1
|
Reid L, Khammo N, Clothier RH. An Evaluation of the Effects of Photoactivation of Bithionol, Amiodarone and Chlorpromazine on Human Keratinocytes In Vitro. Altern Lab Anim 2019; 35:471-85. [DOI: 10.1177/026119290703500513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human skin is a continual target for chemical toxicity, due to its constant exposure to xenobiotics. The skin possesses a number of protective antioxidant systems, including glutathione and enzymic pathways, which are capable of neutralising reactive oxygen species (ROS). In combination with certain chemicals, the presence of ROS might augment the levels of toxicity, due to photoactivation of the chemical or, alternatively, due to an oxidatively-stressed state in the skin which exisited prior to exposure to the chemical. Bithionol is a phototoxic anti-parasitic compound. The mechanism of its toxicity and the possible methods of protection from its damaging effects have been explored. The capacity of keratinocytes to protect themselves from bithionol and other phototoxic chemicals has been investigated. In addition, the potential of endogenous antioxidants, such as vitamin C and E, to afford protection to the cells, has been evaluated. The intracellular glutathione stores of HaCaT keratinocytes were reduced following treatment with biothionol. Following photoactivation, both bithionol and chlorpromazine had similar effects, which suggests that glutathione is important in the detoxification pathway of these chemicals. This was confirmed by means of the visual identification of fluorescently-labelled glutathione. Endogenous antioxidants were unable to protect the HaCaT keratinocytes from bithionol toxicity or chlorpromazine phototoxicity. Amiodarone was shown to have no effect on cellular glutathione levels, which suggests that an alternative mechanism of detoxification was occurring in this case. This was supported by evidence of the protection of HaCaT cells from amiodarone phototoxicity via endogenous antioxidants. Thus, it appears that amiodarone toxicity is dependent on the levels of non-gluathione antioxidants present, whilst bithionol and chlorpromazine detoxification relies on the glutathione antioxidant system. This type of approach could indicate the likely mechanisms of phototoxicity of chemicals in vitro, with relevance to potential effects in vivo.
Collapse
Affiliation(s)
- Linzi Reid
- FRAME Alternatives Laboratory, School of Biomedical Sciences, University of Nottingham, Nottingham, UK
| | - Nancy Khammo
- FRAME Alternatives Laboratory, School of Biomedical Sciences, University of Nottingham, Nottingham, UK
| | - Richard H. Clothier
- FRAME Alternatives Laboratory, School of Biomedical Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Mohammed OJ, Pratten MK. Micromass Methods for the Evaluation of Developmental Toxicants. Methods Mol Biol 2019; 1965:49-72. [PMID: 31069668 DOI: 10.1007/978-1-4939-9182-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Chick embryonic heart has recently been utilized as a model to create a micromass (MM) culturing system. The aim was to overcome the ethical barriers arising from testing the embryotoxicity of chemicals using human embryonic cells. The system represents a valuable tool to study the ability of chemicals to interfere with various embryonic developmental processes such as cellular communication, differentiation, cellular activity, and proliferation, where the disturbance any of them could result in maldevelopment. The system can also be utilized to investigate ROS production and expression of several transmembrane proteins to study their roles in chemical-induced teratogenicity or embryotoxicity.
Collapse
Affiliation(s)
- Omar J Mohammed
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, QMC, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Margaret K Pratten
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, QMC, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
3
|
Kunde DA, Yingchoncharoen J, Jurković S, Geraghty DP. TRPV1 mediates capsaicin-stimulated metabolic activity but not cell death or inhibition of interleukin-1β release in human THP-1 monocytes. Toxicol Appl Pharmacol 2018; 360:9-17. [PMID: 30244119 DOI: 10.1016/j.taap.2018.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/03/2018] [Accepted: 09/18/2018] [Indexed: 01/25/2023]
Abstract
Human monocytes and dendritic cells express transient receptor potential vanilloid 1 (TRPV1) which may play a role in mediating the inflammatory, immune and cancer surveillance responses of these cells. The aim of the present study was to investigate TRPV1 expression and function in THP-1 monocytic cells. RT-PCR and Western blot were used to detect TRPV1. The metabolic activity and viability of THP-1 cells following exposure to vanilloids was assessed using resorufin production from rezazurin. Cytokine release was measured using ELISA. TRPV1 was expressed in cultured THP-1 monocytic cells and naïve monocytes. Lower concentrations (<250 μM) of capsaicin, but not other putative TRPV1 agonists, were shown to stimulate cell metabolic activity, whereas at concentrations >250 μM, all agonists decreased metabolic activity. Capsaicin-stimulated THP-1 metabolic activity was blocked by the TRPV1 antagonist, 5-iodo-resiniferatoxin (5'-IRTX), whereas the decline in resorufin production by THP-1 cells at higher capsaicin concentrations (due to cell death), was not affected by 5'-IRTX. Finally, capsaicin (≤125 μM) significantly increased lipopolysaccharide-stimulated IL-6 and TNF-α release from THP-1 cells, whereas phytohaemagglutinin-stimulated IL-1β, TNF-α, MCP-1 and IL-6 release were concentration-dependently inhibited by capsaicin. Modulation of IL-1β release was not TRPV1 mediated. Overall, these results show that functional TRPV1 channels are present in naïve monocytes and THP-1 cells, and when activated, increase cell metabolic activity. In addition, capsaicin modifies cytokine release from THP-1 cells and induces cell death, most likely by a mechanism that is independent of TRPV1 activation.
Collapse
Affiliation(s)
- Dale A Kunde
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | | | - Saša Jurković
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Dominic P Geraghty
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia.
| |
Collapse
|
4
|
Mohammed OJ, Latif ML, Pratten MK. Diabetes-induced effects on cardiomyocytes in chick embryonic heart micromass and mouse embryonic D3 differentiated stem cells. Reprod Toxicol 2017; 69:242-253. [PMID: 28286266 DOI: 10.1016/j.reprotox.2017.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 11/16/2022]
Abstract
Diabetes mellitus during pregnancy is a considerable medical challenge, since it is related to augmented morbidity and mortality concerns for both the fetus and the pregnant woman. Records show that the etiology of diabetic embryopathy is complicated, as many teratological factors might be involved in the mechanisms of diabetes mellitus-induced congenital malformation. In this study, the potential cardiotoxic effect of hyperglycemia with hyperketonemia was investigated by using two in vitro models; primary chick embryonic cardiomyocytes and stem cell derived cardiomyocytes, where adverse effects were recorded in both systems. The cells were evaluated by changes in beating activity, cell activity, protein content, ROS production, DNA damage and differentiating stem cell migration. The diabetic formulae used produced an increase in DNA damage and a decline in cell migration in mouse embryonic stem cells. These results provide an additional insight into adverse effects during gestational diabetes mellitus and a recommendation for expectant mothers and maternity staff to monitor glycaemic levels months ahead of conception. This study also supports the recommendation of using antioxidants during pregnancy to prevent DNA damage by the production of ROS, which might result in heart defects as well as other developmental anomalies.
Collapse
Affiliation(s)
- Omar J Mohammed
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Muhammad Liaque Latif
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Margaret K Pratten
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
5
|
Assessment of developmental cardiotoxic effects of some commonly used phytochemicals in mouse embryonic D3 stem cell differentiation and chick embryonic cardiomyocyte micromass culture models. Reprod Toxicol 2016; 64:86-97. [DOI: 10.1016/j.reprotox.2016.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 01/19/2023]
|
6
|
Carbamazepine toxic effects in chick cardiomyocyte micromass culture and embryonic stem cell derived cardiomyocyte systems – Possible protective role of antioxidants. Reprod Toxicol 2014; 50:49-59. [DOI: 10.1016/j.reprotox.2014.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/01/2014] [Accepted: 10/07/2014] [Indexed: 11/23/2022]
|
7
|
Shaikh Qureshi WM, Latif ML, Parker TL, Pratten MK. Evaluation of Bupropion Hydrochloride Developmental Cardiotoxic Effects in Chick Cardiomyocyte Micromass Culture and stem cell derived Cardiomyocyte Systems. ACTA ACUST UNITED AC 2014; 101:371-8. [DOI: 10.1002/bdrb.21121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/04/2014] [Indexed: 01/23/2023]
Affiliation(s)
- W. M. Shaikh Qureshi
- School of Biomedical Sciences; Queen's Medical Centre; University of Nottingham; Nottinghamshire United Kingdom
| | - Muhammad Liaque Latif
- School of Biomedical Sciences; Queen's Medical Centre; University of Nottingham; Nottinghamshire United Kingdom
| | - Terry L. Parker
- School of Biomedical Sciences; Queen's Medical Centre; University of Nottingham; Nottinghamshire United Kingdom
| | - Margaret K. Pratten
- School of Biomedical Sciences; Queen's Medical Centre; University of Nottingham; Nottinghamshire United Kingdom
| |
Collapse
|
8
|
TRPV1 antagonism by capsazepine modulates innate immune response in mice infected with Plasmodium berghei ANKA. Mediators Inflamm 2014; 2014:506450. [PMID: 25242870 PMCID: PMC4158567 DOI: 10.1155/2014/506450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/08/2014] [Indexed: 12/17/2022] Open
Abstract
Thousands of people suffer from severe malaria every year. The innate immune response plays a determinant role in host's defence to malaria. Transient receptor potential vanilloid 1 (TRPV1) modulates macrophage-mediated responses in sepsis, but its role in other pathogenic diseases has never been addressed. We investigated the effects of capsazepine, a TRPV1 antagonist, in malaria. C57BL/6 mice received 10(5) red blood cells infected with Plasmodium berghei ANKA intraperitoneally. Noninfected mice were used as controls. Capsazepine or vehicle was given intraperitoneally for 6 days. Mice were culled on day 7 after infection and blood and spleen cell phenotype and activation were evaluated. Capsazepine decreased circulating but not spleen F4/80(+)Ly6G(+) cell numbers as well as activation of both F4/80(+)and F4/80(+)Ly6G(+) cells in infected animals. In addition, capsazepine increased circulating but not spleen GR1(+) and natural killer (NK) population, without interfering with natural killer T (NKT) cell numbers and blood NK and NKT activation. However, capsazepine diminished CD69 expression in spleen NKT but not NK cells. Infection increased lipid peroxidation and the release of TNFα and IFNγ, although capsazepine-treated group exhibited lower levels of lipid peroxidation and TNFα. Capsazepine treatment did not affect parasitaemia. Overall, TRPV1 antagonism modulates the innate immune response to malaria.
Collapse
|
9
|
Qureshi WMS, Latif ML, Parker TL, Pratten MK. Lithium carbonate teratogenic effects in chick cardiomyocyte micromass system and mouse embryonic stem cell derived cardiomyocyte--possible protective role of myo-inositol. Reprod Toxicol 2014; 46:106-14. [PMID: 24703859 DOI: 10.1016/j.reprotox.2014.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 02/17/2014] [Accepted: 03/18/2014] [Indexed: 11/15/2022]
Abstract
The drug lithium carbonate (Li2CO3) use during pregnancy increases the possibility of cardiovascular anomalies. The earlier studies confirm its phosphatidylinositol cycle (PI) inhibition and Wnt pathways mimicking properties, which might contribute to its teratogenic effects. In this study the toxic effects of Li2CO3 in chick embryonic cardiomyocyte micromass system (MM) and embryonic stem cell derived cardiomyocyte (ESDC) were evaluated, with possible protective role of myo-inositol. In MM system the Li2CO3 did not alter the toxicity estimation endpoints, whereas in ESDC system the cardiomyocytes contractile activity stopped at 1500 μM and above with significant increase in total cellular protein contents. In ESDC system when myo-inositol was added along with Li2CO3 to continue PI cycle, the contractile activity was recovered with decreased protein content. The lithium toxic effects depend on the role of PI cycle at particular stage of cardiogenesis, while relation between myo-inositol and reduced cellular protein contents remains unknown.
Collapse
Affiliation(s)
- W M Shaikh Qureshi
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottinghamshire NG7 2UH, UK.
| | - M L Latif
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottinghamshire NG7 2UH, UK.
| | - T L Parker
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottinghamshire NG7 2UH, UK.
| | - M K Pratten
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottinghamshire NG7 2UH, UK.
| |
Collapse
|
10
|
Zhi L, Dong L, Kong D, Sun B, Sun Q, Grundy D, Zhang G, Rong W. Curcumin acts via transient receptor potential vanilloid-1 receptors to inhibit gut nociception and reverses visceral hyperalgesia. Neurogastroenterol Motil 2013; 25:e429-40. [PMID: 23638900 DOI: 10.1111/nmo.12145] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/28/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND An antinociceptive effect has been reported for curcumin in animal models and in humans, but the molecular mechanisms of curcumin's effect remain undefined. In this study, we explored the possibility that curcumin inhibit visceral nociception via antagonizing the transient receptor potential vanilloid-1 (TRPV1) receptor. METHODS The effects of curcumin were explored using two experimental models: viscero-motor response (VMR) to colorectal distension (CRD) in rats and jejunal afferent firing in the ex vivo mouse jejunum preparations [TRPV1 knockout (KO) and wild-type mice, naive and trinitrobenzene sulfonic acid (TNBS)-treated Kunming mice]. In addition, capsaicin-induced calcium transients and whole-cell currents were examined in acutely dissociated dorsal root ganglia (DRG) neurons. KEY RESULTS In the anesthetized rat, curcumin (4 mg kg(-1) min(-1) for 3 min) caused a marked and rapidly reversible inhibition of CRD-induced VMRs. In the mouse jejunum, the mesenteric afferent nerve response to ramp distension was attenuated by curcumin (3, 10 μmol L(-1) ), an effect that was significantly reduced in TRPV1 KO mice compared with wild-type (WT) controls. Moreover, in WT mice, curcumin (1-30 μmol L(-1) ) was found to inhibit the afferent responses to capsaicin in a concentration-dependent manner. Trinitrobenzene sulfonic acid-induced hypersensitivity of jejunal afferents was also attenuated by curcumin. Curcumin potently inhibited capsaicin-induced rise in intracellular calcium and inward currents in mouse or rat DRG neurons. CONCLUSIONS & INFERENCES Our results provide strong evidence that curcumin inhibit visceral nociception via antagonizing TRPV1 and may be a promising lead for the treatment of functional gastrointestinal diseases.
Collapse
Affiliation(s)
- L Zhi
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Yeon K, Kim S, Kim Y, Lee M, Ahn D, Kim H, Kim J, Jung S, Oh S. Curcumin Produces an Antihyperalgesic Effect via Antagonism of TRPV1. J Dent Res 2009; 89:170-4. [DOI: 10.1177/0022034509356169] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Curcumin has diverse therapeutic effects, such as anti-inflammatory, anti-oxidant, anti-cancer, and antimicrobial activities. The vanilloid moiety of curcumin is considered important for activation of the transient receptor potential vanilloid 1 (TRPV1), which plays an important role in nociception. However, very little is known about the effects of curcumin on nociception. In the present study, we investigated whether the anti-nociceptive effects of curcumin are mediated via TRPV1 by using nociceptive behavioral studies and in vitro whole-cell patch-clamp recordings in the trigeminal system. Subcutaneous injection of capsaicin in the vibrissa pad area of rats induced thermal hyperalgesia. Intraperitoneally administered curcumin blocked capsaicin-induced thermal hyperalgesia in a dose-dependent manner. Whereas curcumin reduced capsaicin-induced currents in a dose-dependent manner in both trigeminal ganglion neurons and TRPV1-expressing HEK 293 cells, curcumin did not affect heat-induced TRPV1 currents. Taken together, our results indicate that curcumin blocks capsaicin-induced TRPV1 activation and thereby inhibits TRPV1-mediated pain hypersensitivity.
Collapse
Affiliation(s)
- K.Y. Yeon
- National Research Laboratory for Pain, Dental Research Institute and Department of Physiology, School of Dentistry, Seoul National University, 28-2 Yeongeon-Dong Chongno-Ku, Seoul 110-749, Korea
- Department of Oral Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Republic of Korea
- Department of Dental Anesthesiology, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea; and
- Department of Physiology, College of Medicine, Kangwon National University, Chunchon 200-710, Korea
| | - S.A. Kim
- National Research Laboratory for Pain, Dental Research Institute and Department of Physiology, School of Dentistry, Seoul National University, 28-2 Yeongeon-Dong Chongno-Ku, Seoul 110-749, Korea
- Department of Oral Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Republic of Korea
- Department of Dental Anesthesiology, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea; and
- Department of Physiology, College of Medicine, Kangwon National University, Chunchon 200-710, Korea
| | - Y.H. Kim
- National Research Laboratory for Pain, Dental Research Institute and Department of Physiology, School of Dentistry, Seoul National University, 28-2 Yeongeon-Dong Chongno-Ku, Seoul 110-749, Korea
- Department of Oral Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Republic of Korea
- Department of Dental Anesthesiology, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea; and
- Department of Physiology, College of Medicine, Kangwon National University, Chunchon 200-710, Korea
| | - M.K. Lee
- National Research Laboratory for Pain, Dental Research Institute and Department of Physiology, School of Dentistry, Seoul National University, 28-2 Yeongeon-Dong Chongno-Ku, Seoul 110-749, Korea
- Department of Oral Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Republic of Korea
- Department of Dental Anesthesiology, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea; and
- Department of Physiology, College of Medicine, Kangwon National University, Chunchon 200-710, Korea
| | - D.K. Ahn
- National Research Laboratory for Pain, Dental Research Institute and Department of Physiology, School of Dentistry, Seoul National University, 28-2 Yeongeon-Dong Chongno-Ku, Seoul 110-749, Korea
- Department of Oral Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Republic of Korea
- Department of Dental Anesthesiology, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea; and
- Department of Physiology, College of Medicine, Kangwon National University, Chunchon 200-710, Korea
| | - H.J. Kim
- National Research Laboratory for Pain, Dental Research Institute and Department of Physiology, School of Dentistry, Seoul National University, 28-2 Yeongeon-Dong Chongno-Ku, Seoul 110-749, Korea
- Department of Oral Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Republic of Korea
- Department of Dental Anesthesiology, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea; and
- Department of Physiology, College of Medicine, Kangwon National University, Chunchon 200-710, Korea
| | - J.S. Kim
- National Research Laboratory for Pain, Dental Research Institute and Department of Physiology, School of Dentistry, Seoul National University, 28-2 Yeongeon-Dong Chongno-Ku, Seoul 110-749, Korea
- Department of Oral Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Republic of Korea
- Department of Dental Anesthesiology, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea; and
- Department of Physiology, College of Medicine, Kangwon National University, Chunchon 200-710, Korea
| | - S.J. Jung
- National Research Laboratory for Pain, Dental Research Institute and Department of Physiology, School of Dentistry, Seoul National University, 28-2 Yeongeon-Dong Chongno-Ku, Seoul 110-749, Korea
- Department of Oral Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Republic of Korea
- Department of Dental Anesthesiology, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea; and
- Department of Physiology, College of Medicine, Kangwon National University, Chunchon 200-710, Korea
| | - S.B. Oh
- National Research Laboratory for Pain, Dental Research Institute and Department of Physiology, School of Dentistry, Seoul National University, 28-2 Yeongeon-Dong Chongno-Ku, Seoul 110-749, Korea
- Department of Oral Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Republic of Korea
- Department of Dental Anesthesiology, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea; and
- Department of Physiology, College of Medicine, Kangwon National University, Chunchon 200-710, Korea
| |
Collapse
|
12
|
Baek YM, Hwang HJ, Kim SW, Hwang HS, Lee SH, Kim JA, Yun JW. A comparative proteomic analysis for capsaicin-induced apoptosis between human hepatocarcinoma (HepG2) and human neuroblastoma (SK-N-SH) cells. Proteomics 2009; 8:4748-67. [PMID: 18991268 DOI: 10.1002/pmic.200800094] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endogenous ROS levels were increased during HepG2 apoptosis, whereas they were decreased during SK-N-SH apoptosis in response to capsaicin treatments. We used 2-DE-based proteomics to analyze the altered protein levels in both cells, with special attention on oxidative stress proteins before and after capsaicin treatments. The 2-DE analysis demonstrated that 23 proteins were increased and 26 proteins were decreased significantly (fold change>1.4) in capsaicin-treated apoptotic HepG2 and SK-N-SH cells, respectively. The distinct effect of capsaicin-induced apoptosis on the expression pattern of HepG2 proteins includes the downregulation of some antioxidant enzymes including aldose reductase (AR), catalase, enolase 1, peroxiredoxin 1, but upregulation of peroxiredoxin 6, cytochrome c oxidase, and SOD2. In contrast, most antioxidant enzymes were increased in SK-N-SH cells in response to capsaicin, where catalase might play a pivotal role in maintenance of low ROS levels in the course of apoptosis. The global gene expression for oxidative stress and antioxidant defense genes revealed that 84 gene expressions were not significantly different in HepG2 cells between control and capsaicin-treated cells. In contrast, a number of oxidative genes were downregulated in SK-N-SH cells, supporting the evidence of low ROS environment in apoptotic SK-N-SH cells after capsaicin treatment. It was concluded that the different relationship between endogenous ROS levels and apoptosis of two cancer cells presumably resulted from complicated expression patterns of many oxidative stress and antioxidant genes, rather than the individual role of some classical antioxidant enzymes such as SOD and catalase.
Collapse
Affiliation(s)
- Yu Mi Baek
- Department of Biotechnology, Daegu University, Kyungsan, Korea
| | | | | | | | | | | | | |
Collapse
|
13
|
Hail N, Lotan R. Cancer chemoprevention and mitochondria: Targeting apoptosis in transformed cellsviathe disruption of mitochondrial bioenergetics/redox state. Mol Nutr Food Res 2009; 53:49-67. [DOI: 10.1002/mnfr.200700527] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
14
|
Lu W, Uetrecht JP. Peroxidase-Mediated Bioactivation of Hydroxylated Metabolites of Carbamazepine and Phenytoin. Drug Metab Dispos 2008; 36:1624-36. [DOI: 10.1124/dmd.107.019554] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Gartlon J, Kinsner A, Bal-Price A, Coecke S, Clothier RH. Evaluation of a proposed in vitro test strategy using neuronal and non-neuronal cell systems for detecting neurotoxicity. Toxicol In Vitro 2006; 20:1569-81. [PMID: 16959468 DOI: 10.1016/j.tiv.2006.07.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 07/23/2006] [Accepted: 07/24/2006] [Indexed: 11/25/2022]
Abstract
The European Commission White Paper, "Strategy for a future chemicals policy" (EC, 2001) is estimated to require the testing of approximately 30,000 "existing" chemicals by 2012. Recommended in vitro tests require validation. As the White Paper (EC, 2001) requires neurotoxic data, this study evaluated an in vitro testing strategy for predicting in vivo neurotoxicity. The sensitivities of differentiated PC12 cells and primary cerebellum granule cells (CGC) were compared to undifferentiated PC12 cells which can indicate basal cytotoxicity. Cytotoxicants and neurotoxicants selected for testing covered a range of mechanisms and potencies. Neurotoxicants were not distinguished from cytotoxicants despite significantly different cell system responses using all endpoints; cell viability/activity, ATP depletion, MMP depolarisation, ROS production and cytoskeleton modifications. For all chemicals tested, neuronal-like cell systems were generally less sensitive than undifferentiated PC12 cells. Acute oral rodent LD(50) values correlated with cytotoxicity IC(50) values for the respective chemicals tested in each cell system. This study concluded that although simple non-specific assays are required to distinguish basal cytotoxicity from specific neurotoxicity by using different cell systems with different states of neuronal differentiation, further work is required to determine suitable combinations of cell systems and endpoints capable of distinguishing neurotoxicants from cytotoxicants.
Collapse
Affiliation(s)
- J Gartlon
- ECVAM, European Commission Joint Research Centre, Via E. Fermi 1, Ispra 21020, Italy.
| | | | | | | | | |
Collapse
|
16
|
Wang JP, Tseng CS, Sun SP, Chen YS, Tsai CR, Hsu MF. Capsaicin stimulates the non-store-operated Ca2+ entry but inhibits the store-operated Ca2+ entry in neutrophils. Toxicol Appl Pharmacol 2006; 209:134-44. [PMID: 15882882 DOI: 10.1016/j.taap.2005.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 03/30/2005] [Accepted: 04/05/2005] [Indexed: 01/27/2023]
Abstract
Rat neutrophils express the mRNA encoding for transient receptor potential (TRP) V1. However, capsaicin-stimulated [Ca2+]i elevation occurred only at high concentrations (> or = 100 microM). This response was substantially decreased in a Ca2+-free medium. Vanilloids displayed similar patterns of Ca2+ response with the rank order of potency as follows: scutigeral>resiniferatoxin>capsazepine>capsaicin=olvanil>isovelleral. Arachidonyl dopamine (AAD), an endogenous ligand for TRPV1, failed to desensitize the subsequent capsaicin challenge. Capsaicin-induced Ca2+ response was not affected by 8-bromo-cyclic ADP-ribose (8-Br-cADPR), the ryanodine receptor blocker, but was slightly attenuated by 1-[6-[17beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U-73122), the inhibitor of phospholipase C-coupled processes, 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF-96365), the blocker of receptor-gated and store-operated Ca2+ (SOC) channels, 2-aminoethyldiphenyl borate (2-APB), the blocker of D-myo-inositol 1,4,5-trisphospahte (IP3) receptor and Ca2+ influx, and by ruthenium red, a blocker of TRPV channels, and enhanced by the Ca2+ channels blocker, cis-N-(2-phenylcyclopentyl)azacyclotridec-1-en-2-amine (MDL-12330A) and Na+-deprivation. In addition, capsaicin had no effect on the plasma membrane Ca2+-ATPase activity or the production of nitric oxide (NO) and reactive oxygen intermediates (ROI) or on the total thiols content. Capsaicin (> or = 100 microM) inhibited the cyclopiazonic acid (CPA)-induced store-operated Ca2+ entry (SOCE). In the absence of external Ca2+, the robust Ca2+ entry after subsequent addition of Ca2+ was decreased by capsaicin in CPA-activated cells. Capsaicin alone increased the actin cytoskeleton, and also increased the actin filament content in cell activation with CPA. These results indicate that capsaicin activates a TRPV1-independent non-SOCE pathway in neutrophils. The reorganization of the actin cytoskeleton is probably involved in the capsaicin inhibition of SOCE.
Collapse
Affiliation(s)
- Jih-Pyang Wang
- Department of Education and Research, Taichung Veterans General Hospital, 160, Sec. 3, Chung Kang Road, Taichung 407, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
17
|
Garle MJ, Fry JR. Sensory nerves, neurogenic inflammation and pain: missing components of alternative irritation strategies? A review and a potential strategy. Altern Lab Anim 2005; 31:295-316. [PMID: 15612874 DOI: 10.1177/026119290303100313] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The eyes and skin are highly innervated by sensory nerves; stimulation of these nerves by irritants may give rise to neurogenic inflammation, leading to sensory irritation and pain. Few in vitro models of neurogenic inflammation have been described in conjunction with alternative skin and eye irritation methods, despite the fact that the sensory innervation of these organs is well-documented. To date, alternative approaches to the Draize skin and eye irritation tests have proved largely successful at classifying severe irritants, but are generally poor at discriminating between agents with mild to moderate irritant potential. We propose that the development of in vitro models for the prediction of sensory stimulation will assist in the re-classification of the irritant potential of agents that are under-predicted by current in vitro strategies. This review describes the range of xenobiotics known to cause inflammation and pain through the stimulation of sensory nerves, as well as the endogenous mediators and receptor types that are involved. In particular, it focuses on the vanilloid receptor, its activators and its regulation, as these receptors function as integrators of responses to numerous noxious stimuli. Cell culture models and ex vivo preparations that have the potential to serve as predictors of sensory irritation are also described. In addition, as readily available sensory neuron cell line models are few in number, stem cell lines (with the capacity to differentiate into sensory neurons) are explored. Finally, a preliminary strategy to enable assessment of whether incorporation of a sensory component will enhance the predictive power of current in vitro eye and skin testing strategies is proposed.
Collapse
Affiliation(s)
- Michael J Garle
- Division of Gastroenterology, School of Medical and Surgical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | |
Collapse
|
18
|
Dogan MD, Patel S, Rudaya AY, Steiner AA, Székely M, Romanovsky AA. Lipopolysaccharide fever is initiated via a capsaicin-sensitive mechanism independent of the subtype-1 vanilloid receptor. Br J Pharmacol 2004; 143:1023-32. [PMID: 15492017 PMCID: PMC1575955 DOI: 10.1038/sj.bjp.0705977] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
As pretreatment with intraperitoneal capsaicin (8-methyl-N-vanillyl-6-nonenamide, CAP), an agonist of the vanilloid receptor known as VR1 or transient receptor potential channel-vanilloid receptor subtype 1 (TRPV-1), has been shown to block the first phase of lipopolysaccharide (LPS) fever in rats, this phase is thought to depend on the TRPV-1-bearing sensory nerve fibers originating in the abdominal cavity. However, our recent studies suggest that CAP blocks the first phase via a non-neural mechanism. In the present work, we studied whether this mechanism involves the TRPV-1. Adult Long-Evans rats implanted with chronic jugular catheters were used. Pretreatment with CAP (5 mg kg(-1), i.p.) 10 days before administration of LPS (10 microg kg(-1), i.v.) resulted in the loss of the entire first phase and a part of the second phase of LPS fever. Pretreatment with the ultrapotent TRPV-1 agonist resiniferatoxin (RTX; 2, 20, or 200 microg kg(-1), i.p.) 10 days before administration of LPS had no effect on the first and second phases of LPS fever, but it exaggerated the third phase at the highest dose. The latter effect was presumably due to the known ability of high doses of TRPV-1 agonists to cause a loss of warm sensitivity, thus leading to uncontrolled, hyperpyretic responses. Pretreatment with the selective competitive TRPV-1 antagonist capsazepine (N-[2-(4-chlorophenyl)ethyl]-1,3,4,5-tetrahydro-7,8-dihydroxy-2H-2-benzazepine-2-carbothioamidem, CPZ; 40 mg kg(-1), i.p.) 90 min before administration of LPS (10 microg kg(-1), i.v.) or CAP (1 mg kg(-1), i.p.) did not affect LPS fever, but blocked the immediate hypothermic response to acute administration of CAP. It is concluded that LPS fever is initiated via a non-neural mechanism, which is CAP-sensitive but RTX- and CPZ-insensitive. The action of CAP on this mechanism is likely TRPV-1-independent. It is speculated that this mechanism may be the production of prostaglandin E(2) by macrophages in LPS-processing organs.
Collapse
Affiliation(s)
- M Devrim Dogan
- Systemic Inflammation Laboratory, Trauma Research, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013, U.S.A
| | - Shreya Patel
- Systemic Inflammation Laboratory, Trauma Research, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013, U.S.A
| | - Alla Y Rudaya
- Systemic Inflammation Laboratory, Trauma Research, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013, U.S.A
| | - Alexandre A Steiner
- Systemic Inflammation Laboratory, Trauma Research, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013, U.S.A
| | - Miklós Székely
- Systemic Inflammation Laboratory, Trauma Research, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013, U.S.A
| | - Andrej A Romanovsky
- Systemic Inflammation Laboratory, Trauma Research, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013, U.S.A
- Author for correspondence:
| |
Collapse
|
19
|
Qiao S, Li W, Tsubouchi R, Murakami K, Yoshino M. Role of vanilloid receptors in the capsaicin-mediated induction of iNOS in PC12 cells. Neurochem Res 2004; 29:687-93. [PMID: 15098930 DOI: 10.1023/b:nere.0000018839.59457.5c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The vanilloid receptor 1(VR1) is a nonselective cation channel that is activated by pungent vanilloid compound, extracellular protons, or noxious heat. mRNA of VR1 and vanilloid receptor 1-like receptor (VRL1) were expressed in PC12 cells, and only VRI mRNA was detected in glioma and A10 cell lines. VRI protein was demonstrated in PC12 cells by immunocytochemistry and Western blotting. Capsaicin (CPS), the VRI receptor agonist, led to an increase in intracellular calcium ion, and this effect was blocked by pretreatment with VR1 receptor antagonist capsazepin (CPZ). Treatment of PC12 cells with low concentration of CPS (5-50 microM) increased reactive oxygen species (ROS) production, and inducible nitric oxide synthase (iNOS) was expressed after CPS treatment for 24 h. These CPS-induced changes are inhibited by pretreatment of CPZ. These findings suggest that CPS-induced iNOS expression through the VR1 and/or VRL1-mediated pathway, and this may explain the CPS-mediated physiological and pathological effects in neuron system.
Collapse
Affiliation(s)
- Shanlou Qiao
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan.
| | | | | | | | | |
Collapse
|
20
|
Fowler CJ, Jonsson KO, Andersson A, Juntunen J, Järvinen T, Vandevoorde S, Lambert DM, Jerman JC, Smart D. Inhibition of C6 glioma cell proliferation by anandamide, 1-arachidonoylglycerol, and by a water soluble phosphate ester of anandamide: variability in response and involvement of arachidonic acid. Biochem Pharmacol 2003; 66:757-67. [PMID: 12948856 DOI: 10.1016/s0006-2952(03)00392-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It has previously been shown that the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG) inhibit the proliferation of C6 glioma cells in a manner that can be prevented by a combination of capsazepine (Caps) and cannabinoid (CB) receptor antagonists. It is not clear whether the effect of 2-AG is due to the compound itself, due to the rearrangement to form 1-arachidonoylglycerol (1-AG) or due to a metabolite. Here, it was found that the effects of 2-AG can be mimicked with 1-AG, both in terms of its potency and sensitivity to antagonism by Caps and CB receptor antagonists. In order to determine whether the effect of Caps could be ascribed to actions upon vanilloid receptors, the effect of a more selective vanilloid receptor antagonist, SB366791 was investigated. This compound inhibited capsaicin-induced Ca(2+) influx into rVR1-HEK293 cells with a pK(B) value of 6.8+/-0.3. The combination of SB366791 and CB receptor antagonists reduced the antiproliferative effect of 1-AG, confirming a vanilloid receptor component in its action. 1-AG, however, showed no direct effect on Ca(2+) influx into rVR1-HEK293 cells indicative of an indirect effect upon vanilloid receptors. Identification of the mechanism involved was hampered by a large inter-experimental variation in the sensitivity of the cells to the antiproliferative effects of 1-AG. A variation was also seen with anandamide, which was not a solubility issue, since its water soluble phosphate ester showed the same variability. In contrast, the sensitivity to methanandamide, which was not sensitive to antagonism by the combination of Caps and CB receptor antagonists, but has similar physicochemical properties to anandamide, did not vary between experiments. This variation greatly reduces the utility of these cells as a model system for the study of the antiproliferative effects of anandamide. Nevertheless, it was possible to conclude that the antiproliferative effects of anandamide were not solely mediated by either its hydrolysis to produce arachidonic acid or its CB receptor-mediated activation of phospholipase A(2) since palmitoyltrifluoromethyl ketone did not prevent the response to anandamide. The same result was seen with the fatty acid amide hydrolase inhibitor palmitoylethylamide. Increasing intracellular arachidonic acid by administration of arachidonic acid methyl ester did not affect cell proliferation, and the modest antiproliferative effect of umbelliferyl arachidonate was not prevented by a combination of Caps and CB receptor antagonists.
Collapse
Affiliation(s)
- Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-90187 Umeå, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Macho A, Sancho R, Minassi A, Appendino G, Lawen A, Muñoz E. Involvement of reactive oxygen species in capsaicinoid-induced apoptosis in transformed cells. Free Radic Res 2003; 37:611-9. [PMID: 12868488 DOI: 10.1080/1071576031000083215] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Some varieties of sweet pepper accumulate non-pungent isosters of capsaicin, a type of compounds exemplified by capsiate. The only structural difference between capsaicin and capsiate is the link between the vanillyl and the acyl moieties, via an amide bond in the former and via an ester bond in the latter. By flow cytometry analyses we have determined that nor-dihydrocapsiate, a simplified analogue of capsiate, is a pro-oxidant compound that induces apoptosis in the Jurkat tumor cell line. The nuclear DNA fragmentation induced by nor-dihydrocapsiate is preceded by an increase in the production of reactive oxygen species and by a subsequent disruption of mitochondria transmembrane potential. Capsiate-induced apoptosis is initiated at the S phase of the cell cycle and is mediated by a caspase-3-dependent pathway. The accumulation of intracellular reactive oxygen species in capsiate-treated cells is greatly prevented by the presence of ferricyanide, suggesting that capsiates target a cellular redox system distinct from the one involved in the mitochondrial electron-chain transport. Methylation of the phenolic hydroxyl of nor-dihydrocapsiate completely abrogated the ability to induce reactive oxygen species and apoptosis, highlighting the relevance of the presence of a free phenolic hydroxyl for the pro-oxidant properties of capsaicinoids.
Collapse
Affiliation(s)
- Antonio Macho
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Medicina, Universidad de Córdoba, Avda. de Menéndez Pidal s/n, 14004, Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Afzal M, Matsugo S, Sasai M, Xu B, Aoyama K, Takeuchi T. Method to overcome photoreaction, a serious drawback to the use of dichlorofluorescin in evaluation of reactive oxygen species. Biochem Biophys Res Commun 2003; 304:619-24. [PMID: 12727198 DOI: 10.1016/s0006-291x(03)00641-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Non-fluorescent dichlorofluorescin (DCFH) was converted to fluorescent products by photo-irradiation during observations with spectrofluorometer and fluorescence microscopy. Photo-irradiation of DCFH at 250, 300, 330, 400, 500, or 600 nm generated fluorescent dichlorofluorescein (DCF), an oxidation product of DCFH, and an unrecognized fluorescent product. The ratio of the unknown product to DCF varied from 0.15 to 8.21 depending on wavelength. Although reactive oxygen species scavengers, such as catalase, superoxide dismutase, and sodium azide, did not suppress the increase in non-specified fluorescence, reagents such as ascorbic acid, mercaptopropionyl glycine, and methoxycinnamic acid, in a cell-free system, almost completely suppressed it with little effect on the fluorescence of DCF. Meanwhile, ascorbic acid also suppressed non-specified fluorescence in cells, but not completely. At low concentrations of DCFH, the speed of increasing fluorescence was considerably retarded, to such a degree that the fluorescence increase in cells during fluorescence microscopic observation was negligible. The addition, at the time of evaluation, of the above reagents to cell-free systems and, in cell systems, reducing the concentration of DCFH, effectively suppressed the photoreaction of DCFH.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Environmental Medicine and Hygiene, Kagoshima University Faculty of Medicine, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Ralevic V, Jerman JC, Brough SJ, Davis JB, Egerton J, Smart D. Pharmacology of vanilloids at recombinant and endogenous rat vanilloid receptors. Biochem Pharmacol 2003; 65:143-51. [PMID: 12473388 DOI: 10.1016/s0006-2952(02)01451-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study compared the actions of members of five different chemical classes of vanilloid agonists at the recombinant rat vanilloid VR1 receptor expressed in HEK293 cells, and at endogenous vanilloid receptors on dorsal root ganglion cells and sensory nerves in the rat isolated mesenteric arterial bed. In mesenteric beds, vanilloids elicited dose-dependent vasorelaxation with the rank order of potency: resiniferatoxin>>capsaicin=olvanil>phorbol 12-phenyl-acetate 13-acetate 20-homovanillate (PPAHV)>isovelleral. Scutigeral was inactive. Responses were abolished by capsaicin pretreatment and inhibited by ruthenium red. In VR1-HEK293 cells and dorsal root ganglion neurones, Ca(2+) responses were induced by resiniferatoxin>capsaicin=olvanil>PPAHV; all four were full agonists. Isovelleral and scutigeral were inactive. The resiniferatoxin-induced Ca(2+) response had a distinct kinetic profile. Olvanil had a Hill coefficient of approximately 1 whilst capsaicin, resiniferatoxin and PPAHV had Hill coefficients of approximately 2 in VR1-HEK293 cells. The capsaicin-induced Ca(2+) response was inhibited in a concentration-dependent manner by ruthenium red>capsazepine>isovelleral. These data show that resiniferatoxin, capsaicin, olvanil and PPAHV, but not scutigeral and isovelleral, are agonists at recombinant rat VR1 receptors and endogenous vanilloid receptors on dorsal root ganglion neurones and in the rat mesenteric arterial bed. The vanilloids display the same relative potencies (resiniferatoxin>capsaicin=olvanil>PPAHV) in all of the bioassays.
Collapse
Affiliation(s)
- Vera Ralevic
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Marques S, Oliveira NG, Chaveca T, Rueff J. Micronuclei and sister chromatid exchanges induced by capsaicin in human lymphocytes. Mutat Res 2002; 517:39-46. [PMID: 12034307 DOI: 10.1016/s1383-5718(02)00040-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Capsaicin is the main pungent and irritating component of hot peppers (species Capsicum annuum and C. frutescens). Genotoxicity and carcinogenicity studies evaluating capsaicin effects are sparse and contradictory. In this study, we investigated the genotoxicity of capsaicin (10-200 microM) in human peripheral blood lymphocytes using the cytokinesis-block micronucleus (CBMN) assay and the sister chromatid exchange (SCE) assay in the presence or absence of external metabolic activation. Capsaicin induced the formation of micronuclei (MN) in a dose-dependent manner in the cytokinesis-blocked lymphocytes. This increase was more evident in the absence of metabolic activation, with a maximum of 3.4-fold increase above the background. Some inter-individual variability was observed. The results for the SCE assay also show that capsaicin is genotoxic and in this case with a more homogeneous response among donors. This end-point, however, has proven to be less sensitive than the CBMN assay for capsaicin.
Collapse
Affiliation(s)
- S Marques
- Department of Genetics, Faculty of Medical Sciences, New University of Lisbon, R. Junqueira 96, 1349-008 Lisbon, Portugal
| | | | | | | |
Collapse
|
25
|
Siraki AG, Pourahmad J, Chan TS, Khan S, O'Brien PJ. Endogenous and endobiotic induced reactive oxygen species formation by isolated hepatocytes. Free Radic Biol Med 2002; 32:2-10. [PMID: 11755311 DOI: 10.1016/s0891-5849(01)00764-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The rat hepatocyte catalyzed oxidation of 2',7'-dichlorofluorescin to form the fluorescent 2,7'-dichlorofluorescein was used to measure endogenous and xenobiotic-induced reactive oxygen species (ROS) formation by intact isolated rat hepatocytes. Various oxidase substrates and inhibitors were then used to identify the intracellular oxidases responsible. Endogenous ROS formation was markedly increased in catalase-inhibited or GSH-depleted hepatocytes, and was inhibited by ROS scavengers or desferoxamine. Endogenous ROS formation was also inhibited by cytochrome P450 inhibitors, but was not affected by oxypurinol, a xanthine oxidase inhibitor, or phenelzine, a monoamine oxidase inhibitor. Mitochondrial respiratory chain inhibitors or hypoxia, on the other hand, markedly increased ROS formation before cytotoxicity ensued. Furthermore, uncouplers of oxidative phosphorylation inhibited endogenous ROS formation. This suggests endogenous ROS formation can largely be attributed to oxygen reduction by reduced mitochondrial electron transport components and reduced cytochrome P450 isozymes. Addition of monoamine oxidase substrates increased antimycin A-resistant respiration and ROS formation before cytotoxicity ensued. Addition of peroxisomal substrates also increased antimycin A-resistant respiration but they were less effective at inducing ROS formation and were not cytotoxic. However, peroxisomal substrates readily induced ROS formation and were cytotoxic towards catalase-inhibited hepatocytes, which suggests that peroxisomal catalase removes endogenous H(2)O(2) formed in the peroxisomes. Hepatocyte catalyzed dichlorofluorescin oxidation induced by oxidase substrates, e.g., benzylamine, was correlated with the cytotoxicity induced in catalase-inhibited hepatocytes.
Collapse
Affiliation(s)
- Arno G Siraki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, 19 Russell Street, Toronto, Ontario, Canada M5S 2S2
| | | | | | | | | |
Collapse
|
26
|
Abstract
Exposure to a class of airborne pollutants known as particulate matter (PM) is an environmental health risk of global proportions. PM is thought to initiate and/or exacerbate respiratory disorders, such as asthma and airway hyper-responsiveness and is epidemiologically associated with causing death in the elderly and those with pre-existing respiratory, or cardiopulmonary disease. Plausible mechanisms of action to explain PM inflammation and its susceptible sub-population component are lacking. This review describes a series of published studies which indicate that PM initiates airway inflammation through sensory neural pathways, specifically by activation of capsaicin-sensitive vanilloid (e.g. VRI) irritant receptors. These acid-sensitive receptors are located on the sensory C nerve fibers that innervate the airways as well as on various immune and non-immune airway target cells. The activation of these receptors results in the release of neuropeptides from the sensory terminals that innervate the airways. Their interactions with airway target cells, result in signs of inflammation (e.g. bronchoconstriction, vasodilation, histamine release, mucous secretion etc.). Our data have linked the activation of the VR1 receptors to the surface charge carried on the colloidal particulates which constitute PM pollution. Related studies have examined how genetic and non-genetic factors modify the sensitivity of these irritant receptors and enhance the inflammatory responsiveness to PM. In summary, this review proposes a mechanism by which neurogenic elements initiate and sustain PM-mediated airway inflammation. Although neurogenic influences have been appreciated in normal airway homeostasis, they have not, until now, been associated with PM toxicity. The sensitivity of the sensory nervous system to irritants and its interactions with pulmonary target tissues, should encourage neuroscientists to explore the relevance of neurogenic influences to toxic disorders involving other peripheral target systems.
Collapse
Affiliation(s)
- B Verones
- Neurotoxicology Division, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | |
Collapse
|
27
|
Reid L, Clothier RH, Khammo N. Hydrogen peroxide induced stress in human keratinocytes and its effect on bithionol toxicity. Toxicol In Vitro 2001; 15:441-5. [PMID: 11566576 DOI: 10.1016/s0887-2333(01)00049-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exposure to hydrogen peroxide causes oxidative stress in keratinocytes. Previous work has shown that the antiparasitic drug bithionol has an EC(50) of 0.7 microg/ml (2 microM) with primary human keratinocytes, but that these cells do not respond to photoactivated bithionol. Bithionol is known to be photoactivated by UV-A visible light, therefore this study aims to investigate the effects of inducing oxidative stress in the cells prior to bithionol treatment alone and in the presence of UV-A visible light. Oxidative stress, by hydrogen peroxide treatment, caused the cells to become sensitive to photoactivated bithionol. Bithionol alone reduced the amount of oxidative stress, while following photoactivation, an augmentation in the amount of oxidative stress and cell cytotoxicity was observed. The hydrogen peroxide treatment did not alter the sensitivity of the keratinocytes to 5 J/cm(2) UV-A visible light.
Collapse
Affiliation(s)
- L Reid
- FRAME Alternatives Laboratory, School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | | | | |
Collapse
|
28
|
Dedov VN, Mandadi S, Armati PJ, Verkhratsky A. Capsaicin-induced depolarisation of mitochondria in dorsal root ganglion neurons is enhanced by vanilloid receptors. Neuroscience 2001; 103:219-26. [PMID: 11311802 DOI: 10.1016/s0306-4522(00)00540-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Capsaicin, a pungent ingredient of hot chilli peppers, triggered Ca(2+) influx in dorsal root ganglion (DRG) neurons, which express specific vanilloid receptors of type 1, with ED(50)<100 nM. An increase in capsaicin concentration to 10 microM inhibited Ca(2+) clearance from the cytosol, but did not affect the amplitude of intracellular Ca(2+) elevation. In DRG neurons, 10 microM capsaicin also produced a significant drop in mitochondrial membrane potential (Deltapsi), as measured with the mitochondria-specific potentiometric fluorescent dye JC-1. Similar loss of mitochondrial potential upon application of capsaicin was observed in non-neuronal primary (human lymphocytes) and transformed (human myeloid leukaemia cell line, HL-60) cells. The EC(50) values for capsaicin-induced mitochondrial depolarisation were 6.9 microM (DRG neurons), 200 microM (human lymphocytes) and 150 microM (HL-60 cells). Removal of extracellular Ca(2+) or an application of the antioxidant trolox attenuated capsaicin-induced dissipation of Deltapsi in DRG neurons, but not in human lymphocytes and HL-60 cells. Rotenone, an inhibitor of complex I of the mitochondrial respiratory chain, and oligomycin, an inhibitor of F(0)F(1)-ATPase, significantly enhanced the mitochondrial depolarisation produced by capsaicin in DRG neurons. In human lymphocytes and HL-60 cells, only oligomycin potentiated the effect of capsaicin. From our results, we suggest that, in DRG neurons and non-neuronal cells, capsaicin dissipates Deltapsi, possibly due to a direct inhibition of complex I of the mitochondrial respiratory chain. The presence of vanilloid receptor-1 in DRG neurons makes their mitochondria 20-30-fold more sensitive to the depolarising effect of capsaicin compared with non-neuronal cells lacking vanilloid receptor-1. The higher sensitivity of DRG neurons to capsaicin may underlie a selective neurotoxicity of capsaicin towards sensory neurons.
Collapse
Affiliation(s)
- V N Dedov
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
29
|
Oh GS, Pae HO, Seo WG, Kim NY, Pyun KH, Kim IK, Shin M, Chung HT. Capsazepine, a vanilloid receptor antagonist, inhibits the expression of inducible nitric oxide synthase gene in lipopolysaccharide-stimulated RAW264.7 macrophages through the inactivation of nuclear transcription factor-kappa B. Int Immunopharmacol 2001; 1:777-84. [PMID: 11357890 DOI: 10.1016/s1567-5769(01)00012-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
High amounts of nitric oxide (NO) production following the induction of inducible NO synthase (iNOS) gene expression has been implicated in the pathogenesis of inflammatory diseases. Capsaicin, a vanilloid receptor agonist, is known to have an inhibitory effect on NO production in macrophages. In the present study, we have found that capsazepine (CAPZ), a vanilloid receptor antagonist, also inhibited NO and iNOS protein syntheses induced by lipopolysaccharide in RAW264.7 macrophages via the suppression of iNOS mRNA. The mechanistic studies showed that CAPZ inhibited the expression of iNOS mRNA through the inactivation of nuclear transcription factor-kappa B (NF-kappa B). Thus, capsazepine may be a useful candidate for the development of a drug to treat inflammatory diseases related to iNOS gene overexpression.
Collapse
Affiliation(s)
- G S Oh
- Medicinal Resources Research Center (MRRC), Wonkwang University, Chonbuk, South Korea
| | | | | | | | | | | | | | | |
Collapse
|