1
|
Di Pompo G, Kusuzaki K, Ponzetti M, Leone VF, Baldini N, Avnet S. Radiodynamic Therapy with Acridine Orange Is an Effective Treatment for Bone Metastases. Biomedicines 2022; 10:biomedicines10081904. [PMID: 36009451 PMCID: PMC9405350 DOI: 10.3390/biomedicines10081904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
Current multimodal treatment of bone metastases is partially effective and often associated with side effects, and novel therapeutic options are needed. Acridine orange is a photosensitizing molecule that accumulates in acidic compartments. After photo- or radiodynamic activation (AO-PDT or AO-RDT), acridine orange can induce lysosomal-mediated cell death, and we explored AO-RDT as an acid-targeted anticancer therapy for bone metastases. We used osteotropic carcinoma cells and human osteoclasts to assess the extracellular acidification and invasiveness of cancer cells, acridine orange uptake and lysosomal pH/stability, and the AO-RDT cytotoxicity in vitro. We then used a xenograft model of bone metastasis to compare AO-RDT to another antiacid therapeutic strategy (omeprazole). Carcinoma cells showed extracellular acidification activity and tumor-derived acidosis enhanced cancer invasiveness. Furthermore, cancer cells accumulated acridine orange more than osteoclasts and were more sensitive to lysosomal death. In vivo, omeprazole did not reduce osteolysis, whereas AO-RDT promoted cancer cell necrosis and inhibited tumor-induced bone resorption, without affecting osteoclasts. In conclusion, AO-RDT was selectively toxic only for carcinoma cells and effective to impair both tumor expansion in bone and tumor-associated osteolysis. We therefore suggest the use of AO-RDT, in combination with the standard antiresorptive therapies, to reduce disease burden in bone metastasis.
Collapse
Affiliation(s)
- Gemma Di Pompo
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Katsuyuki Kusuzaki
- Department of Musculoskeletal Oncology, Takai Hospital, Tenri 632-0372, Japan
| | - Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | | | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
- Correspondence:
| |
Collapse
|
2
|
Delehedde C, Culcasi M, Ricquebourg E, Cassien M, Siri D, Blaive B, Pietri S, Thétiot-Laurent S. Novel Sterically Crowded and Conformationally Constrained α-Aminophosphonates with a Near-Neutral p Ka as Highly Accurate 31P NMR pH Probes. Application to Subtle pH Gradients Determination in Dictyostelium discoideum Cells. Molecules 2022; 27:molecules27144506. [PMID: 35889385 PMCID: PMC9320275 DOI: 10.3390/molecules27144506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
In order to discover new 31P NMR markers for probing subtle pH changes (<0.2 pH unit) in biological environments, fifteen new conformationally constrained or sterically hindered α-aminophosphonates derived from diethyl(2-methylpyrrolidin-2-yl)phosphonate were synthesized and tested for their pH reporting and cytotoxic properties in vitro. All compounds showed near-neutral pKas (ranging 6.28−6.97), chemical shifts not overlapping those of phosphorus metabolites, and spectroscopic sensitivities (i.e., chemical shifts variation Δδab between the acidic and basic forms) ranging from 9.2−10.7 ppm, being fourfold larger than conventional endogenous markers such as inorganic phosphate. X-ray crystallographic studies combined with predictive empirical relationships and ab initio calculations addressed the inductive and stereochemical effects of substituents linked to the protonated amine function. Satisfactory correlations were established between pKas and both the 2D structure and pyramidalization at phosphorus, showing that steric crowding around the phosphorus is crucial for modulating Δδab. Finally, the hit 31P NMR pH probe 1b bearing an unsubstituted 1,3,2-dioxaphosphorinane ring, which is moderately lipophilic, nontoxic on A549 and NHLF cells, and showing pKa = 6.45 with Δδab = 10.64 ppm, allowed the first clear-cut evidence of trans-sarcolemmal pH gradients in normoxic Dictyostelium discoideum cells with an accuracy of <0.05 pH units.
Collapse
Affiliation(s)
- Caroline Delehedde
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
| | - Marcel Culcasi
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
| | - Emilie Ricquebourg
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
| | - Mathieu Cassien
- Yelen Analytics, 10 Boulevard Tempête, 13820 Ensuès-la-Redonne, France;
| | - Didier Siri
- Aix Marseille Univ, CNRS, ICR, UMR 7273, CT, 13397 Marseille, France;
| | - Bruno Blaive
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
| | - Sylvia Pietri
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
| | - Sophie Thétiot-Laurent
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
- Correspondence: ; Tel.: +33-(0)4-13-94-58-07
| |
Collapse
|
3
|
Reiniers MJ, de Haan LR, Reeskamp LF, Broekgaarden M, Hoekstra R, van Golen RF, Heger M. Optimal Use of 2',7'-Dichlorofluorescein Diacetate in Cultured Hepatocytes. Methods Mol Biol 2022; 2451:721-747. [PMID: 35505044 DOI: 10.1007/978-1-0716-2099-1_39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oxidative stress is a state that arises when the production of reactive transients overwhelms the cell's capacity to neutralize the oxidants and radicals. This state often coincides with the pathogenesis and perpetuation of numerous chronic diseases. On the other hand, medical interventions such as radiation therapy and photodynamic therapy generate radicals to selectively damage and kill diseased tissue. As a result, the qualification and quantification of oxidative stress are of great interest to those studying disease mechanisms as well as therapeutic interventions. 2',7'-Dichlorodihydrofluorescein-diacetate (DCFH2-DA) is one of the most widely used fluorogenic probes for the detection of reactive transients. The nonfluorescent DCFH2-DA crosses the plasma membrane and is deacetylated by cytosolic esterases to 2',7'-dichlorodihydrofluorescein (DCFH2). The nonfluorescent DCFH2 is subsequently oxidized by reactive transients to form the fluorescent 2',7'-dichlorofluorescein (DCF). The use of DCFH2-DA in hepatocyte-derived cell lines is more challenging because of membrane transport proteins that interfere with probe uptake and retention, among several other reasons. Cancer cells share some of the physiological and biochemical features with hepatocytes, so probe-related technical issues are applicable to cultured malignant cells as well. This study therefore analyzed the in vitro properties of DCFH2-DA in cultured human hepatocytes (HepG2 cells and differentiated and undifferentiated HepaRG cells) to identify methodological and technical features that could impair proper data analysis and interpretation. The main issues that were found and should therefore be accounted for in experimental design include the following: (1) both DCFH2-DA and DCF are taken up rapidly, (2) DCF is poorly retained in the cytosol and exits the cell, (3) the rate of DCFH2 oxidation is cell type-specific, (4) DCF fluorescence intensity is pH-dependent at pH < 7, and (5) the stability of DCFH2-DA in cell culture medium relies on medium composition. Based on the findings, the conditions for the use of DCFH2-DA in hepatocyte cell lines were optimized. Finally, the optimized protocol was reduced to practice and DCFH2-DA was applied to visualize and quantify oxidative stress in real time in HepG2 cells subjected to anoxia/reoxygenation as a source of reactive transients.
Collapse
Affiliation(s)
- Megan J Reiniers
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, P. R. China
- Department of Surgery, Haaglanden Medisch Centrum, The Hague, The Netherlands
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, P. R. China
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Laurens F Reeskamp
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Mans Broekgaarden
- Team Cancer Targets and Experimental Therapeutics, Department Microenvironment Cell Plasticity and Signaling, Institute for Advanced Biosciences, Université de Grenoble-Alpes, Allée des Alpes, La Tronche, France
- INSERM U 1209, CNRS UMR 5309, Allée des Alpes, La Tronche, France
| | - Ruurdtje Hoekstra
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Rowan F van Golen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, P. R. China.
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Sakurai H, Nishimura K, Yamamoto S, Maruyama T, Tamura A. Molecular Design of pH-Responsive Helix Peptides That Can Damage Tumor Cells Selectively. ACS APPLIED BIO MATERIALS 2021; 4:2442-2452. [DOI: 10.1021/acsabm.0c01407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Haruka Sakurai
- Graduate School of Science, Department of Chemistry, Kobe University, Nada, Kobe 657-8501, Japan
| | - Kanon Nishimura
- Graduate School of Engineering, Department of Chemical Science and Engineering, Kobe University, Nada, Kobe 657-8501, Japan
| | - Shota Yamamoto
- Graduate School of Engineering, Department of Chemical Science and Engineering, Kobe University, Nada, Kobe 657-8501, Japan
| | - Tatsuo Maruyama
- Graduate School of Engineering, Department of Chemical Science and Engineering, Kobe University, Nada, Kobe 657-8501, Japan
| | - Atsuo Tamura
- Graduate School of Science, Department of Chemistry, Kobe University, Nada, Kobe 657-8501, Japan
| |
Collapse
|
5
|
Abstract
The ability for cells to maintain homeostasis in the presence of extracellular stress is essential for their survival. Stress adaptations are especially important for microbial pathogens to respond to rapidly changing conditions, such as those encountered during the transition from the environment to the infected host. Many fungal pathogens have acquired the ability to quickly adapt to changes in extracellular pH to promote their survival in the various microenvironments encountered during a host infection. For example, the fungus-specific Rim/Pal alkaline response pathway has been well characterized in many fungal pathogens, including Cryptococcus neoformans However, alternative mechanisms for sensing and responding to host pH have yet to be extensively studied. Recent observations from a genetic screen suggest that the C. neoformans sterol homeostasis pathway is required for growth at elevated pH. This work explores interactions among mechanisms of membrane homeostasis, alkaline pH tolerance, and Rim pathway activation. We find that the sterol homeostasis pathway is necessary for growth in an alkaline environment and that an elevated pH is sufficient to induce Sre1 activation. This pH-mediated activation of the Sre1 transcription factor is linked to the biosynthesis of ergosterol but is not dependent on Rim pathway signaling, suggesting that these two pathways are responding to alkaline pH independently. Furthermore, we discover that C. neoformans is more susceptible to membrane-targeting antifungals under alkaline conditions, highlighting the impact of microenvironmental pH on the treatment of invasive fungal infections. Together, these findings further connect membrane integrity and composition with the fungal pH response and pathogenesis.IMPORTANCE The work described here further elucidates how microorganisms sense and adapt to changes in their environment to establish infections in the human host. Specifically, we uncover a novel mechanism by which an opportunistic human fungal pathogen, Cryptococcus neoformans, responds to increases in extracellular pH in order to survive and thrive within the relatively alkaline environment of the human lung. This mechanism, which is intimately linked with fungal membrane sterol homeostasis, is independent of the previously well-studied alkaline response Rim pathway. Furthermore, this ergosterol-dependent alkaline pH response is present in Candida albicans, indicating that this mechanism spans diverse fungal species. These results are also relevant for novel antimicrobial drug development as we show that currently used ergosterol-targeting antifungals are more active in alkaline environments.
Collapse
|
6
|
Wang C, Zhu J, Ma J, Yang Y, Cui X. Functionalized Bletilla striata polysaccharide micelles for targeted intracellular delivery of Doxorubicin: In vitro and in vivo evaluation. Int J Pharm 2019; 567:118436. [DOI: 10.1016/j.ijpharm.2019.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/16/2022]
|
7
|
|
8
|
Tang B, Zaro JL, Shen Y, Chen Q, Yu Y, Sun P, Wang Y, Shen WC, Tu J, Sun C. Acid-sensitive hybrid polymeric micelles containing a reversibly activatable cell-penetrating peptide for tumor-specific cytoplasm targeting. J Control Release 2018; 279:147-156. [DOI: 10.1016/j.jconrel.2018.04.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/20/2018] [Accepted: 04/09/2018] [Indexed: 12/29/2022]
|
9
|
Abstract
Metabolism is central to neuroimaging because it can reveal pathways by which neuronal and glial cells use nutrients to fuel their growth and function. We focus on advanced magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) methods used in brain metabolic studies. 17O-MRS and 31P-MRS, respectively, provide rates of oxygen use and ATP synthesis inside mitochondria, whereas 19F-MRS enables measurement of cytosolic glucose metabolism. Calibrated functional MRI (fMRI), an advanced form of fMRI that uses contrast generated by deoxyhemoglobin, provides maps of oxygen use that track neuronal firing across brain regions. 13C-MRS is the only noninvasive method of measuring both glutamatergic neurotransmission and cell-specific energetics with signaling and nonsignaling purposes. Novel MRI contrasts, arising from endogenous diamagnetic agents and exogenous paramagnetic agents, permit pH imaging of glioma. Overall, these magnetic resonance methods for imaging brain metabolism demonstrate translational potential to better understand brain disorders and guide diagnosis and treatment.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Department of Biomedical Engineering, Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, and Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut 06520;
| | - Douglas L Rothman
- Department of Biomedical Engineering, Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, and Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut 06520;
| |
Collapse
|
10
|
Hyder F, Manjura Hoque S. Brain Tumor Diagnostics and Therapeutics with Superparamagnetic Ferrite Nanoparticles. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:6387217. [PMID: 29375280 PMCID: PMC5742516 DOI: 10.1155/2017/6387217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/24/2017] [Indexed: 11/18/2022]
Abstract
Ferrite nanoparticles (F-NPs) can transform both cancer diagnostics and therapeutics. Superparamagnetic F-NPs exhibit high magnetic moment and susceptibility such that in presence of a static magnetic field transverse relaxation rate of water protons for MRI contrast is augmented to locate F-NPs (i.e., diagnostics) and exposed to an alternating magnetic field local temperature is increased to induce tissue necrosis (i.e., thermotherapy). F-NPs are modified by chemical synthesis of mixed spinel ferrites as well as their size, shape, and coating. Purposely designed drug-containing nanoparticles (D-NPs) can slowly deliver drugs (i.e., chemotherapy). Convection-enhanced delivery (CED) of D-NPs with MRI guidance improves glioblastoma multiforme (GBM) treatment. MRI monitors the location of chemotherapy when D-NPs and F-NPs are coadministered with CED. However superparamagnetic field gradients produced by F-NPs complicate MRI readouts (spatial distortions) and MRS (extensive line broadening). Since extracellular pH (pHe) is a cancer hallmark, pHe imaging is needed to screen cancer treatments. Biosensor imaging of redundant deviation in shifts (BIRDS) extrapolates pHe from paramagnetically shifted signals and the pHe accuracy remains unaffected by F-NPs. Hence effect of both chemotherapy and thermotherapy can be monitored (by BIRDS), whereas location of F-NPs is revealed (by MRI). Smarter tethering of nanoparticles and agents will impact GBM theranostics.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - S. Manjura Hoque
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Materials Science Division, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| |
Collapse
|
11
|
Daniels JL, Crawford TM, Andreev OA, Reshetnyak YK. Synthesis and characterization of pHLIP ® coated gold nanoparticles. Biochem Biophys Rep 2017; 10:62-69. [PMID: 28955736 PMCID: PMC5614664 DOI: 10.1016/j.bbrep.2017.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/19/2017] [Accepted: 02/26/2017] [Indexed: 11/04/2022] Open
Abstract
Novel approaches in synthesis of spherical and multispiked gold nanoparticles coated with polyethylene glycol (PEG) and pH Low Insertion Peptide (pHLIP®) were introduced. The presence of a tumor-targeting pHLIP® peptide in the nanoparticle coating enhances the stability of particles in solution and promotes a pH-dependent cellular uptake. The spherical particles were prepared with sodium citrate as a gold reducing agent to form particles of 7.0±2.5 nm in mean metallic core diameter and ∼43 nm in mean hydrodynamic diameter. The particles that were injected into tumors in mice (21 µg of gold) were homogeneously distributed within a tumor mass with no staining of the muscle tissue adjacent to the tumor. Up to 30% of the injected gold dose remained within the tumor one hour post-injection. The multispiked gold nanoparticles with a mean metallic core diameter of 146.0±50.4 nm and a mean hydrodynamic size of ~161 nm were prepared using ascorbic acid as a reducing agent and disk-like bicelles as a template. Only the presence of a soft template, like bicelles, ensured the appearance of spiked nanoparticles with resonance in the near infrared region. The irradiation of spiked gold nanoparticles by an 805 nm laser led to the time- and concentration-dependent increase of temperature. Both pHLIP® and PEG coated gold spherical and multispiked nanoparticles might find application in radiation and thermal therapies of tumors. pHLIP®-PEG coated pH-sensitive gold spherical nanoparticles were synthesized. 30% of the injected gold dose remained within the tumor one hour post-injection. pHLIP®-PEG coated pH-sensitive gold multispiked nanoparticles were synthesized. Bicelles were used as a soft template to obtain multispiked nanoparticles. Temperature increases after 805 nm irradiation of spiked gold nanoparticles.
Collapse
Affiliation(s)
- Jennifer L Daniels
- Physics Department, University of Rhode Island, 2 Lippitt Rd., Kingston, RI 02881, USA
| | - Troy M Crawford
- Physics Department, University of Rhode Island, 2 Lippitt Rd., Kingston, RI 02881, USA
| | - Oleg A Andreev
- Physics Department, University of Rhode Island, 2 Lippitt Rd., Kingston, RI 02881, USA
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, 2 Lippitt Rd., Kingston, RI 02881, USA
| |
Collapse
|
12
|
Weerakkody D, Moshnikova A, El-Sayed NS, Adochite RC, Slaybaugh G, Golijanin J, Tiwari RK, Andreev OA, Parang K, Reshetnyak YK. Novel pH-Sensitive Cyclic Peptides. Sci Rep 2016; 6:31322. [PMID: 27515582 PMCID: PMC4981864 DOI: 10.1038/srep31322] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/18/2016] [Indexed: 02/01/2023] Open
Abstract
A series of cyclic peptides containing a number of tryptophan (W) and glutamic acid (E) residues were synthesized and evaluated as pH-sensitive agents for targeting of acidic tissue and pH-dependent cytoplasmic delivery of molecules. Biophysical studies revealed the molecular mechanism of peptides action and localization within the lipid bilayer of the membrane at high and low pHs. The symmetric, c[(WE)4WC], and asymmetric, c[E4W5C], cyclic peptides translocated amanitin, a polar cargo molecule of similar size, across the lipid bilayer and induced cell death in a pH- and concentration-dependent manner. Fluorescently-labelled peptides were evaluated for targeting of acidic 4T1 mammary tumors in mice. The highest tumor to muscle ratio (5.6) was established for asymmetric cyclic peptide, c[E4W5C], at 24 hours after intravenous administration. pH-insensitive cyclic peptide c[R4W5C], where glutamic acid residues (E) were replaced by positively charged arginine residues (R), did not exhibit tumor targeting. We have introduced a novel class of cyclic peptides, which can be utilized as a new pH-sensitive tool in investigation or targeting of acidic tissue.
Collapse
Affiliation(s)
| | - Anna Moshnikova
- Department of Physics, University of Rhode Island, Kingston, RI 02881, US
| | - Naglaa Salem El-Sayed
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA 92618, US
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road Kingston, RI 02881, US
- Cellulose and Paper Department, National Research Center, Dokki 12622, Cairo, Egypt
| | | | - Gregory Slaybaugh
- Department of Physics, University of Rhode Island, Kingston, RI 02881, US
| | - Jovana Golijanin
- Department of Physics, University of Rhode Island, Kingston, RI 02881, US
| | - Rakesh K. Tiwari
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA 92618, US
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road Kingston, RI 02881, US
| | - Oleg A. Andreev
- Department of Physics, University of Rhode Island, Kingston, RI 02881, US
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA 92618, US
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road Kingston, RI 02881, US
| | - Yana K. Reshetnyak
- Department of Physics, University of Rhode Island, Kingston, RI 02881, US
| |
Collapse
|
13
|
Nath K, Guo L, Nancolas B, Nelson DS, Shestov AA, Lee SC, Roman J, Zhou R, Leeper DB, Halestrap AP, Blair IA, Glickson JD. Mechanism of antineoplastic activity of lonidamine. Biochim Biophys Acta Rev Cancer 2016; 1866:151-162. [PMID: 27497601 DOI: 10.1016/j.bbcan.2016.08.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/26/2016] [Accepted: 08/03/2016] [Indexed: 12/19/2022]
Abstract
Lonidamine (LND) was initially introduced as an antispermatogenic agent. It was later found to have anticancer activity sensitizing tumors to chemo-, radio-, and photodynamic-therapy and hyperthermia. Although the mechanism of action remained unclear, LND treatment has been known to target metabolic pathways in cancer cells. It has been reported to alter the bioenergetics of tumor cells by inhibiting glycolysis and mitochondrial respiration, while indirect evidence suggested that it also inhibited l-lactic acid efflux from cells mediated by members of the proton-linked monocarboxylate transporter (MCT) family and also pyruvate uptake into the mitochondria by the mitochondrial pyruvate carrier (MPC). Recent studies have demonstrated that LND potently inhibits MPC activity in isolated rat liver mitochondria (Ki 2.5μM) and cooperatively inhibits l-lactate transport by MCT1, MCT2 and MCT4 expressed in Xenopus laevis oocytes with K0.5 and Hill coefficient values of 36-40μM and 1.65-1.85, respectively. In rat heart mitochondria LND inhibited the MPC with similar potency and uncoupled oxidation of pyruvate was inhibited more effectively (IC50~7μM) than other substrates including glutamate (IC50~20μM). LND inhibits the succinate-ubiquinone reductase activity of respiratory Complex II without fully blocking succinate dehydrogenase activity. LND also induces cellular reactive oxygen species through Complex II and has been reported to promote cell death by suppression of the pentose phosphate pathway, which resulted in inhibition of NADPH and glutathione generation. We conclude that MPC inhibition is the most sensitive anti-tumour target for LND, with additional inhibitory effects on MCT-mediated l-lactic acid efflux, Complex II and glutamine/glutamate oxidation.
Collapse
Affiliation(s)
- Kavindra Nath
- Laboratory of Molecular Imaging, Department of Radiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Lili Guo
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bethany Nancolas
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD, UK
| | - David S Nelson
- Laboratory of Molecular Imaging, Department of Radiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Alexander A Shestov
- Laboratory of Molecular Imaging, Department of Radiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Seung-Cheol Lee
- Laboratory of Molecular Imaging, Department of Radiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jeffrey Roman
- Laboratory of Molecular Imaging, Department of Radiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Rong Zhou
- Laboratory of Molecular Imaging, Department of Radiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Dennis B Leeper
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew P Halestrap
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD, UK
| | - Ian A Blair
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jerry D Glickson
- Laboratory of Molecular Imaging, Department of Radiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Abstract
We have developed a way to measure cell surface pH by positioning a pH-sensitive fluorescent dye, seminaphtharhodafluor (SNARF), conjugated to the pH low insertion peptide (pHLIP). It has been observed that many diseased tissues are acidic and that tumors are especially so. A combination of effects acidifies tumor cell interiors, and cells pump out lactic acid and protons to maintain intracellular pH, acidifying the extracellular space. Overexpression of carbonic anhydrases on cell surfaces further contributes to acidification. Thus, the pH near tumor cell surfaces is expected to be low and to increase with distance from the membrane, so bulk pH measurements will not report surface acidity. Our new surface pH-measurement tool was validated in cancer cells grown in spheroids, in mouse tumor models in vivo, and in excised tumors. We found that the surface pH is sensitive to cell glycolytic activity: the pH decreases in high glucose and increases if glucose is replaced with nonmetabolized deoxyglucose. For highly metastatic cancer cells, the pH measured at the surface was 6.7-6.8, when the surrounding external pH was 7.4. The approach is sensitive enough to detect 0.2-0.3 pH unit changes in vivo in tumors induced by i.p. injection of glucose. The pH at the surfaces of highly metastatic cells within tumors was found to be about 6.1-6.4, whereas in nonmetastatic tumors, it was 6.7-6.9, possibly creating a way to distinguish more aggressive from less aggressive tumors. Other biological roles of surface acidity may be found, now that targeted measurements are possible.
Collapse
|
15
|
Marchand V, Levêque P, Driesschaert B, Marchand-Brynaert J, Gallez B. In vivo EPR extracellular pH-metry in tumors using a triphosphonated trityl radical. Magn Reson Med 2016; 77:2438-2443. [PMID: 27364733 DOI: 10.1002/mrm.26316] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 01/19/2023]
Abstract
PURPOSE The ability to assess the extracellular pH (pHe) is an important issue in oncology, because extracellular acidification is associated with tumor aggressiveness and resistance to cytotoxic therapies. In this study, a stable triphosphonated triarylmethyl (TPTAM) radical was qualified as a pHe electron paramagnetic resonance (EPR) molecular reporter. METHODS Calibration of hyperfine splitting as a function of pH was performed using a 1.2-GHz EPR spectrometer. Gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) was used as an extracellular paramagnetic broadening agent to assess the localization of TPTAM when incubated with cells. In vivo EPR pH-metry was performed in MDA, SiHa, and TLT tumor models and in muscle. Bicarbonate therapy was used to modulate the tumor pHe. EPR measurements were compared with microelectrode readouts. RESULTS The hyperfine splitting of TPTAM was strongly pH-dependent around the pKa of the probe (pKa = 6.99). Experiments with Gd-DTPA demonstrated that TPTAM remained in the extracellular compartment. pHe was found to be more acidic in the MDA, SiHa, and TLT tumor models compared with muscle. Treatment of animals by bicarbonate induced an increase in pHe in tumors: similar variations in pHe were found when using in vivo EPR or invasive microelectrodes measurements. CONCLUSION This study demonstrates the potential usefulness of TPTAM for monitoring pHe in tumors. Magn Reson Med 77:2438-2443, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Valérie Marchand
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain, Brussels, Belgium
| | - Philippe Levêque
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain, Brussels, Belgium
| | - Benoit Driesschaert
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain, Brussels, Belgium.,Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity, Université Catholique de Louvain, Brussels, Belgium
| | - Jacqueline Marchand-Brynaert
- Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity, Université Catholique de Louvain, Brussels, Belgium
| | - Bernard Gallez
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
16
|
Nath K, Nelson DS, Putt ME, Leeper DB, Garman B, Nathanson KL, Glickson JD. Comparison of the Lonidamine Potentiated Effect of Nitrogen Mustard Alkylating Agents on the Systemic Treatment of DB-1 Human Melanoma Xenografts in Mice. PLoS One 2016; 11:e0157125. [PMID: 27285585 PMCID: PMC4902256 DOI: 10.1371/journal.pone.0157125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/25/2016] [Indexed: 11/18/2022] Open
Abstract
Previous NMR studies demonstrated that lonidamine (LND) selectively diminishes the intracellular pH (pHi) of DB-1 melanoma and mouse xenografts of a variety of other prevalent human cancers while decreasing their bioenergetic status (tumor βNTP/Pi ratio) and enhancing the activities of melphalan and doxorubicin in these cancer models. Since melphalan and doxorubicin are highly toxic agents, we have examined three other nitrogen (N)-mustards, chlorambucil, cyclophosphamide and bendamustine, to determine if they exhibit similar potentiation by LND. As single agents LND, melphalan and these N-mustards exhibited the following activities in DB-1 melanoma xenografts; LND: 100% tumor surviving fraction (SF); chlorambucil: 100% SF; cyclophosphamide: 100% SF; bendamustine: 79% SF; melphalan: 41% SF. When combined with LND administered 40 min prior to administration of the N-mustard (to maximize intracellular acidification) the following responses were obtained; chlorambucil: 62% SF; cyclophosphamide: 42% SF; bendamustine: 36% SF; melphalan: 10% SF. The effect of LND on the activities of these N-mustards is generally attributed to acid stabilization of the aziridinium active intermediate, acid inhibition of glutathione-S-transferase, which acts as a scavenger of aziridinium, and acid inhibition of DNA repair by O6-alkyltransferase. Depletion of ATP by LND may also decrease multidrug resistance and increase tumor response. At similar maximum tolerated doses, our data indicate that melphalan is the most effective N-mustard in combination with LND when treating DB-1 melanoma in mice, but the choice of N-mustard for coadministration with LND will also depend on the relative toxicities of these agents, and remains to be determined.
Collapse
Affiliation(s)
- Kavindra Nath
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - David S. Nelson
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mary E. Putt
- Biostatistics & Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dennis B. Leeper
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Bradley Garman
- Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katherine L. Nathanson
- Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jerry D. Glickson
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
17
|
Flavell RR, von Morze C, Blecha JE, Korenchan DE, Van Criekinge M, Sriram R, Gordon JW, Chen HY, Subramaniam S, Bok RA, Wang ZJ, Vigneron DB, Larson PE, Kurhanewicz J, Wilson DM. Application of Good's buffers to pH imaging using hyperpolarized (13)C MRI. Chem Commun (Camb) 2016; 51:14119-22. [PMID: 26257040 DOI: 10.1039/c5cc05348j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-(2-Acetamido)-2-aminoethanesulfonic acid (ACES), one of Good's buffers, was applied to pH imaging using hyperpolarized (13)C magnetic resonance spectroscopy. Rapid NMR- and MRI-based pH measurements were obtained by exploiting the sensitive pH-dependence of its (13)C chemical shift within the physiologic range.
Collapse
Affiliation(s)
- Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94158, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hypoxia-induced carbonic anhydrase IX facilitates lactate flux in human breast cancer cells by non-catalytic function. Sci Rep 2015; 5:13605. [PMID: 26337752 PMCID: PMC4559800 DOI: 10.1038/srep13605] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 07/28/2015] [Indexed: 12/14/2022] Open
Abstract
The most aggressive tumour cells, which often reside in hypoxic environments, rely on glycolysis for energy production. Thereby they release vast amounts of lactate and protons via monocarboxylate transporters (MCTs), which exacerbates extracellular acidification and supports the formation of a hostile environment. We have studied the mechanisms of regulated lactate transport in MCF-7 human breast cancer cells. Under hypoxia, expression of MCT1 and MCT4 remained unchanged, while expression of carbonic anhydrase IX (CAIX) was greatly enhanced. Our results show that CAIX augments MCT1 transport activity by a non-catalytic interaction. Mutation studies in Xenopus oocytes indicate that CAIX, via its intramolecular H+-shuttle His200, functions as a “proton-collecting/distributing antenna” to facilitate rapid lactate flux via MCT1. Knockdown of CAIX significantly reduced proliferation of cancer cells, suggesting that rapid efflux of lactate and H+, as enhanced by CAIX, contributes to cancer cell survival under hypoxic conditions.
Collapse
|
19
|
Poulin P, Chen YH, Ding X, Gould SE, Hop CE, Messick K, Oeh J, Liederer BM. Prediction of Drug Distribution in Subcutaneous Xenografts of Human Tumor Cell Lines and Healthy Tissues in Mouse: Application of the Tissue Composition-Based Model to Antineoplastic Drugs. J Pharm Sci 2015; 104:1508-21. [DOI: 10.1002/jps.24336] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/05/2014] [Accepted: 12/12/2014] [Indexed: 12/20/2022]
|
20
|
Khajah MA, Mathew PM, Alam-Eldin NS, Luqmani YA. Bleb formation is induced by alkaline but not acidic pH in estrogen receptor silenced breast cancer cells. Int J Oncol 2015; 46:1685-98. [PMID: 25672508 DOI: 10.3892/ijo.2015.2884] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/29/2015] [Indexed: 11/06/2022] Open
Abstract
De novo and acquired resistance to endocrine-based therapies in breast cancer occurs in parallel with epithelial to mesenchymal transition (EMT), which is associated with enhanced proliferative and metastatic potential, and poor clinical outcome. We have established several endocrine insensitive breast cancer lines by shRNA-induced depletion of estrogen receptor (ER) by transfection of MCF7 cells. All of these exhibit EMT. We have previously reported that brief exposure of specifically ER- breast cancer cells, to extracellular alkaline pH, results in cell rounding and segregation, and leads to enhanced invasive potential. In this study we describe more detailed morphological changes and compare these with cell exposure to acidic pH. Morphological changes and localization of various molecules critical for cell adhesion and motility, associated with pH effects, were assessed by live cell microscopy, electron microscopy, and immunofluorescence. Exposure of either ER- or ER+ breast cancer cells to extracellular acidic pH did not induce significant changes in morphological appearance. Conversely, brief exposure of specifically ER silenced cells, to alkaline pH, resulted in cell contractolation and formation of bleb-like actin-rich structures which were evenly distributed on the outer membrane. Integrin α2, FAK, and JAM-1 were found in the cytoplasm streaming into the newly formed blebs. These blebs appear to be related to cell polarity and movement. Pre-treatment with cytochalasin-D or inhibitors of Rho or MLCK prevented both contractolation and bleb formation. Our data suggest that the effect of pH on the microenvironment of endocrine resistant breast cancer cells needs to be more extensively investigated. Alkaline, rather than acidic pH, appears to induce dramatic morphological changes, and enhances their invasive capabilities, through re-organization of cortical actin.
Collapse
|
21
|
Chen D, Bobko AA, Gross AC, Evans R, Marsh CB, Khramtsov VV, Eubank TD, Friedman A. Involvement of tumor macrophage HIFs in chemotherapy effectiveness: mathematical modeling of oxygen, pH, and glutathione. PLoS One 2014; 9:e107511. [PMID: 25295611 PMCID: PMC4189793 DOI: 10.1371/journal.pone.0107511] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/12/2014] [Indexed: 12/17/2022] Open
Abstract
The four variables, hypoxia, acidity, high glutathione (GSH) concentration and fast reducing rate (redox) are distinct and varied characteristics of solid tumors compared to normal tissue. These parameters are among the most significant factors underlying the metabolism and physiology of solid tumors, regardless of their type or origin. Low oxygen tension contributes to both inhibition of cancer cell proliferation and therapeutic resistance of tumors; low extracellular pH, the reverse of normal cells, mainly enhances tumor invasion; and dysregulated GSH and redox potential within cancer cells favor their proliferation. In fact, cancer cells under these microenvironmental conditions appreciably alter tumor response to cytotoxic anti-cancer treatments. Recent experiments measured the in vivo longitudinal data of these four parameters with tumor development and the corresponding presence and absence of tumor macrophage HIF-1α or HIF-2α in a mouse model of breast cancer. In the current paper, we present a mathematical model-based system of (ordinary and partial) differential equations to monitor tumor growth and susceptibility to standard chemotherapy with oxygen level, pH, and intracellular GSH concentration. We first show that our model simulations agree with the corresponding experiments, and then we use our model to suggest treatments of tumors by altering these four parameters in tumor microenvironment. For example, the model qualitatively predicts that GSH depletion can raise the level of reactive oxygen species (ROS) above a toxic threshold and result in inhibition of tumor growth.
Collapse
Affiliation(s)
- Duan Chen
- Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Andrey A. Bobko
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Amy C. Gross
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Randall Evans
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Clay B. Marsh
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Valery V. Khramtsov
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Timothy D. Eubank
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Avner Friedman
- Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
22
|
Madhusudhan A, Reddy GB, Venkatesham M, Veerabhadram G, Kumar DA, Natarajan S, Yang MY, Hu A, Singh SS. Efficient pH dependent drug delivery to target cancer cells by gold nanoparticles capped with carboxymethyl chitosan. Int J Mol Sci 2014; 15:8216-34. [PMID: 24821542 PMCID: PMC4057728 DOI: 10.3390/ijms15058216] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/11/2014] [Accepted: 04/30/2014] [Indexed: 02/01/2023] Open
Abstract
Doxorubicin (DOX) was immobilized on gold nanoparticles (AuNPs) capped with carboxymethyl chitosan (CMC) for effective delivery to cancer cells. The carboxylic group of carboxymethyl chitosan interacts with the amino group of the doxorubicin (DOX) forming stable, non-covalent interactions on the surface of AuNPs. The carboxylic group ionizes at acidic pH, thereby releasing the drug effectively at acidic pH suitable to target cancer cells. The DOX loaded gold nanoparticles were effectively absorbed by cervical cancer cells compared to free DOX and their uptake was further increased at acidic conditions induced by nigericin, an ionophore that causes intracellular acidification. These results suggest that DOX loaded AuNPs with pH-triggered drug releasing properties is a novel nanotheraputic approach to overcome drug resistance in cancer.
Collapse
Affiliation(s)
- Alle Madhusudhan
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Andhra Pradesh 500007, India.
| | - Gangapuram Bhagavanth Reddy
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Andhra Pradesh 500007, India.
| | - Maragoni Venkatesham
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Andhra Pradesh 500007, India.
| | - Guttena Veerabhadram
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Andhra Pradesh 500007, India.
| | - Dudde Anil Kumar
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad, Andhra Pradesh 500007, India.
| | - Sumathi Natarajan
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad, Andhra Pradesh 500007, India.
| | - Ming-Yeh Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien City 970, Taiwan.
| | - Anren Hu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien City 970, Taiwan.
| | - Surya S Singh
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad, Andhra Pradesh 500007, India.
| |
Collapse
|
23
|
Understanding the pharmacological properties of a metabolic PET tracer in prostate cancer. Proc Natl Acad Sci U S A 2014; 111:7254-9. [PMID: 24785505 DOI: 10.1073/pnas.1405240111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Generally, solid tumors (>400 mm(3)) are inherently acidic, with more aggressive growth producing greater acidity. If the acidity could be targeted as a biomarker, it would provide a means to gauge the pace of tumor growth and degree of invasiveness, as well as providing a basis for predicting responses to pH-dependent chemotherapies. We have developed a (64)Cu pH (low) insertion peptide (pHLIP) for targeting, imaging, and quantifying acidic tumors by PET, and our findings reveal utility in assessing prostate tumors. The new pHLIP version limits indiscriminate healthy tissue binding, and we demonstrate its targeting of extracellular acidification in three different prostate cancer models, each with different vascularization and acid-extruding protein carbonic anhydrase IX (CAIX) expression. We then describe the tumor distribution of this radiotracer ex vivo, in association with blood perfusion and known biomarkers of acidity, such as hypoxia, lactate dehydrogenase A, and CAIX. We find that the probe reveals metabolic variations between and within tumors, and discriminates between necrotic and living tumor areas.
Collapse
|
24
|
Andreev OA, Engelman DM, Reshetnyak YK. Targeting diseased tissues by pHLIP insertion at low cell surface pH. Front Physiol 2014; 5:97. [PMID: 24659971 PMCID: PMC3952044 DOI: 10.3389/fphys.2014.00097] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/25/2014] [Indexed: 12/12/2022] Open
Abstract
The discovery of the pH Low Insertion Peptides (pHLIPs®) provides an opportunity to develop imaging and drug delivery agents targeting extracellular acidity. Extracellular acidity is associated with many pathological states, such as those in cancer, ischemic stroke, neurotrauma, infection, lacerations, and others. The metabolism of cells in injured or diseased tissues often results in the acidification of the extracellular environment, so acidosis might be useful as a general marker for the imaging and treatment of diseased states if an effective targeting method can be developed. The molecular mechanism of a pHLIP peptide is based on pH-dependent membrane-associated folding. pHLIPs, being moderately hydrophobic peptides, have high affinities for cellular membranes at normal pH, but fold and insert across membranes at low pH, allowing them to sense pH at the surfaces of cells in diseased tissues, where it is the lowest. Here we discuss the main principles of pHLIP interactions with membrane lipid bilayers at neutral and low pHs, the possibility of tuning the folding and insertion pH by peptide sequence variation, and potential applications of pHLIPs for imaging, therapy and image-guided interventions.
Collapse
Affiliation(s)
- Oleg A Andreev
- Department of Physics, University of Rhode Island Kingston, RI, USA
| | - Donald M Engelman
- Department of Molecular Biophysics and Biochemistry, Yale University New Haven, CT, USA
| | | |
Collapse
|
25
|
Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR scanner. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2014; 27:477-85. [DOI: 10.1007/s10334-014-0433-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/22/2022]
|
26
|
Tumor targeting of a cell penetrating peptide by fusing with a pH-sensitive histidine-glutamate co-oligopeptide. Biomaterials 2014; 35:4082-7. [PMID: 24508076 DOI: 10.1016/j.biomaterials.2014.01.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/19/2014] [Indexed: 12/21/2022]
Abstract
Cell penetrating peptides (CPPs) have been well established as potential carriers for intracellular delivery of protein/peptide therapeutics. However, their lack of selectivity impedes their application in vivo. In order to increase their specificity, a highly pH-sensitive histidine-glutamate (HE) co-oligopeptide was fused with a CPP, i.e. model amphipathic peptide (MAP), and was expressed as a fusion protein with glutathione S-transferase (GST) acting as a cargo protein. Compared with two other fusion proteins containing either HE or MAP, only the fused peptide (HE-MAP) could effectively deliver the cargo GST protein to cells at pH 6.5 or below, while maintaining low delivery to cells at pH 7.0 and above. Using a xenograft mouse model of human breast cancer, fluorescent imaging showed that only HE-MAP could effectively target GST to the tumor site, while reducing non-specific association of MAP in other organs. The data presented in this report demonstrate the diagnostic and/or therapeutic potential of the fused peptide, HE-MAP, for targeting the acidic tumor microenvironment. The concise design for this pH-sensitive peptide offers a simple way to overcome CPP's lack of selectivity, which could lead to increased application of CPPs and macromolecular therapeutics.
Collapse
|
27
|
pH dependent transfer of nano-pores into membrane of cancer cells to induce apoptosis. Sci Rep 2013; 3:3560. [PMID: 24356337 PMCID: PMC3868956 DOI: 10.1038/srep03560] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 11/20/2013] [Indexed: 12/18/2022] Open
Abstract
Proper balance of ions in intracellular and extracellular space is the key for normal cell functioning. Changes in the conductance of membranes for ions will lead to cell death. One of the main differences between normal and cancerous cells is the low extracellular pHe and the reverse pH gradient: intracellular pHi is higher than extracellular pHe. We report here pH-selective transfer of nano-pores to cancer cells for the dis-regulation of balance of monovalent cations to induce cell death at mildly acidic pHe as it is in most solid tumors. Our approach is based on the pH-sensitive fusion of cellular membrane with the liposomes containing gramicidin A forming cation-conductive β-helix in the membrane. Fusion is promoted only at low extracellular pH by the pH (Low) Insertion Peptide (pHLIP®) attached to the liposomes. Gramicidin channels inserted into the cancer cells open flux of protons into the cytoplasm and disrupt balance of other monovalent cations, which induces cell apoptosis.
Collapse
|
28
|
Damaghi M, Wojtkowiak JW, Gillies RJ. pH sensing and regulation in cancer. Front Physiol 2013; 4:370. [PMID: 24381558 PMCID: PMC3865727 DOI: 10.3389/fphys.2013.00370] [Citation(s) in RCA: 398] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 11/26/2013] [Indexed: 12/13/2022] Open
Abstract
Cells maintain intracellular pH (pHi) within a narrow range (7.1–7.2) by controlling membrane proton pumps and transporters whose activity is set by intra-cytoplasmic pH sensors. These sensors have the ability to recognize and induce cellular responses to maintain the pHi, often at the expense of acidifying the extracellular pH. In turn, extracellular acidification impacts cells via specific acid-sensing ion channels (ASICs) and proton-sensing G-protein coupled receptors (GPCRs). In this review, we will discuss some of the major players in proton sensing at the plasma membrane and their downstream consequences in cancer cells and how these pH-mediated changes affect processes such as migration and metastasis. The complex mechanisms by which they transduce acid pH signals to the cytoplasm and nucleus are not well understood. However, there is evidence that expression of proton-sensing GPCRs such as GPR4, TDAG8, and OGR1 can regulate aspects of tumorigenesis and invasion, including cofilin and talin regulated actin (de-)polymerization. Major mechanisms for maintenance of pHi homeostasis include monocarboxylate, bicarbonate, and proton transporters. Notably, there is little evidence suggesting a link between their activities and those of the extracellular H+-sensors, suggesting a mechanistic disconnect between intra- and extracellular pH. Understanding the mechanisms of pH sensing and regulation may lead to novel and informed therapeutic strategies that can target acidosis, a common physical hallmark of solid tumors.
Collapse
Affiliation(s)
- Mehdi Damaghi
- Department of Cancer Imaging and Metabolism, Moffitt Cancer Center and Research Institute Tampa, FL, USA
| | - Jonathan W Wojtkowiak
- Department of Cancer Imaging and Metabolism, Moffitt Cancer Center and Research Institute Tampa, FL, USA
| | - Robert J Gillies
- Department of Cancer Imaging and Metabolism, Moffitt Cancer Center and Research Institute Tampa, FL, USA
| |
Collapse
|
29
|
Zhao R, Visentin M, Suadicani SO, Goldman ID. Inhibition of the proton-coupled folate transporter (PCFT-SLC46A1) by bicarbonate and other anions. Mol Pharmacol 2013; 84:95-103. [PMID: 23609145 PMCID: PMC3684825 DOI: 10.1124/mol.113.085605] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/22/2013] [Indexed: 11/22/2022] Open
Abstract
The proton-coupled folate transporter (PCFT) plays a key role in intestinal folate absorption, and loss-of-function mutations in the gene encoding this transporter are the molecular basis for hereditary folate malabsorption. Using a stable transfectant with high expression of PCFT, physiologic levels of bicarbonate produced potent and rapidly reversible inhibition of PCFT-mediated transport at neutral pH. Bisulfite and nitrite also inhibited PCFT function at neutral pH, whereas sulfate, nitrate, and phosphate had no impact at all. At weakly acidic pH (6.5), bisulfite and nitrite exhibited much stronger inhibition of PCFT-mediated transport, whereas sulfate and nitrate remained noninhibitory. Inhibition by bisulfite and nitrite at pH 6.5 was associated with a marked decrease in the influx Vmax and collapse of the transmembrane proton gradient attributed to the diffusion of the protonated forms into these cells. Monocarboxylates such as pyruvate and acetate also collapsed the pH gradient and were also inhibitory, whereas citrate and glycine neither altered the proton gradient nor inhibited PCFT-mediated transport. These observations add another dimension to the unfavorable pH environment for PCFT function in systemic tissues: the presence of high concentrations of bicarbonate.
Collapse
Affiliation(s)
- Rongbao Zhao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Chanin 628, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
30
|
Cherian C, Kugel Desmoulin S, Wang L, Polin L, White K, Kushner J, Stout M, Hou Z, Gangjee A, Matherly LH. Therapeutic targeting malignant mesothelioma with a novel 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate via its selective uptake by the proton-coupled folate transporter. Cancer Chemother Pharmacol 2013; 71:999-1011. [PMID: 23412628 DOI: 10.1007/s00280-013-2094-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/13/2013] [Indexed: 12/15/2022]
Abstract
PURPOSE We examined whether the novel 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate, compound 2, might be an effective treatment for malignant pleural mesothelioma (MPM), reflecting its selective membrane transport by the proton-coupled folate transport (PCFT) over the reduced folate carrier (RFC). METHODS HeLa sublines expressing exclusively PCFT (R1-11-PCFT4) or RFC (R1-11-RFC6) and H2452 MPM cells were assayed for transport with [(3)H]compound 2. [(3)H]Polyglutamate metabolites of compound 2 were measured in R1-11-PCFT4 and H2452 cells. In vitro cell proliferation assays and colony formation assays were performed. Inhibition of glycinamide ribonucleotide formyltransferase (GARFTase) was assayed by nucleoside protection assays and in situ GARFTase assays with [(14)C]glycine. In vivo efficacy was established with early- and advanced-stage H2452 xenografts in severe-combined immunodeficient (SCID) mice administered intravenous compound 2. RESULTS [(3)H]Compound 2 was selectively transported by PCFT and was metabolized to polyglutamates. Compound 2 selectively inhibited proliferation of R1-11-PCFT4 cells over R1-11-RFC6 cells. H2452 human MPM cells were sensitive to the antiproliferative effects of compound 2. By colony-forming assays with H2452 cells, compound 2 was cytotoxic. Compound 2 inhibited GARFTase in de novo purine biosynthesis. In vivo efficacy was confirmed toward early- and advanced-stage H2452 xenografts in SCID mice administered compound 2. CONCLUSIONS Our results demonstrate potent antitumor efficacy of compound 2 toward H2452 MPM cells in vitro and in vivo, reflecting its efficient membrane transport by PCFT, synthesis of polyglutamates, and inhibition of GARFTase. Selectivity for non-RFC cellular uptake processes by tumor-targeted antifolates such as compound 2 presents an exciting new opportunity for treating solid tumors.
Collapse
Affiliation(s)
- Christina Cherian
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Moshnikova A, Moshnikova V, Andreev OA, Reshetnyak YK. Antiproliferative effect of pHLIP-amanitin. Biochemistry 2013; 52:1171-8. [PMID: 23360641 DOI: 10.1021/bi301647y] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Toxins could be effective anticancer drugs, if their selective delivery into cancer cells could be achieved. We have shown that the energy of membrane-associated folding of water-soluble membrane peptides of the pHLIP (pH low insertion peptide) family could be used to move cell-impermeable cargo across the lipid bilayer into the cytoplasm of cancer cells. Here we present the results of a study of pHLIP-mediated cellular delivery of a polar cell-impermeable toxin, α-amanitin, an inhibitor of RNA polymerase II. We show that pHLIP can deliver α-amanitin into cells in a pH-dependent fashion and induce cell death within 48 h. Translocation capability could be tuned by conjugating amanitin to the C-terminus of pHLIP via linkers of different hydrophobicities that could be cleaved in the cytoplasm. pHLIP-SPDP-amanitin, which exhibits 4-5 times higher antiproliferative ability at pH 6 than at pH 7.4, was selected as the best construct. The major mechanism of amanitin delivery is direct translocation (flip) across a membrane by pHLIP and cleavage of the S-S bond in the cytoplasm. The antiproliferative effect was monitored on four different human cancer cell lines. pHLIP-mediated cytoplasmic delivery of amanitin could create great opportunities to use the toxin as a potent pH-selective anticancer agent, which predominantly targets highly proliferative cancer cells at low extracellular pH values.
Collapse
Affiliation(s)
- Anna Moshnikova
- Physics Department, University of Rhode Island, 2 Lippitt Road, Kingston, RI 02881, USA
| | | | | | | |
Collapse
|
32
|
Abstract
This article focuses on the cellular, biochemical, and molecular pharmacology of antifolates and how a basic understanding of the mechanism of action of methotrexate, its cytotoxic determinants, mechanisms of resistance, and transport into and out of cells has led to the development of a new generation of antifolates, a process that continues in the laboratory and in the clinics. New approaches to folate-based cancer chemotherapy are described based on the targeted delivery of drugs to malignant cells.
Collapse
Affiliation(s)
- Michele Visentin
- Department of Medicine and the Albert Einstein Cancer Center, The Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
33
|
Wang L, Cherian C, Kugel Desmoulin S, Mitchell-Ryan S, Hou Z, Matherly LH, Gangjee A. Synthesis and biological activity of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl regioisomers as inhibitors of de novo purine biosynthesis with selectivity for cellular uptake by high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier. J Med Chem 2012; 55:1758-70. [PMID: 22243528 DOI: 10.1021/jm201688n] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We previously reported the selective transport of classical 2-amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidines with a thienoyl-for-benzoyl-substituted side chain and a three- (3a) and four-carbon (3b) bridge. Compound 3a was more potent than 3b against tumor cells. While 3b was completely selective for transport by folate receptors (FRs) and the proton-coupled folate transporter (PCFT) over the reduced folate carrier (RFC), 3a was not. To determine if decreasing the distance between the bicyclic scaffold and l-glutamate in 3b would preserve transport selectivity and potency against human tumor cells, 3b regioisomers with [1,3] (7 and 8) and [1,2] (4, 5, and 6) substitutions on the thienoyl ring and with acetylenic insertions in the four-atom bridge were synthesized and evaluated. Compounds 7 and 8 were potent nanomolar inhibitors of KB and IGROV1 human tumor cells with complete selectivity for FRα and PCFT over RFC.
Collapse
Affiliation(s)
- Lei Wang
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | | | | | | | | | | | | |
Collapse
|
34
|
Hou Z, Kugel Desmoulin S, Etnyre E, Olive M, Hsiung B, Cherian C, Wloszczynski PA, Moin K, Matherly LH. Identification and functional impact of homo-oligomers of the human proton-coupled folate transporter. J Biol Chem 2011; 287:4982-95. [PMID: 22179615 DOI: 10.1074/jbc.m111.306860] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The proton-coupled folate transporter (PCFT; SLC46A1) is a proton-folate symporter that is abundantly expressed in solid tumors and normal tissues, such as duodenum. The acidic pH optimum for PCFT is relevant to intestinal absorption of folates and could afford a means of selectively targeting tumors with novel cytotoxic antifolates. PCFT is a member of the major facilitator superfamily of transporters. Because major facilitator superfamily members exist as homo-oligomers, we tested this for PCFT because such structures could be significant to PCFT mechanism and regulation. By transiently expressing PCFT in reduced folate carrier- and PCFT-null HeLa (R1-11) cells and chemical cross-linking with 1,1-methanediyl bismethanethiosulfonate and Western blotting, PCFT species with molecular masses approximating those of the PCFT dimer and higher order oligomers were detected. Blue native polyacrylamide gel electrophoresis identified PCFT dimer, trimer, and tetramer forms. PCFT monomers with hemagglutinin and His(10) epitope tags were co-expressed in R1-11 cells, solubilized, and bound to nickel affinity columns, establishing their physical associations. Co-expressing YPet and ECFP*-tagged PCFT monomers enabled transport and fluorescence resonance energy transfer in plasma membranes of R1-11 cells. Combined wild-type (WT) and inactive mutant P425R PCFTs were targeted to the cell surface by surface biotinylation/Western blots and confocal microscopy and functionally exhibited a "dominant-positive" phenotype, implying positive cooperativity between PCFT monomers and functional rescue of mutant by WT PCFT. Our results demonstrate the existence of PCFT homo-oligomers and imply their functional and regulatory impact. Better understanding of these higher order PCFT structures may lead to therapeutic applications related to folate uptake in hereditary folate malabsorption, and delivery of PCFT-targeted chemotherapy drugs for cancer.
Collapse
Affiliation(s)
- Zhanjun Hou
- Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kugel Desmoulin S, Wang L, Hales E, Polin L, White K, Kushner J, Stout M, Hou Z, Cherian C, Gangjee A, Matherly LH. Therapeutic targeting of a novel 6-substituted pyrrolo [2,3-d]pyrimidine thienoyl antifolate to human solid tumors based on selective uptake by the proton-coupled folate transporter. Mol Pharmacol 2011; 80:1096-107. [PMID: 21940787 PMCID: PMC3228537 DOI: 10.1124/mol.111.073833] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 09/22/2011] [Indexed: 01/25/2023] Open
Abstract
The proton-coupled folate transporter (PCFT) is a proton-folate symporter with an acidic pH optimum. By real-time reverse transcription-polymerase chain reaction, PCFT was expressed in the majority of 53 human tumor cell lines, with the highest levels in Caco-2 (colorectal adenocarcinoma), SKOV3 (ovarian), and HepG2 (hepatoma) cells. A novel 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate (compound 1) was used to establish whether PCFT can deliver cytotoxic drug under pH conditions that mimic the tumor microenvironment. Both 1 and pemetrexed (Pmx) inhibited proliferation of R1-11-PCFT4 HeLa cells engineered to express PCFT without the reduced folate carrier (RFC) and of HepG2 cells expressing both PCFT and RFC. Unlike Pmx, 1 did not inhibit proliferation of R1-11-RFC6 HeLa cells, which express RFC without PCFT. Treatment of R1-11-PCFT4 cells at pH 6.8 with 1 or Pmx inhibited colony formation with dose and time dependence. Transport of [(3)H]compound 1 into R1-11-PCFT4 and HepG2 cells was optimal at pH 5.5 but appreciable at pH 6.8. At pH 6.8, [(3)H]compound 1 was metabolized to (3)H-labeled polyglutamates. Glycinamide ribonucleotide formyltransferase (GARFTase) in R1-11-PCFT4 cells was inhibited by 1 at pH 6.8, as measured by an in situ GARFTase assay, and was accompanied by substantially reduced ATP levels. Compound 1 caused S-phase accumulation and a modest level of apoptosis. An in vivo efficacy trial with severe combined immunodeficient mice implanted with subcutaneous HepG2 tumors showed that compound 1 was active. Our findings suggest exciting new therapeutic possibilities to selectively deliver novel antifolate drugs via transport by PCFT over RFC by exploiting the acidic tumor microenvironment.
Collapse
Affiliation(s)
- Sita Kugel Desmoulin
- Graduate Program in Cancer Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li R, Xie L, Zhu Z, Liu Q, Hu Y, Jiang X, Yu L, Qian X, Guo W, Ding Y, Liu B. Reversion of pH-induced physiological drug resistance: a novel function of copolymeric nanoparticles. PLoS One 2011; 6:e24172. [PMID: 21966359 PMCID: PMC3180282 DOI: 10.1371/journal.pone.0024172] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/01/2011] [Indexed: 11/19/2022] Open
Abstract
AIMS The extracellular pH of cancer cells is lower than the intracellular pH. Weakly basic anticancer drugs will be protonated extracellularly and display a decreased intracellular concentration. In this study, we show that copolymeric nanoparticles (NPs) are able to overcome this "pH-induced physiological drug resistance" (PIPDR) by delivering drugs to the cancer cells via endocytosis rather than passive diffussion. MATERIALS AND METHODS As a model nanoparticle, Tetradrine (Tet, Pka 7.80) was incorporated into mPEG-PCL. The effectiveness of free Tet and Tet-NPs were compared at different extracellular pHs (pH values 6.8 and 7.4, respectively) by MTT assay, morphological observation and apoptotic analysis in vitro and on a murine model by tumor volume measurement, PET-CT scanning and side effect evaluation in vivo. RESULTS The cytotoxicity of free Tet decreased prominently (P<0.05) when the extracellular pH decreased from 7.4 to 6.8. Meanwhile, the cytotoxicity of Tet-NPs was not significantly influenced by reduced pH. In vivo experiment also revealed that Tet-NPs reversed PIPDR more effectively than other existing methods and with much less side effects. CONCLUSION The reversion of PIPDR is a new discovered mechanism of copolymeric NPs. This study emphasized the importance of cancer microenvironmental factors in anticancer drug resistance and revealed the superiority of nanoscale drug carrier from a different aspect.
Collapse
Affiliation(s)
- Rutian Li
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Li Xie
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Zhenshu Zhu
- Laboratory of Mesoscopic Chemistry and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Qin Liu
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Yong Hu
- National Laboratory of Solid State Microstructure, Department of Material Science and Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Xiqun Jiang
- Laboratory of Mesoscopic Chemistry and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Lixia Yu
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Xiaoping Qian
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Wanhua Guo
- Department of Nuclear Medicine, Drum-Tower Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Yitao Ding
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
- * E-mail: (YTD); (BRL)
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
- * E-mail: (YTD); (BRL)
| |
Collapse
|
37
|
Hashim AI, Zhang X, Wojtkowiak JW, Martinez GV, Gillies RJ. Imaging pH and metastasis. NMR IN BIOMEDICINE 2011; 24:582-91. [PMID: 21387439 PMCID: PMC3740268 DOI: 10.1002/nbm.1644] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/30/2010] [Accepted: 10/19/2010] [Indexed: 05/05/2023]
Abstract
Metastasis is a multistep process that culminates in the spread of cells from a primary tumor to a distant site or organs. For tumor cells to be able to metastasize, they have to locally invade through basement membrane into the lymphatic and the blood vasculatures. Eventually they extravasate from the blood and colonize in the secondary organ. This process involves multiple interactions between the tumor cells and their microenvironments. The microenvironment surrounding tumors has a significant impact on tumor development and progression. A key factor in the microenvironment is an acidic pH. The extracellular pH of solid tumors is more acidic in comparison to normal tissue as a consequence of high glycolysis and poor perfusion. It plays an important role in almost all steps of metastasis. The past decades have seen development of technologies to non-invasively measure intra- and/or extracellular pH. Most successful measurements are MR-based, and sensitivity and accuracy have dramatically improved. Quantitatively imaging the distribution of acidity helps us understand the role of the tumor microenvironment in cancer progression. The present review discusses different MR methods in measuring tumor pH along with emphasizing the importance of extracelluar tumor low pH on different steps of metastasis; more specifically focusing on epithelial-to-mesenchymal transition (EMT), and anti cancer immunity.
Collapse
Affiliation(s)
- Arig Ibrahim Hashim
- Department of Imaging research, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | | |
Collapse
|
38
|
Wu YL, Hsu PY, Hsu CP, Wang CC, Lee LW, Lin JJ. Electrical characterization of single cells using polysilicon wire ion sensor in an isolation window. Biomed Microdevices 2011; 13:939-47. [PMID: 21695502 DOI: 10.1007/s10544-011-9563-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A polysilicon wire (PSW) sensor can detect the H(+) ion density (pH value) of the medium coated on its surface, and different cells produce different extracellular acidification and hence different H(+) ion densities. Based on this, we used a PSW sensor in combination with a mold-cast polydimethylsiloxane (PDMS) isolation window to detect the adhesion, apoptosis and extracellular acidification of single normal cells and single cancer cells. Single living human normal cells WI38, MRC5, and BEAS-2B as well as non-small-cell lung cancer (NSCLC) cells A549, H1299, and CH27 were cultivated separately inside the isolation window. The current flowing through the PSW channel was measured. From the PSW channel current change as a function of time, we determined the cell adhesion time by observing the time required for the current change to saturate, since a stable extracellular ion density was established after the cells were completely adhered to the PSW surface. The apoptosis of cells can also be determined when the channel current change drops to zero. We found that all the NSCLC cells had a higher channel current change and hence a lower pH value than the normal cells anytime after they were seeded. The corresponding average pH values were 5.86 for A549, 6.00 for H1299, 6.20 for CH27, 6.90 for BEAS-2B, 6.96for MRC5, and 7.02 for WI38, respectively, after the cells were completely adhered to the PSW surface. Our results show that NSCLC cells have a stronger cell-substrate adhesion and a higher extracellular acidification rate than normal cells.
Collapse
Affiliation(s)
- You-Lin Wu
- Department of Electrical Engineering, National Chi Nan University, Puli, Nantou 54561, Taiwan ROC.
| | | | | | | | | | | |
Collapse
|
39
|
Andreev OA, Engelman DM, Reshetnyak YK. pH-sensitive membrane peptides (pHLIPs) as a novel class of delivery agents. Mol Membr Biol 2010; 27:341-52. [PMID: 20939768 DOI: 10.3109/09687688.2010.509285] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abstract Here we review a novel class of delivery vehicles based on pH-sensitive, moderately polar membrane peptides, which we call pH (Low) Insertion Peptides (pHLIPs), that target cells located in the acidic environment found in many diseased tissues, including tumours. Acidity targeting by pHLIPs is achieved as a result of helix formation and transmembrane insertion. In contrast to the earlier technologies based on cell-penetrating peptides, pHLIPs act as monomeric membrane-inserting peptides that translocate one terminus across a membrane into the cytoplasm, while the other terminus remains in the extracellular space, locating the peptide in the membrane lipid bilayer. Therefore pHLIP has a dual delivery capability: it can tether cargo molecules or nanoparticles to the surfaces of cells in diseased tissues and/or it can move a cell-impermeable cargo molecule across the membrane into the cytoplasm. The source of energy for moving polar molecules attached to pHLIP through the hydrophobic layer of a membrane bilayer is the membrane-associated folding of the polypeptide. A drop in pH leads to the protonation of negatively charged residues (Asp or Glu), which enhances peptide hydrophobicity, increasing the affinity of the peptide for the lipid bilayer and triggering peptide folding and subsequent membrane insertion. The process is accompanied by the release of energy that can be utilized to move cell-impermeable cargo across a membrane. That the mechanism is now understood, and that targeting of tumours in mice has been shown, suggest a number of future applications of the pHLIP technology in the diagnosis and treatment of disease.
Collapse
Affiliation(s)
- Oleg A Andreev
- Physics Department, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | |
Collapse
|
40
|
Ona T, Shibata J. Advanced dynamic monitoring of cellular status using label-free and non-invasive cell-based sensing technology for the prediction of anticancer drug efficacy. Anal Bioanal Chem 2010; 398:2505-33. [DOI: 10.1007/s00216-010-4223-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/24/2010] [Accepted: 09/13/2010] [Indexed: 12/26/2022]
|
41
|
Desmoulin SK, Wang Y, Wu J, Stout M, Hou Z, Fulterer A, Chang MH, Romero MF, Cherian C, Gangjee A, Matherly LH. Targeting the proton-coupled folate transporter for selective delivery of 6-substituted pyrrolo[2,3-d]pyrimidine antifolate inhibitors of de novo purine biosynthesis in the chemotherapy of solid tumors. Mol Pharmacol 2010; 78:577-87. [PMID: 20601456 PMCID: PMC2981399 DOI: 10.1124/mol.110.065896] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 07/02/2010] [Indexed: 12/31/2022] Open
Abstract
The proton-coupled folate transporter (PCFT) is a folate-proton symporter with an acidic pH optimum, approximating the microenvironments of solid tumors. We tested 6-substituted pyrrolo[2,3-d]pyrimidine antifolates with one to six carbons in the bridge region for inhibition of proliferation in isogenic Chinese hamster ovary (CHO) and HeLa cells expressing PCFT or reduced folate carrier (RFC). Only analogs with three and four bridge carbons (N-{4-[3-2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]-pyrimidin-6-yl)propyl]benzoyl}-L-glutamic acid (compound 2) and N-{4-[4-2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]-pyrimidin-6-yl)butyl]benzoyl}*-L-glutamic acid (compound 3), respectively) were inhibitory, with 2 ≫ 3. Activity toward RFC-expressing cells was negligible. Compound 2 and pemetrexed (Pmx) competed with [(3)H]methotrexate for PCFT transport in PCFT-expressing CHO (R2/hPCFT4) cells from pH 5.5 to 7.2; inhibition increased with decreasing pH. In Xenopus laevis oocytes microinjected with PCFT cRNA, uptake of 2, like that of Pmx, was electrogenic. Cytotoxicity of 2 toward R2/hPCFT4 cells was abolished in the presence of adenosine or 5-amino-4-imidazolecarboxamide, suggesting that glycinamide ribonucleotide formyltransferase (GARFTase) in de novo purine biosynthesis was the primary target. Compound 2 decreased GTP and ATP pools by ∼50 and 75%, respectively. By an in situ GARFTase assay, 2 was ∼20-fold more inhibitory toward intracellular GARFTase than toward cell growth or colony formation. Compound 2 irreversibly inhibited clonogenicity, although this required at least 4 h of exposure. Our results document the potent antiproliferative activity of compound 2, attributable to its efficient cellular uptake by PCFT, resulting in inhibition of GARFTase and de novo purine biosynthesis. Furthermore, they establish the feasibility of selective chemotherapy drug delivery via PCFT over RFC, a process that takes advantage of a unique biological feature of solid tumors.
Collapse
Affiliation(s)
- Sita Kugel Desmoulin
- Graduate Program in Cancer Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Spugnini EP, Citro G, Fais S. Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:44. [PMID: 20459683 PMCID: PMC2876100 DOI: 10.1186/1756-9966-29-44] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 05/08/2010] [Indexed: 12/25/2022]
Abstract
The vacuolar ATPases are ATP-dependent proton pumps whose functions include the acidification of intracellular compartments and the extrusion of protons through the cell cytoplasmic membrane. These pumps play a pivotal role in the regulation of cell pH in normal cells and, to a much greater extent, in tumor cells. In fact, the glucose metabolism in hypoxic conditions by the neoplasms leads to an intercellular pH drift towards acidity. The acid microenvironment is modulated through the over-expression of H+ transporters that are also involved in tumor progression, invasiveness, distant spread and chemoresistance. Several strategies to block/downmodulate the efficiency of these transporters are currently being investigated. Among them, proton pump inhibitors have shown to successfully block the H+ transporters in vitro and in vivo, leading to apoptotic death. Furthermore, their action seems to synergize with conventional chemotherapy protocols, leading to chemosensitization and reversal of chemoresistance. Aim of this article is to critically revise the current knowledge of this cellular machinery and to summarize the therapeutic strategies developed to counter this mechanism.
Collapse
|
43
|
Coman D, Trubel HK, Hyder F. Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP5- and TmDOTMA-. NMR IN BIOMEDICINE 2010; 23:277-85. [PMID: 19957287 PMCID: PMC2843767 DOI: 10.1002/nbm.1461] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chemical shifts of complexes between paramagnetic lanthanide ions and macrocyclic chelates are sensitive to physiological variations (of temperature and/or pH). Here we demonstrate utility of a complex between thulium ion (Tm(3+)) and the macrocyclic chelate 1,4,7,10-tetramethyl 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (or DOTMA(4-)) for absolute temperature mapping in rat brain. The feasibility of TmDOTMA(-) is compared with that of another Tm(3+)-containing biosensor which is based on the macrocyclic chelate 1,4,7,10-tetraazacyclododecane- 1,4,7,10-tetrakis(methylene phosphonate) (or DOTP(8-)). In general, the in vitro and in vivo results suggest that Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from these agents (but exclude water) can provide temperature maps with good accuracy. While TmDOTP(5-) emanates three major distinct proton resonances which are differentially sensitive to temperature and pH, TmDOTMA(-) has a dominant pH-insensitive proton resonance from a -CH(3) group to allow higher signal-to-noise ratio (SNR) temperature assessment. Temperature (and pH) sensitivities of these resonances are practically identical at low (4.0T) and high (11.7T) magnetic fields and at nominal repetition times only marginal SNR loss is expected at the lower field. Since these resonances have extremely short relaxation times, high-speed chemical shift imaging (CSI) is needed to detect them. Repeated in vivo CSI scans with BIRDS demonstrate excellent measurement stability. Overall, results with TmDOTP(5-) and TmDOTMA(-) suggest that BIRDS can be reliably applied, either at low or high magnetic fields, for functional studies in rodents.
Collapse
Affiliation(s)
- Daniel Coman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
| | - Hubert K. Trubel
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
- Department of Pediatrics at HELIOS-Klinikum Wuppertal and University of Witten/Herdecke, Germany
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
44
|
Wang L, Cherian C, Desmoulin SK, Polin L, Deng Y, Wu J, Hou Z, White K, Kushner J, Matherly LH, Gangjee A. Synthesis and antitumor activity of a novel series of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier for cellular entry. J Med Chem 2010; 53:1306-18. [PMID: 20085328 DOI: 10.1021/jm9015729] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidines with a thienoyl side chain and four to six carbon bridge lengths (compounds 1-3) were synthesized as substrates for folate receptors (FRs) and the proton-coupled folate transporter (PCFT). Conversion of acetylene carboxylic acids to alpha-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidines. Sonogashira coupling with (S)-2-[(5-bromo-thiophene-2-carbonyl)-amino]-pentanedioic acid diethyl ester, followed by hydrogenation and saponification, afforded 1-3. Compounds 1 and 2 potently inhibited KB and IGROV1 human tumor cells that express FR alpha, reduced folate carrier (RFC), and PCFT. The analogs were selective for FR and PCFT over RFC. Glycinamide ribonucleotide formyltransferase was the principal cellular target. In SCID mice with KB tumors, 1 was highly active against both early (3.5 log kill, 1/5 cures) and advanced (3.7 log kill, 4/5 complete remissions) stage tumors. Our results demonstrate potent in vitro and in vivo antitumor activity for 1 due to selective transport by FRs and PCFT over RFC.
Collapse
Affiliation(s)
- Lei Wang
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Unal ES, Zhao R, Chang MH, Fiser A, Romero MF, Goldman ID. The functional roles of the His247 and His281 residues in folate and proton translocation mediated by the human proton-coupled folate transporter SLC46A1. J Biol Chem 2009; 284:17846-57. [PMID: 19389703 DOI: 10.1074/jbc.m109.008060] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
This report addresses the functional role of His residues in the proton-coupled folate transporter (PCFT; SLC46A1), which mediates intestinal folate absorption. Of ten His residues, only H247A and H281A mutations altered function. The folic acid influx Kt at pH 5.5 for H247A was downward arrow 8.4-fold. Although wild type (WT)-PCFT Ki values varied among the folates, Ki values were much lower and comparable for H247-A, -R, -Q, or -E mutants. Homology modeling localized His247 to the large loop separating transmembrane domains 6 and 7 at the cytoplasmic entrance of the translocation pathway in hydrogen-bond distance to Ser172. The folic acid influx Kt for S172A-PCFT was decreased similar to H247A. His281 faces the extracellular region in the seventh transmembrane domain. H281A-PCFT results in loss-of-function due to approximately 12-fold upward arrow in the folic acid influx Kt. When the pH was decreased from 5.5 to 4.5, the WT-PCFT folic acid influx Kt was unchanged, but the Kt decreased 4-fold for H281A. In electrophysiological studies in Xenopus oocytes, both WT-PCFT- and H281A-PCFT-mediated folic acid uptake produced current and acidification, and both exhibited a low level of folate-independent proton transport (slippage). Slippage was markedly increased for the H247A-PCFT mutant. The data suggest that disruption of the His247 to Ser172 interaction results in a PCFT conformational alteration causing a loss of selectivity, increased substrate access to a high affinity binding pocket, and proton transport in the absence of a folate gradient. The His281 residue is not essential for proton coupling but plays an important role in PCFT protonation, which, in turn, augments folate binding to the carrier.
Collapse
Affiliation(s)
- Ersin Selcuk Unal
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
46
|
Membrane transporters and folate homeostasis: intestinal absorption and transport into systemic compartments and tissues. Expert Rev Mol Med 2009; 11:e4. [PMID: 19173758 DOI: 10.1017/s1462399409000969] [Citation(s) in RCA: 271] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Members of the family of B9 vitamins are commonly known as folates. They are derived entirely from dietary sources and are key one-carbon donors required for de novo nucleotide and methionine synthesis. These highly hydrophilic molecules use several genetically distinct and functionally diverse transport systems to enter cells: the reduced folate carrier, the proton-coupled folate transporter and the folate receptors. Each plays a unique role in mediating folate transport across epithelia and into systemic tissues. The mechanism of intestinal folate absorption was recently uncovered, revealing the genetic basis for the autosomal recessive disorder hereditary folate malabsorption, which results from loss-of-function mutations in the proton-coupled folate transporter gene. It is therefore now possible to piece together how these folate transporters contribute, both individually and collectively, to folate homeostasis in humans. This review focuses on the physiological roles of the major folate transporters, with a brief consideration of their impact on the pharmacological activities of antifolates.
Collapse
|
47
|
Gosset G, Satre M, Blaive B, Clément JL, Martin JB, Culcasi M, Pietri S. Investigation of subcellular acidic compartments using α-aminophosphonate 31P nuclear magnetic resonance probes. Anal Biochem 2008; 380:184-94. [DOI: 10.1016/j.ab.2008.05.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 05/19/2008] [Accepted: 05/30/2008] [Indexed: 10/22/2022]
|
48
|
Gosset G, Martel S, Clément JL, Blaive B, Olive G, Culcasi M, Rosas R, Thévand A, Pietri S. Nouveaux marqueurs de pH utilisables en RMN du 31P. Détermination de la relaxation longitudinale en fonction de la structure chimique, de la température, du pH et du milieu biologique. CR CHIM 2008. [DOI: 10.1016/j.crci.2007.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Kassis AI, Korideck H, Wang K, Pospisil P, Adelstein SJ. Novel prodrugs for targeting diagnostic and therapeutic radionuclides to solid tumors. Molecules 2008; 13:391-404. [PMID: 18305426 PMCID: PMC6244955 DOI: 10.3390/molecules13020391] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 02/15/2008] [Accepted: 02/15/2008] [Indexed: 11/19/2022] Open
Abstract
Most cancer therapeutics (chemo, radiation, antibody-based, anti-angiogenic) are at best partially and/or temporarily effective. In general, the causes for failure can be summarized as: (i) poor diffusion and/or nonuniform distribution of drug/prodrug molecules in solid tumors; (ii) high drug concentration and retention in normal tissues (leading to side effects); (iii) requirement for plasma-membrane permeability and/or internalization of drug/prodrug molecules; (iv) low uptake of drug by tumor; (v) lack of retention of drug within tumor (most have gradient-driven reversible binding); and (vi) multidrug resistance. We are developing an innovative technology that aims to surmount these problems by actively concentrating and permanently entrapping radioimaging and radiotherapeutic prodrugs specifically within solid tumors. The approach will enable noninvasive sensing (imaging) and effective therapy of solid tumors, allowing tumor detection, diagnosis, and treatment to be closely coupled (personalized medicine).
Collapse
Affiliation(s)
- Amin I Kassis
- Department of Radiology, Harvard Medical School, Armenise Building, Room D2-137, 200 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
50
|
Zhao R, Goldman ID. The molecular identity and characterization of a Proton-coupled Folate Transporter--PCFT; biological ramifications and impact on the activity of pemetrexed. Cancer Metastasis Rev 2007; 26:129-39. [PMID: 17340171 DOI: 10.1007/s10555-007-9047-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Membrane transport of folates is essential for the survival of all mammalian cells and transport of antifolates is an important determinant of antifolate activity. While a major focus of attention has been on transport mediated by the reduced folate carrier and folate receptors, a very prominent carrier-mediated folate transport activity has been recognized for decades with a low-pH optimum and substrate specificity distinct from that of the reduced folate carrier which operates most efficiently at neutral pH. This low-pH transporter represents the mechanism by which folates are absorbed in the small intestine and it is also widely expressed in other human tissues and solid tumors. Recently, this laboratory discovered the molecular identity of this transporter which is genetically unrelated to the reduced folate carrier. This transporter is proton-coupled, electrogenic, and manifests a substrate specificity that is similar to that of the low-pH transport activity previously described in mammalian cells. The key role this transporter plays in intestinal folate absorption has been confirmed by the demonstration of a mutation in this gene in the rare autosomal recessive disorder, hereditary folate malabsorption. This article reviews (1) the characteristics and prevalence of the low-pH folate transport activity, (2) its relationship to, and properties of, the recently identified Proton-Coupled Folate Transporter (PCFT), (3) the physiological and pharmacological roles of this transporter, particularly with respect to pemetrexed, and (4) the historical controversy, now resolved, on the mechanism of intestinal folate absorption.
Collapse
Affiliation(s)
- Rongbao Zhao
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|