1
|
Wang JJ, He Z, Yang Y, Yu B, Wang H, Ding H, Cui G, Wang L, Wang DW, Jiang J. Chlorpromazine Efficiently Treats the Crisis of Pheochromocytoma: Four Case Reports and Literature Review. Front Cardiovasc Med 2021; 8:762371. [PMID: 34881311 PMCID: PMC8645834 DOI: 10.3389/fcvm.2021.762371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/31/2021] [Indexed: 01/27/2023] Open
Abstract
Pheochromocytoma multisystem crisis (PMC) is a potentially lethal emergency due to catecholamine secretion. The condition manifests as severe hypertension to intractable cardiogenic shock and has a high mortality rate. This study explored the efficacy and safety of applying chlorpromazine on PMC patients. The study included seven patients (median age, 42 years; range, 14–57 years) diagnosed with pheochromocytoma. Four consecutive PMC patients were admitted to our critical care unit between 2016 and 2020 due to abdominal or waist pain, nausea, and vomiting. Their blood pressure (BP) fluctuated between 200–330/120–200 and 40–70/30–50 mmHg. Chlorpromazine (25 or 50 mg) was injected intramuscularly, followed by continuous intravenous infusion (2–8 mg/h). The patients' BP decreased to 100–150/60–100 mmHg within 1–3 h and stabilized within 3–5 days. Two weeks later, surgical tumor resection was successfully performed in all four patients. Similar clinical outcomes were also obtained in three patients with sporadic PMC reported in the literature who received chlorpromazine treatment, which reduced their BP readings from >200/100 mmHg to 120/70 mmHg. Our observations, combined with sporadic reports, showed that chlorpromazine efficiently controlled PMC. Thus, future studies on the use of chlorpromazine are warranted.
Collapse
Affiliation(s)
- James Jiqi Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, China
| | - Zuowen He
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, China
| | - Yan Yang
- Division of Endocrinology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Yu
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, China
| | - Hong Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, China
| | - Hu Ding
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, China
| | - Guanglin Cui
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, China
| | - Luyun Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, China
| | - Jiangang Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, China
| |
Collapse
|
2
|
Joo YS, Lee HJ, Choi JS, Sung KW. Acepromazine inhibits hERG potassium ion channels expressed in human embryonic kidney 293 cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:75-82. [PMID: 28066143 PMCID: PMC5214913 DOI: 10.4196/kjpp.2017.21.1.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 12/22/2022]
Abstract
The effects of acepromazine on human ether-à-go-go-related gene (hERG) potassium channels were investigated using whole-cell voltage-clamp technique in human embryonic kidney (HEK293) cells transfected with hERG. The hERG currents were recorded with or without acepromazine, and the steady-state and peak tail currents were analyzed for the evaluating the drug effects. Acepromazine inhibited the hERG currents in a concentration-dependent manner with an IC50 value of 1.5 µM and Hill coefficient of 1.1. Acepromazine blocked hERG currents in a voltage-dependent manner between –40 and +10 mV. Before and after application of acepromazine, the half activation potentials of hERG currents changed to hyperpolarizing direction. Acepromazine blocked both the steady-state hERG currents by depolarizing pulse and the peak tail currents by repolarizing pulse; however, the extent of blocking by acepromazine in the repolarizing pulse was more profound than that in the depolarizing pulse, indicating that acepromazine has a high affinity for the open state of the channels, with a relatively lower affinity for the closed state of hERG channels. A fast application of acepromazine during the tail currents inhibited the open state of hERG channels in a concentration-dependent. The steady-state inactivation of hERG currents shifted to the hyperpolarized direction by acepromazine. These results suggest that acepromazine inhibits the hERG channels probably by an open- and inactivated-channel blocking mechanism. Regarding to the fact that the hERG channels are the potential target of drug-induced long QT syndrome, our results suggest that acepromazine can possibly induce a cardiac arrhythmia through the inhibition of hERG channels.
Collapse
Affiliation(s)
- Young Shin Joo
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Hong Joon Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jin-Sung Choi
- College of Pharmacy, Integrated Research Institute of Pharmaceutical, The Catholic University of Korea, Seoul 14662, Korea
| | - Ki-Wug Sung
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
3
|
Allen TEH, Goodman JM, Gutsell S, Russell PJ. Defining Molecular Initiating Events in the Adverse Outcome Pathway Framework for Risk Assessment. Chem Res Toxicol 2014; 27:2100-12. [DOI: 10.1021/tx500345j] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Timothy E. H. Allen
- Centre
for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jonathan M. Goodman
- Centre
for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Steve Gutsell
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Paul J. Russell
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| |
Collapse
|
4
|
Araki T, Toh-e A, Kikuchi Y, Watanabe CK, Hachiya T, Noguchi K, Terashima I, Uesono Y. Tetracaine, a local anesthetic, preferentially induces translational inhibition with processing body formation rather than phosphorylation of eIF2α in yeast. Curr Genet 2014; 61:43-53. [DOI: 10.1007/s00294-014-0443-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/24/2014] [Accepted: 08/01/2014] [Indexed: 12/17/2022]
|
5
|
Uesono Y. Environmental stresses and clinical drugs paralyze a cell. Commun Integr Biol 2011; 2:275-8. [PMID: 19641750 DOI: 10.4161/cib.2.3.8226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 02/17/2009] [Indexed: 01/28/2023] Open
Abstract
Cells respond and adapt to various extracellular changes. Environmental stresses, such as high osmolarity and acute glucose deprivation, rapidly and transiently shut down translation initiation and actin polarization in the yeast Saccharomyces cerevisiae. Certain clinical drugs, such as local anesthetics and antipsychotic phenothiazines, and cationic surfactants also cause shutdowns similar to those triggered by environmental stresses. These compounds all have an amphiphilic structure, a cationic hydrophilic region, surfactant activity, and the ability to lyse yeast cells. Since low concentrations of these compounds shut down intracellular reactions in the absence of cell lysis, the compounds might change the state of the cell's membrane by intercalating into the membrane and thus generate signals for the shutdown, as do environmental stresses. The intracellular shutdowns caused by stresses might essentially be the same as the paralysis caused by clinical drugs at the cellular level.
Collapse
Affiliation(s)
- Yukifumi Uesono
- Department of Biological Sciences; Graduate School of Science; The University of Tokyo; Tokyo, Japan
| |
Collapse
|
6
|
Atypical antipsychotics as noncompetitive inhibitors of alpha4beta2 and alpha7 neuronal nicotinic receptors. Neuropharmacology 2009; 57:183-91. [PMID: 19481556 DOI: 10.1016/j.neuropharm.2009.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/08/2009] [Accepted: 05/16/2009] [Indexed: 01/30/2023]
Abstract
It has been suggested that the interaction of antipsychotic medications with neuronal nicotinic receptors may increase the cognitive dysfunction associated with schizophrenia and may explain why current therapies only partially address this core feature of the illness. In the present studies we compared the effects of the atypical antipsychotics quetiapine, clozapine and N-desmethylclozapine to those of the typical antipsychotics haloperidol and chlorpromazine on the alpha4beta2 and alpha7 nicotinic receptor subtypes. The binding of [(3)H]-nicotine to rat cortical alpha4beta2 receptors and [(3)H]-methyllycaconitine to rat hippocampal alpha7 receptors was not affected by any of the compounds tested. However, Rb(+) efflux evoked either by nicotine or the selective alpha4beta2 agonist TC-1827 from alpha4beta2 receptors expressed in SH-EP1 cells and nicotine-evoked [(3)H]-dopamine release from rat striatal synaptosomes were non-competitively inhibited by all of the antipsychotics. Similarly, alpha-bungarotoxin-sensitive epibatidine-evoked [(3)H]-norepinephrine release from rat hippocampal slices and acetylcholine-activated currents of alpha7 nicotinic receptors expressed in oocytes were inhibited by haloperidol, chlorpromazine, clozapine and N-desmethylclozapine. The inhibitory effects on nicotinic receptor function produced by the antipsychotics tested occurred at concentrations similar to plasma levels achieved in schizophrenia patients, suggesting that they may lead to clinically relevant effects on cognition.
Collapse
|
7
|
Orellana JA, Palacios-Prado N, Sáez JC. Chlorpromazine reduces the intercellular communication via gap junctions in mammalian cells. Toxicol Appl Pharmacol 2006; 213:187-97. [PMID: 16352326 DOI: 10.1016/j.taap.2005.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 10/14/2005] [Accepted: 10/28/2005] [Indexed: 12/27/2022]
Abstract
In the work presented herein, we evaluated the effect of chlorpromazine (CPZ) on gap junctions expressed by two mammalian cell types; Gn-11 cells (cell line derived from mouse LHRH neurons) and rat cortical astrocytes maintained in culture. We also attempted to elucidate possible mechanisms of action of CPZ effects on gap junctions. CPZ, in concentrations comparable with doses used to treat human diseases, was found to reduce the intercellular communication via gap junctions as evaluated with measurements of dye coupling (Lucifer yellow). In both cell types, maximal inhibition of functional gap junctions was reached within about 1 h of treatment with CPZ, an recovery was almost complete at about 5 h after CPZ wash out. In both cell types, CPZ treatment increased the phosphorylation state of connexin43 (Cx43), a gap junction protein subunit. Moreover, CPZ reduced the reactivity of Cx43 (immunofluorescence) at cell interfaces and concomitantly increased its reactivity in intracellular vesicles, suggesting an increased retrieval from and/or reduced insertion into the plasma membrane. CPZ also caused cellular retraction reducing cell-cell contacts in a reversible manner. The reduction in contact area might destabilize existing gap junctions and abrogate formation of new ones. Moreover, the CPZ-induced reduction in gap junctional communication may depend on the connexins (Cxs) forming the junctions. If Cx43 were the only connexin expressed, MAPK-dependent phosphorylation of this connexin would induce closure of gap junction channels.
Collapse
Affiliation(s)
- Juan A Orellana
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | |
Collapse
|
8
|
Terry AV, Gearhart DA, Mahadik SP, Warsi S, Davis LW, Waller JL. Chronic exposure to typical or atypical antipsychotics in rodents: temporal effects on central alpha7 nicotinic acetylcholine receptors. Neuroscience 2005; 136:519-29. [PMID: 16216423 DOI: 10.1016/j.neuroscience.2005.08.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 07/01/2005] [Accepted: 08/01/2005] [Indexed: 11/23/2022]
Abstract
A decrease in alpha7 nicotinic acetylcholine receptors in the hippocampus has been hypothesized to contribute to alterations in auditory gating and other behavioral impairments in schizophrenia. However, while both typical and atypical neuroleptics are routinely used in the therapeutics of schizophrenia, little is known about their effects on auditory gating or alpha7 nicotinic acetylcholine receptor expression particularly when they are administered for extended periods of time (which is common in the clinical setting). In the present study in normal rats, the residual effects of prior chronic treatment (90 or 180 days) with representative typical and atypical neuroleptics (oral haloperidol, 2.0 mg/kg/day; chlorpromazine, 10.0 mg/kg/day, risperidone, 2.5 mg/kg/day; or olanzapine, 10.0 mg/kg/day) on prepulse inhibition of the auditory gating response were investigated. The densities of alpha7 nicotinic acetylcholine receptors were subsequently measured using [125I]-alpha-bungarotoxin autoradiography. The results indicated that none of the compounds significantly altered the startle amplitude or prepulse inhibition response either during drug treatment (day 60) or after 90 or 180 days of treatment (i.e. during a drug free washout). However, prior exposure to chlorpromazine, risperidone and olanzapine for 90 days resulted in modest but significant (P<0.01) decreases in [125I]-alpha-bungarotoxin binding sites in some brain regions (e.g. posterior cortical amygdala). After 180 days of treatment, decreases in [(125I]-alpha-bungarotoxin binding ranging from approximately 12% (lateral dentate gyrus) up to 24% (e.g. CA1 hippocampal region) were evident in the risperidone group in 13 of the 36 regions analyzed while decreases associated with the other neuroleptics agents were still present, but not statistically significant. These data indicate that the commonly used atypical neuroleptic, risperidone is associated with time dependent and persistent negative effects on an important biological substrate of memory (i.e. the alpha7 nicotinic receptor), but that the magnitude of the deficits was not sufficient to impair auditory gating.
Collapse
Affiliation(s)
- A V Terry
- Program in Clinical and Experimental Therapeutics, University of Georgia, College of Pharmacy (Augusta Campus), Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Shin WH, Kim EJ. The Different Effects of Phenothiazines on Cardiac Action Potential Duration. Basic Clin Pharmacol Toxicol 2005; 96:143-5. [PMID: 15679478 DOI: 10.1111/j.1742-7843.2005.pto960209.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Won-Ho Shin
- Department of Pharmacology and National Research Laboratory, Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Yuseong, Daejeon, 305-343, Korea
| | | |
Collapse
|
10
|
Wagner R, Fink RHA, Stephenson DG. Effects of chlorpromazine on excitation-contraction coupling events in fast-twitch skeletal muscle fibres of the rat. Br J Pharmacol 2004; 141:624-33. [PMID: 14732758 PMCID: PMC1574238 DOI: 10.1038/sj.bjp.0705655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Single mechanically skinned fibres from the rat extensor digitorum longus muscle, which allow access to intracellular compartments, were used to examine the effects of 0.5-100 microM chlorpromazine hydrochloride (CPZ) on the major steps of the excitation-contraction (E-C) coupling to elucidate the involvement of skeletal muscle in the neuroleptic malignant syndrome (NMS). 2. At 1 microM, CPZ caused a 20-30% increase in the force response induced by t-system depolarisation and a marked increase in the rate of caffeine-induced SR Ca(2+) release. At [CPZ]> or =2.5 microM, there was an initial increase followed by a marked decrease of the t-system depolarisation-induced force responses, while the potentiating effect on the caffeine-induced SR Ca(2+) release remained. These effects were reversible. 3. CPZ had no effect on the maximum Ca(2+)-activated force, but caused reversible, concentration-dependent increases in the Ca(2+) sensitivity of the contractile apparatus at [CPZ] > or =10 microM, with a 50% predicted shift of 0.11 pCa (-log [Ca(2+)]) units at 82.3 microM CPZ. 4. CPZ did not alter the rate of SR-Ca(2+) loading at 1 and 10 microM, but reversibly reduced it by approximately 40% at 100 microM by reducing the SR Ca(2+) pump. Nevertheless, the SR Ca(2+) content was greater when fibres became unresponsive to t-system-induced depolarisation in the presence than in the absence of 100 microM CPZ. 5. The results show that CPZ has concentration-dependent stimulatory and inhibitory effects on various steps of the E-C coupling, which can explain the involvement of skeletal muscle in NMS and reconcile previous divergent data on CPZ effects on muscle.
Collapse
Affiliation(s)
- R Wagner
- Institute of Physiology and Pathophysiology, University of Heidelberg, INF 326, 69120 Heidelberg, Germany
| | - R H A Fink
- Institute of Physiology and Pathophysiology, University of Heidelberg, INF 326, 69120 Heidelberg, Germany
| | - D G Stephenson
- Department of Zoology, La Trobe University, Plenty Road, Bundoora, Victoria 3083, Australia
- Author for correspondence:
| |
Collapse
|
11
|
Thomas D, Wu K, Kathöfer S, Katus HA, Schoels W, Kiehn J, Karle CA. The antipsychotic drug chlorpromazine inhibits HERG potassium channels. Br J Pharmacol 2003; 139:567-74. [PMID: 12788816 PMCID: PMC1573882 DOI: 10.1038/sj.bjp.0705283] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
(1) Acquired long QT syndrome (aLQTS) is caused by prolongation of the cardiac action potential because of blockade of cardiac ion channels and delayed repolarization of the heart. Patients with aLQTS carry an increased risk for torsade de pointes arrhythmias and sudden cardiac death. Several antipsychotic drugs may cause aLQTS. Recently, cases of QTc prolongation and torsade de pointes associated with chlorpromazine treatment have been reported. Blockade of human ether-a-go-go-related gene (HERG) potassium channels, which plays a central role in arrhythmogenesis, has previously been reported to occur with chlorpromazine, but information on the mechanism of block is currently not available. We investigated the effects of chlorpromazine on cloned HERG potassium channels to determine the biophysical mechanism of block. (2) HERG channels were heterologously expressed in Xenopus laevis oocytes, and ion currents were measured using the two-microelectrode voltage-clamp technique. (3) Chlorpromazine blocked HERG potassium channels with an IC(50) value of 21.6 micro M and a Hill coefficient of 1.11. (4) Analysis of the voltage dependence of block revealed a reduction of inhibition at positive membrane potentials. (5) Inhibition of HERG channels by chlorpromazine displayed reverse frequency dependence, that is, the amount of block was lower at higher stimulation rates. No marked changes in electrophysiological parameters such as voltage dependence of activation or inactivation, or changes of the inactivation time constant were observed. (6) In conclusion, HERG channels were blocked in the closed and activated states, and unblocking occurred very slowly.
Collapse
Affiliation(s)
- Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, Bergheimerstrasse 58, D-69115 Heidelberg, Germany
| | - Kezhong Wu
- Department of Cardiology, Medical University Hospital Heidelberg, Bergheimerstrasse 58, D-69115 Heidelberg, Germany
| | - Sven Kathöfer
- Department of Cardiology, Medical University Hospital Heidelberg, Bergheimerstrasse 58, D-69115 Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, Bergheimerstrasse 58, D-69115 Heidelberg, Germany
| | - Wolfgang Schoels
- Department of Cardiology, Medical University Hospital Heidelberg, Bergheimerstrasse 58, D-69115 Heidelberg, Germany
| | - Johann Kiehn
- Department of Cardiology, Medical University Hospital Heidelberg, Bergheimerstrasse 58, D-69115 Heidelberg, Germany
| | - Christoph A Karle
- Department of Cardiology, Medical University Hospital Heidelberg, Bergheimerstrasse 58, D-69115 Heidelberg, Germany
- Author for correspondence:
| |
Collapse
|
12
|
Nguyen QT, Yang J, Miledi R. Effects of atypical antipsychotics on vertebrate neuromuscular transmission. Neuropharmacology 2002. [DOI: 10.1016/s0028-3908(02)00018-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
McNaughton NC, Green PJ, Randall AD. Inhibition of human alpha1E subunit-mediated ca2+ channels by the antipsychotic agent chlorpromazine. ACTA PHYSIOLOGICA SCANDINAVICA 2001; 173:401-8. [PMID: 11903132 DOI: 10.1046/j.1365-201x.2001.00914.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chlorpromazine is a neuroleptic antipsychotic agent with a long history of clinical use. Its primary mode of action is thought to be through modulation of monoaminergic inter-neuronal communication; however, its side-effect profile indicates substantial activities in other systems. Recent work has begun to uncover actions of this compound on ion channels. In this light we have investigated the actions of chlorpromazine on the recombinant alpha1E subunit-encoded voltage-sensitive Ca2+ channel (VSCC) that is believed to encode drug-resistant R-type currents found in neurones and other cells. Chlorpromazine produced a dose-dependent antagonism of these channels that was reversed on drug removal. The mean IC50 was close to 10 microM. At this concentration, the level of antagonism observed was dependent on the membrane potential, with greater inhibition being observed at more negative test potentials. Furthermore, chlorpromazine induced substantial changes in the steady-state inactivation properties of alpha1Ebeta3-mediated currents, although it was not seen to elicit a corresponding change in inactivation kinetics. These results are discussed with regard to the possible clinical mechanisms of chlorpromazine actions.
Collapse
Affiliation(s)
- N C McNaughton
- Neuroscience Research, GlaxoSmithKline Pharmaceuticals, Harlow, UK
| | | | | |
Collapse
|
14
|
Nakatsuka S, Hayashi M, Muroyama A, Otsuka M, Kozaki S, Yamada H, Moriyama Y. D-Aspartate is stored in secretory granules and released through a Ca(2+)-dependent pathway in a subset of rat pheochromocytoma PC12 cells. J Biol Chem 2001; 276:26589-96. [PMID: 11333256 DOI: 10.1074/jbc.m011754200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
D-Aspartate in mammalian neuronal and neuroendocrine cells is suggested to play a regulatory role(s) in the neuroendocrine function. Although D-aspartate is known to be released from neuroendocrine cells, the mechanism underlying the release is less understood. Rat pheochromocytoma PC12 cells contain an appreciable amount of D-aspartate (257 +/- 31 pmol/10(7) cells). Indirect immunofluorescence microscopy with specific antibodies against d-aspartate indicated that the amino acid is present within a particulate structure, which is co-localized with dopamine and chromogranin A, markers for secretory granules, but not with synaptophysin, a marker for synaptic-like microvesicles. After sucrose density gradient centrifugation of the postnuclear particulate fraction, about 80% of the d-aspartate was recovered in the secretory granule fraction. Upon the addition of KCl, an appreciable amount of D-aspartate (about 40 pmol/10(7) cells at 10 min) was released from cultured cells on incubation in the presence of Ca(2+) in the medium. The addition of also triggered d-aspartate release. Botulinum neurotoxin type E inhibited about 40% of KCl- and Ca(2+)-dependent d-aspartate release followed by specific cleavage of 25-kDa synaptosomal-associated protein. alpha-Latrotoxin increased the intracellular [Ca(2+)] and caused the Ca(2+)-dependent d-aspartate release. Bafilomycin A1 dissipated the intracellular acidic regions and inhibited 40% of the Ca(2+)-dependent D-aspartate release. These properties are similar to those of the exocytosis of dopamine. Furthermore, digitonin-permeabilized cells took up radiolabeled d-aspartate depending on MgATP, which is sensitive to bafilomycin A1 or 3,5-di-tert-butyl-4-hydroxybenzylidene-malononitrile. Taken together, these results strongly suggest that d-aspartate is stored in secretory granules and then secreted through a Ca(2+)-dependent exocytotic mechanism. Exocytosis of D-aspartate further supports the role(s) of D-aspartate as a chemical transmitter in neuroendocrine cells.
Collapse
Affiliation(s)
- S Nakatsuka
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Hur EM, Park TJ, Kim KT. Coupling of L-type voltage-sensitive calcium channels to P2X(2) purinoceptors in PC-12 cells. Am J Physiol Cell Physiol 2001; 280:C1121-9. [PMID: 11287325 DOI: 10.1152/ajpcell.2001.280.5.c1121] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular ATP elevates cytosolic Ca(2+) by activating P2X and P2Y purinoceptors and voltage-sensitive Ca(2+) channels (VCCCs) in PC-12 cells, thereby facilitating catecholamine secretion. We investigated the mechanism by which ATP activates VSCCs. 2-Methylthioadenosine 5'-triphosphate (2-MeS-ATP) and UTP were used as preferential activators of P2X and P2Y, respectively. Nifedipine inhibited the ATP- and 2-MeS-ATP-evoked cytosolic Ca(2+) concentration increase and [(3)H]norepinephrine secretion, but not the UTP-evoked responses. Studies with Ca(2+) channel blockers indicated that L-type VSCCs were activated after the P2X activation. Mn(2+) entry profiles and studies with thapsigargin revealed that Ca(2+) entry, rather than Ca(2+) release, was sensitive to nifedipine. Although P2X(2) and P2X(4) receptor mRNAs were detected, studies with pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid revealed that P2X(2) was mainly coupled to the L-type VSCCs. The inhibitory effect of nifedipine did not occur in the absence of extracellular Na(+), suggesting that Na(+) influx, which induces depolarization, was essential for the P2X(2)-mediated activation of VSCCs. We report that depolarization induced by Na(+) entry through the P2X(2) purinoceptors effectively activates L-type VSCCs in PC-12 cells.
Collapse
Affiliation(s)
- E M Hur
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | |
Collapse
|
16
|
Park T, Bae S, Choi S, Kang B, Kim K. Inhibition of nicotinic acetylcholine receptors and calcium channels by clozapine in bovine adrenal chromaffin cells. Biochem Pharmacol 2001; 61:1011-9. [PMID: 11286992 DOI: 10.1016/s0006-2952(01)00577-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of clozapine on the activities of nicotinic acetylcholine receptors (nAChRs) and voltage-sensitive calcium channels (VSCCs) were investigated and compared with those of chlorpromazine (CPZ) in bovine adrenal chromaffin cells. [(3)H]Norepinephrine ([(3)H]NE) secretion induced by activation of nAChRs was inhibited by clozapine and CPZ with half-maximal inhibitory concentrations (IC(50)) of 10.4 +/- 1.1 and 3.9 +/- 0.2 microM, respectively. Both cytosolic calcium increase and inward current in the absence of extracellular calcium induced by nicotinic stimulation were also inhibited by clozapine and CPZ, but the greater inhibition was achieved by CPZ. In addition, [(3)H]nicotine binding to chromaffin cells was inhibited by clozapine and CPZ with IC(50) values of approximately 19 and 2 microM, respectively. On the other hand, [(3)H]NE secretion induced by high K(+) was inhibited by clozapine and CPZ with similar IC(50) values of 15.5 +/- 3.8 and 17.1 +/- 3.9 microM, respectively. Our results suggest that clozapine, as well as CPZ, inhibits nAChRs and VSCCs, thereby causing inhibition of catecholamine secretion, and that clozapine is much less potent than CPZ in inhibiting nAChRs.
Collapse
Affiliation(s)
- T Park
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, 31, Pohang 790-784, San, South Korea
| | | | | | | | | |
Collapse
|
17
|
Choi SY, Kim YH, Lee YK, Kim KT. Chlorpromazine inhibits store-operated calcium entry and subsequent noradrenaline secretion in PC12 cells. Br J Pharmacol 2001; 132:411-8. [PMID: 11159689 PMCID: PMC1572582 DOI: 10.1038/sj.bjp.0703840] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The effect of chlorpromazine on the store-operated Ca2+ entry activated via the phospholipase C signalling pathway was investigated in PC12 cells. 2. Chlorpromazine inhibited the sustained increase after the initial peak in the intracellular Ca2+ concentration produced by bradykinin while having no effect on the initial transient response. The inhibition was lowered by the removal of extracellular free Ca2+. However, chlorpromazine did not inhibit bradykinin-induced inositol 1,4,5-trisphosphate production. 3. Chlorpromazine inhibited the bradykinin-induced noradrenaline secretion in a concentration-dependent manner (IC(50): 24+/-5 microM, n=3). 4. To test for a direct effect of chlorpromazine on store-operated Ca2+ entry, thapsigargin, an inhibitor of microsomal Ca(2+)-ATPase, was used to induce store-operated Ca2+ entry in PC12 cells. Chlorpromazine reduced the thapsigargin-induced sustained Ca2+ level (IC(50): 24+/-2 microM, n=3), and the inhibition also occluded the inhibitory action of 1-[-[3-(4-methoxyphenyl) propoxy]-4-methoxyphenyl]-1H-imidazole hydrochloride (SK&F96365). 5. The results suggest that chlorpromazine negatively modulates the store-operated Ca2+ entry activated subsequent to PLC activation.
Collapse
Affiliation(s)
- Se-Young Choi
- Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yong-Hyun Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yong-Kyu Lee
- Department of Food and Biotechnology, Dongseo University, Pusan, Republic of Korea
| | - Kyong-Tai Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
- Author for correspondence:
| |
Collapse
|