1
|
Barth C, Nerland S, Jørgensen KN, Haatveit B, Wortinger LA, Melle I, Haukvik UK, Ueland T, Andreassen OA, Agartz I. Altered Sex Differences in Hippocampal Subfield Volumes in Schizophrenia. Schizophr Bull 2024; 50:107-119. [PMID: 37354490 PMCID: PMC10754184 DOI: 10.1093/schbul/sbad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
BACKGROUND AND HYPOTHESIS The hippocampus is a heterogenous brain structure that differs between the sexes and has been implicated in the pathophysiology of psychiatric illnesses. Here, we explored sex and diagnostic group differences in hippocampal subfield volumes, in individuals with schizophrenia spectrum disorder (SZ), bipolar disorders (BD), and healthy controls (CTL). STUDY DESIGN One thousand and five hundred and twenty-one participants underwent T1-weighted magnetic resonance imaging (SZ, n = 452, mean age 30.7 ± 9.2 [SD] years, males 59.1%; BD, n = 316, 33.7 ± 11.4, 41.5%; CTL, n = 753, 34.1 ± 9.1, 55.6%). Total hippocampal, subfield, and intracranial volumes were estimated with Freesurfer (v6.0.0). Analysis of covariance and multiple regression models were fitted to examine sex-by-diagnostic (sub)group interactions in volume. In SZ and BD, separately, associations between volumes and clinical as well as cognitive measures were examined between the sexes using regression models. STUDY RESULTS Significant sex-by-group interactions were found for the total hippocampus, dentate gyrus, molecular layer, presubiculum, fimbria, hippocampal-amygdaloid transition area, and CA4, indicating a larger volumetric deficit in male patients relative to female patients when compared with same-sex CTL. Subgroup analyses revealed that this interaction was driven by males with schizophrenia. Effect sizes were overall small (partial η < 0.02). We found no significant sex differences in the associations between hippocampal volumes and clinical or cognitive measures in SZ and BD. CONCLUSIONS Using a well-powered sample, our findings indicate that the pattern of morphological sex differences in hippocampal subfields is altered in individuals with schizophrenia relative to CTL, due to higher volumetric deficits in males.
Collapse
Affiliation(s)
- Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
| | - Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
| | - Kjetil N Jørgensen
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Beathe Haatveit
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
| | - Laura A Wortinger
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
| | - Ingrid Melle
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
| | - Unn K Haukvik
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
- Department of Adult Mental Health, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Torill Ueland
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
2
|
Roeske MJ, Lyu I, McHugo M, Blackford JU, Woodward ND, Heckers S. Incomplete Hippocampal Inversion: A Neurodevelopmental Mechanism for Hippocampal Shape Deformation in Schizophrenia. Biol Psychiatry 2022; 92:314-322. [PMID: 35487783 PMCID: PMC9339515 DOI: 10.1016/j.biopsych.2022.02.954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Shape analyses of patients with schizophrenia have revealed bilateral deformations of the anterolateral hippocampus, primarily localized to the CA1 subfield. Incomplete hippocampal inversion (IHI), an anatomical variant of the human hippocampus resulting from an arrest during neurodevelopment, is more prevalent and severe in patients with schizophrenia. We hypothesized that IHI would affect the shape of the hippocampus and contribute to hippocampal shape differences in schizophrenia. METHODS We studied 199 patients with schizophrenia and 161 healthy control participants with structural magnetic resonance imaging to measure the prevalence and severity of IHI. High-fidelity hippocampal surface reconstructions were generated with the SPHARM-PDM toolkit. We used general linear models in SurfStat to test for group shape differences, the impact of IHI on hippocampal shape variation, and whether IHI contributes to hippocampal shape abnormalities in schizophrenia. RESULTS Not including IHI as a main effect in our between-group comparison replicated well-established hippocampal shape differences in patients with schizophrenia localized to the CA1 subfield in the anterolateral hippocampus. Shape differences were also observed near the uncus and hippocampal tail. IHI was associated with outward displacements of the dorsal and ventral surfaces of the hippocampus and inward displacements of the medial and lateral surfaces. Including IHI as a main effect in our between-group comparison eliminated the bilateral shape differences in the CA1 subfield. Shape differences in the uncus persisted after including IHI. CONCLUSIONS IHI impacts hippocampal shape. Our results suggest IHI as a neurodevelopmental mechanism for the well-known shape differences, particularly in the CA1 subfield, in schizophrenia.
Collapse
Affiliation(s)
- Maxwell J Roeske
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Ilwoo Lyu
- Department of Computer Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
3
|
Abstract
Most psychiatric illnesses, such as schizophrenia, show profound sex differences in incidence, clinical presentation, course, and outcome. Fortunately, more recently the literature on sex differences and (to a lesser extent) effects of sex steroid hormones is expanding, and in this review we have focused on such studies in psychosis, both from a clinical/epidemiological and preclinical/animal model perspective. We begin by briefly describing the clinical evidence for sex differences in schizophrenia epidemiology, symptomatology, and pathophysiology. We then detail sex differences and sex hormone effects in behavioral animal models of psychosis, specifically psychotropic drug-induced locomotor hyperactivity and disruption of prepulse inhibition. We expand on the preclinical data to include developmental and genetic models of psychosis, such as the maternal immune activation model and neuregulin transgenic animals, respectively. Finally, we suggest several recommendations for future studies, in order to facilitate a better understanding of sex differences in the development of psychosis.
Collapse
|
4
|
Gutman BA, van Erp TG, Alpert K, Ching CRK, Isaev D, Ragothaman A, Jahanshad N, Saremi A, Zavaliangos‐Petropulu A, Glahn DC, Shen L, Cong S, Alnæs D, Andreassen OA, Doan NT, Westlye LT, Kochunov P, Satterthwaite TD, Wolf DH, Huang AJ, Kessler C, Weideman A, Nguyen D, Mueller BA, Faziola L, Potkin SG, Preda A, Mathalon DH, Bustillo J, Calhoun V, Ford JM, Walton E, Ehrlich S, Ducci G, Banaj N, Piras F, Piras F, Spalletta G, Canales‐Rodríguez EJ, Fuentes‐Claramonte P, Pomarol‐Clotet E, Radua J, Salvador R, Sarró S, Dickie EW, Voineskos A, Tordesillas‐Gutiérrez D, Crespo‐Facorro B, Setién‐Suero E, van Son JM, Borgwardt S, Schönborn‐Harrisberger F, Morris D, Donohoe G, Holleran L, Cannon D, McDonald C, Corvin A, Gill M, Filho GB, Rosa PGP, Serpa MH, Zanetti MV, Lebedeva I, Kaleda V, Tomyshev A, Crow T, James A, Cervenka S, Sellgren CM, Fatouros‐Bergman H, Agartz I, Howells F, Stein DJ, Temmingh H, Uhlmann A, de Zubicaray GI, McMahon KL, Wright M, Cobia D, Csernansky JG, Thompson PM, Turner JA, Wang L. A meta-analysis of deep brain structural shape and asymmetry abnormalities in 2,833 individuals with schizophrenia compared with 3,929 healthy volunteers via the ENIGMA Consortium. Hum Brain Mapp 2022; 43:352-372. [PMID: 34498337 PMCID: PMC8675416 DOI: 10.1002/hbm.25625] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia is associated with widespread alterations in subcortical brain structure. While analytic methods have enabled more detailed morphometric characterization, findings are often equivocal. In this meta-analysis, we employed the harmonized ENIGMA shape analysis protocols to collaboratively investigate subcortical brain structure shape differences between individuals with schizophrenia and healthy control participants. The study analyzed data from 2,833 individuals with schizophrenia and 3,929 healthy control participants contributed by 21 worldwide research groups participating in the ENIGMA Schizophrenia Working Group. Harmonized shape analysis protocols were applied to each site's data independently for bilateral hippocampus, amygdala, caudate, accumbens, putamen, pallidum, and thalamus obtained from T1-weighted structural MRI scans. Mass univariate meta-analyses revealed more-concave-than-convex shape differences in the hippocampus, amygdala, accumbens, and thalamus in individuals with schizophrenia compared with control participants, more-convex-than-concave shape differences in the putamen and pallidum, and both concave and convex shape differences in the caudate. Patterns of exaggerated asymmetry were observed across the hippocampus, amygdala, and thalamus in individuals with schizophrenia compared to control participants, while diminished asymmetry encompassed ventral striatum and ventral and dorsal thalamus. Our analyses also revealed that higher chlorpromazine dose equivalents and increased positive symptom levels were associated with patterns of contiguous convex shape differences across multiple subcortical structures. Findings from our shape meta-analysis suggest that common neurobiological mechanisms may contribute to gray matter reduction across multiple subcortical regions, thus enhancing our understanding of the nature of network disorganization in schizophrenia.
Collapse
Affiliation(s)
- Boris A. Gutman
- Department of Biomedical EngineeringIllinois Institute of TechnologyChicagoIllinoisUSA
- Institute for Information Transmission Problems (Kharkevich Institute)MoscowRussia
| | - Theo G.M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
- Center for the Neurobiology of Learning and MemoryUniversity of California IrvineIrvineCaliforniaUSA
| | - Kathryn Alpert
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Christopher R. K. Ching
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Dmitry Isaev
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | - Anjani Ragothaman
- Department of biomedical engineeringOregon Health and Science universityPortlandOregonUSA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Arvin Saremi
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Artemis Zavaliangos‐Petropulu
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - David C. Glahn
- Department of PsychiatryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Li Shen
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shan Cong
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dag Alnæs
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Ole Andreas Andreassen
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Nhat Trung Doan
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Lars T. Westlye
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Peter Kochunov
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Theodore D. Satterthwaite
- Department of PsychiatryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Daniel H. Wolf
- Department of PsychiatryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Alexander J. Huang
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Charles Kessler
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Andrea Weideman
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Dana Nguyen
- Department of PediatricsUniversity of California IrvineIrvineCaliforniaUSA
| | - Bryon A. Mueller
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Lawrence Faziola
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Steven G. Potkin
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Adrian Preda
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Daniel H. Mathalon
- Department of Psychiatry and Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Judith Ford Mental HealthVA San Francisco Healthcare SystemSan FranciscoCaliforniaUSA
| | - Juan Bustillo
- Departments of Psychiatry & NeuroscienceUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Vince Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology]Emory UniversityAtlantaGeorgiaUSA
- Department of Electrical and Computer EngineeringThe University of New MexicoAlbuquerqueNew MexicoUSA
| | - Judith M. Ford
- Judith Ford Mental HealthVA San Francisco Healthcare SystemSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | - Stefan Ehrlich
- Division of Psychological & Social Medicine and Developmental NeurosciencesFaculty of Medicine, TU‐DresdenDresdenGermany
| | | | - Nerisa Banaj
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Fabrizio Piras
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Federica Piras
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Gianfranco Spalletta
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
- Menninger Department of Psychiatry and Behavioral SciencesBaylor College of MedicineHoustonTexasUSA
| | | | | | | | - Joaquim Radua
- FIDMAG Germanes Hospitalàries Research FoundationCIBERSAMBarcelonaSpain
- Institut d'Investigacions Biomdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research FoundationCIBERSAMBarcelonaSpain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research FoundationCIBERSAMBarcelonaSpain
| | - Erin W. Dickie
- Centre for Addiction and Mental Health (CAMH)TorontoCanada
| | | | | | | | | | | | - Stefan Borgwardt
- Department of PsychiatryUniversity of BaselBaselSwitzerland
- Department of Psychiatry and PsychotherapyUniversity of LübeckLübeckGermany
| | | | - Derek Morris
- Centre for Neuroimaging and Cognitive Genomics, Discipline of BiochemistryNational University of Ireland GalwayGalwayIreland
| | - Gary Donohoe
- Centre for Neuroimaging and Cognitive Genomics, School of PsychologyNational University of Ireland GalwayGalwayIreland
| | - Laurena Holleran
- Centre for Neuroimaging and Cognitive Genomics, School of PsychologyNational University of Ireland GalwayGalwayIreland
| | - Dara Cannon
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive GenomicsNational University of Ireland GalwayGalwayIreland
| | - Colm McDonald
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive GenomicsNational University of Ireland GalwayGalwayIreland
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of PsychiatryTrinity College DublinDublinIreland
- Trinity College Institute of NeuroscienceTrinity College DublinDublinIreland
| | - Michael Gill
- Neuropsychiatric Genetics Research Group, Department of PsychiatryTrinity College DublinDublinIreland
- Trinity College Institute of NeuroscienceTrinity College DublinDublinIreland
| | - Geraldo Busatto Filho
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Pedro G. P. Rosa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Mauricio H. Serpa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Marcus V. Zanetti
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Hospital Sirio‐LibanesSao PauloSPBrazil
| | - Irina Lebedeva
- Laboratory of Neuroimaging and Multimodal AnalysisMental Health Research CenterMoscowRussia
| | - Vasily Kaleda
- Department of Endogenous Mental DisordersMental Health Research CenterMoscowRussia
| | - Alexander Tomyshev
- Laboratory of Neuroimaging and Multimodal AnalysisMental Health Research CenterMoscowRussia
| | - Tim Crow
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Anthony James
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Simon Cervenka
- Centre for Psychiatry Reserach, Department of Clinical NeuroscienceKarolinska Institutet, & Stockholm Health Care Services, Region StockholmStockholmSweden
| | - Carl M Sellgren
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Helena Fatouros‐Bergman
- Centre for Psychiatry Reserach, Department of Clinical NeuroscienceKarolinska Institutet, & Stockholm Health Care Services, Region StockholmStockholmSweden
| | - Ingrid Agartz
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Fleur Howells
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
- Neuroscience InstituteUniversity of Cape Town, Cape TownWCSouth Africa
| | - Dan J. Stein
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
- Neuroscience InstituteUniversity of Cape Town, Cape TownWCSouth Africa
- SA MRC Unit on Risk & Resilience in Mental DisordersUniversity of Cape TownCape TownWCSouth Africa
| | - Henk Temmingh
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
| | - Anne Uhlmann
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
- Department of Child and Adolescent PsychiatryTU DresdenGermany
| | - Greig I. de Zubicaray
- School of Psychology, Faculty of HealthQueensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Katie L. McMahon
- School of Clinical SciencesQueensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Margie Wright
- Queensland Brain InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | - Derin Cobia
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Psychology and Neuroscience CenterBrigham Young UniversityProvoUtahUSA
| | - John G. Csernansky
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Lei Wang
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Psychiatry and Behavioral HealthOhio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
5
|
Salminen LE, Tubi MA, Bright J, Thomopoulos SI, Wieand A, Thompson PM. Sex is a defining feature of neuroimaging phenotypes in major brain disorders. Hum Brain Mapp 2022; 43:500-542. [PMID: 33949018 PMCID: PMC8805690 DOI: 10.1002/hbm.25438] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Sex is a biological variable that contributes to individual variability in brain structure and behavior. Neuroimaging studies of population-based samples have identified normative differences in brain structure between males and females, many of which are exacerbated in psychiatric and neurological conditions. Still, sex differences in MRI outcomes are understudied, particularly in clinical samples with known sex differences in disease risk, prevalence, and expression of clinical symptoms. Here we review the existing literature on sex differences in adult brain structure in normative samples and in 14 distinct psychiatric and neurological disorders. We discuss commonalities and sources of variance in study designs, analysis procedures, disease subtype effects, and the impact of these factors on MRI interpretation. Lastly, we identify key problems in the neuroimaging literature on sex differences and offer potential recommendations to address current barriers and optimize rigor and reproducibility. In particular, we emphasize the importance of large-scale neuroimaging initiatives such as the Enhancing NeuroImaging Genetics through Meta-Analyses consortium, the UK Biobank, Human Connectome Project, and others to provide unprecedented power to evaluate sex-specific phenotypes in major brain diseases.
Collapse
Affiliation(s)
- Lauren E. Salminen
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Meral A. Tubi
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Joanna Bright
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Sophia I. Thomopoulos
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Alyssa Wieand
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Paul M. Thompson
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| |
Collapse
|
6
|
Thirumagal J, Mahadevappa M, Sadhu A, Dutta PK. Ventricle shape analysis using modified WKS for atrophy detection. Med Biol Eng Comput 2021; 59:1485-1493. [PMID: 34173965 DOI: 10.1007/s11517-021-02377-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
Brain ventricle is one of the biomarkers for detecting neurological disorders. Studying the shape of the ventricles will aid in the diagnosis process of atrophy and other CSF-related neurological disorders, as ventricles are filled with CSF. This paper introduces a spectral analysis algorithm based on wave kernel signature. This shape signature was used for studying the shape of segmented ventricles from the brain images. Based on the shape signature, the study groups were classified as normal subjects and atrophy subjects. The proposed algorithm is simple, effective, automated, and less time consuming. The proposed method performed better than the other methods heat kernel signature, scale invariant heat kernel signature, wave kernel signature, and spectral graph wavelet signature, which were used for validation purpose, by producing 94-95% classification accuracy by classifying normal and atrophy subjects correctly for CT, MR, and OASIS datasets.
Collapse
Affiliation(s)
| | | | - Anup Sadhu
- EKO CT & MRI Scan Centre, Medical College, Calcutta, India
| | - Pranab Kumar Dutta
- Radiologist, EKO-CT & MRI Scan Center, Calcutta Medical College and Hospital, Kolkata, India
| |
Collapse
|
7
|
Jayaraman T, Reddy M S, Mahadevappa M, Sadhu A, Dutta PK. Modified distance regularized level set evolution for brain ventricles segmentation. Vis Comput Ind Biomed Art 2020; 3:29. [PMID: 33283254 PMCID: PMC7719594 DOI: 10.1186/s42492-020-00064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/13/2020] [Indexed: 12/02/2022] Open
Abstract
Neurodegenerative disorders are commonly characterized by atrophy of the brain which is caused by neuronal loss. Ventricles are one of the prominent structures in the brain; their shape changes, due to their content, the cerebrospinal fluid. Analyzing the morphological changes of ventricles, aids in the diagnosis of atrophy, for which the region of interest needs to be separated from the background. This study presents a modified distance regularized level set evolution segmentation method, incorporating regional intensity information. The proposed method is implemented for segmenting ventricles from brain images for normal and atrophy subjects of magnetic resonance imaging and computed tomography images. Results of the proposed method were compared with ground truth images and produced sensitivity in the range of 65%–90%, specificity in the range of 98%–99%, and accuracy in the range of 95%–98%. Peak signal to noise ratio and structural similarity index were also used as performance measures for determining segmentation accuracy: 95% and 0.95, respectively. The parameters of level set formulation vary for different datasets. An optimization procedure was followed to fine tune parameters. The proposed method was found to be efficient and robust against noisy images. The proposed method is adaptive and multimodal.
Collapse
Affiliation(s)
- Thirumagal Jayaraman
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, 721302, India
| | - Sravan Reddy M
- Department of Electronics and Communications, JNTUA-College of Engineering, Pulivendula, 516390, India
| | | | - Anup Sadhu
- EKO CT & MRI Scan Centre, Medical College, Calcutta, 700073, India
| | - Pranab Kumar Dutta
- Department of Electrical Engineering, IIT Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
8
|
Xiang L, Crow TJ, Hopkins WD, Roberts N. Comparison of Surface Area and Cortical Thickness Asymmetry in the Human and Chimpanzee Brain. Cereb Cortex 2020; 34:bhaa202. [PMID: 33026423 PMCID: PMC10859246 DOI: 10.1093/cercor/bhaa202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Comparative study of the structural asymmetry of the human and chimpanzee brain may shed light on the evolution of language and other cognitive abilities in humans. Here we report the results of vertex-wise and ROI-based analyses that compared surface area (SA) and cortical thickness (CT) asymmetries in 3D MR images obtained for 91 humans and 77 chimpanzees. The human brain is substantially more asymmetric than the chimpanzee brain. In particular, the human brain has 1) larger total SA in the right compared with the left cerebral hemisphere, 2) a global torque-like asymmetry pattern of widespread thicker cortex in the left compared with the right frontal and the right compared with the left temporo-parieto-occipital lobe, and 3) local asymmetries, most notably in medial occipital cortex and superior temporal gyrus, where rightward asymmetry is observed for both SA and CT. There is also 4) a prominent asymmetry specific to the chimpanzee brain, namely, rightward CT asymmetry of precentral cortex. These findings provide evidence of there being substantial differences in asymmetry between the human and chimpanzee brain. The unique asymmetries of the human brain are potential neural substrates for cognitive specializations, and the presence of significant CT asymmetry of precentral gyrus in the chimpanzee brain should be further investigated.
Collapse
Affiliation(s)
- Li Xiang
- School of Clinical Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Timothy J Crow
- POWIC, Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK
| | - William D Hopkins
- The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Neil Roberts
- School of Clinical Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
9
|
Lundemose S, Busch JR, Møller M, Jensen KE, Lynnerup N, Banner J, Jacobsen C. Comparison of hippocampal volume measurement by autopsy and post-mortem magnetic resonance imaging. Forensic Sci Med Pathol 2019; 16:119-122. [PMID: 31667731 DOI: 10.1007/s12024-019-00188-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2019] [Indexed: 11/25/2022]
Abstract
We present an autopsy-validated, non-invasive, magnetic resonance imaging (MRI) based segmentation algorithm, for determining hippocampal volume. A segmentation algorithm was developed to assess the volume of the hippocampus. Deceased individuals with severe mental illness were used to evaluate the use of MRI imaging to determine hippocampal volume as this group has previously been associated with altered hippocampal volume diagnosed on MRI. The accuracy of the MR- scanning protocol for volume measurement was tested on a water filled phantom control with a known volume of 500 ml, and a difference of 0.08% was found. Thus the scanning protocol was deemed to have produced acceptable results when comparing volume measures of a pair of segmented hippocampi obtained at the 1 T MR scanner and a 3 T MR scanner using the software program Mimics®. The segmentation algorithm was tested by a volume comparison obtained using anterior and posterior landmarks (in situ) and the exact volume of the dissected hippocampus (ex situ). The in situ and ex situ hippocampal volumes were highly correlated; R2 was 96%, with a mean difference of 4-5%. Cases were also examined for intra- and inter-observer agreement. This study presents a validated segmentation algorithm that can be used to determine the hippocampal volume using post-mortem MR and anatomical landmarks.
Collapse
Affiliation(s)
- Sissel Lundemose
- Department of Forensic Pathology, Institute of Forensic Medicine, University of Copenhagen, Frederik V's vej 11, 2100, Copenhagen East, Denmark.
- , Copenhagen East, Denmark.
| | - Johannes Rødbro Busch
- Department of Forensic Pathology, Institute of Forensic Medicine, University of Copenhagen, Frederik V's vej 11, 2100, Copenhagen East, Denmark
| | - Morten Møller
- Department of Neuroscience, Panum Institute 24.6.06, University of Copenhagen, Blegdamsvej3B, 2200, Copenhagen, Denmark
| | - Karl-Erik Jensen
- Radiology Clinic Valby, Toftegaards Allé 7, 2500, Copenhagen, Denmark
| | - Niels Lynnerup
- Department of Forensic Pathology, Institute of Forensic Medicine, University of Copenhagen, Frederik V's vej 11, 2100, Copenhagen East, Denmark
| | - Jytte Banner
- Department of Forensic Pathology, Institute of Forensic Medicine, University of Copenhagen, Frederik V's vej 11, 2100, Copenhagen East, Denmark
| | - Christina Jacobsen
- Department of Forensic Pathology, Institute of Forensic Medicine, University of Copenhagen, Frederik V's vej 11, 2100, Copenhagen East, Denmark
| |
Collapse
|
10
|
Gogos A, Ney LJ, Seymour N, Van Rheenen TE, Felmingham KL. Sex differences in schizophrenia, bipolar disorder, and post-traumatic stress disorder: Are gonadal hormones the link? Br J Pharmacol 2019; 176:4119-4135. [PMID: 30658014 PMCID: PMC6877792 DOI: 10.1111/bph.14584] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/13/2018] [Accepted: 11/25/2018] [Indexed: 12/30/2022] Open
Abstract
In this review, we describe the sex differences in prevalence, onset, symptom profiles, and disease outcome that are evident in schizophrenia, bipolar disorder, and post-traumatic stress disorder. Women with schizophrenia tend to exhibit less disease impairment than men. By contrast, women with post-traumatic stress disorder are more affected than men. The most likely candidates to explain these sex differences are gonadal hormones. This review details the clinical evidence that oestradiol and progesterone are dysregulated in these psychiatric disorders. Notably, existing data on oestradiol, and to a lesser extent, progesterone, suggest that low levels of these hormones may increase the risk of disease development and worsen symptom severity. We argue that future studies require a more inclusive, considered analysis of gonadal steroid hormones and the intricacies of the interactions between them, with methodological rigour applied, to enhance our understanding of the roles of steroid hormones in psychiatric disorders. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Andrea Gogos
- Hormones in Psychiatry LaboratoryFlorey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | - Luke J. Ney
- School of Medicine (Psychology)University of TasmaniaSandy BayTasmaniaAustralia
| | - Natasha Seymour
- Hormones in Psychiatry LaboratoryFlorey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Tamsyn E. Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of PsychiatryUniversity of MelbourneParkvilleVictoriaAustralia
- Centre for Mental Health, School of Health Sciences, Faculty of Health, Arts and DesignSwinburne UniversityMelbourneVictoriaAustralia
| | - Kim L. Felmingham
- School of Psychological SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
11
|
Lange B, Mueller JK, Leweke FM, Bumb JM. How gender affects the pharmacotherapeutic approach to treating psychosis - a systematic review. Expert Opin Pharmacother 2017; 18:351-362. [PMID: 28129701 DOI: 10.1080/14656566.2017.1288722] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The effectiveness, effective dosages and side effect profiles of antipsychotic medication differ significantly between the sexes. Areas covered: We present a systematic review of gender-differences in the treatment of psychosis focusing on randomized, controlled trials and meta-analyses. Expert opinion: Despite many years of research, the database on gender-differences affecting the pharmacotherapeutic approach to treating psychosis is insufficient. Currently, the US National Institute of Health encouraged the enrolment of female participants in federally supported phase III clinical trials to increase the data available of female patients. Emerging evidence points to a superior antipsychotic response in women, with men requiring higher dosages. In general, women metabolize drugs differently, resulting in side effects occuring more frequently when compared to men. In any case, women require electrocardiograms or bone density scans as well as diabetes and cardiovascular workups when treated with antipsychotics. Dose adjustments during the menstrual cycle (e.g. to raise antipsychotic doses premenstrually) should be considered. First-generation antipsychotics, drugs that are known to prolong QTc interval and increase prolactin levels should be avoided in postmenopausal female patients. Furthermore, the effects of antipsychotics during pregnancy and breastfeeding have been investigated insufficiently, and more research is urgently needed.
Collapse
Affiliation(s)
- Bettina Lange
- a Department of Psychiatry and Psychotherapy , Central Institute of Mental Health , Mannheim , Germany
| | - Juliane K Mueller
- a Department of Psychiatry and Psychotherapy , Central Institute of Mental Health , Mannheim , Germany
| | - F Markus Leweke
- a Department of Psychiatry and Psychotherapy , Central Institute of Mental Health , Mannheim , Germany
| | - J Malte Bumb
- b Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health , Medical Faculty Mannheim/Heidelberg University , Mannheim , Germany
| |
Collapse
|
12
|
Guma E, Devenyi GA, Malla A, Shah J, Chakravarty MM, Pruessner M. Neuroanatomical and Symptomatic Sex Differences in Individuals at Clinical High Risk for Psychosis. Front Psychiatry 2017; 8:291. [PMID: 29312018 PMCID: PMC5744013 DOI: 10.3389/fpsyt.2017.00291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/06/2017] [Indexed: 01/18/2023] Open
Abstract
Sex differences have been widely observed in clinical presentation, functional outcome and neuroanatomy in individuals with a first-episode of psychosis, and chronic patients suffering from schizophrenia. However, little is known about sex differences in the high-risk stages for psychosis. The present study investigated sex differences in cortical and subcortical neuroanatomy in individuals at clinical high risk (CHR) for psychosis and healthy controls (CTL), and the relationship between anatomy and clinical symptoms in males at CHR. Magnetic resonance images were collected in 26 individuals at CHR (13 men) and 29 CTLs (15 men) to determine total and regional brain volumes and morphology, cortical thickness, and surface area (SA). Clinical symptoms were assessed with the brief psychiatric rating scale. Significant sex-by-diagnosis interactions were observed with opposite directions of effect in male and female CHR subjects relative to their same-sex controls in multiple cortical and subcortical areas. The right postcentral, left superior parietal, inferior parietal supramarginal, and angular gyri [<5% false discovery rate (FDR)] were thicker in male and thinner in female CHR subjects compared with their same-sex CTLs. The same pattern was observed in the right superior parietal gyrus SA at the regional and vertex level. Using a recently developed surface-based morphology pipeline, we observed sex-specific shape differences in the left hippocampus (<5% FDR) and amygdala (<10% FDR). Negative symptom burden was significantly higher in male compared with female CHR subjects (p = 0.04) and was positively associated with areal expansion of the left amygdala in males (<5% FDR). Some limitations of the study include the sample size, and data acquisition at 1.5 T. This study demonstrates neuroanatomical sex differences in CHR subjects, which may be associated with variations in symptomatology in men and women with psychotic symptoms.
Collapse
Affiliation(s)
- Elisa Guma
- Integrated Program in Neuroscience, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada
| | - Gabriel A Devenyi
- Department of Psychiatry, Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada
| | - Ashok Malla
- Prevention and Early Intervention Program for Psychosis, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada
| | - Jai Shah
- Prevention and Early Intervention Program for Psychosis, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada
| | - M Mallar Chakravarty
- Integrated Program in Neuroscience, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada.,Department of Biological and Biomedical Engineering, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada
| | - Marita Pruessner
- Prevention and Early Intervention Program for Psychosis, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada.,Department of Psychology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
13
|
Steiner J, Brisch R, Schiltz K, Dobrowolny H, Mawrin C, Krzyżanowska M, Bernstein HG, Jankowski Z, Braun K, Schmitt A, Bogerts B, Gos T. GABAergic system impairment in the hippocampus and superior temporal gyrus of patients with paranoid schizophrenia: A post-mortem study. Schizophr Res 2016; 177:10-17. [PMID: 26922657 DOI: 10.1016/j.schres.2016.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/07/2016] [Accepted: 02/10/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Glutamic acid decarboxylase (GAD) is a key enzyme in GABA synthesis and alterations in GABAergic neurotransmission related to glial abnormalities are thought to play a crucial role in the pathophysiology of schizophrenia. This study aimed to identify potential differences regarding the neuropil expression of GAD between paranoid and residual schizophrenia. METHODS GAD65/67 immunostained histological sections were evaluated by quantitative densitometric analysis of GAD-immunoreactive (ir) neuropil. Regions of interest were the hippocampal formation (CA1 field and dentate gyrus [DG]), superior temporal gyrus (STG), and laterodorsal thalamic nucleus (LD). Data from 16 post-mortem schizophrenia patient samples (10 paranoid and 6 residual schizophrenia cases) were compared with those from 16 matched controls. RESULTS Overall, schizophrenia patients showed a lower GAD-ir neuropil density (P=0.014), particularly in the right CA1 (P=0.033). However, the diagnostic subgroups differed significantly (P<0.001), mainly because of lower right CA1 GAD-ir neuropil density in paranoid versus residual patients (P=0.036) and controls (P<0.003). Significant GAD-ir neuropil reduction was also detected in the right STG layer V of paranoid versus residual schizophrenia cases (P=0.042). GAD-ir neuropil density correlated positively with antipsychotic dosage, particularly in CA1 (right: r=0.850, P=0.004; left: r=0.800, P=0.010). CONCLUSION Our finding of decreased relative density of GAD-ir neuropil suggests hypofunction of the GABAergic system, particularly in hippocampal CA1 field and STG layer V of patients with paranoid schizophrenia. The finding that antipsychotic medication seems to counterbalance GABAergic hypofunction in schizophrenia patients suggests the possibility of exploring new treatment avenues which target this system.
Collapse
Affiliation(s)
- Johann Steiner
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| | - Ralf Brisch
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Kolja Schiltz
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
| | - Christian Mawrin
- Institute of Neuropathology, University of Magdeburg, Magdeburg, Germany
| | - Marta Krzyżanowska
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
| | - Zbigniew Jankowski
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Katharina Braun
- Center for Behavioral Brain Sciences, Magdeburg, Germany; Department of Zoology/Developmental Neurobiology, Institute of Biology, University of Magdeburg, Magdeburg, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany; Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Tomasz Gos
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany; Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland; Department of Zoology/Developmental Neurobiology, Institute of Biology, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
14
|
Pagnozzi AM, Shen K, Doecke JD, Boyd RN, Bradley AP, Rose S, Dowson N. Using ventricular modeling to robustly probe significant deep gray matter pathologies: Application to cerebral palsy. Hum Brain Mapp 2016; 37:3795-3809. [PMID: 27257958 DOI: 10.1002/hbm.23276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 04/27/2016] [Accepted: 05/18/2016] [Indexed: 11/11/2022] Open
Abstract
Understanding the relationships between the structure and function of the brain largely relies on the qualitative assessment of Magnetic Resonance Images (MRIs) by expert clinicians. Automated analysis systems can support these assessments by providing quantitative measures of brain injury. However, the assessment of deep gray matter structures, which are critical to motor and executive function, remains difficult as a result of large anatomical injuries commonly observed in children with Cerebral Palsy (CP). Hence, this article proposes a robust surrogate marker of the extent of deep gray matter injury based on impingement due to local ventricular enlargement on surrounding anatomy. Local enlargement was computed using a statistical shape model of the lateral ventricles constructed from 44 healthy subjects. Measures of injury on 95 age-matched CP patients were used to train a regression model to predict six clinical measures of function. The robustness of identifying ventricular enlargement was demonstrated by an area under the curve of 0.91 when tested against a dichotomised expert clinical assessment. The measures also showed strong and significant relationships for multiple clinical scores, including: motor function (r2 = 0.62, P < 0.005), executive function (r2 = 0.55, P < 0.005), and communication (r2 = 0.50, P < 0.005), especially compared to using volumes obtained from standard anatomical segmentation approaches. The lack of reliance on accurate anatomical segmentations and its resulting robustness to large anatomical variations is a key feature of the proposed automated approach. This coupled with its strong correlation with clinically meaningful scores, signifies the potential utility to repeatedly assess MRIs for clinicians diagnosing children with CP. Hum Brain Mapp 37:3795-3809, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alex M Pagnozzi
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia. .,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.
| | - Kaikai Shen
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| | - James D Doecke
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| | - Roslyn N Boyd
- Queensland Cerebral Palsy and Rehabilitation Research Centre, School of Medicine, The University of Queensland, Brisbane, Australia
| | - Andrew P Bradley
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Stephen Rose
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| | - Nicholas Dowson
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| |
Collapse
|
15
|
Clark DG, McLaughlin PM, Woo E, Hwang K, Hurtz S, Ramirez L, Eastman J, Dukes RM, Kapur P, DeRamus TP, Apostolova LG. Novel verbal fluency scores and structural brain imaging for prediction of cognitive outcome in mild cognitive impairment. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2016; 2:113-22. [PMID: 27239542 PMCID: PMC4879664 DOI: 10.1016/j.dadm.2016.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The objective of this study was to assess the utility of novel verbal fluency scores for predicting conversion from mild cognitive impairment (MCI) to clinical Alzheimer's disease (AD). METHOD Verbal fluency lists (animals, vegetables, F, A, and S) from 107 MCI patients and 51 cognitively normal controls were transcribed into electronic text files and automatically scored with traditional raw scores and five types of novel scores computed using methods from machine learning and natural language processing. Additional scores were derived from structural MRI scans: region of interest measures of hippocampal and ventricular volumes and gray matter scores derived from performing ICA on measures of cortical thickness. Over 4 years of follow-up, 24 MCI patients converted to AD. Using conversion as the outcome variable, ensemble classifiers were constructed by training classifiers on the individual groups of scores and then entering predictions from the primary classifiers into regularized logistic regression models. Receiver operating characteristic curves were plotted, and the area under the curve (AUC) was measured for classifiers trained with five groups of available variables. RESULTS Classifiers trained with novel scores outperformed those trained with raw scores (AUC 0.872 vs 0.735; P < .05 by DeLong test). Addition of structural brain measurements did not improve performance based on novel scores alone. CONCLUSION The brevity and cost profile of verbal fluency tasks recommends their use for clinical decision making. The word lists generated are a rich source of information for predicting outcomes in MCI. Further work is needed to assess the utility of verbal fluency for early AD.
Collapse
Affiliation(s)
- David Glenn Clark
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
- Department of Neurology, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Paula M. McLaughlin
- Ontario Neurodegenerative Disease Research Initiative, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ellen Woo
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kristy Hwang
- Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Sona Hurtz
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Leslie Ramirez
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jennifer Eastman
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Reshil-Marie Dukes
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Puneet Kapur
- Department of Neurology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Thomas P. DeRamus
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
16
|
Gogos A, Sbisa AM, Sun J, Gibbons A, Udawela M, Dean B. A Role for Estrogen in Schizophrenia: Clinical and Preclinical Findings. Int J Endocrinol 2015; 2015:615356. [PMID: 26491441 PMCID: PMC4600562 DOI: 10.1155/2015/615356] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/21/2015] [Accepted: 08/23/2015] [Indexed: 12/30/2022] Open
Abstract
Gender differences in schizophrenia have been extensively researched and it is being increasingly accepted that gonadal steroids are strongly attributed to this phenomenon. Of the various hormones implicated, the estrogen hypothesis has been the most widely researched one and it postulates that estrogen exerts a protective effect by buffering females against the development and severity of the illness. In this review, we comprehensively analyse studies that have investigated the effects of estrogen, in particular 17β-estradiol, in clinical, animal, and molecular research with relevance to schizophrenia. Specifically, we discuss the current evidence on estrogen dysfunction in schizophrenia patients and review the clinical findings on the use of estradiol as an adjunctive treatment in schizophrenia patients. Preclinical research that has used animal models and molecular probes to investigate estradiol's underlying protective mechanisms is also substantially discussed, with particular focus on estradiol's impact on the major neurotransmitter systems implicated in schizophrenia, namely, the dopamine, serotonin, and glutamate systems.
Collapse
Affiliation(s)
- Andrea Gogos
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alyssa M. Sbisa
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jeehae Sun
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC 3086, Australia
| | - Andrew Gibbons
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Madhara Udawela
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Brian Dean
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
17
|
Pagnozzi AM, Gal Y, Boyd RN, Fiori S, Fripp J, Rose S, Dowson N. The need for improved brain lesion segmentation techniques for children with cerebral palsy: A review. Int J Dev Neurosci 2015; 47:229-46. [DOI: 10.1016/j.ijdevneu.2015.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 01/18/2023] Open
Affiliation(s)
- Alex M. Pagnozzi
- CSIRO Digital Productivity and Services FlagshipThe Australian e‐Health Research CentreBrisbaneAustralia
- The University of QueenslandSchool of MedicineSt. LuciaBrisbaneAustralia
| | - Yaniv Gal
- The University of QueenslandCentre for Medical Diagnostic Technologies in QueenslandSt. LuciaBrisbaneAustralia
| | - Roslyn N. Boyd
- The University of QueenslandQueensland Cerebral Palsy and Rehabilitation Research CentreSchool of MedicineBrisbaneAustralia
| | - Simona Fiori
- Department of Developmental NeuroscienceStella Maris Scientific InstitutePisaItaly
| | - Jurgen Fripp
- CSIRO Digital Productivity and Services FlagshipThe Australian e‐Health Research CentreBrisbaneAustralia
| | - Stephen Rose
- CSIRO Digital Productivity and Services FlagshipThe Australian e‐Health Research CentreBrisbaneAustralia
| | - Nicholas Dowson
- CSIRO Digital Productivity and Services FlagshipThe Australian e‐Health Research CentreBrisbaneAustralia
| |
Collapse
|
18
|
Janousova E, Schwarz D, Kasparek T. Combining various types of classifiers and features extracted from magnetic resonance imaging data in schizophrenia recognition. Psychiatry Res 2015; 232:237-49. [PMID: 25912090 DOI: 10.1016/j.pscychresns.2015.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 09/30/2014] [Accepted: 03/11/2015] [Indexed: 12/27/2022]
Abstract
We investigated a combination of three classification algorithms, namely the modified maximum uncertainty linear discriminant analysis (mMLDA), the centroid method, and the average linkage, with three types of features extracted from three-dimensional T1-weighted magnetic resonance (MR) brain images, specifically MR intensities, grey matter densities, and local deformations for distinguishing 49 first episode schizophrenia male patients from 49 healthy male subjects. The feature sets were reduced using intersubject principal component analysis before classification. By combining the classifiers, we were able to obtain slightly improved results when compared with single classifiers. The best classification performance (81.6% accuracy, 75.5% sensitivity, and 87.8% specificity) was significantly better than classification by chance. We also showed that classifiers based on features calculated using more computation-intensive image preprocessing perform better; mMLDA with classification boundary calculated as weighted mean discriminative scores of the groups had improved sensitivity but similar accuracy compared to the original MLDA; reducing a number of eigenvectors during data reduction did not always lead to higher classification accuracy, since noise as well as the signal important for classification were removed. Our findings provide important information for schizophrenia research and may improve accuracy of computer-aided diagnostics of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Eva Janousova
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Kamenice 3, Brno 62500, Czech Republic.
| | - Daniel Schwarz
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Kamenice 3, Brno 62500, Czech Republic
| | - Tomas Kasparek
- Behavioural and Social Neuroscience Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Psychiatry, University Hospital Brno and Masaryk University, Brno, Czech Republic
| |
Collapse
|
19
|
S-SCAM, a rare copy number variation gene, induces schizophrenia-related endophenotypes in transgenic mouse model. J Neurosci 2015; 35:1892-904. [PMID: 25653350 DOI: 10.1523/jneurosci.3658-14.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Accumulating genetic evidence suggests that schizophrenia (SZ) is associated with individually rare copy number variations (CNVs) of diverse genes, often specific to single cases. However, the causality of these rare mutations remains unknown. One of the rare CNVs found in SZ cohorts is the duplication of Synaptic Scaffolding Molecule (S-SCAM, also called MAGI-2), which encodes a postsynaptic scaffolding protein controlling synaptic AMPA receptor levels, and thus the strength of excitatory synaptic transmission. Here we report that, in a transgenic mouse model simulating the duplication conditions, elevation of S-SCAM levels in excitatory neurons of the forebrain was sufficient to induce multiple SZ-related endophenotypes. S-SCAM transgenic mice showed an increased number of lateral ventricles and a reduced number of parvalbumin-stained neurons. In addition, the mice exhibited SZ-like behavioral abnormalities, including hyperlocomotor activity, deficits in prepulse inhibition, increased anxiety, impaired social interaction, and working memory deficit. Notably, the S-SCAM transgenic mice showed a unique sex difference in showing these behavioral symptoms, which is reminiscent of human conditions. These behavioral abnormalities were accompanied by hyperglutamatergic function associated with increased synaptic AMPA receptor levels and impaired long-term potentiation. Importantly, reducing glutamate release by the group 2 metabotropic glutamate receptor agonist LY379268 ameliorated the working memory deficits in the transgenic mice, suggesting that hyperglutamatergic function underlies the cognitive functional deficits. Together, these results contribute to validate a causal relationship of the rare S-SCAM CNV and provide supporting evidence for the rare CNV hypothesis in SZ pathogenesis. Furthermore, the S-SCAM transgenic mice provide a valuable new animal model for studying SZ pathogenesis.
Collapse
|
20
|
Crow TJ. Is transition to schizophrenia predicted by anomalous lateralization? Commentary on Cooper et al.'s meta-analysis, 2014. Psychiatry Res 2015; 231:92-3. [PMID: 25465312 DOI: 10.1016/j.pscychresns.2014.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 10/18/2014] [Accepted: 10/29/2014] [Indexed: 11/16/2022]
Affiliation(s)
- Timothy J Crow
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK..
| |
Collapse
|
21
|
Chow N, Hwang KS, Hurtz S, Green AE, Somme JH, Thompson PM, Elashoff DA, Jack CR, Weiner M, Apostolova LG. Comparing 3T and 1.5T MRI for mapping hippocampal atrophy in the Alzheimer's Disease Neuroimaging Initiative. AJNR Am J Neuroradiol 2015; 36:653-60. [PMID: 25614473 DOI: 10.3174/ajnr.a4228] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 10/24/2014] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Prior MR imaging studies, primarily at 1.5T, established hippocampal atrophy as a biomarker for Alzheimer disease. 3T MR imaging offers a higher contrast and signal-to-noise ratio, yet distortions and intensity uniformity are harder to control. We applied our automated hippocampal segmentation technique to 1.5T and 3T MR imaging data, to determine whether hippocampal atrophy detection was enhanced at 3T. MATERIALS AND METHODS We analyzed baseline MR imaging data from 166 subjects from the Alzheimer's Disease Neuroimaging Initiative-1 (37 with Alzheimer disease, 76 with mild cognitive impairment, and 53 healthy controls) scanned at 1.5T and 3T. Using multiple linear regression, we analyzed the effect of clinical diagnosis on hippocampal radial distance, while adjusting for sex. 3D statistical maps were adjusted for multiple comparisons by using permutation-based statistics at a threshold of P < .01. RESULTS Bilaterally significant radial distance differences in the areas corresponding to the cornu ammonis 1, cornu ammonis 2, and subiculum were detected for Alzheimer disease versus healthy controls and mild cognitive impairment versus healthy controls at 1.5T and more profoundly at 3T. Comparison of Alzheimer disease with mild cognitive impairment did not reveal significant differences at either field strength. Subjects who converted from mild cognitive impairment to Alzheimer disease within 3 years of the baseline scan versus nonconverters showed significant differences in the area corresponding to cornu ammonis 1 of the right hippocampus at 3T but not at 1.5T. CONCLUSIONS While hippocampal atrophy patterns in diagnostic comparisons were similar at 1.5T and 3T, 3T showed a superior signal-to-noise ratio and detected atrophy with greater effect size compared with 1.5T.
Collapse
Affiliation(s)
- N Chow
- From the School of Medicine (N.C.), University of California, Irvine, Irvine, California
| | - K S Hwang
- Oakland University William Beaumont School of Medicine (K.S.H.), Rochester Hills, Michigan Departments of Neurology (K.S.H., S.H., L.G.A.)
| | - S Hurtz
- Departments of Neurology (K.S.H., S.H., L.G.A.)
| | - A E Green
- Department of Physiology (A.E.G.), Monash University, Melbourne, Australia
| | - J H Somme
- Department of Neurology (J.H.S.), Cruces University Hospital, Barakaldo, Spain
| | - P M Thompson
- Imaging Genetics Center (P.M.T.), Institute for Neuroimaging and Informatics, Keck/University of Southern California School of Medicine, Los Angeles, California Departments of Neurology, Psychiatry, Engineering, Radiology, and Ophthalmology (P.M.T.), University of Southern California, Los Angeles, California
| | - D A Elashoff
- Biostatistics (D.A.E.), University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, California
| | - C R Jack
- Department of Radiology (C.R.J.), Mayo Clinic and Foundation, Rochester, Minnesota
| | - M Weiner
- Department of Radiology and Biomedical Imaging (M.W.), University of California, San Francisco, School of Medicine, San Francisco, California
| | | | | |
Collapse
|
22
|
Herold CJ, Lässer MM, Schmid LA, Seidl U, Kong L, Fellhauer I, Thomann PA, Essig M, Schröder J. Neuropsychology, autobiographical memory, and hippocampal volume in "younger" and "older" patients with chronic schizophrenia. Front Psychiatry 2015; 6:53. [PMID: 25954208 PMCID: PMC4404739 DOI: 10.3389/fpsyt.2015.00053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/28/2015] [Indexed: 01/17/2023] Open
Abstract
Despite a wide range of studies on neuropsychology in schizophrenia, autobiographical memory (AM) has been scarcely investigated in these patients. Hence, less is known about AM in older patients and hippocampal contribution to autobiographical memories of varying remoteness. Therefore, we investigated hippocampal volume and AM along with important neuropsychological domains in patients with chronic schizophrenia and the respective relationships between these parameters. We compared 25 older patients with chronic schizophrenia to 23 younger patients and an older healthy control group (N = 21) with respect to AM, additional neuropsychological parameters, and hippocampal volume. Personal episodic and semantic memory was investigated using a semi-structured interview. Additional neuropsychological parameters were assessed by using a battery of standard neuropsychological tests. Structural magnetic resonance imaging data were analyzed with an automated region-of-interest procedure. While hippocampal volume reduction and neuropsychological impairment were more pronounced in the older than in the younger patients, both groups showed equivalent reduced AM performance for recent personal episodes. In the patient group, significant correlations between left hippocampal volume and recent autobiographical episodes as well as personal semantic memories arose. Verbal memory and working memory were significantly correlated with right hippocampal volume; executive functions, however, were associated with bilateral hippocampal volumes. These findings underline the complexity of AM and its impairments in the course of schizophrenia in comparison to rather progressive neuropsychological deficits and address the importance of hippocampal contribution.
Collapse
Affiliation(s)
- Christina Josefa Herold
- Section of Geriatric Psychiatry, Department of General Psychiatry, University of Heidelberg , Heidelberg , Germany
| | - Marc Montgomery Lässer
- Section of Geriatric Psychiatry, Department of General Psychiatry, University of Heidelberg , Heidelberg , Germany
| | - Lena Anna Schmid
- Section of Geriatric Psychiatry, Department of General Psychiatry, University of Heidelberg , Heidelberg , Germany
| | - Ulrich Seidl
- Center for Mental Health, Klinikum Stuttgart , Stuttgart , Germany
| | - Li Kong
- Section of Geriatric Psychiatry, Department of General Psychiatry, University of Heidelberg , Heidelberg , Germany
| | - Iven Fellhauer
- Section of Geriatric Psychiatry, Department of General Psychiatry, University of Heidelberg , Heidelberg , Germany
| | - Philipp Arthur Thomann
- Department of General Psychiatry, Center of Psychosocial Medicine, University of Heidelberg , Heidelberg , Germany
| | - Marco Essig
- German Cancer Research Center , Heidelberg , Germany
| | - Johannes Schröder
- Section of Geriatric Psychiatry, Department of General Psychiatry, University of Heidelberg , Heidelberg , Germany ; Institute of Gerontology, University of Heidelberg , Heidelberg , Germany
| |
Collapse
|
23
|
Association of aberrant neural synchrony and altered GAD67 expression following exposure to maternal immune activation, a risk factor for schizophrenia. Transl Psychiatry 2014; 4:e418. [PMID: 25072323 PMCID: PMC4119228 DOI: 10.1038/tp.2014.64] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/15/2014] [Accepted: 06/16/2014] [Indexed: 12/31/2022] Open
Abstract
A failure of integrative processes within the brain, mediated via altered GABAergic inhibition, may underlie several features of schizophrenia. The present study examined, therefore, whether maternal immune activation (MIA), a risk factor for schizophrenia, altered inhibitory markers in the hippocampus and medial prefrontal cortex (mPFC), while also altering electroencephalogram (EEG) coherence between these regions. Pregnant rats were treated with saline or polyinosinic:polycytidylic acid mid-gestation. EEG depth recordings were made from the dorsal and ventral hippocampus and mPFC of male adult offspring. Glutamic decarboxylase (GAD67) levels were separately assayed in these regions using western blot. GAD67 expression was also assessed within parvalbumin-positive cells in the dorsal and ventral hippocampus using immunofluorescence alongside stereological analysis of parvalbumin-positive cell numbers. EEG coherence was reduced between the dorsal hippocampus and mPFC, but not the ventral hippocampus and mPFC, in MIA animals. Western blot and immunofluorescence analyses revealed that GAD67 expression within parvalbumin-positive cells was also reduced in the dorsal hippocampus relative to ventral hippocampus in MIA animals when compared with controls. This reduction was observed in the absence of parvalbumin-positive neuronal loss. Overall, MIA produced a selective reduction in EEG coherence between the dorsal hippocampus and mPFC that was paralleled by a similarly specific reduction in GAD67 within parvalbumin-positive cells of the dorsal hippocampus. These results suggest a link between altered inhibitory mechanisms and synchrony and, therefore point to potential mechanisms via which a disruption in neurodevelopmental processes might lead to pathophysiology associated with schizophrenia.
Collapse
|
24
|
Zarpalas D, Gkontra P, Daras P, Maglaveras N. Accurate and Fully Automatic Hippocampus Segmentation Using Subject-Specific 3D Optimal Local Maps Into a Hybrid Active Contour Model. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2014; 2:1800116. [PMID: 27170866 PMCID: PMC4852536 DOI: 10.1109/jtehm.2014.2297953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/04/2013] [Accepted: 12/14/2013] [Indexed: 11/22/2022]
Abstract
Assessing the structural integrity of the hippocampus (HC) is an essential step toward prevention, diagnosis, and follow-up of various brain disorders due to the implication of the structural changes of the HC in those disorders. In this respect, the development of automatic segmentation methods that can accurately, reliably, and reproducibly segment the HC has attracted considerable attention over the past decades. This paper presents an innovative 3-D fully automatic method to be used on top of the multiatlas concept for the HC segmentation. The method is based on a subject-specific set of 3-D optimal local maps (OLMs) that locally control the influence of each energy term of a hybrid active contour model (ACM). The complete set of the OLMs for a set of training images is defined simultaneously via an optimization scheme. At the same time, the optimal ACM parameters are also calculated. Therefore, heuristic parameter fine-tuning is not required. Training OLMs are subsequently combined, by applying an extended multiatlas concept, to produce the OLMs that are anatomically more suitable to the test image. The proposed algorithm was tested on three different and publicly available data sets. Its accuracy was compared with that of state-of-the-art methods demonstrating the efficacy and robustness of the proposed method.
Collapse
Affiliation(s)
- Dimitrios Zarpalas
- Information Technologies InstituteCentre for Research and Technology HellasThessalonikiGreece57001; Aristotle University of ThessalonikiLaboratory of Medical Informatics, the Medical SchoolThessalonikiGreece54124
| | - Polyxeni Gkontra
- Information Technologies Institute Centre for Research and Technology Hellas Thessaloniki Greece 57001
| | - Petros Daras
- Information Technologies Institute Centre for Research and Technology Hellas Thessaloniki Greece 57001
| | - Nicos Maglaveras
- Aristotle University of ThessalonikiLaboratory of Medical Informatics, the Medical SchoolThessalonikiGreece54124; Institute of Applied BiosciencesCentre for Research and Technology HellasThessalonikiGreece57001
| |
Collapse
|
25
|
Kraguljac NV, White DM, Reid MA, Lahti AC. Increased hippocampal glutamate and volumetric deficits in unmedicated patients with schizophrenia. JAMA Psychiatry 2013; 70:1294-302. [PMID: 24108440 PMCID: PMC7891898 DOI: 10.1001/jamapsychiatry.2013.2437] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Alterations in glutamatergic neurotransmission have been postulated to be a key pathophysiologic mechanism in schizophrenia. OBJECTIVE To evaluate hippocampal volumetric measures and neurometabolites in unmedicated patients with schizophrenia and the correlations between these markers. Our a priori hypothesis was that glutamate levels would negatively correlate with hippocampal volume in schizophrenia. DESIGN, SETTING, AND PARTICIPANTS Combined 3-T structural magnetic resonance imaging and single-voxel proton magnetic resonance spectroscopy study at the Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, of 27 unmedicated patients with schizophrenia and 27 healthy controls. MAIN OUTCOMES AND MEASURES Hippocampal volumetric measures and neurometabolites, and the correlations between volumetric measurements and neurometabolites. RESULTS Hippocampal volumetric deficits, increased ratios of hippocampal glutamate and glutamine to creatine (Glx/Cr), and a loss of correlation between hippocampal N-acetylaspartate (NAA)/Cr and Glx/Cr in patients with schizophrenia were found. Significant correlations between hippocampal volumetric measures and Glx/Cr were also found in patients with schizophrenia but not healthy controls. CONCLUSIONS AND RELEVANCE Our findings support the theory that alterations in hippocampal glutamate levels potentially account for structural deficits in the hippocampus observed in schizophrenia neuroimaging studies.
Collapse
Affiliation(s)
- Nina V Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - David M White
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Meredith A Reid
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham,Department of Biomedical Engineering, University of Alabama at Birmingham
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| |
Collapse
|
26
|
Crow TJ. The XY gene hypothesis of psychosis: origins and current status. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:800-24. [PMID: 24123874 PMCID: PMC4065359 DOI: 10.1002/ajmg.b.32202] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 08/19/2013] [Indexed: 11/10/2022]
Abstract
Sex differences in psychosis and their interaction with laterality (systematic departures from 50:50 left-right symmetry across the antero-posterior neural axis) are reviewed in the context of the X-Y gene hypothesis. Aspects of laterality (handedness/cerebral asymmetry/the torque) predict (1) verbal and non-verbal ability in childhood and across adult life and (2) anatomical, physiological, and linguistic variation relating to psychosis. Neuropsychological and MRI evidence from individuals with sex chromosome aneuploidies indicates that laterality is associated with an X-Y homologous gene pair. Within each mammalian species the complement of such X-Y gene pairs reflects their potential to account for taxon-specific sexual dimorphisms. As a consequence of the mechanism of meiotic suppression of unpaired chromosomes such X-Y gene pairs generate epigenetic variation around a species defining motif that is carried to the zygote with potential to initiate embryonic gene expression in XX or XY format. The Protocadherin11XY (PCDH11XY) gene pair in Xq21.3/Yp11.2 in probable coordination with a gene or genes within PAR2 (the second pseudo-autosomal region) is the prime candidate in relation to cerebral asymmetry and psychosis in Homo sapiens. The lately-described pattern of sequence variation associated with psychosis on the autosomes may reflect a component of the human genome's adjustment to selective pressures generated by the sexually dimorphic mate recognition system.
Collapse
Affiliation(s)
- Timothy J Crow
- Department of Psychiatry, SANE POWIC, Warneford Hospital, University of OxfordOxford, UK
| |
Collapse
|
27
|
Zanelli J, Morgan K, Dazzan P, Morgan C, Russo M, Pilecka I, Fearon P, Demjaha A, Doody GA, Jones PB, Murray RM, Reichenberg A. Gender differences in neuropsychological performance across psychotic disorders--a multi-centre population based case-control study. PLoS One 2013; 8:e77318. [PMID: 24204806 PMCID: PMC3810462 DOI: 10.1371/journal.pone.0077318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 09/09/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Patients with schizophrenia and other psychoses exhibit a wide range of neuropsychological deficits. An unresolved question concerns whether there are gender differences in cognitive performance. METHODS Data were derived from a multi-centre population based case-control study of patients with first-episode psychosis. A neuropsychological test battery was administered to patients with a diagnosis of schizophrenia or schizoaffective disorder (N=70, 36% females), bipolar/mania (N=34, 60% females), depressive psychosis (N=36, 58% females) and healthy controls (N=148, 55% females). Generalized and specific cognitive deficits were compared. RESULTS There was strong evidence for disorder-specific gender differences in neuropsychological performance. Males and females with schizophrenia showed similar pervasive neuropsychological impairments. In psychotic depressive disorder females performed worse than males across neuropsychological measures. Differences in neuropsychological performance between males and females with bipolar/manic disorder were restricted to language functions. Symptom severity did not contribute to the observed gender differences. CONCLUSIONS Early in the course of psychotic illness, gender related factors appear to moderate the severity of cognitive deficits in depressive psychosis and bipolar/mania patients.
Collapse
Affiliation(s)
- Jolanta Zanelli
- Department of Psychosis Studies, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Kevin Morgan
- Department of Psychology, Westminster University, London, United Kingdom
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Craig Morgan
- Centre for Public Mental Health, Health Service and Population Research Department, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Manuela Russo
- Department of Psychosis Studies, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Izabela Pilecka
- Department of Psychosis Studies, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Paul Fearon
- Department of Psychosis Studies, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Arsime Demjaha
- Department of Psychosis Studies, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Gill A. Doody
- Division of Psychiatry, University of Nottingham, Nottingham, United Kingdom
| | - Peter B. Jones
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Abraham Reichenberg
- Department of Psychosis Studies, Institute of Psychiatry, King’s College London, London, United Kingdom
| |
Collapse
|
28
|
Schwerk A, Alves FDS, Pouwels PJW, van Amelsvoort T. Metabolic alterations associated with schizophrenia: a critical evaluation of proton magnetic resonance spectroscopy studies. J Neurochem 2013; 128:1-87. [DOI: 10.1111/jnc.12398] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 07/31/2013] [Accepted: 08/03/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Anne Schwerk
- Department of Neurology; Charité - University Medicine; Berlin Germany
| | - Fabiana D. S. Alves
- Department of Psychiatry; Academic Medical Centre; Amsterdam The Netherlands
| | - Petra J. W. Pouwels
- Department of Physics& Medical Technology; VU University Medical Centre; Amsterdam The Netherlands
| | - Therese van Amelsvoort
- Department of Psychiatry and Psychology; Maastricht University; Maastricht The Netherlands
| |
Collapse
|
29
|
Herold CJ, Lässer MM, Schmid LA, Seidl U, Kong L, Fellhauer I, Thomann PA, Essig M, Schröder J. Hippocampal volume reduction and autobiographical memory deficits in chronic schizophrenia. Psychiatry Res 2013; 211:189-94. [PMID: 23158776 DOI: 10.1016/j.pscychresns.2012.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/12/2012] [Accepted: 04/05/2012] [Indexed: 12/16/2022]
Abstract
Although autobiographical memory (AM) deficits and hippocampal changes are frequently found in schizophrenia, their actual association remained yet to be established. AM performance and hippocampal volume were examined in 33 older, chronic schizophrenic patients and 21 healthy volunteers matched for age, gender and education. Psychopathological symptoms and additional neuropsychological parameters were assessed by using appropriate rating scales; magnetic resonance imaging (MRI) 3-T data were analyzed via an automated region-of-interest procedure. When compared with the control subjects, patients showed significantly decreased left anterior and posterior hippocampal volumes. Episodic but not semantic AM performance was significantly lower in the patients than in the healthy controls. Both episodic and semantic AM deficits were significantly correlated with volume of the left hippocampus in the patient group. In contrast, deficits in verbal memory, working memory and remote semantic memory observed in the patients did not relate to hippocampal volume. Our findings indicate that AM deficits in chronic schizophrenia are associated with hippocampal volume reductions and underline the importance of this pathology in schizophrenia.
Collapse
Affiliation(s)
- Christina Josefa Herold
- Section of Geriatric Psychiatry, University of Heidelberg, Voßstr. 4, 69115 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zierhut KC, Graßmann R, Kaufmann J, Steiner J, Bogerts B, Schiltz K. Hippocampal CA1 deformity is related to symptom severity and antipsychotic dosage in schizophrenia. Brain 2013; 136:804-14. [DOI: 10.1093/brain/aws335] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Pepe A, Zhao L, Koikkalainen J, Hietala J, Ruotsalainen U, Tohka J. Automatic statistical shape analysis of cerebral asymmetry in 3D T1-weighted magnetic resonance images at vertex-level: application to neuroleptic-naïve schizophrenia. Magn Reson Imaging 2013; 31:676-87. [PMID: 23337078 DOI: 10.1016/j.mri.2012.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/30/2012] [Accepted: 10/30/2012] [Indexed: 12/13/2022]
Abstract
The study of the structural asymmetries in the human brain can assist the early diagnosis and progression of various neuropsychiatric disorders, and give insights into the biological bases of several cognitive deficits. The high inter-subject variability in cortical morphology complicates the detection of abnormal asymmetries especially if only small samples are available. This work introduces a novel automatic method for the local (vertex-level) statistical shape analysis of gross cerebral hemispheric surface asymmetries which is robust to the individual cortical variations. After segmentation of the cerebral hemispheric volumes from three-dimensional (3D) T1-weighted magnetic resonance images (MRI) and their spatial normalization to a common space, the right hemispheric masks were reflected to match with the left ones. Cerebral hemispheric surfaces were extracted using a deformable model-based algorithm which extracted the salient morphological features while establishing the point correspondence between the surfaces. The interhemispheric asymmetry, quantified by customized measures of asymmetry, was evaluated in a few thousands of corresponding surface vertices and tested for statistical significance. The developed method was tested on scans obtained from a small sample of healthy volunteers and first-episode neuroleptic-naïve schizophrenics. A significant main effect of the disease on the local interhemispheric asymmetry was observed, both in females and males, at the frontal and temporal lobes, the latter being often linked to the cognitive, auditory, and memory deficits in schizophrenia. The findings of this study, although need further testing in larger samples, partially replicate previous studies supporting the hypothesis of schizophrenia as a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Antonietta Pepe
- Department of Signal Processing, Tampere University of Technology, PO Box 553, FIN-33101 Tampere, Finland.
| | | | | | | | | | | |
Collapse
|
32
|
Li G, Nie J, Wang L, Shi F, Lyall AE, Lin W, Gilmore JH, Shen D. Mapping longitudinal hemispheric structural asymmetries of the human cerebral cortex from birth to 2 years of age. ACTA ACUST UNITED AC 2013; 24:1289-300. [PMID: 23307634 DOI: 10.1093/cercor/bhs413] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mapping cortical hemispheric asymmetries in infants would increase our understanding of the origins and developmental trajectories of hemispheric asymmetries. We analyze longitudinal cortical hemispheric asymmetries in 73 healthy subjects at birth, 1, and 2 years of age using surface-based morphometry of magnetic resonance images with a specific focus on the vertex position, sulcal depth, mean curvature, and local surface area. Prominent cortical asymmetries are found around the peri-Sylvian region and superior temporal sulcus (STS) at birth that evolve modestly from birth to 2 years of age. Sexual dimorphisms of cortical asymmetries are present at birth, with males having the larger magnitudes and sizes of the clusters of asymmetries than females that persist from birth to 2 years of age. The left supramarginal gyrus (SMG) is significantly posterior to the right SMG, and the maximum position difference increases from 10.2 mm for males (6.9 mm for females) at birth to 12.0 mm for males (8.4 mm for females) by 2 years of age. The right STS and parieto-occipital sulcus are significantly larger and deeper than those in the left hemisphere, and the left planum temporale is significantly larger and deeper than that in the right hemisphere at all 3 ages. Our results indicate that early hemispheric structural asymmetries are inherent and gender related.
Collapse
Affiliation(s)
- Gang Li
- Department of Radiology and BRIC and
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Weisinger B, Greenstein D, Mattai A, Clasen L, Lalonde F, Feldman S, Miller R, Tossell JW, Vyas NS, Stidd R, David C, Gogtay N. Lack of gender influence on cortical and subcortical gray matter development in childhood-onset schizophrenia. Schizophr Bull 2013; 39:52-8. [PMID: 21613381 PMCID: PMC3523910 DOI: 10.1093/schbul/sbr049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Progressive cortical gray matter (GM) abnormalities are an established feature of schizophrenia and are more pronounced in rare, severe, and treatment refractory childhood-onset schizophrenia (COS) cases. The effect of sex on brain development in schizophrenia is poorly understood and studies to date have produced inconsistent results. METHODS Using the largest to date longitudinal sample of COS cases (n = 104, scans = 249, Male/Female [M/F] = 57/47), we compared COS sex differences with sex differences in a sample of matched typically developing children (n = 104, scans = 244, M/F = 57/47), to determine whether or not sex had differential effects on cortical and subcortical brain development in COS. RESULTS Our results showed no significant differential sex effects in COS for either GM cortical thickness or subcortical volume development (sex × diagnosis × age interaction; false discovery rate q = 0.05). CONCLUSION Sex appears to play a similar role in cortical and subcortical GM development in COS as it does in normally developing children.
Collapse
Affiliation(s)
- Brian Weisinger
- Child Psychiatry Branch, National Institutes of Mental Health, 10/3N202, 10 Center Drive, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Busse S, Busse M, Schiltz K, Bielau H, Gos T, Brisch R, Mawrin C, Schmitt A, Jordan W, Müller UJ, Bernstein HG, Bogerts B, Steiner J. Different distribution patterns of lymphocytes and microglia in the hippocampus of patients with residual versus paranoid schizophrenia: further evidence for disease course-related immune alterations? Brain Behav Immun 2012; 26:1273-9. [PMID: 22917959 DOI: 10.1016/j.bbi.2012.08.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/07/2012] [Accepted: 08/07/2012] [Indexed: 12/27/2022] Open
Abstract
Certain cytokines have been identified in the peripheral blood as trait markers of schizophrenia, while others are considered relapse-related state markers. Furthermore, data from peripheral blood, cerebrospinal fluid (CSF) and nuclear imaging studies suggest that (1) blood-brain barrier (BBB) dysfunction (e.g., immigration of lymphocytes into brain tissue and intrathecal antibody production) correlates with the development of negative symptoms, while (2) the brain's mononuclear phagocyte system (microglial cells) is activated during acute psychosis. Based on these neuroinflammatory hypotheses, we have quantified the numerical density of immunostained CD3+ T-lymphocytes, CD20+ B-lymphocytes, and HLA-DR+ microglial cells in the posterior hippocampus of 17 schizophrenia patients and 11 matched controls. Disease course-related immune alterations were considered by a separate analysis of residual (prevailing negative symptoms, n=7) and paranoid (prominent positive symptoms, n=10) schizophrenia cases. Higher densities of CD3+ and CD20+ lymphocytes were observed in residual versus paranoid schizophrenia (CD 3: left: P=0.047, right: P=0.038; CD20: left: P=0.020, right: P=0.010) and controls (CD3: left: P=0.057, right: P=0.069; CD20: left: P=0.008, right: P=0.006). In contrast, HLA-DR+ microglia were increased in paranoid schizophrenia versus residual schizophrenia (left: P=0.030, right: P=0.012). A similar trend emerged when this group was compared to controls (left: P=0.090, right: P=0.090). BBB impairment and infiltration of T cells and B cells may contribute to the pathophysiology of residual schizophrenia, while microglial activation seems to play a role in paranoid schizophrenia. The identification of diverse immune endophenotypes may facilitate the development of distinct anti-inflammatory schizophrenia therapies to normalize BBB function, (auto)antibody production or microglial activity.
Collapse
Affiliation(s)
- Stefan Busse
- Department of Psychiatry, University of Magdeburg, Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment (MCI), and Alzheimer Disease. Alzheimer Dis Assoc Disord 2012; 26:17-27. [PMID: 22343374 DOI: 10.1097/wad.0b013e3182163b62] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Alzheimer disease (AD) is the most common type of dementia worldwide. Hippocampal atrophy and ventricular enlargement have been associated with AD but also with normal aging. We analyzed 1.5-T brain magnetic resonance imaging data from 46 cognitively normal elderly individuals (NC), 33 mild cognitive impairment and 43 AD patients. Hippocampal and ventricular analyses were conducted with 2 novel semiautomated segmentation approaches followed by the radial distance mapping technique. Multiple linear regression was used to assess the effects of age and diagnosis on hippocampal and ventricular volumes and radial distance. In addition, 3-dimensional map correction for multiple comparisons was made with permutation testing. As expected, most significant hippocampal atrophy and ventricular enlargement were seen in the AD versus NC comparison. Mild cognitive impairment patients showed intermediate levels of hippocampal atrophy and ventricular enlargement. Significant effects of age on hippocampal volume and radial distance were seen in the pooled sample and in the NC and AD groups considered separately. Age-associated differences were detected in all hippocampal subfields and in the frontal and body/occipital horn portions of the lateral ventricles. Aging affects both the hippocampus and lateral ventricles independent of AD pathology, and should be included as covariate in all structural, hippocampal, and ventricular analyses when possible.
Collapse
|
36
|
Watson DR, Anderson JM, Bai F, Barrett SL, McGinnity TM, Mulholland CC, Rushe TM, Cooper SJ. A voxel based morphometry study investigating brain structural changes in first episode psychosis. Behav Brain Res 2012; 227:91-9. [DOI: 10.1016/j.bbr.2011.10.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 10/19/2011] [Accepted: 10/21/2011] [Indexed: 01/04/2023]
|
37
|
Crow TJ. Schizophrenia as variation in the sapiens-specific epigenetic instruction to the embryo. Clin Genet 2012; 81:319-24. [DOI: 10.1111/j.1399-0004.2012.01830.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Sex differences in facial, prosodic, and social context emotional recognition in early-onset schizophrenia. SCHIZOPHRENIA RESEARCH AND TREATMENT 2012; 2012:584725. [PMID: 22970365 PMCID: PMC3420677 DOI: 10.1155/2012/584725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/12/2011] [Accepted: 11/15/2011] [Indexed: 01/08/2023]
Abstract
The purpose of the present study was to determine sex differences in facial, prosodic, and social context emotional recognition in schizophrenia (SCH). Thirty-eight patients (SCH, 20 females) and 38 healthy controls (CON, 20 females) participated in the study. Clinical scales (BPRS and PANSS) and an Affective States Scale were applied, as well as tasks to evaluate facial, prosodic, and within a social context emotional recognition. SCH showed lower accuracy and longer response times than CON, but no significant sex differences were observed in either facial or prosody recognition. In social context emotions, however, females showed higher empathy than males with respect to happiness in both groups. SCH reported being more identified with sad films than CON and females more with fear than males. The results of this study confirm the deficits of emotional recognition in male and female patients with schizophrenia compared to healthy subjects. Sex differences were detected in relation to social context emotions and facial and prosodic recognition depending on age.
Collapse
|
39
|
Sayo A, Jennings RG, Van Horn JD. Study factors influencing ventricular enlargement in schizophrenia: a 20 year follow-up meta-analysis. Neuroimage 2011; 59:154-67. [PMID: 21787868 DOI: 10.1016/j.neuroimage.2011.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 06/23/2011] [Accepted: 07/04/2011] [Indexed: 12/13/2022] Open
Abstract
A meta-analysis was performed on studies employing the ventricular-brain ratio to compare schizophrenic subjects to that of normal controls. This was a follow-up to a similar meta-analysis published in 1992 in which study-, in addition to clinical-, factors were found to contribute significantly to the reported difference between patients with schizophrenia and controls. Seventy-two (N=72) total studies were identified from the peer reviewed literature, 39 from the original meta-analysis, and 33 additional studies published since which met strict criteria for inclusion and analysis - thus representing ~30 years of schizophrenia ventricular enlargement research. Sample characteristics from schizophrenics and controls were coded for use as predictor variables against within sample VBR values as well as for between sample VBR differences. Additionally, a number of factors concerning how the studies were conducted and reported were also coded. Obtained data was subjected to unweighted univariate as well as multiple regression analyses. In particular, results indicated significant differences between schizophrenics and controls in ventricular size but also the influence of the diagnostic criteria used to define schizophrenia on the magnitude of the reported VBR. This suggests that differing factors of the diagnostic criteria may be sensitive to ventricular enlargement and might be worthy of further examination. Interestingly, we observed an inverse relationship between VBR difference and the number of co-authors on the study. This latter finding suggests that larger research groups report smaller VBR differences and may be more conservative or exacting in their research methodology. Analyses weighted by sample size provided identical conclusions. The effects of study factors such as these are helpful for understanding the variation in the size of the reported differences in VBR between patients and controls as well as for understanding the evolution of research on complex clinical syndromes employing neuroimaging morphometrics.
Collapse
Affiliation(s)
- Angelo Sayo
- Laboratory of Neuro Imaging (LONI), Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Drive SW, Suite 225, Los Angeles, CA 90095-7334, USA
| | | | | |
Collapse
|
40
|
Irle E, Lange C, Ruhleder M, Exner C, Siemerkus J, Weniger G. Hippocampal size in women but not men with schizophrenia relates to disorder duration. Psychiatry Res 2011; 192:133-9. [PMID: 21546218 DOI: 10.1016/j.pscychresns.2010.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 12/12/2010] [Accepted: 12/13/2010] [Indexed: 01/12/2023]
Abstract
Longitudinal studies have failed to find progressive hippocampal size reduction in schizophrenia. However, negative results may have been due to follow-up intervals at disease stages where no significant progressive brain changes occur. Furthermore, only male or mixed gender samples have been studied. Forty-six patients with schizophrenia (23 females) and 46 healthy controls (23 females) underwent three-dimensional structural magnetic resonance imaging of the hippocampus and a clinical investigation. Compared with controls, male but not female participants with schizophrenia displayed hippocampal size reduction. Hippocampal size of female but not male schizophrenia patients was related to disorder duration, indicating smaller hippocampal size in female patients with longer disorder duration. Female schizophrenia patients displayed normal hippocampal size at the onset of disorder, but similarly reduced hippocampal size as male schizophrenia patients after some years of illness had passed. Our results suggest preserved hippocampal size in women with schizophrenia during the first years of illness.
Collapse
Affiliation(s)
- Eva Irle
- Department of Psychiatry and Psychotherapy, University of Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Ventricular maps in 804 ADNI subjects: correlations with CSF biomarkers and clinical decline. Neurobiol Aging 2011; 31:1386-400. [PMID: 20620663 DOI: 10.1016/j.neurobiolaging.2010.05.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 04/28/2010] [Accepted: 05/01/2010] [Indexed: 01/25/2023]
Abstract
Ideal biomarkers of Alzheimer's disease (AD) should correlate with accepted measures of pathology in the cerebrospinal fluid (CSF); they should also correlate with, or predict, future clinical decline, and should be readily measured in hundreds to thousands of subjects. Here we explored the utility of automated 3D maps of the lateral ventricles as a possible biomarker of AD. We used our multi-atlas fluid image alignment (MAFIA) method, to compute ventricular models automatically, without user intervention, from 804 brain MRI scans with 184 AD, 391 mild cognitive impairment (MCI), and 229 healthy elderly controls (446 men, 338 women; age: 75.50 +/- 6.81 [SD] years). Radial expansion of the ventricles, computed pointwise, was strongly correlated with current cognition, depression ratings, Hachinski Ischemic scores, language scores, and with future clinical decline after controlling for any effects of age, gender, and educational level. In statistical maps ranked by effect sizes, ventricular differences were highly correlated with CSF measures of Abeta(1-42), and correlated with ApoE4 genotype. These statistical maps are highly automated, and offer a promising biomarker of AD for large-scale studies.
Collapse
|
42
|
Tu Z, Bai X. Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2010; 32:1744-1757. [PMID: 20724753 DOI: 10.1109/tpami.2009.186] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The notion of using context information for solving high-level vision and medical image segmentation problems has been increasingly realized in the field. However, how to learn an effective and efficient context model, together with an image appearance model, remains mostly unknown. The current literature using Markov Random Fields (MRFs) and Conditional Random Fields (CRFs) often involves specific algorithm design in which the modeling and computing stages are studied in isolation. In this paper, we propose a learning algorithm, auto-context. Given a set of training images and their corresponding label maps, we first learn a classifier on local image patches. The discriminative probability (or classification confidence) maps created by the learned classifier are then used as context information, in addition to the original image patches, to train a new classifier. The algorithm then iterates until convergence. Auto-context integrates low-level and context information by fusing a large number of low-level appearance features with context and implicit shape information. The resulting discriminative algorithm is general and easy to implement. Under nearly the same parameter settings in training, we apply the algorithm to three challenging vision applications: foreground/background segregation, human body configuration estimation, and scene region labeling. Moreover, context also plays a very important role in medical/brain images where the anatomical structures are mostly constrained to relatively fixed positions. With only some slight changes resulting from using 3D instead of 2D features, the auto-context algorithm applied to brain MRI image segmentation is shown to outperform state-of-the-art algorithms specifically designed for this domain. Furthermore, the scope of the proposed algorithm goes beyond image analysis and it has the potential to be used for a wide variety of problems for structured prediction problems.
Collapse
Affiliation(s)
- Zhuowen Tu
- Laboratory of Neuro Imaging, Department of Neurology, University of California, 635 Charles E. Young Drive South, Suite 225, Los Angeles, CA 90095-7334, USA.
| | | |
Collapse
|
43
|
Kasper BS, Taylor DC, Janz D, Kasper EM, Maier M, Williams MR, Crow TJ. Neuropathology of epilepsy and psychosis: the contributions of J.A.N. Corsellis. ACTA ACUST UNITED AC 2010; 133:3795-805. [PMID: 20817923 DOI: 10.1093/brain/awq235] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Professor J.A.N. Corsellis, whose life and work is recalled here, gained great insight into the meaning of morphological cerebral aberrations found in neuropsychiatric disease through exact neuropathological investigations of tissue specimens obtained from patients with distinct syndromes. He was a leading authority in the field. We have searched and compiled resources relating to J.A.N. Corsellis' life and work, including personal memories from colleagues and data from scientific publications. J.A.N. Corsellis made seminal contributions to the understanding of neuropsychiatric disease; his works substantially added to the understanding of the dementias, schizophrenia and the psychoses, and morphological sequelae of boxing. In seizure disorders, his name is linked to the first description of focal cortical dysplasia and limbic encephalitis, the pathology of status epilepticus and Ammon's horn sclerosis, and the systematic investigation of epilepsy surgery specimens in general. Both his life and work are closely linked to Runwell Hospital, Wickford, Essex and the Maudsley Hospital. During his professional life he established a large brain bank, now known as the Corsellis Collection. J.A.N. Corsellis had significant impact on neuroscience; many of his observations were groundbreaking and are still valid.
Collapse
Affiliation(s)
- Burkhard S Kasper
- Epilepsy Centre, Department of Neurology, University of Erlangen, 91054 Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
44
|
Klär AA, Ballmaier M, Leopold K, Häke I, Schaefer M, Brühl R, Schubert F, Gallinat J. Interaction of hippocampal volume and N-acetylaspartate concentration deficits in schizophrenia: a combined MRI and 1H-MRS study. Neuroimage 2010; 53:51-7. [PMID: 20541020 DOI: 10.1016/j.neuroimage.2010.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 05/28/2010] [Accepted: 06/03/2010] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Volume deficits assessed with magnetic resonance imaging (MRI) and neurochemical dysfunctions (N-acetylaspartate, NAA) diagnosed using proton MR spectroscopy ((1)H-MRS) are reliable observations in the hippocampus of schizophrenic patients. NAA is an important cerebral amino acid in the synthesis pathways of glutamate, which has been implicated as a pathobiological core of schizophrenic symptomatology, of histological alterations and brain volume deficits in schizophrenia. However, the possible interaction between regional NAA reduction and volume deficits has been targeted only marginally in previous investigations. METHODS In 29 schizophrenic patients and 44 control subjects, a multimodal imaging study with (1)H-MRS and MRI volumetry of the left hippocampus was performed on a 3-Tesla scanner. RESULTS Compared to the control group, the hippocampus of the patients exhibited a significant volume reduction and a significant NAA concentration decrease. In schizophrenic patients, but not in healthy controls, a significant negative correlation between hippocampal NAA concentration and volume (r=-0.455, p=0.017) was observed. None of the imaging parameters was associated with clinical parameters. CONCLUSIONS The results argue for a coexistent neurochemical and structural deficit in the hippocampus of schizophrenic patients. The inverse relationship between the two parameters observed in patients only may reflect an interaction of neurochemistry and brain morphology as a pathobiological mechanism in schizophrenia. This observation is compatible with the important role of NAA in the synthesis of excitatory neurotransmitters and the hypothesized role of glutamate for brain morphology. The independence of the measured imaging parameters from clinical parameters is in line with the neurodevelopmental hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Andreas Arthur Klär
- Department of Psychiatry and Psychotherapy, Charité-University Medicine Berlin, Campus Mitte, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Apostolova LG, Thompson PM, Green AE, Hwang KS, Zoumalan C, Jack CR, Harvey DJ, Petersen RC, Thal LJ, Aisen PS, Toga AW, Cummings JL, Decarli CS. 3D comparison of low, intermediate, and advanced hippocampal atrophy in MCI. Hum Brain Mapp 2010; 31:786-97. [PMID: 20143386 PMCID: PMC2938765 DOI: 10.1002/hbm.20905] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 08/07/2009] [Accepted: 08/10/2009] [Indexed: 11/10/2022] Open
Abstract
We applied the hippocampal radial atrophy mapping technique to the baseline and follow-up magnetic resonance image data of 169 amnestic mild cognitive impairment (MCI) participants in the imaging arm of the Alzheimer's Disease Cooperative Study MCI Donepezil/Vitamin E trial. Sixty percent of the subjects with none to mild hippocampal atrophy rated with the visual medial temporal atrophy rating scale (MTA score < 2) and 33.8% of the subjects with moderate to severe (MTA > or = 2) hippocampal atrophy converted to Alzheimer's disease (AD) during 3-year follow-up. MTA > or = 2 showed a trend for greater left sided hippocampal atrophy versus MTA < 2 groups at baseline (P(corrected) = 0.08). Higher MTA scores were associated with progressive atrophy of the subiculum and the CA1-3 subregions. The MTA < 2 group demonstrated significant bilateral atrophy progression at follow-up (left P(corrected) = 0.008; right P(corrected) = 0.05). Relative to MTA < 2 nonconverters, MTA < 2 converters showed further involvement of the subiculum and CA1 and additional involvement of CA2-3 at follow-up. Right CA1 atrophy was significantly associated with conversion to dementia (for 1 mm greater right CA1 radial distance subjects had 50% reduced hazard for conversion). Greater CA1 and subicular atrophy can be demonstrated early and is predictive of future conversion to AD, whereas CA2-3 involvement becomes more evident as the disease progresses.
Collapse
Affiliation(s)
- Liana G Apostolova
- Department of Neurology, David Geffen School of Medicine, UCLA, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chou YY, Leporé N, Madsen SK, Saharan P, Hua X, Jack CR, Shaw LM, Trojanowski JQ, Weiner MW, Toga AW, Thompson PM. VENTRICULAR MAPS IN 804 SUBJECTS CORRELATE WITH COGNITIVE DECLINE, CSF PATHOLOGY, AND IMMINENT ALZHEIMER'S DISEASE. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2010; 2010:241-244. [PMID: 28316758 PMCID: PMC5354306 DOI: 10.1109/isbi.2010.5490368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
There is an urgent need for neuroimaging biomarkers of Alzheimer's disease (AD) that correlate with cognitive decline, and with accepted measures of pathology detectable in cerebrospinal fluid (CSF). Ideal biomarkers should also be able to predict future decline, and should be computable automatically from hundreds to thousands of images without user intervention. Here we used our multi-atlas fluid image alignment method (MAFIA [1]), to automatically segment parametric 3D surface models of the lateral ventricles in brain MRI scans from 184 AD, 391 MCI, and 229 healthy elderly controls. Radial expansion of the ventricles, computed pointwise, was correlated with measures of (1) clinical decline, (2) pathology from CSF, and (3) future deterioration. Surface-based correlation maps were assessed using a cumulative distribution function method to rank influential covariates according to their effect sizes. The resulting approach is highly automated, and boosts the power of fluid image registration by integrating multiple independent registrations to reduce segmentation errors.
Collapse
Affiliation(s)
- Yi-Yu Chou
- Laboratory of Neuro Imaging, Dept. Neurology, UCLA School of Medicine, Los Angeles, CA
| | - Natasha Leporé
- Laboratory of Neuro Imaging, Dept. Neurology, UCLA School of Medicine, Los Angeles, CA
| | - Sarah K Madsen
- Laboratory of Neuro Imaging, Dept. Neurology, UCLA School of Medicine, Los Angeles, CA
| | - Priya Saharan
- Laboratory of Neuro Imaging, Dept. Neurology, UCLA School of Medicine, Los Angeles, CA
| | - Xue Hua
- Laboratory of Neuro Imaging, Dept. Neurology, UCLA School of Medicine, Los Angeles, CA
| | | | - Leslie M Shaw
- Dept. Pathology and Laboratory Medicine, and Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - John Q Trojanowski
- Dept. Pathology and Laboratory Medicine, and Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Michael W Weiner
- Depts. Radiology, Medicine & Psychiatry, UC San Francisco and VA Medical Center, San Francisco, CA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, Dept. Neurology, UCLA School of Medicine, Los Angeles, CA
| | - Paul M Thompson
- Laboratory of Neuro Imaging, Dept. Neurology, UCLA School of Medicine, Los Angeles, CA
| |
Collapse
|
47
|
Ogren JA, Wilson CL, Bragin A, Lin JJ, Salamon N, Dutton RA, Luders E, Fields TA, Fried I, Toga AW, Thompson PM, Engel J, Staba RJ. Three-dimensional surface maps link local atrophy and fast ripples in human epileptic hippocampus. Ann Neurol 2009; 66:783-91. [PMID: 20035513 PMCID: PMC3299311 DOI: 10.1002/ana.21703] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVES There is compelling evidence that pathological high-frequency oscillations (HFOs), called fast ripples (FR, 150-500Hz), reflect abnormal synchronous neuronal discharges in areas responsible for seizure genesis in patients with mesial temporal lobe epilepsy (MTLE). It is hypothesized that morphological changes associated with hippocampal atrophy (HA) contribute to the generation of FR, yet there is limited evidence that hippocampal FR-generating sites correspond with local areas of atrophy. METHODS Interictal HFOs were recorded from hippocampal microelectrodes in 10 patients with MTLE. Rates of FR and ripple discharge from each microelectrode were evaluated in relation to local measures of HA obtained using 3-dimensional magnetic resonance imaging (MRI) hippocampal modeling. RESULTS Rates of FR discharge were 3 times higher in areas of significant local HA compared with rates in nonatrophic areas. Furthermore, FR occurrence correlated directly with the severity of damage in these local atrophic regions. In contrast, we found no difference in rates of ripple discharge between local atrophic and nonatrophic areas. INTERPRETATION The proximity between local HA and microelectrode-recorded FR suggests that morphological changes such as neuron loss and synaptic reorganization may contribute to the generation of FR. Pathological HFOs, such as FR, may provide a reliable surrogate marker of abnormal neuronal excitability in hippocampal areas responsible for the generation of spontaneous seizures in patients with MTLE. Based on these data, it is possible that MRI-based measures of local HA could identify FR-generating regions, and thus provide a noninvasive means to localize epileptogenic regions in hippocampus.
Collapse
Affiliation(s)
- Jennifer A. Ogren
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Charles L. Wilson
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jack J. Lin
- Department of Neurology, UCI School of Medicine, Irvine, CA
| | - Noriko Salamon
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Rebecca A. Dutton
- Laboratory of Neuro Imaging (LONI), David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Eileen Luders
- Laboratory of Neuro Imaging (LONI), David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Tony A. Fields
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Arthur W. Toga
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Laboratory of Neuro Imaging (LONI), David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Paul M. Thompson
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Laboratory of Neuro Imaging (LONI), David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jerome Engel
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Richard J. Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
48
|
Yang Y, Raine A, Narr KL, Colletti P, Toga AW. Localization of deformations within the amygdala in individuals with psychopathy. ACTA ACUST UNITED AC 2009; 66:986-94. [PMID: 19736355 DOI: 10.1001/archgenpsychiatry.2009.110] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
CONTEXT Despite the repeated findings of impaired fear conditioning and affective recognition in psychopathic individuals, there has been a paucity of brain imaging research on the amygdala and no evidence suggesting which regions within the amygdala may be structurally compromised in individuals with psychopathy. OBJECTIVE To detect global and regional anatomical abnormalities in the amygdala in individuals with psychopathy. DESIGN Cross-sectional design using structural magnetic resonance imaging. SETTING Participants were recruited from high-risk communities (temporary employment agencies) in the Los Angeles, California, area and underwent imaging at a hospital research facility at the University of Southern California. PARTICIPANTS Twenty-seven psychopathic individuals as defined by the Hare Psychopathy Checklist-Revised and 32 normal controls matched on age, sex, and ethnicity. MAIN OUTCOME MEASURES Amygdala volumes were examined using traditional volumetric analyses and surface-based mesh modeling methods were used to localize regional surface deformations. RESULTS Individuals with psychopathy showed significant bilateral volume reductions in the amygdala compared with controls (left, 17.1%; right, 18.9%). Surface deformations were localized in regions in the approximate vicinity of the basolateral, lateral, cortical, and central nuclei of the amygdala. Significant correlations were found between reduced amygdala volumes and increased total and facet psychopathy scores, with correlations strongest for the affective and interpersonal facets of psychopathy. CONCLUSIONS Results provide the first evidence, to our knowledge, of focal amygdala abnormalities in psychopathic individuals and corroborate findings from previous lesion studies. Findings support prior hypotheses of amygdala deficits in individuals with psychopathy and indicate that amygdala abnormalities contribute to emotional and behavioral symptoms of psychopathy.
Collapse
Affiliation(s)
- Yaling Yang
- Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
49
|
Alcantara DA, Carmichael O, Harcourt-Smith W, Sterner K, Frost SR, Dutton R, Thompson P, Delson E, Amenta N. Exploration of shape variation using localized components analysis. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2009; 31:1510-1516. [PMID: 19542583 PMCID: PMC2864033 DOI: 10.1109/tpami.2008.287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Localized Components Analysis (LoCA) is a new method for describing surface shape variation in an ensemble of objects using a linear subspace of spatially localized shape components. In contrast to earlier methods, LoCA optimizes explicitly for localized components and allows a flexible trade-off between localized and concise representations, and the formulation of locality is flexible enough to incorporate properties such as symmetry. This paper demonstrates that LoCA can provide intuitive presentations of shape differences associated with sex, disease state, and species in a broad range of biomedical specimens, including human brain regions and monkey crania.
Collapse
Affiliation(s)
- Dan A. Alcantara
- The Department of Computer Science, University of California, One Shields Avenue, Davis, CA 95616
| | - Owen Carmichael
- The Neurology and Computer Science Departments, Center for Neuroscience, University of California, 1544 Newton Court, Davis, CA 95618-4859
| | - Will Harcourt-Smith
- The Department of Vertebrate Paleontology and the NYCEP Morphometrics Group, American Museum of Natural History, New York, NY 10024
| | - Kirstin Sterner
- The Department of Anthropology and the NYCEP Morphometrics Group, New York University, 25 Waverly Place, New York, NY 10003
| | - Stephen R. Frost
- The Department of Anthropology, University of Oregon, Eugene, OR 97403-1218
| | - Rebecca Dutton
- The School of Medicine, University of California, 513 Parnassus Ave., San Francisco, CA 94143-0410
| | - Paul Thompson
- The Neurology Department, University of California, 635 Charles E. Young Drive South, Suite 225E, Los Angeles, CA 90095-7332
| | - Eric Delson
- The Department of Anthropology, Lehman College, City University of New York. He is also with the Department of Vertebrate Paleontology and the NYCEP Morphometrics Group, American Museum of Natural History, New York, NY 10024
| | - Nina Amenta
- The Department of Computer Science, University of California, One Shields Avenue, Davis, CA 95616
| |
Collapse
|
50
|
Chou YY, Leporé N, Avedissian C, Madsen SK, Parikshak N, Hua X, Shaw LM, Trojanowski JQ, Weiner MW, Toga AW, Thompson PM. Mapping correlations between ventricular expansion and CSF amyloid and tau biomarkers in 240 subjects with Alzheimer's disease, mild cognitive impairment and elderly controls. Neuroimage 2009; 46:394-410. [PMID: 19236926 PMCID: PMC2696357 DOI: 10.1016/j.neuroimage.2009.02.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 01/22/2009] [Accepted: 02/07/2009] [Indexed: 12/25/2022] Open
Abstract
We aimed to improve on the single-atlas ventricular segmentation method of (Carmichael, O.T., Thompson, P.M., Dutton, R.A., Lu, A., Lee, S.E., Lee, J.Y., Kuller, L.H., Lopez, O.L., Aizenstein, H.J., Meltzer, C.C., Liu, Y., Toga, A.W., Becker, J.T., 2006. Mapping ventricular changes related to dementia and mild cognitive impairment in a large community-based cohort. IEEE ISBI. 315-318) by using multi-atlas segmentation, which has been shown to lead to more accurate segmentations (Chou, Y., Leporé, N., de Zubicaray, G., Carmichael, O., Becker, J., Toga, A., Thompson, P., 2008. Automated ventricular mapping with multi-atlas fluid image alignment reveals genetic effects in Alzheimer's disease, NeuroImage 40(2): 615-630); with this method, we calculated minimal numbers of subjects needed to detect correlations between clinical scores and ventricular maps. We also assessed correlations between emerging CSF biomarkers of Alzheimer's disease pathology and localizable deficits in the brain, in 80 AD, 80 mild cognitive impairment (MCI), and 80 healthy controls from the Alzheimer's Disease Neuroimaging Initiative. Six expertly segmented images and their embedded parametric mesh surfaces were fluidly registered to each brain; segmentations were averaged within subjects to reduce errors. Surface-based statistical maps revealed powerful correlations between surface morphology and 4 variables: (1) diagnosis, (2) depression severity, (3) cognitive function at baseline, and (4) future cognitive decline over the following year. Cognitive function was assessed using the mini-mental state exam (MMSE), global and sum-of-boxes clinical dementia rating (CDR) scores, at baseline and 1-year follow-up. Lower CSF Abeta(1-42) protein levels, a biomarker of AD pathology assessed in 138 of the 240 subjects, were correlated with lateral ventricular expansion. Using false discovery rate (FDR) methods, 40 and 120 subjects, respectively, were needed to discriminate AD and MCI from normal groups. 120 subjects were required to detect correlations between ventricular enlargement and MMSE, global CDR, sum-of-boxes CDR and clinical depression scores. Ventricular expansion maps correlate with pathological and cognitive measures in AD, and may be useful in future imaging-based clinical trials.
Collapse
Affiliation(s)
- Yi-Yu Chou
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA, USA
| | - Natasha Leporé
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA, USA
| | - Christina Avedissian
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA, USA
| | - Sarah K. Madsen
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA, USA
| | - Neelroop Parikshak
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA, USA
| | - Xue Hua
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA, USA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine and Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine and Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Michael W. Weiner
- Department of Radiology, Medicine and Psychiatry, UC San Francisco, San Francisco, CA, USA
- Department of Medicine, UC San Francisco, San Francisco, CA, USA
- Department of Psychiatry, UC San Francisco, San Francisco, CA, USA
| | - Arthur W. Toga
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA, USA
| | - Paul M. Thompson
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|