID: 12623754 DOI: 10.1080/0049825021000023978] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. Xenobiotic-mediated regulation of mRNA expression of all members of the human cytochrome P450 (CYP) 1 family has been measured by RT-PCR in the hepatoma cell line, HepG2. Besides the positive control beta -naphthoflavone, the H(+)/K(+)-ATPase inhibitors omeprazole, lansoprazole, pantoprazole and rabeprazole and the anti-malaria drug primaquine were included in this study. 2. beta-Naphthoflavone, primaquine, omeprazole and lansoprazole increased mRNA levels of CYP1A1, CYP1A2 and CYP1B1. Induction by rabeprazole was significant only for CYP1A1 and CYP1A2, whereas none of the CYP1 mRNAs was induced by pantoprazole. This result was confirmed in primary human hepatocytes. 3. Transcriptional regulation was proved by inhibition of induction with actinomycin D. 4. Increase of CYP1 mRNA was significant after 1 h and maximal after 4 h. CYP1B1, but not CYP1A1 or CYP1A2, was dramatically down-regulated between 4 and 24 h. This decrease was prevented by treatment of cells with actinomycin D after induction, indicating an active transcription-dependent mechanism of CYP1B1 mRNA degradation. 5. In conclusion, xenobiotics inducing CYP1A1 mRNA expression have been shown also to induce CYP1A2 and CYP1B1, differing only with regard to level and time course of induction.
Collapse
Affiliation(s)
- S Krusekopf
- Institute of Clinical Pharmacology, Charité, Humboldt University of Berlin, Schumannstr. 20/21, D-10098 Berlin, Germany.
| | | | | | | |
Collapse
|
23
|
Abstract
Pyridine and its metabolites have been shown in previous studies to induce cytochrome P4501A1 (CYP1A1) expression in vivo in the rat and in vitro in cultured human lung explants. In this study, we assessed the role of the metabolites in CYP1A1 induction by the parent compound. This was accomplished by comparing pyridine, 2-hydroxypyridine, 3-hydroxypyridine, pyridine N-oxide, and N-methylpyridinium in terms of the induction of CYP1A1 mRNA, CYP1A1 catalytic activity, and a xenobiotic response element-directed chloramphenicol acetyltransferase reporter gene, using HepG2 cells as the experimental system. We also assessed the effect of expression of the pyridine-metabolizing enzyme cytochrome P4502E1 on CYP1A1 induction by the parent pyridine. Only 2-hydroxypyridine significantly induced the CYP1A1 mRNA expression and CYP1A1-preferential activity ethoxyresorufin O-deethylase in wild-type HepG2 cells. Similarly, only 2-hydroxypyridine induced the expression of a xenobiotic response element-directed reporter gene in transfected HepG2 cells. Pyridine elevated CYP1A1 mRNA abundance 4.6-fold in HepG2 cells transfected with a human CYP2E1 expression vector relative to the abundance of the transcript in empty vector-transfected (control) HepG2 cells; the elevation was inhibited by the CYP2E1 inhibitor dimethyl sulfoxide. The results indicate that CYP1A1 induction by pyridine is mediated largely by metabolites, the formation of which may be catalyzed by CYP2E1.
Collapse
Affiliation(s)
- Michael M Iba
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
24
|
Wei C, Caccavale RJ, Weyand EH, Chen S, Iba MM. Induction of CYP1A1 and CYP1A2 expressions by prototypic and atypical inducers in the human lung. Cancer Lett 2002; 178:25-36. [PMID: 11849738 DOI: 10.1016/s0304-3835(01)00809-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The inducibility of cytochrome P4501A1 gene (CYP1A1) expression was examined in human lung samples from 27 subjects, using an explant culture system and semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. CYP1A1 transcripts were present in all of the lung specimens and were induced by the prototypic inducers 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]pyrene (B[a]P), and by the atypical inducers pyridine, nicotine, and omeprazole. 2-Hydroxypyridine was a better inducer than pyridine, implicating metabolites in CYP1A1 induction by the parent compound. The prototypical inducers were the most effective inducers in many samples but were ineffective in some samples in which the atypical compounds were effective inducers. Cytochrome P4501A2 (CYP1A2) transcripts were also detected in most of the lung specimens and were inducible in some specimens. The results show the suitability of the explant culture system for examining the inducibility of human pulmonary CYP1A1 and CYP1A2, indicate the heterogeneity in individual sensitivity to the induction, and underscore the need to include atypical inducers in studies of CYP1A inducibility in humans.
Collapse
Affiliation(s)
- Cindy Wei
- Department of Pharmacology and Toxicology, Rutgers University, EOHSI Building, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
This chapter is an update of the data on substrates, reactions, inducers, and inhibitors of human CYP enzymes published previously by Rendic and DiCarlo (1), now covering selection of the literature through 2001 in the reference section. The data are presented in a tabular form (Table 1) to provide a framework for predicting and interpreting the new P450 metabolic data. The data are formatted in an Excel format as most suitable for off-line searching and management of the Web-database. The data are presented as stated by the author(s) and in the case when several references are cited the data are presented according to the latest published information. The searchable database is available either as an Excel file (for information contact the author), or as a Web-searchable database (Human P450 Metabolism Database, www.gentest.com) enabling the readers easy and quick approach to the latest updates on human CYP metabolic reactions.
Collapse
Affiliation(s)
- Slobodan Rendic
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia.
| |
Collapse
|
26
|
Liu N, Zhang QY, Vakharia D, Dunbar D, Kaminsky LS. Induction of CYP1A by Benzo[k]fluoranthene in Human Hepatocytes: CYP1A1 or CYP1A2? Arch Biochem Biophys 2001; 389:130-4. [PMID: 11370663 DOI: 10.1006/abbi.2001.2323] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While fresh human hepatocyte cultures are widely used to model hepatic cytochrome P450 (CYP) regulation and activity, their CYP1A subfamily composition induced by, e.g., polycyclic aromatic hydrocarbons is ambiguous. CYP1A1, CYP1A2, or both have been reported to be expressed, and their varied roles in chemical carcinogenesis makes resolution of which CYPs are expressed essential. We have used an immunoblot system with Bis-Tris-HCl-buffered polyacrylamide gel, which clearly resolves human CYP1A1 and CYP1A2, and polyclonal goat anti-human CYP1A1/CYP1A2 and rabbit anti-human CYP1A2 antibodies to probe the expressed CYP1A1 and CYP1A2 composition of seven individual human hepatocyte cultures induced with 5 microM benzo[k]fluoranthene (BKF) for 24 h. In six of the cultures only CYP1A1 was detected, and in the seventh both CYPs were detected. In most vehicle-treated hepatocyte cultures, neither CYP1A1 nor CYP1A2 was detected. In three additional hepatocyte cultures treated individually with BKF and 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD), the resultant induced CYP1A1/1A2 profiles were essentially not influenced by the nature of the inducing agents. To develop an activity-based assay to differentiate between CYP1A1 and CYP1A2 expression in human hepatocytes, our previously published R warfarin assay (Drug Metab. Disp. (1995) 23, 1339-1345) was applied to TCDD (10 nM)-treated hepatocyte culture. The low concentration of TCDD did not produce inhibition of the warfarin metabolism-such inhibition could confound the results. Based on the ratios of 6- to 8-hydroxywarfarin formed in two cultures, the ratios of CYP1A1/CYP1A2 expressed in these cultures were determined and they agreed with the ratios determined by immunoblot analysis. Thus each individual human hepatocyte culture must be characterized for induced CYP1A1 and CYP1A2 expression in studies of CYP1A activity. The warfarin assay provides a means of characterizing the cultures.
Collapse
Affiliation(s)
- N Liu
- New York State Department of Health, Wadsworth Center, Albany 12201-0509, USA
| | | | | | | | | |
Collapse
|
27
|
Vakharia DD, Liu N, Pause R, Fasco M, Bessette E, Zhang QY, Kaminsky LS. Effect of metals on polycyclic aromatic hydrocarbon induction of CYP1A1 and CYP1A2 in human hepatocyte cultures. Toxicol Appl Pharmacol 2001; 170:93-103. [PMID: 11162773 DOI: 10.1006/taap.2000.9087] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Environmental cocontamination by polycyclic aromatic hydrocarbons (PAHs) and metals could affect the carcinogenic consequences of PAH exposure by modifying PAH induction of PAH-bioactivating CYP1A. The effect of As, Pb, Hg, or Cd (ranked as the most hazardous environmental metals by EPA and ATSDR) on CYP1A1 and 1A2 induction by benzo[a]pyrene (BaP), benzo[b]fluoranthene (BbF), dibenzo[a,h]anthracene (DBahA), benzo[a]anthracene (BaA), and benzo[k]fluoranthene (BkF) has thus been investigated in fresh human hepatocyte cultures. Induction was probed by ethoxyresorufin-O-deethylase activity, by immunoblots, and by RT-PCR. Uptake of PAHs into the hepatocytes varied according to PAH and liver donor: 84% of 5 microM BaA and 25-40% of 5 microM DBahA was taken up in 24 h. Hepatocytes retained viability up to 1 microM Cd and 5 microM Pb, Hg, or As and 5 microM PAHs. PAH induction of CYP1A in hepatocytes was variable, some cultures expressed CYP1A1 and others CYP1A1 and 1A2, and to variable extents. Induction efficiency (relative to DMSO controls) at 2.5 microM PAH concentration was in the order BkF (7.6-fold) > DBahA (6.1 fold) > BaP (5.7 fold) > BbF (3.9-fold) > BaA (2.5-fold). All four metals (1-5 microM) decreased CYP1A1/1A2 induction by some of the PAHs with dose-, metal-, and PAH-dependency. Arsenic (5 microM) decreased induction by 47% for BaP, 68% for BaA, 45% for BbF, 79% for BkF, and 53% for DBahA. Induced CYP1A2 protein was much more extensively decreased than 1A1 protein, and CYP1A2 mRNA and, to variable extents, CYP1A1 mRNA were decreased by As. Thus the metals in PAH/metal mixtures could diminish PAH carcinogenicity by decreasing induction of their bioactivation by CYP1A1/1A2.
Collapse
Affiliation(s)
- D D Vakharia
- New York State Department of Health, Wadsworth Center, Albany, New York 12201-0509, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Delescluse C, Lemaire G, de Sousa G, Rahmani R. Is CYP1A1 induction always related to AHR signaling pathway? Toxicology 2000; 153:73-82. [PMID: 11090948 DOI: 10.1016/s0300-483x(00)00305-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Humans are daily subjected to ever increasing amounts of exogenous compounds. Some of them are capable of inducing cytochrome P450s, a process that allows the cell to adapt to changes in its chemical environment. One of the most widely CYP studied is CYP1A1 because it metabolises a large number of xenobiotics to cytotoxic and/or mutagenic derivatives. To date, results from the literature indicate that induction of CYP1A1 does not only involve the classical activation cascade of the Ah receptor, e.g. binding of the ligand to the AhR, heterodimerisation with Arnt protein, constitution of a complex with XRE responsive element and subsequent gene activation. Indeed, some xenobiotics do activate CYP1A1 gene expression in spite of their inability to compete with TCDD for binding to the AhR. Other signaling pathways must therefore also be considered. Firstly, the CYP1A1 inducer compounds could be very weak AhR ligands or may be metabolized into a form which is in turn capable of binding to the Ah receptor. A second hypothesis would be that these molecules could act through other signaling cascades. At this time, two of them seem to be implicated. One concerns the RARs signal transduction pathway, as already described for retinoic acid. The second may involve tyrosine kinase activation, but the precise relationship between this activation and CYPA1 induction remains yet to be established. For the moment there is still a black box which needs to be investigated.
Collapse
Affiliation(s)
- C Delescluse
- Laboratoire de Pharmaco-Toxicologie Cellulaire et Moléculaire, INRA, Centre de Recherches, 41 Bd du Cap, 06606, Antibes, France
| | | | | | | |
Collapse
|
29
|
Iba MM, Fung J, Giannone JV, Okey AB. Comparative induction of CYP1A1 expression by pyridine and its metabolites. Arch Biochem Biophys 2000; 378:299-310. [PMID: 10860547 DOI: 10.1006/abbi.2000.1826] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We compared pyridine and five of its metabolites in terms of (i) in vivo induction of CYP1A1 expression in the lung, kidney, and liver in the rat and (ii) in vitro binding to, and activation of, the aryl hydrocarbon receptor (AhR) in cytosol from rat liver or Hepa1c1c7 cells. Following a single 2.5 mmol/kg ip dose of either pyridine, 2-hydroxpyridine, 3-hydroxypyridine, 4-hydroxypyridine, N-methylpyridinium, or pyridine N-oxide, CYP1A1 activity (ethoxyresorufin O-deethylase), protein level (as determined by Western blotting), and mRNA level (as determined by Northern blotting) were induced by pyridine, N-methylpyridinium, and pyridine N-oxide in the lung, kidney, and liver. The induction by N-methylpyridinium or pyridine N-oxide was comparable to or greater than that by pyridine in some tissues. 2-Hydroxypyridine and 3-hydroxypyridine caused tissue-specific induction or repression of CYP1A1, whereas 4-hydroxypyridine had no effect on the expression of the enzyme. Pyridine and its metabolites elicited weak activation of the aryl hydrocarbon receptor in a gel retardation assay in cytosol from rat liver but not Hepa 1c1c7 cells. However, the receptor activation did not parallel the in vivo CYP1A1 induction by the pyridine compounds, none of which inhibited binding of ¿(3)H2,3,7, 8-tetrachlorodibenzo-p-dioxin to AhR in a competitive assay in rat liver cytosol. The findings are consistent with a role of pyridine metabolites in CYP1A1 induction by pyridine but do not clearly identify the role of aryl hydrocarbon receptor in the induction mechanism.
Collapse
Affiliation(s)
- M M Iba
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | | | | | |
Collapse
|
30
|
Ledirac N, Delescluse C, Lesca P, Piechocki MP, Hines RN, de Sousa G, Pralavorio M, Rahmani R. Diflubenzuron, a benzoyl-urea insecticide, is a potent inhibitor of TCDD-induced CYP1A1 expression in HepG2 cells. Toxicol Appl Pharmacol 2000; 164:273-9. [PMID: 10799337 DOI: 10.1006/taap.2000.8920] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diflubenzuron (DFB) belongs to a group of compounds called benzoyphenyl ureas acting as chitin synthesis inhibitors, which also inhibit growth of B16 murine melanomas. The present study was designed to investigate the effect of this insecticide, on CYP1A1 expression and induction in human hepatoma cells HepG2. Treatment of HepG2 cells over 72 h with noncytotoxic concentrations of DFB resulted in a strong dose-dependent decrease in constitutive ethoxyresorufin-O-deethylase activity. Moreover, DFB significantly decreased CYP1A1 induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) after 24 h exposure, as demonstrated by ethoxyresorufin-O-deethylase (EROD) activity and Northern blot analysis. Additional studies were performed both on parental HepG2 cells and HepG2-241c.1, which were stably transfected with the chloramphenicol acetyltransferase (CAT) reporter gene, cloned under the control of the human CYP1A1 promoter (-1140 to +59). Ribonuclease protection assays (RPA) analysis clearly demonstrated an inhibition of CYP1A1 transcription in both cell lines. Surprisingly, in corresponding experiments using 3-methylcholanthrene (3-MC) as a CYP1A1 inducer, DFB was less effective. Finally, in competitive binding studies using a 9S-enriched fraction of HepG2 cytosol, DFB was capable of displacing [(3)H]-2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) from its Ah receptor binding site. Taken together, these results support the involvement of a transcriptional mechanism in the inhibition of CYP1A1 expression in HepG2 cells by DFB, possibly via an Ah receptor antagonism.
Collapse
Affiliation(s)
- N Ledirac
- Laboratoire de Pharmaco-Toxicologie Cellulaire et Moléculaire, INRA, Antibes, 06606, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Nebert DW, Roe AL, Dieter MZ, Solis WA, Yang Y, Dalton TP. Role of the aromatic hydrocarbon receptor and [Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis. Biochem Pharmacol 2000; 59:65-85. [PMID: 10605936 DOI: 10.1016/s0006-2952(99)00310-x] [Citation(s) in RCA: 693] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The chronology and history of characterizing the aromatic hydrocarbon [Ah] battery is reviewed. This battery represents the Ah receptor (AHR)-mediated control of at least six, and probably many more, dioxin-inducible genes; two cytochrome P450 genes-P450 1A1 and 1A2 (Cypla1, Cypla2-and four non-P450 genes, have experimentally been documented to be members of this battery. Metabolism of endogenous and exogenous substrates by perhaps every P450 enzyme, but certainly CYP1A1 and CYP1A2 (which are located, in part, in the mitochondrion), have been shown to cause reactive oxygenated metabolite (ROM)-mediated oxidative stress. Oxidative stress activates genes via the electrophile response element (EPRE) DNA motif, whereas dioxin (acutely) activates genes via the AHR-mediated aromatic hydrocarbon response element (AHRE) DNA motif. In contrast to dioxin, AHR ligands that are readily metabolized to ROMs (e.g. benzo[a]pyrene, beta-naphthoflavone) activate genes via both AHREs and the EPRE. The importance of the AHR in cell cycle regulation and apoptosis has just begun to be realized. Current evidence suggests that the CYP1A1 and CYP1A2 enzymes might control the level of the putative endogenous ligand of the AHR, but that CYPA1/1A2 metabolism generates ROM-mediated oxidative stress which can be ameliorated by the four non-P450 EPRE-driven genes in the [Ah] battery. Oxidative stress is a major signal in precipitating apoptosis; however, the precise mechanism, or molecule, which determines the cell's decision between apoptosis and continuation with the cell cycle, remains to be elucidated. The total action of AHR and the [Ah] battery genes therefore represents a pivotal upstream event in the apoptosis cascade, providing an intricate balance between promoting and preventing ROM-mediated oxidative stress. These proposed endogenous functions of the AHR and [Ah] enzymes are, of course, in addition to the frequently described functions of "metabolic potentiation" and "detoxification" of various foreign chemicals.
Collapse
Affiliation(s)
- D W Nebert
- Department of Environmental Health and the Center for Environmental Genetics, University of Cincinnati Medical Center, OH 45267-0056, USA.
| | | | | | | | | | | |
Collapse
|