1
|
Chereshnev VA, Bocharov G, Bazhan S, Bachmetyev B, Gainova I, Likhoshvai V, Argilaguet JM, Martinez JP, Rump JA, Mothe B, Brander C, Meyerhans A. Pathogenesis and treatment of HIV infection: the cellular, the immune system and the neuroendocrine systems perspective. Int Rev Immunol 2013; 32:282-306. [PMID: 23617796 DOI: 10.3109/08830185.2013.779375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Infections with HIV represent a great challenge for the development of strategies for an effective cure. The spectrum of diseases associated with HIV ranges from opportunistic infections and cancers to systemic physiological disorders like encephalopathy and neurocognitive impairment. A major progress in controlling HIV infection has been achieved by highly active antiretroviral therapy (HAART). However, HAART does neither eliminate the virus reservoirs in form of latently infected cells nor does it completely reconstitute immune reactivity and physiological status. Furthermore, the failure of the STEP vaccine trial and the only marginal efficacies of the RV144 trial together suggest that the causal relationships between the complex sets of viral and immunological processes that contribute to protection or disease pathogenesis are still poorly understood. Here, we provide an up-to-date overview of HIV-host interactions at the cellular, the immune system and the neuroendocrine systems level. Only by integrating this multi-level knowledge one will be able to handle the systems complexity and develop new methodologies of analysis and prediction for a functional restoration of the immune system and the health of the infected host.
Collapse
Affiliation(s)
- V A Chereshnev
- Institute of Immunology and Physiology, Ural Branch RAS, Ekaterinburg, Russia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Simpkins JW, Perez E, Wang X, Yang S, Wen Y, Singh M. The potential for estrogens in preventing Alzheimer's disease and vascular dementia. Ther Adv Neurol Disord 2011; 2:31-49. [PMID: 19890493 DOI: 10.1177/1756285608100427] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Estrogens are the best-studied class of drugs for potential use in the prevention of Alzheimer's disease (AD). These steroids have been shown to be potent neuroprotectants both in vitro and in vivo, and to exert effects that are consistent with their potential use in prevention of AD. These include the prevention of the processing of amyloid precursor protein (APP) into beta-amyloid (Aß), the reduction in tau hyperphosphorylation, and the elimination of catastrophic attempts at neuronal mitosis. Further, epidemiological data support the efficacy of early postmenopausal use of estrogens for the delay or prevention of AD. Collectively, this evidence supports the further development of estrogen-like compounds for prevention of AD. Several approaches to enhance brain specificity of estrogen action are now underway in an attempt to reduce the side effects of chronic estrogen therapy in AD.
Collapse
Affiliation(s)
- James W Simpkins
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, Center FOR HER (Focused On Resources for her Health, Education and Research), University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | | | | | | | | |
Collapse
|
3
|
Abstract
Individuals suffering from human immunodeficiency virus type 1 (HIV-1) infection suffer from a wide range of neurological deficits. The most pronounced are the motor and cognitive deficits observed in many patients in the latter stages of HIV infection. Gross postmortem inspection shows cortical atrophy and widespread
neuronal loss. One of the more debilitating of the HIV-related syndromes is AIDS-related dementia, or HAD. Complete understanding of HIV neurotoxicity has been elusive. Both direct and indirect toxic mechanisms have been implicated in the neurotoxicity of the
HIV proteins, Tat and gp120. The glutamatergic system, nitric oxide, calcium, oxidative stress, apoptosis, and microglia have all been implicated in the pathogenesis of HIV-related neuronal degeneration. The aim of this review is to summarize the most
recent work and provide an overview to the current theories of HIV-related neurotoxicity and potential avenues of therapeutic interventions to prevent the neuronal loss and motor/cognitive deficits previously described.
Collapse
Affiliation(s)
- David R. Wallace
- Department of Pharmacology and Physiology and Department of Forensic Sciences, Center for Health Sciences, Oklahoma State University, Tulsa, OK 74107-1898, USA
- *David R. Wallace:
| |
Collapse
|
4
|
Hochhauser CJ, Gaur S, Marone R, Lewis M. The impact of environmental risk factors on HIV-associated cognitive decline in children. AIDS Care 2008; 20:692-9. [PMID: 18576171 DOI: 10.1080/09540120701693982] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Both the human immunodeficiency virus (HIV) and environmental stress have been independently associated with decreased cognitive functioning in children. Given that they are also known to have a strong relationship with each other, the present study sought to test the hypothesis that children in conditions of high environmental risk would be at greater risk for the cognitive complications related to immunosuppression. A retrospective review was conducted to examine the records of 141 children treated at a large pediatric AIDS clinic from 1993 to 2000. CD4+ lymphocyte levels were recorded from laboratory results and IQ scores were recorded from routine psychological evaluations. Key indicators of environmental risk were collected and combined into one measure of overall environmental risk. Pearson product moment correlations were conducted to examine the relationship between environmental risk, age-adjusted CD4 and IQ. Results indicated a significant correlation between CD4 and IQ, with higher levels of immunocompetence predicting higher IQ scores. When subjects were dichotomized based on their environmental risk score, there was no relationship between CD4 count and IQ in the low environmental risk group. In contrast, CD4 was positively associated with IQ in the high environmental risk group. It is proposed that this may be due to gp120 levels in immunocompromised children being particularly toxic to the hippocampus and cortex under conditions of high stress but not so under conditions of low stress.
Collapse
Affiliation(s)
- C J Hochhauser
- University of Medicine and Dentistry of NJ, Institute for Study of Child Development, New Brunswick, United States.
| | | | | | | |
Collapse
|
5
|
Wallace DR, Dodson S, Nath A, Booze RM. Estrogen attenuates gp120- and tat1-72-induced oxidative stress and prevents loss of dopamine transporter function. Synapse 2006; 59:51-60. [PMID: 16237680 DOI: 10.1002/syn.20214] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Postmenopausal women who are infected with HIV are at risk for experiencing dementia and Parkinson's-like symptoms associated with low levels of estrogen. Neurotoxic damage leading to these symptoms may involve HIV-associated proteins gp120 and/or tat(1-72) (tat). Our hypothesis is that 17beta-Estradiol (E(2)) is an effective agent for protection against gp120/tat-induced damage associated with increased oxidative stress, with particular focus on peroxynitrite-induced oxidative stress. We used SK-N-SH cells and striatal synaptosomes from Sprague-Dawley rats as model systems to assess neuroprotection by E(2). Cells coincubated with SIN-1(3-morpholinosydnonimine) or tat and gp120, together or separately, significantly increased oxidative stress on the SK-N-SH cells, as indicated by the increase in the levels of dichlorofluorescein (DCFH) fluorescence. These data suggest that a component of tat and gp120 neurotoxicity may be due to increased oxidative stress. Coincubation with E(2) attenuated tat- and gp120-induced increase in fluorescence. Coincubation with progesterone had no effect on tat-induced fluorescence, whereas coincubation with the E(2) antagonist ICI 182,780 and E(2) completely prevented the effects observed with E(2) alone. Both gp120 and tat decreased [(3)H] dopamine uptake into striatal synaptosomes by decreasing the V(max) of the dopamine transporter (DAT). Pretreatment of synaptosomes with E(2) (100 nM) partially reversed this reduction. In conclusion, E(2) appears to be effective for preventing the oxidative stress and loss of DAT function associated with gp120/tat neurotoxicity.
Collapse
Affiliation(s)
- David R Wallace
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, 74107, USA.
| | | | | | | |
Collapse
|
6
|
Zemlyak I, Brooke S, Sapolsky R. Estrogenic protection against gp120 neurotoxicity: Role of microglia. Brain Res 2005; 1046:130-6. [PMID: 15878158 DOI: 10.1016/j.brainres.2005.03.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 03/17/2005] [Accepted: 03/29/2005] [Indexed: 10/25/2022]
Abstract
HIV infection of the nervous system can cause neurotoxicity, and the glycoprotein gp120 of HIV seems to play a key role in this. gp120 is neurotoxic through a multi-cellular pathway, stimulating microglia to release excitotoxins, cytokines and reactive oxygen species, which then damage neurons. We have previously shown that estrogen decreases the neurotoxicity of gp120 in mixed neuronal/glial cultures. In this study, we determine whether estrogen a) decreases the collective neurotoxicity of the factors released by gp120-treated microglia, and/or b) enhances the ability of neurons to survive such factors. To do so, we established microglial cultures, mixed neuronal/glial hippocampal cultures, and neuron-enriched cultures, independently manipulating gp120 and estrogen exposure in each type of culture, and inducing neurotoxicity in neuron-containing cultures by introducing conditioned media from gp120-treated microglial cultures. We observe that estrogen can exert some small protective effects at the level of bolstering neuronal resistance, but that the bulk of its protective effects arise at the level of decreasing the neurotoxicity of factors released by microglia.
Collapse
Affiliation(s)
- Ilona Zemlyak
- Department of Biological Sciences, Neurology and Neurological Sciences, Stanford University, CA 94305-5020, USA.
| | | | | |
Collapse
|
7
|
van Elst LT, Krishnamoorthy ES, Bäumer D, Selai C, von Gunten A, Gene-Cos N, Ebert D, Trimble MR. Psychopathological profile in patients with severe bilateral hippocampal atrophy and temporal lobe epilepsy: evidence in support of the Geschwind syndrome? Epilepsy Behav 2003; 4:291-7. [PMID: 12791331 DOI: 10.1016/s1525-5050(03)00084-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bilateral symmetrical hippocampal atrophy (BHA) has been implicated as a possible causal element in various neuropsychiatric disorders, in particular depressive disorder and schizophrenia. To test the hypothesis that bilateral symmetrical severe volume loss of the hippocampi is of causal relevance to these psychiatric syndromes rather than an epiphenomenon we assessed the psychopathology in a group of patients with temporal lobe epilepsy (TLE) and very severe bilateral symmetrical hippocampal atrophy and compared it with that of a patient control group. Patients with TLE and hippocampal volumes smaller than three standard deviations below the mean of a control population were identified and compared with a matched patient population with normal hippocampal volumes. Psychopathology was assessed by blinded trained psychiatrists using the Present State Examination and Neurobehavioral Inventory. The prevalence of psychiatric syndromes was high in both patient groups; however, there was no significant difference between the two groups. With use of the more specific Neurobehavioral Inventory a psychopathological pattern reminiscent of the Geschwind syndrome emerged when patients with BHA were characterized by caregivers. While BHA does not result in an increased prevalence of specific psychiatric syndromes, specific symptoms that characterize the Geschwind syndrome like hypergraphia and hyposexuality might be pathogenically related to hippocampal atrophy.
Collapse
Affiliation(s)
- L Tebartz van Elst
- Institute of Neurology, University College, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Brooke SM, Sapolsky RM. Effects of glucocorticoids in the gp120-induced inhibition of glutamate uptake in hippocampal cultures. Brain Res 2003; 972:137-41. [PMID: 12711086 DOI: 10.1016/s0006-8993(03)02517-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Studies examining the development of AIDS Related Dementia have concentrated on neurotoxic properties of the HIV viral coat protein, gp120. We have previously shown that this neurotoxicity can be exacerbated by glucocorticoids (GCs), the stress hormones secreted by the adrenal. Moreover, GCs also worsen several of the mechanisms mediating gp120 neurotoxicity, such as increased calcium flux, ROS generation, and energy depletion. Gp120 interferes with the reuptake of glutamate in glia cultures, another possible mechanism by which it can be neurotoxic. This paper examines the role of GCs in exacerbating this phenomenon. It was found that while GCs do not exacerbate the decrease in reuptake of glutamate in glia cultures, they do enhance the decrease in mixed neuronal cultures and this latter effect appears to be energy-dependent.
Collapse
Affiliation(s)
- Sheila M Brooke
- Department of Biological Sciences, Gilbert Building Rm 432, Stanford University, Stanford, CA 94305-5020, USA.
| | | |
Collapse
|
9
|
Zemlyak I, Brooke SM, Sapolsky RM. Protection against gp120-induced neurotoxicity by an array of estrogenic steroids. Brain Res 2002; 958:272-6. [PMID: 12470862 DOI: 10.1016/s0006-8993(02)03558-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
gp120, the coat protein of HIV, can be neurotoxic and is thought to contribute to AIDS-related dementia complex. Such toxicity involves activation of glutamate receptors, mobilization of free cytosolic calcium, and generation of oxygen radicals. We have previously shown that the estrogen 17beta-estradiol, in concentrations of 100 nM or higher, lessens the neurotoxicity of gp120 in hippocampal and cortical cultures, blunts gp120-induced calcium mobilization, and lessens the oxidative consequences. In this study, we examined the protective potential of other estrogens. We found gp120 neurotoxicity in hippocampal cultures to be significantly lessened by estrone, equilin and estriol, although with an order of magnitude less potent than 17beta-estradiol. We also found all four estrogens to blunt gp120-induced calcium mobilization, with estriol being more efficacious than the other three estrogens. These findings give insight both into the mechanisms of estrogenic protection (e.g. receptor-dependent versus independent actions) as well as into the potential therapeutic use of estrogens against AIDS-related dementia complex.
Collapse
Affiliation(s)
- Ilona Zemlyak
- Department of Biological Sciences, Gilbert Laboratory MC 5020, Stanford University, Stanford, CA 94305-5020, USA
| | | | | |
Collapse
|
10
|
Brooke SM, McLaughlin JR, Cortopassi KM, Sapolsky RM. Effect of GP120 on glutathione peroxidase activity in cortical cultures and the interaction with steroid hormones. J Neurochem 2002; 81:277-84. [PMID: 12064474 DOI: 10.1046/j.1471-4159.2002.00825.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
GP120 (the protein component of the HIV viral coat) is neurotoxic and may contribute to the cell loss associated with AIDS-related dementia. Previously, it has been shown in rat cortical mixed cultures that gp120 increased the accumulation of hydrogen peroxide and superoxide, two reactive oxygen species (ROS). We now demonstrate that gp120 increased activity of the key antioxidant glutathione peroxidase (GSPx), presumably as a defensive mechanism against the increased ROS load. Both estrogen and glucocorticoids (GCs), the adrenal steroid released during stress, blunted this gp120 effect on GSPx activity. The similar effects of estrogen and of GCs are superficially surprising, given prior demonstrations that GCs exacerbated and estrogens protected against gp120 neurotoxicity. We find that these similar effects of estrogen and GCs on GSPx regulation arose, in fact, from very different routes, which are commensurate with these prior reports. Specifically, estrogen has demonstrated antioxidant properties that may prevent the ROS increase (therefore acting as a neuroprotective agent) and rendered unnecessary the compensatory GSPx increased activity. To verify this we have added H2O2 to estrogen + gp120-treated cells, and GSPx activity was increased. However, with addition of H2O2 to GCs + gp120-treated cells there was no increase in activity. GCs appeared to decrease enzyme production and or activity and therefore under insult conditions ROS levels rose in the cell resulting in increased neurotoxicity. Overexpression of GSPx enzyme via herpes vector system reversed the GCs-induced loss of enzyme and eliminated the GCs exacerbation of gp120 neurotoxicity.
Collapse
Affiliation(s)
- Sheila M Brooke
- Department of Biological Sciences, Stanford University, California 94305-5020, USA.
| | | | | | | |
Collapse
|