1
|
Yuan M, Li L, Zhu H, Zheng B, Lui S, Zhang W. Cortical morphological changes and associated transcriptional signatures in post-traumatic stress disorder and psychological resilience. BMC Med 2024; 22:431. [PMID: 39379972 PMCID: PMC11462656 DOI: 10.1186/s12916-024-03657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Individuals who have experienced severe traumatic events are estimated to have a post-traumatic stress disorder (PTSD) prevalence rate ranging from 10 to 50%, while those not affected by trauma exposure are often considered to possess psychological resilience. However, the neural mechanisms underlying the development of PTSD, especially resilience after trauma, remain unclear. This study aims to investigate changes of cortical morphometric similarity network (MSN) in PTSD and trauma-exposed healthy individuals (TEHI), as well as the associated molecular alterations in gene expression, providing potential targets for the prevention and intervention of PTSD. METHODS We recruited PTSD patients and TEHI who had experienced severe earthquakes, and healthy controls who had not experienced earthquakes. We identified alterations in the whole-brain MSN changes in PTSD and TEHI, and established associations between these changes and brain-wide gene expression patterns from the Allen Human Brain Atlas microarray dataset using partial least squares regression. RESULTS At the neuroimaging level, we found not only trauma-susceptible changes in TEHI same as those in PTSD, but also unique neurobiological alterations to counteract the deleterious impact of severe trauma. We identified 1444 and 2214 genes transcriptionally related to MSN changes in PTSD and TEHI, respectively. Functional enrichment analysis of weighted gene expression for PTSD and TEHI revealed distinct enrichments in Gene Ontology biological processes and Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, gene expression profiles of astrocytes, excitatory neurons, and microglial cells are highly related to MSN abnormalities in PTSD. CONCLUSIONS The formation of resilience may be by an active compensatory process of the brain. The combination of macroscopic neuroimaging changes and microscopic human brain transcriptomics could offer a more direct and in-depth understanding of the pathogenesis of PTSD and psychological resilience, shedding light on new targets for the prevention and treatment of PTSD.
Collapse
Affiliation(s)
- Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China
| | - Lun Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China
- Sichuan Institute of Computer Sciences, 610041, Chengdu, People's Republic of China
| | - Hongru Zhu
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China
- Med-X Center for Informatics, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Bo Zheng
- Department of Interventional Medicine, Sichuan Science City Hospital, 621000, Mianyang, People's Republic of China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China.
- Huaxi Brain Research Center, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
- Medical Big Data Center, Sichuan University, 610041, Chengdu, People's Republic of China.
| |
Collapse
|
2
|
Camacho-Téllez V, Castro MN, Wainsztein AE, Goldberg X, De Pino G, Costanzo EY, Cardoner N, Menchón JM, Soriano-Mas C, Guinjoan SM, Villarreal MF. Childhood adversity modulates structural brain changes in borderline personality but not in major depression disorder. Psychiatry Res Neuroimaging 2024; 340:111803. [PMID: 38460393 DOI: 10.1016/j.pscychresns.2024.111803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/24/2023] [Accepted: 02/20/2024] [Indexed: 03/11/2024]
Abstract
Adverse childhood experiences (ACEs) negatively affect the function and structure of emotion brain circuits, increasing the risk of various psychiatric disorders. It is unclear if ACEs show disorder specificity with respect to their effects on brain structure. We aimed to investigate whether the structural brain effects of ACEs differ between patients with major depression (MDD) and borderline personality disorder (BPD). These disorders share many symptoms but likely have different etiologies. To achieve our goal, we obtained structural 3T-MRI images from 20 healthy controls (HC), 19 MDD patients, and 18 BPD patients, and measured cortical thickness and subcortical gray matter volumes. We utilized the Adverse Childhood Experiences (ACE) questionnaire to quantify self-reported exposure to childhood trauma. Our findings suggest that individuals with MDD exhibit a smaller cortical thickness when compared to those with BPD. However, ACEs showed a significantly affected relationship with cortical thickness in BPD but not in MDD. ACEs were found to be associated with thinning in cortical regions involved in emotional behavior in BPD, whereas HC showed an opposite association. Our results suggest a potential mechanism of ACE effects on psychopathology involving changes in brain structure. These findings highlight the importance of early detection and intervention strategies.
Collapse
Affiliation(s)
- Vicente Camacho-Téllez
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Salud Mental, Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina
| | - Mariana N Castro
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Salud Mental, Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina.
| | - Agustina E Wainsztein
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Servicio de Psiquiatría, Fleni, Argentina
| | - Ximena Goldberg
- Mental Health Department, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain; CIBERSAM, Carlos III Health Institute, Madrid, Spain; ISGlobal, Barcelona, Spain
| | - Gabriela De Pino
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Laboratorio de Neuroimágenes, Departamento de Imágenes, Fleni, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Argentina
| | - Elsa Y Costanzo
- Departamento de Salud Mental, Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina; Servicio de Psiquiatría, Fleni, Argentina
| | - Narcís Cardoner
- CIBERSAM, Carlos III Health Institute, Madrid, Spain; Sant Pau Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José M Menchón
- CIBERSAM, Carlos III Health Institute, Madrid, Spain; Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | - Carles Soriano-Mas
- CIBERSAM, Carlos III Health Institute, Madrid, Spain; Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain; Department of Social Psychology and Quantitative Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Salvador M Guinjoan
- Laureate Institute for Brain Research, Tulsa, USA; Department of Psychiatry, Health Sciences Center, Oklahoma University, and Oxley College, Tulsa University, Tulsa, Oklahoma, USA
| | - Mirta F Villarreal
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Física, Facultad de Ciencias Exactas y Naturales, UBA, Argentina
| |
Collapse
|
3
|
Huggins AA, Baird CL, Briggs M, Laskowitz S, Hussain A, Fouda S, Haswell C, Sun D, Salminen LE, Jahanshad N, Thomopoulos SI, Veltman DJ, Frijling JL, Olff M, van Zuiden M, Koch SBJ, Nawjin L, Wang L, Zhu Y, Li G, Stein DJ, Ipser J, Seedat S, du Plessis S, van den Heuvel LL, Suarez-Jimenez B, Zhu X, Kim Y, He X, Zilcha-Mano S, Lazarov A, Neria Y, Stevens JS, Ressler KJ, Jovanovic T, van Rooij SJH, Fani N, Hudson AR, Mueller SC, Sierk A, Manthey A, Walter H, Daniels JK, Schmahl C, Herzog JI, Říha P, Rektor I, Lebois LAM, Kaufman ML, Olson EA, Baker JT, Rosso IM, King AP, Liberzon I, Angstadt M, Davenport ND, Sponheim SR, Disner SG, Straube T, Hofmann D, Qi R, Lu GM, Baugh LA, Forster GL, Simons RM, Simons JS, Magnotta VA, Fercho KA, Maron-Katz A, Etkin A, Cotton AS, O'Leary EN, Xie H, Wang X, Quidé Y, El-Hage W, Lissek S, Berg H, Bruce S, Cisler J, Ross M, Herringa RJ, Grupe DW, Nitschke JB, Davidson RJ, Larson CL, deRoon-Cassini TA, Tomas CW, Fitzgerald JM, Blackford JU, Olatunji BO, Kremen WS, Lyons MJ, Franz CE, Gordon EM, May G, Nelson SM, Abdallah CG, Levy I, Harpaz-Rotem I, Krystal JH, Dennis EL, Tate DF, Cifu DX, Walker WC, Wilde EA, Harding IH, Kerestes R, Thompson PM, Morey R. Smaller total and subregional cerebellar volumes in posttraumatic stress disorder: a mega-analysis by the ENIGMA-PGC PTSD workgroup. Mol Psychiatry 2024; 29:611-623. [PMID: 38195980 PMCID: PMC11153161 DOI: 10.1038/s41380-023-02352-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p-FDR < 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.
Collapse
Grants
- R01 MH105535 NIMH NIH HHS
- WA 1539/8-2 Deutsche Forschungsgemeinschaft (German Research Foundation)
- UL1TR000454 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- K01MH118467 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- IK2 RX000709 RRD VA
- R01MH106574 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX002172 RRD VA
- K23MH090366 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01MH105535 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- P41 EB015922 NIBIB NIH HHS
- I01 RX002174 RRD VA
- W81XWH-10-1-0925 U.S. Department of Defense (United States Department of Defense)
- R56 MH071537 NIMH NIH HHS
- 20ZDA079 National Natural Science Foundation of China (National Science Foundation of China)
- P30 HD003352 NICHD NIH HHS
- K01 MH122774 NIMH NIH HHS
- I01 RX003444 RRD VA
- IK2 RX002922 RRD VA
- 31971020 National Natural Science Foundation of China (National Science Foundation of China)
- R21 MH098212 NIMH NIH HHS
- R01 MH113574 NIMH NIH HHS
- K12 HD085850 NICHD NIH HHS
- M01RR00039 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- 1IK2CX001680 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- R01 MH071537 NIMH NIH HHS
- R21 MH106998 NIMH NIH HHS
- I01 RX003442 RRD VA
- IK2 CX001680 CSRD VA
- R01 AG064955 NIA NIH HHS
- HD071982 U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- MH098212 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- 14848 Michael J. Fox Foundation for Parkinson's Research (Michael J. Fox Foundation)
- I01 CX001135 CSRD VA
- 1IK2RX000709 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- R21 MH112956 NIMH NIH HHS
- W81XWH-08-2-0038 United States Department of Defense | United States Army | Army Medical Command | Congressionally Directed Medical Research Programs (CDMRP)
- K01 MH118428 NIMH NIH HHS
- HD085850 U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- R01 MH105355 NIMH NIH HHS
- M01 RR000039 NCRR NIH HHS
- I01 RX003443 RRD VA
- R01 MH111671 NIMH NIH HHS
- R01 MH106574 NIMH NIH HHS
- R01 MH116147 NIMH NIH HHS
- M01RR00039 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- 1K2RX002922 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- I01 RX001880 RRD VA
- K01MH122774 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX000622 RRD VA
- R01MH111671 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX002171 RRD VA
- R21MH098198 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 HX003155 HSRD VA
- U54 EB020403 NIBIB NIH HHS
- R01 MH117601 NIMH NIH HHS
- I01 RX001774 RRD VA
- R01AG050595 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- I01 CX002097 CSRD VA
- I01 RX002076 RRD VA
- R01 MH119227 NIMH NIH HHS
- SFB/TRR 58: C06, C07 Deutsche Forschungsgemeinschaft (German Research Foundation)
- R21MH106998 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- U21A20364 National Natural Science Foundation of China (National Science Foundation of China)
- R01MH117601 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- BK20221554 Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation)
- UL1 TR000454 NCATS NIH HHS
- R01 MH107382 NIMH NIH HHS
- I01 CX001246 CSRD VA
- R01MH105355 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R56 AG058854 NIA NIH HHS
- R01MH107382 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R21MH112956 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- 40-00812-98-10041 ZonMw (Netherlands Organisation for Health Research and Development)
- T32 MH018931 NIMH NIH HHS
- R01 AG076838 NIA NIH HHS
- K23 MH101380 NIMH NIH HHS
- R21 MH102634 NIMH NIH HHS
- K01MH118428 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01 MH043454 NIMH NIH HHS
- I01 RX002170 RRD VA
- MH071537 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01 HD071982 NICHD NIH HHS
- K23 MH090366 NIMH NIH HHS
- I01 RX002173 RRD VA
- R61 NS120249 NINDS NIH HHS
- R61NS120249 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- I01RX000622 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- 27040 Brain and Behavior Research Foundation (Brain & Behavior Research Foundation)
- W81XWH-12-2-0012 U.S. Department of Defense (United States Department of Defense)
- K01 MH118467 NIMH NIH HHS
- I01 CX002096 CSRD VA
- I01 CX001820 CSRD VA
- P50 U.S. Department of Health & Human Services | NIH | National Institute on Alcohol Abuse and Alcoholism (NIAAA)
- R01AG059874 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- MH101380 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX001135 RRD VA
- DA 1222/4-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- R01 MH096987 NIMH NIH HHS
- 1184403 Department of Health | National Health and Medical Research Council (NHMRC)
- R01MH110483 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01MH096987 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01MH119227 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R21MH102634 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01AG022381 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01 AG022381 NIA NIH HHS
- R01 AG050595 NIA NIH HHS
- R01 AG059874 NIA NIH HHS
- VA Mid-Atlantic MIRECC
- Michael J. Fox Foundation for Parkinson’s Research (Michael J. Fox Foundation)
- Amsterdam Academic Medical Center grant
- South African Medical Research Council (SAMRC)
- Ghent University Special Research Fund (BOF) 01J05415
- Julia Kasparian Fund for Neuroscience Research
- McLean Hospital Trauma Scholars Fund, Barlow Family Fund, Julia Kasparian Fund for Neuroscience Research
- Foundation for the Social Development Project of Jiangsu No. BE2022705
- Center for Brain and Behavior Research Pilot Grant, South Dakota Governor’s Research Center Grant
- Center for Brain and Behavior Research Pilot Grant, South Dakota Governor ’s Research Center Grant
- Fondation Pierre Deniker pour la Recherche et la Prévention en Santé Mentale (Fondation Pierre Deniker pour la Recherche & la Prévention en Santé Mentale)
- PHRC, SFR FED4226
- Dana Foundation (Charles A. Dana Foundation)
- UW | Institute for Clinical and Translational Research, University of Wisconsin, Madison (UW Institute for Clinical and Translational Research)
- National Science Foundation (NSF)
- US VA VISN17 Center of Excellence Pilot funding
- VA National Center for PTSD, Beth K and Stuart Yudofsky Chair in the Neuropsychiatry of Military Post Traumatic Stress Syndrome
- US VA National Center for PTSD, NCATS
- This work was supported by the Assistant Secretary of Defense for Health Affairs endorsed by the Department of Defense, through the Psychological Health/Traumatic Brain Injury Research Program Long-Term Impact of Military-Relevant Brain Injury Consortium (LIMBIC) Award/W81XWH-18-PH/TBIRP-LIMBIC under Awards No. W81XWH1920067 and W81XWH-13-2-0095, and by the U.S. Department of Veterans Affairs Awards No. I01 CX002097, I01 CX002096, I01 CX001820, I01 HX003155, I01 RX003444, I01 RX003443, I01 RX003442, I01 CX001135, I01 CX001246, I01 RX001774, I01 RX 001135, I01 RX 002076, I01 RX 001880, I01 RX 002172, I01 RX 002173, I01 RX 002171, I01 RX 002174, and I01 RX 002170. The U.S. Army Medical Research Acquisition Activity, 839 Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering acquisition office.
- HFP90-020
- VA VISN6 MIRECC
Collapse
Affiliation(s)
- Ashley A Huggins
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA.
| | - C Lexi Baird
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Melvin Briggs
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Sarah Laskowitz
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Ahmed Hussain
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Samar Fouda
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
- Department of Psychiatry & Behavioral Sciences, Duke School of Medicine, Durham, NC, USA
| | - Courtney Haswell
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Delin Sun
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
- Department of Psychology, The Education University of Hong Kong, Ting Kok, Hong Kong
| | - Lauren E Salminen
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Dick J Veltman
- Amsterdam UMC Vrije Universiteit, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jessie L Frijling
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Miranda Olff
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- ARQ National Psychotrauma Centre, Diemen, The Netherlands
| | - Mirjam van Zuiden
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Saskia B J Koch
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Laura Nawjin
- Amsterdam UMC Vrije Universiteit, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Li Wang
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ye Zhu
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gen Li
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Center for Global Health Equity, New York University Shanghai, Shanghai, China
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jonathan Ipser
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders (GBD), Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Stefan du Plessis
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders (GBD), Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Leigh L van den Heuvel
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders (GBD), Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Xi Zhu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Yoojean Kim
- New York State Psychiatric Institute, New York, NY, USA
| | - Xiaofu He
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | | | - Amit Lazarov
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Yuval Neria
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna R Hudson
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Anika Sierk
- University Medical Centre Charité, Berlin, Germany
| | | | | | - Judith K Daniels
- Department of Clinical Psychology, University of Groningen, Groningen, The Netherlands
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Julia I Herzog
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Pavel Říha
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- CEITEC-Central European Institute of Technology, Multimodal and Functional Neuroimaging Research Group, Masaryk University, Brno, Czech Republic
| | - Ivan Rektor
- CEITEC-Central European Institute of Technology, Multimodal and Functional Neuroimaging Research Group, Masaryk University, Brno, Czech Republic
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Women's Mental Health, McLean Hospital, Belmont, MA, USA
| | - Elizabeth A Olson
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Justin T Baker
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Isabelle M Rosso
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Anthony P King
- Department of Psychiatry and Behavioral Health, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Isreal Liberzon
- Department of Psychiatry, Texas A&M University, Bryan, Texas, USA
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas D Davenport
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Seth G Disner
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lee A Baugh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
| | - Gina L Forster
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Raluca M Simons
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Department of Psychology, University of South Dakota, Vermillion, SD, USA
- Disaster Mental Health Institute, Vermillion, SD, USA
| | - Jeffrey S Simons
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
- Department of Psychology, University of South Dakota, Vermillion, SD, USA
| | - Vincent A Magnotta
- Departments of Radiology, Psychiatry, and Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Kelene A Fercho
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
- Civil Aerospace Medical Institute, US Federal Aviation Administration, Oklahoma City, OK, USA
| | - Adi Maron-Katz
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Andrew S Cotton
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Erin N O'Leary
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Hong Xie
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Xin Wang
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Yann Quidé
- School of Psychology, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Wissam El-Hage
- UMR1253, Université de Tours, Inserm, Tours, France
- CIC1415, CHRU de Tours, Inserm, Tours, France
| | - Shmuel Lissek
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Hannah Berg
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Steven Bruce
- Department of Psychological Sciences, Center for Trauma Recovery University of Missouri-St. Louis, St. Louis, MO, USA
| | - Josh Cisler
- Department of Psychiatry, University of Texas at Austin, Austin, TX, USA
| | - Marisa Ross
- Northwestern Neighborhood and Network Initiative, Northwestern University Institute for Policy Research, Evanston, IL, USA
| | - Ryan J Herringa
- School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, USA
| | - Daniel W Grupe
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - Jack B Nitschke
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christine L Larson
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Terri A deRoon-Cassini
- Division of Trauma and Acute Care Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Comprehensive Injury Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Carissa W Tomas
- Comprehensive Injury Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Epidemiology and Social Sciences, Institute of Health and Equity, Medical College of Wisconsin Milwaukee, Milwaukee, WI, USA
| | | | - Jennifer Urbano Blackford
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bunmi O Olatunji
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Michael J Lyons
- Dept. of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Carol E Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Geoffrey May
- Veterans Integrated Service Network-17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, Minneapolis, MN, USA
| | - Chadi G Abdallah
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ifat Levy
- Departments of Comparative Medicine, Neuroscience and Psychology, Wu Tsai Institute, Yale University, New Haven, CT, USA
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
- Departments of Psychiatry and of Psychology, Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - David X Cifu
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - William C Walker
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
- Veterans Affairs (VA) Richmond Health Care, Richmond, VA, USA
| | - Elizabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Vic, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Vic, Australia
| | - Rebecca Kerestes
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Vic, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Rajendra Morey
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| |
Collapse
|
4
|
Raskin SA, DeJoie O, Edwards C, Ouchida C, Moran J, White O, Mordasiewicz M, Anika D, Njoku B. Traumatic brain injury screening and neuropsychological functioning in women who experience intimate partner violence. Clin Neuropsychol 2024; 38:354-376. [PMID: 37222525 DOI: 10.1080/13854046.2023.2215489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
Objective: The potential for traumatic brain injury (TBI) to occur as the result of intimate partner violence (IPV) has received increased interest in recent years. This study sought to investigate the possible occurrence of TBI in a group of women who survived IPV and to measure the specific profile of cognitive deficits using standardized neuropsychological measures. Method: A comprehensive questionnaire about abuse history; neuropsychological measures of attention, memory and executive functioning; and measures of depression, anxiety and post-traumatic stress disorder were given to women who were IPV survivors, women who were sexual assault (SA) survivors, and a comparison group of women who did not experience IPV or SA. Results: Overall, rates of potential TBI, as measured by the HELPS brain injury screening tool, were high and consistent with previous studies. Consistent with potential TBI, lower scores were demonstrated on measures of memory and executive functioning compared to survivors of SA or those not exposed to violence. Importantly, significant differences on measures of memory and executive functioning remained, after controlling for measures of emotion. Of note, cognitive changes were highest among women who experienced non-fatal strangulation (NFS) compared to IPV survivors who did not. Conclusions: Rates of TBI may be high in women who survive IPV, especially those who survive strangulation. Better screening measures and appropriate interventions are needed as well as larger studies that look at social factors associated with IPV.
Collapse
Affiliation(s)
- Sarah A Raskin
- Department of Psychology, Trinity College, Hartford, CT, USA
- Neuroscience Program, Trinity College, Hartford, CT, USA
| | | | | | - Chloe Ouchida
- Neuroscience Program, Trinity College, Hartford, CT, USA
| | - Jocelyn Moran
- Neuroscience Program, Trinity College, Hartford, CT, USA
| | - Olivia White
- Neuroscience Program, Trinity College, Hartford, CT, USA
| | | | - Dorothy Anika
- Neuroscience Program, Trinity College, Hartford, CT, USA
| | - Blessing Njoku
- Neuroscience Program, Trinity College, Hartford, CT, USA
| |
Collapse
|
5
|
Ge J, Luo Y, Qi R, Wu L, Dai H, Lan Q, Liu B, Zhang L, Lu G, Cao Z, Shen J. Persistence of post-traumatic stress disorder in Chinese Shidu parents is associated with combined gray and white matter abnormalities. Psychiatry Res Neuroimaging 2023; 335:111715. [PMID: 37716134 DOI: 10.1016/j.pscychresns.2023.111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/07/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
Post-traumatic stress disorder (PTSD) is one of the most common mental health disorders among Shidu parents. Identification of gray and white matter differences between persistence of PTSD (P-PTSD) and remission of PTSD (R-PTSD) is crucial to determine their prognosis. A total of 37 Shidu parents with PTSD were followed for five years. Surface-based morphometry and diffusion tensor imaging were carried out to analyze the differences in gray and white matter between P-PTSD and R-PTSD. Finally, 30 patients with PTSD were enrolled, including 12 with P-PTSD and 18 with R-PTSD. Compared with patients with R-PTSD, patients with P-PTSD exhibited lower fractional anisotropy (FA) in Cluster 1 (including body of the corpus callosum, superior longitudinal fasciculus, corticospinal tract) and Cluster 2 (including inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, splenium of the corpus callosum) in the left cerebral hemisphere and higher cortical thickness in the right lateral occipital cortex (LOC). In patients with P-PTSD, FA values of Cluster 2 were negatively correlated with cortical thickness of the right LOC. These results suggest that among Shidu parents, differences were observed in gray and white matter between P-PTSD and R-PTSD. Moreover, some certain gray and white matter abnormalities were often present simultaneously in P-PTSD.
Collapse
Affiliation(s)
- Jiyuan Ge
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China; Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Yifeng Luo
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Luoan Wu
- Department of Psychiatry, Yixing Mental Health Center, Wuxi, China
| | - Huanhuan Dai
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Qingyue Lan
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Bo Liu
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Li Zhang
- Mental Health Institute, The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhihong Cao
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, China.
| | - Junkang Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Gil-Paterna P, Furmark T. Imaging the cerebellum in post-traumatic stress and anxiety disorders: a mini-review. Front Syst Neurosci 2023; 17:1197350. [PMID: 37645454 PMCID: PMC10460913 DOI: 10.3389/fnsys.2023.1197350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) and anxiety disorders are among the most prevalent psychiatric conditions worldwide sharing many clinical manifestations and, most likely, neural mechanisms as suggested by neuroimaging research. While the so-called fear circuitry and traditional limbic structures of the brain, particularly the amygdala, have been extensively studied in sufferers of these disorders, the cerebellum has been relatively underexplored. The aim of this paper was to present a mini-review of functional (task-activity or resting-state connectivity) and structural (gray matter volume) results on the cerebellum as reported in magnetic resonance imaging studies of patients with PTSD or anxiety disorders (49 selected studies in 1,494 patients). While mixed results were noted overall, e.g., regarding the direction of effects and anatomical localization, cerebellar structures like the vermis seem to be highly involved. Still, the neurofunctional and structural alterations reported for the cerebellum in excessive anxiety and trauma are complex, and in need of further evaluation.
Collapse
|
7
|
Douglas K, Bell C, Tanveer S, Eggleston K, Porter R, Boden J. UNITE Project: understanding neurocognitive impairment after trauma exposure-study protocol of an observational study in Christchurch, New Zealand. BMJ Open 2023; 13:e072195. [PMID: 37550025 PMCID: PMC10407410 DOI: 10.1136/bmjopen-2023-072195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023] Open
Abstract
INTRODUCTION Our previous research has demonstrated significant cognitive effects of earthquake exposure 2-3 years following the Canterbury earthquake sequence of 2011. Such impairment has major implications for a population trying to recover, and to rebuild, a devastated city. This study aims to examine psychological, cognitive and biological factors that may contribute to subjective cognitive difficulties in a large group of individuals exposed to the Canterbury earthquake sequence. METHODS AND ANALYSIS Two-hundred earthquake-exposed participants from an existing large cohort study (Christchurch Health and Development Study, CHDS) will be recruited. Inclusion is based on results of online screening of the CHDS cohort, using the Cognitive Failures Questionnaire. Individuals scoring the highest (n=100) and lowest (n=100), representing the highest and lowest levels of subjective cognitive impairment, are selected. Exclusions are: psychotic/bipolar disorders, serious substance/alcohol dependence, chronic medical conditions, pregnancy and previous serious head injury. Participants will undergo a half-day assessment including clinician-rated interviews, self-report measures, objective and subjective cognitive assessments, blood sample collection and physical measurements. The primary analysis will compare cognitive, psychological and biological measures in 'high' and 'low' subjective cognitive impairment groups. The study will have power (p<0.05, α=0.8) to show a difference between groups of 0.4 SD on any variable. ETHICS AND DISSEMINATION Ethical approval for this study was granted by the New Zealand Health and Disability Ethics Committee. The online screening component of the study received ethical approval on 1 April 2021 (16/STH/188, PAF 7), and the main study (subsequent to screening) received approval on 16 August 2021 (Northern A 21/NTA/68). All participants provide written informed consent. Findings will be disseminated initially to the CHDS cohort members, the wider Canterbury community, and then by publication in scientific journals and conference presentations. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Registry (NCT05090046).
Collapse
Affiliation(s)
- Katie Douglas
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Caroline Bell
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Sandila Tanveer
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Kate Eggleston
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
- Specialist Mental Health Services, Te Whatu Ora Waitaha, Christchurch, New Zealand
| | - Richard Porter
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
- Specialist Mental Health Services, Te Whatu Ora Waitaha, Christchurch, New Zealand
| | - Joseph Boden
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
8
|
Shymanskaya A, Kohn N, Habel U, Wagels L. Brain network changes in adult victims of violence. Front Psychiatry 2023; 14:1040861. [PMID: 36816407 PMCID: PMC9931748 DOI: 10.3389/fpsyt.2023.1040861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Stressful experiences such as violence can affect mental health severely. The effects are associated with changes in structural and functional brain networks. The current study aimed to investigate brain network changes in four large-scale brain networks, the default mode network, the salience network, the fronto-parietal network, and the dorsal attention network in self-identified victims of violence and controls who did not identify themselves as victims. Materials and methods The control group (n = 32) was matched to the victim group (n = 32) by age, gender, and primary psychiatric disorder. Sparse inverse covariance maps were derived from functional resting-state measurements and from T1 weighted structural data for both groups. Results Our data underlined that mostly the salience network was affected in the sample of self-identified victims. In self-identified victims with a current psychiatric diagnosis, the dorsal attention network was mostly affected underlining the potential role of psychopathological alterations on attention-related processes. Conclusion The results showed that individuals who identify themselves as victim demonstrated significant differences in all considered networks, both within- and between-network.
Collapse
Affiliation(s)
- Aliaksandra Shymanskaya
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Brain Structure and Function, INM-10, Institute of Neuroscience and Medicine, Jülich Research Centre, Jülich, Germany
| | - Nils Kohn
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmengen, Netherlands
| | - Ute Habel
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Brain Structure and Function, INM-10, Institute of Neuroscience and Medicine, Jülich Research Centre, Jülich, Germany
| | - Lisa Wagels
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Brain Structure and Function, INM-10, Institute of Neuroscience and Medicine, Jülich Research Centre, Jülich, Germany
| |
Collapse
|
9
|
Likitlersuang J, Salat DH, Fortier CB, Iverson KM, Werner KB, Galovski T, McGlinchey RE. Intimate partner violence and brain imaging in women: A neuroimaging literature review. Brain Inj 2023; 37:101-113. [PMID: 36729954 DOI: 10.1080/02699052.2023.2165152] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PRIMARY OBJECTIVE Despite a high prevalence of intimate partner violence (IPV) and its lasting impacts on individuals, particularly women, very little is known about how IPV may impact the brain. IPV is known to frequently result in traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD). In this overview of literature, we examined literature related to neuroimaging in women with IPV experiences between the years 2010-2021. RESEARCH DESIGN Literature overview. METHODS AND PROCEDURES A total of 17 studies were included in the review, which is organized into each imaging modality, including magnetic resonance imaging (structural, diffusion, and functional MRI), Electroencephalography (EEG), proton magnetic resonance spectroscopy (pMRS), and multimodal imaging. MAIN OUTCOMES AND RESULTS Research has identified changes in brain regions associated with cognition, emotion, and memory. Howeverto date, it is difficult to disentangle the unique contributions of TBI and PTSD effects of IPV on the brain. Furthermore, experimental design elements differ considerably among studies. CONCLUSIONS The aim is to provide an overview of existing literature to determine commonalities across studies and to identify remaining knowledge gaps and recommendations for implementing future imaging studies with individuals who experience IPV.
Collapse
Affiliation(s)
- Jirapat Likitlersuang
- Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, Massachusetts, USA.,Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - David H Salat
- Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, Massachusetts, USA.,Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Department of Radiology, Charlestown, Massachusetts, USA
| | - Catherine B Fortier
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine M Iverson
- Women' Health Sciences Division of the National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Kimberly B Werner
- College of Nursing, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Tara Galovski
- Women' Health Sciences Division of the National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Regina E McGlinchey
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA.,Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Herzberg MP, Hennefield L, Luking KR, Sanders AFP, Vogel AC, Kandala S, Tillman R, Luby J, Barch DM. Family income buffers the relationship between childhood adverse experiences and putamen volume. Dev Neurobiol 2023; 83:28-39. [PMID: 36314461 PMCID: PMC10038819 DOI: 10.1002/dneu.22906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 08/26/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Adverse experiences and family income in childhood have been associated with altered brain development. While there is a large body of research examining these associations, it has primarily used cross-sectional data sources and studied adverse experiences and family income in isolation. However, it is possible that low family income and adverse experiences represent dissociable and potentially interacting profiles of risk. To address this gap in the literature, we examined brain structure as a function of adverse experiences in childhood and family income in 158 youths with up to five waves of MRI data. Specifically, we assessed the interactive effect of these two risk factors on six regions of interest: hippocampus, putamen, amygdala, nucleus accumbens, caudate, and thalamus. Adverse experiences and family income interacted to predict putamen volume (B = 0.086, p = 0.011) but only in participants with family income one standard deviation below the mean (slope estimate = -0.11, p = 0.03). These results suggest that adverse experiences in childhood result in distinct patterns of brain development across the socioeconomic gradient. Given previous findings implicating the role of the putamen in psychopathology-related behaviors, these results emphasize the importance of considering life events and socioeconomic context when evaluating markers of risk. Future research should include interactive effects of environmental exposures and family income to better characterize risk for psychopathology in diverse samples.
Collapse
Affiliation(s)
- Max P. Herzberg
- Department of Psychiatry, Washington University in St.
Louis, St. Louis, MO, USA
| | - Laura Hennefield
- Department of Psychiatry, Washington University in St.
Louis, St. Louis, MO, USA
| | - Katherine R. Luking
- Department of Psychological & Brain Sciences,
Washington University in St. Louis, St. Louis, MO, USA
| | - Ashley F. P. Sanders
- Department of Psychiatry, Washington University in St.
Louis, St. Louis, MO, USA
| | - Alecia C. Vogel
- Department of Psychiatry, Washington University in St.
Louis, St. Louis, MO, USA
| | - Sridhar Kandala
- Department of Psychiatry, Washington University in St.
Louis, St. Louis, MO, USA
| | - Rebecca Tillman
- Department of Psychiatry, Washington University in St.
Louis, St. Louis, MO, USA
| | - Joan Luby
- Department of Psychiatry, Washington University in St.
Louis, St. Louis, MO, USA
| | - Deanna M. Barch
- Department of Psychiatry, Washington University in St.
Louis, St. Louis, MO, USA
- Department of Psychological & Brain Sciences,
Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St.
Louis, St. Louis, MO, USA
| |
Collapse
|
11
|
Kim SY, An SJ, Han JH, Kang Y, Bae EB, Tae WS, Ham BJ, Han KM. Childhood abuse and cortical gray matter volume in patients with major depressive disorder. Psychiatry Res 2023; 319:114990. [PMID: 36495619 DOI: 10.1016/j.psychres.2022.114990] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Childhood abuse is associated with brain structural alterations; however, few studies have investigated the association between specific types of childhood abuse and cortical volume in patients with major depressive disorder (MDD). We aimed to investigate the association between specific types of childhood abuse and gray matter volumes in patients with MDD. Seventy-five participants with MDD and 97 healthy controls (HCs) aged 19-64 years were included. Cortical gray matter volumes were compared between MDD and HC groups, and also compared according to exposure to each type of specific childhood abuse. Emotional, sexual, and physical childhood abuse were assessed using the 28-item Childhood Trauma Questionnaire. Patients with MDD showed a significantly decreased gray matter volume in the right anterior cingulate gyrus (ACG). Childhood sexual abuse (CSA) was associated with significantly decreased gray matter volume in the right middle occipital gyrus (MOG). In the post-hoc comparison of volumes of the right ACG and MOG, MDD patients with CSA had significantly smaller volumes in the right MOG than did MDD patients without CSA or HCs. The right MOG volume decrease could be a neuroimaging marker associated with CSA and morphological changes in the brain may be involved in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Soo Young Kim
- Department of Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Seong Joon An
- Department of Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Jong Hee Han
- Department of Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Eun Bit Bae
- Research Institute for Medical Bigdata Science, Korea University, Seoul, South Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University, Seoul, South Korea
| | - Byung-Joo Ham
- Brain Convergence Research Center, Korea University, Seoul, South Korea; Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Kyu-Man Han
- Brain Convergence Research Center, Korea University, Seoul, South Korea; Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
12
|
Cesari V, Vallefuoco A, Agrimi J, Gemignani A, Paolocci N, Menicucci D. Intimate partner violence: psycho-physio-pathological sequelae for defining a holistic enriched treatment. Front Behav Neurosci 2022; 16:943081. [PMID: 36248029 PMCID: PMC9561850 DOI: 10.3389/fnbeh.2022.943081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Intimate partner violence (IPV) is a health priority, which worldwide, mainly affects women. The consequences of IPV include several psychophysiological effects. These range from altered levels of hormones and neurotrophins to difficulties in emotion regulation and cognitive impairment. Mounting evidence from preclinical studies has shown that environmental enrichment, a form of sensory-motor, cognitive, and social stimulation, can induce a wide range of neuroplastic processes in the brain which consistently improve recovery from a wide variety of somatic and psychiatric diseases. To support IPV survivors, it is essential to ensure a safe housing environment, which can serve as a foundation for environmental enrichment-based interventions. However, some concerns have been raised when supportive housing interventions focus on the economic aspects of survivors’ lives instead of the emotional ones. We thus propose a holistic intervention in which supportive housing is integrated with evidenced-based psychotherapies which could constitute an enriched therapeutic approach for IPV survivors.
Collapse
Affiliation(s)
- Valentina Cesari
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Vallefuoco
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Jacopo Agrimi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
- Clinical Psychology branch, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Nazareno Paolocci
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
- Comitato Unico di Garanzia, University of Pisa, Pisa, Italy
- *Correspondence: Danilo Menicucci
| |
Collapse
|
13
|
Structural and Functional Correlates of Higher Cortical Brain Regions in Chronic Refractory Cough. Chest 2022; 162:851-860. [DOI: 10.1016/j.chest.2022.04.141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/05/2022] [Accepted: 04/22/2022] [Indexed: 01/10/2023] Open
|
14
|
Daugherty JC, Verdejo-Román J, Pérez-García M, Hidalgo-Ruzzante N. Structural Brain Alterations in Female Survivors of Intimate Partner Violence. JOURNAL OF INTERPERSONAL VIOLENCE 2022; 37:NP4684-NP4717. [PMID: 32954938 DOI: 10.1177/0886260520959621] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Intimate partner violence (IPV) has been related to brain alterations in female survivors. Nonetheless, few studies have used an exploratory approach, focusing on brain regions that are traditionally studied in other populations with post-traumatic stress. Traumatic brain injury (TBI), strangulation, and childhood trauma are highly prevalent among this population, and have also been associated with brain alterations and functional deterioration. As such, it is difficult to determine how different brain regions are affected by the complex interplay of these factors in female survivors. The aim of this study is to assess (a) brain alterations in female survivors of IPV as compared to non-victim females and (b) the potential causal mechanisms associated with such alterations. We hypothesized that structural brain differences would be found between female survivors of IPV and non-victims, and that these differences would be related to IPV-related TBI, strangulation, IPV severity, depression, post-traumatic stress, generalized anxiety, and childhood adverse experiences. A total of 27 non-victims and 28 survivors completed structural magnetic resonance imaging and questionnaires to measure the potential causal mechanisms for brain alterations. Structural brain differences were found between groups, principally in volumetric analyses. The brain regions in which between-group differences were found were related to attempted strangulation, IPV-related TBI, severity of IPV, adverse childhood experiences, and post-traumatic stress. These results demonstrate that a wider range of brain regions may be impacted by IPV and that various factors are implicated in the structural brain alterations found in female survivors. This study demonstrates the importance of post-traumatic stress, childhood and adult trauma, and physical violence in assessing brain alterations in IPV survivors. Further, it serves as a critical first step in assessing an extensive list of potential causal mechanisms for structural brain alterations, using a more comprehensive a whole-brain structural analysis of IPV female victims, a largely understudied and vulnerable population.
Collapse
Affiliation(s)
| | - Juan Verdejo-Román
- University of Granada (CIMCYC-UGR), Granada, Spain
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Madrid, Spain
| | | | | |
Collapse
|
15
|
Abstract
Posttraumatic stress disorder (PTSD) is a debilitating disorder that can develop after experiencing a traumatic event and is, in part, characterized by memory disturbances. Given its important role in learning and memory, the hippocampus has been studied extensively in PTSD using volumetric neuroimaging techniques. However, the results of these studies are mixed. The variability in findings across studies could arise from differences in samples with regard to trauma type, but this connection has not yet been formally assessed. To assess this question, we conducted (1) mixed-effects meta-analyses to replicate previous meta-analytic findings of significant differences in hippocampal volumes in PTSD groups versus two different types of control groups (trauma-exposed and -unexposed groups), and (2) mixed-effects subgroup and meta-regression analyses to determine whether trauma type moderated these hippocampal volume differences. Overall, the PTSD groups showed significantly smaller right hippocampal volumes than both control groups and significantly smaller left hippocampal volumes than trauma-unexposed control groups. Subgroup and meta-regression analyses revealed that trauma type did not moderate the effect seen between PTSD and trauma-exposed non-PTSD groups but did moderate the effect between the PTSD and trauma-unexposed control groups: studies that contained participants with PTSD related to combat trauma exhibited significantly smaller effect sizes for right hippocampal volumes compared to the interpersonal violence and "other" trauma-type groups with PTSD. These findings suggest that trauma type may moderate hippocampal volume in trauma-exposed individuals but not in those with PTSD.
Collapse
|
16
|
Wong JYH, Choi AWM, Wong JKS, Ng ZLH, Cheung KY, Lau CL, Kam CW, Fong DYT. Impact of mild traumatic brain injury on physical, mental and cognitive functioning of abused women admitted to emergency units. HEALTH & SOCIAL CARE IN THE COMMUNITY 2022; 30:e428-e434. [PMID: 33159412 DOI: 10.1111/hsc.13218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Limited studies exist on women's mild traumatic brain injury received from episode of intimate partner violence. This study aims to identify the occurrence of intimate partner violence-related mild traumatic brain injury in Chinese women admitted to emergency units; and examine the physical, mental, and cognitive functioning of abused women with mild traumatic brain injury related to violent episodes. Eighty-six Chinese abused women presenting at emergency units in four major local hospitals in Hong Kong between January 2014 and December 2016 were recruited. They were admitted for the treatment of intimate partner violence-related physical injuries and were screened for traumatic brain injury by the emergency unit nurses at triage. Participants were assessed for traumatic brain injury based on the definition from US Center for Disease Control and Prevention, post-concussion physical symptoms, anxiety and depression, health-related quality of life, and cognitive functioning. Structured multiphase regression was used to examine the impact of intimate partner violence-related mild traumatic brain injury on physical, mental, and cognitive functioning of participants. We found that 24.4% of participants had intimate partner violence-related mild traumatic brain injury. There were significantly more severe post-concussion physical symptoms in abused women with intimate partner violence-related mild traumatic brain injury than those without mild traumatic brain injury (estimate = 18.7, 95% CI = 10.9 to 26.6, p < 0.001). The Mental Component Summary was also significantly associated with intimate partner violence-related mild traumatic brain injury (estimate = -7.9, 95% CI = -13.8 to -2.1, p = 0.009). Regarding cognitive functioning, the mean total test scores indicated that both groups were cognitively abnormal and there was no significant impact from mild traumatic brain injury. This study provides evidence on the impact of mild traumatic brain injury and implications in screening for mild traumatic brain injury and early intervention for improving quality of life in abused women.
Collapse
Affiliation(s)
- Janet Yuen-Ha Wong
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Anna Wai-Man Choi
- Department of Social and Behavioral Sciences, City University of Hong Kong, Hong Kong S.A.R
| | - John Kit-Shing Wong
- Department of Accident and Emergency Medicine, Tuen Mun Hospital, Hospital Authority of Hong Kong, Hong Kong S.A.R
| | - Zoe Lai-Han Ng
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Kai-Yeung Cheung
- Accident and Emergency Department, United Christian Hospital, Hospital Authority of Hong Kong, Hong Kong S.A.R
| | - Chu-Leung Lau
- Department of Accident and Emergency Medicine, Tuen Mun Hospital, Hospital Authority of Hong Kong, Hong Kong S.A.R
| | - Chak-Wah Kam
- Department of Accident and Emergency Medicine, Tuen Mun Hospital, Hospital Authority of Hong Kong, Hong Kong S.A.R
| | - Daniel Yee-Tak Fong
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| |
Collapse
|
17
|
Zilcha‐Mano S, Zhu X, Lazarov A, Suarez‐Jimenez B, Helpman L, Kim Y, Maitlin C, Neria Y, Rutherford BR. Structural brain features signaling trauma, PTSD, or resilience? A systematic exploration. Depress Anxiety 2022; 39:695-705. [PMID: 35708133 PMCID: PMC9588504 DOI: 10.1002/da.23275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/15/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Studies have searched for neurobiological markers of trauma exposure, posttraumatic stress disorder (PTSD) diagnosis, and resilience to trauma to identify therapeutic targets for PTSD. Despite some promising results, findings are inconsistent. AIMS The present study adopted a data-driven approach to systematically explore whether structural brain markers of trauma, PTSD, or resilience emerge when all are explored. MATERIALS & METHODS Differences between clusters in the proportion of PTSD, healthy controls (HC), and trauma-exposed healthy controls (TEHC) served to indicate the presence of PTSD, trauma, and resilience markers, respectively. A total of 129 individuals, including 46 with PTSD, 49 TEHCs, and 34 HCs not exposed to trauma were scanned. Volumes, cortical thickness, and surface areas of interest were obtained from T1 structural MRI and used to identify data-driven clusters. RESULTS Two clusters were identified, differing in the proportion of TEHCs but not of PTSDs or HCs. The cluster with the higher proportion of TEHCs, referred to as the resilience cluster, was characterized by higher volume in brain regions implicated in trauma exposure, especially the thalamus and rostral middle frontal gyrus. Cross-validation established the robustness and consistency of the identified clusters. DISCUSSION & CONCLUSION Findings support the existence of structural brain markers of resilience.
Collapse
Affiliation(s)
| | - Xi Zhu
- Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA,New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA
| | - Amit Lazarov
- School of Psychological SciencesTel‐Aviv UniversityTel‐AvivIsrael,Department of PsychiatryColumbia University Medical CenterNew YorkNew YorkUSA
| | - Benjamin Suarez‐Jimenez
- New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA,Department of NeuroscienceUniversity of RochesterRochesterNew YorkUSA
| | - Liat Helpman
- Department of Counseling and Human DevelopmentUniversity of HaifaMount CarmelHaifaIsrael,Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Yoojean Kim
- Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA,New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA
| | - Carly Maitlin
- Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA,New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA
| | - Yuval Neria
- Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA,New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA
| | - Bret R. Rutherford
- Columbia University College of Physicians and Surgeons, New York State Psychiatric InstituteNew York CityNew YorkUSA
| |
Collapse
|
18
|
Likitlersuang J, Brown EM, Salat DH, Iverson KM, Werner K, McGlinchey RE, Galovski TE, Fortier CB. Neural Correlates of Traumatic Brain Injury in Women Survivors of Intimate Partner Violence: A Structural and Functional Connectivity Neuroimaging Study. J Head Trauma Rehabil 2022; 37:E30-E38. [PMID: 34985038 DOI: 10.1097/htr.0000000000000758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE More than one-third of women in the United States experience intimate partner violence (IPV) in their lifetime, increasing their risk for traumatic brain injury (TBI). Despite the prevalence of TBI among IPV survivors, research is sparse in comparison with parallel populations (eg, military, accidents, sports). This pilot study aimed to provide a preliminary investigation of the effect of TBI on brain morphometry and resting-state functional connectivity in women who experience IPV. PARTICIPANTS A total of 45 community-dwelling women survivors of IPV who screened positive for posttraumatic stress disorder (PTSD). DESIGN Participants completed comprehensive assessments of trauma exposure, PTSD, TBI history, and brain neurological health. Twenty-three participants (51.1%) met diagnostic criteria for lifetime TBI. Of these, 15 participants experienced 1 or more TBIs resulting from IPV. The remaining participants experienced TBI from non-IPV exposures (eg, sports/motor vehicle accident). Surface-based neuroimaging analyses were performed to examine group differences in cortical thickness and in functional connectivity of amygdala and isthmus cingulate seeds to examine emotion regulation and the default mode network, respectively. MAIN MEASURES Boston Assessment of Traumatic Brain Injury-Lifetime for Intimate Partner Violence (BAT-L/IPV); Clinician Administered PTSD Scale (CAPS); structural and functional neuroimaging. RESULTS History of lifetime TBI in women IPV survivors was associated with differences in cortical thickness as well as functional connectivity between the isthmus cingulate seed and a variety of regions, including superior parietal and frontal cortices. Individuals with IPV-related TBI showed lower cortical thickness in the right paracentral gyrus than individuals with TBI from other non-IPV etiologies. CONCLUSION Significant differences in brain structure and connectivity were observed in individuals with IPV and TBI. A lower mean cortical thickness of the paracentral gyrus was associated with TBI due to IPV than TBI from other etiologies. Although preliminary, findings from this pilot study present a step toward identifying potential mechanisms by which IPV and TBI secondary to IPV impact brain health in women.
Collapse
Affiliation(s)
- Jirapat Likitlersuang
- Neuroimaging Research for Veterans (NeRVe) Center (Drs Likitlersuang and Salat and Ms Brown), Translational Research Center for TBI and Stress Disorders (TRACTS) (Drs Likitlersuang, McGlinchey, Fortier, and Salat and Ms Brown), Women's Health Sciences Division of the National Center for PTSD (Drs Iverson and Galovski), and Geriatric Research, Educational and Clinical Center (GRECC) (Drs McGlinchey and Fortier), VA Boston Healthcare System, Boston, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Department of Radiology, Charlestown, Massachusetts (Dr Salat); Department of Psychiatry (Drs Iverson, McGlinchey, and Galovski), Boston University School of Medicine, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (Dr Likitlersuang, McGlinchey, and Fortier); and College of Nursing, University of Missouri-St Louis (Dr Werner)
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ruat J, Heinz DE, Binder FP, Stark T, Neuner R, Hartmann A, Kaplick PM, Chen A, Czisch M, Wotjak CT. Structural correlates of trauma-induced hyperarousal in mice. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110404. [PMID: 34303744 DOI: 10.1016/j.pnpbp.2021.110404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/23/2021] [Accepted: 07/17/2021] [Indexed: 11/18/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a chronic disease caused by traumatic incidents. Numerous studies have revealed grey matter volume differences in affected individuals. The nature of the disease renders it difficult to distinguish between a priori versus a posteriori changes. To overcome this difficulty, we studied the consequences of a traumatic event on brain morphology in mice before and 4 weeks after exposure to brief foot shocks (or sham treatment), and correlated morphology with symptoms of hyperarousal. In the latter context, we assessed hyperarousal upon confrontation with acoustic, visual, or composite (acoustic/visual/tactile) threats and integrated the individual readouts into a single Hyperarousal Score using logistic regression analysis. MRI scans with subsequent whole-brain deformation-based morphometry (DBM) analysis revealed a volume decrease of the dorsal hippocampus and an increase of the reticular nucleus in shocked mice when compared to non-shocked controls. Using the Hyperarousal Score as regressor for the post-exposure MRI measurement, we observed negative correlations with several brain structures including the dorsal hippocampus. If the development of changes with respect to the basal MRI was considered, reduction in globus pallidus volume reflected hyperarousal severity. Our findings demonstrate that a brief traumatic incident can cause volume changes in defined brain structures and suggest the globus pallidus as an important hub for the control of fear responses to threatening stimuli of different sensory modalities.
Collapse
Affiliation(s)
- Julia Ruat
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Daniel E Heinz
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Max Planck School of Cognition, 04103 Leipzig, Germany
| | - Florian P Binder
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany; Department Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Tibor Stark
- Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Pharmacology, Faculty of Medicine, Masaryk University, 62500 Brno, Czechia
| | - Robert Neuner
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alice Hartmann
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Paul M Kaplick
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Michael Czisch
- Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Carsten T Wotjak
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Max Planck School of Cognition, 04103 Leipzig, Germany; Central Nervous System Diseases Research (CNSDR), Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany.
| |
Collapse
|
20
|
Shi L, Ren Z, Qiu J. High Thought Control Ability, High Resilience: The Effect of Temporal Cortex and Insula Connectivity. Neuroscience 2021; 472:60-67. [PMID: 34363870 DOI: 10.1016/j.neuroscience.2021.07.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Psychological resilience is always portrayed as the ability to rebound from adversity, which is essential for human mental health. Whereas thought control ability (TCA) is a reliable indicator of perceptual cognitive control and has a predictive effect on psychopathology. Whether and how resilience correlates with thought control are still unclear. The current study explored the whole-brain functional connectivity underlying resilience and its role in the association between resilience and TCA using resting-state fMRI. Results reveled a significant positive correlation between resilience and the functional connectivity of temporal cortex-insula, suggesting that individuals with high resilient ability exhibit flexible interaction between these two regions to facilitate emotional information processing. More importantly, a significant positive correlation between TCA and resilience was observed, and the functional connectivity of temporal cortex-insula has a significant mediation effect on the association between TCA and psychological resilience, revealing that individuals with high TCA show high levels of resilience ability through robust cognitive control on unwanted thoughts. In short, these results extended previous findings by shedding novel insights into the close relationship between resilience and TCA and the underlying neural mechanism.
Collapse
Affiliation(s)
- Liang Shi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing 100875, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Zhiting Ren
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing 400715, China.
| |
Collapse
|
21
|
Non-communicable diseases among women survivors of intimate partner violence: Critical review from a chronic stress framework. Neurosci Biobehav Rev 2021; 128:720-734. [PMID: 34252471 DOI: 10.1016/j.neubiorev.2021.06.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 01/02/2023]
Abstract
A neurobiological framework of chronic stress proposes that the stress-response system can be functionally altered by the repeated presentation of highly stressful situations over time. These functional alterations mainly affect brain processing and include the dysregulation of the hypothalamic-pituitary-adrenal axis and associated processes. In the present critical review, we translate these results to inform the clinical presentation of women survivors of intimate partner violence (IPV). We approach IPV as a scenario of chronic stress where women are repetitively exposed to threat and coping behaviours that progressively shape their neurobiological response to stress. The changes at the central and peripheral levels in turn correlate with the phenotypes of non-communicable diseases. The reviewed studies clarify the extent of the impact of IPV on women's health in large (N > 10,000) population-based designs, and provide observations on experimental neuroendocrine, immune, neurocognitive and neuroimaging research linking alterations of the stress-response system and disease. This evidence supports the prevention of violence against women as a fundamental action to reduce the prevalence of non-communicable diseases.
Collapse
|
22
|
Basavaraju R, France J, Maas B, Brickman AM, Flory JD, Szeszko PR, Yehuda R, Neria Y, Rutherford BR, Provenzano FA. Right parahippocampal volume deficit in an older population with posttraumatic stress disorder. J Psychiatr Res 2021; 137:368-375. [PMID: 33761425 DOI: 10.1016/j.jpsychires.2021.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Posttraumatic Stress Disorder (PTSD) is an increasingly prevalent condition among older adults and may escalate further as the general population including veterans from recent conflicts grow older. Despite growing evidence of higher medical comorbidity, cognitive impairment and dementia, and disability in older individuals with PTSD, there are very few studies examining brain cortical structure in this population. Hence, we examined cortical volumes in a cross-sectional study of veterans and civilians aged ≥50 years, of both sexes and exposed to trauma (interpersonal, combat, non-interpersonal). METHODS Cortical volumes were obtained from T1-weighted structural MRI and compared between individuals with PTSD and Trauma Exposed Healthy Controls (TEHC) adjusting for age, sex, estimated intracranial volume, depression severity, and time elapsed since trauma exposure. RESULTS The PTSD group (N = 55) had smaller right parahippocampal gyrus compared to TEHC (N = 36), corrected p(pFWER) = 0.034, with an effect size of 0.75 (Cohen's d), with no significant group differences in other cortical areas. CONCLUSIONS These findings are different from the structural brain findings reported in studies in younger age groups (larger parahippocampal volume in PTSD patients), suggesting a possible significant change in brain structure as PTSD patients age. These results need replication in longitudinal studies across the age-span to test whether they are neuroanatomical markers representing disease vulnerability, trauma resilience or pathological neurodegeneration associated with cognitive impairment and dementia.
Collapse
Affiliation(s)
- Rakshathi Basavaraju
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Medical Center, USA.
| | - Jeanelle France
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Medical Center, USA.
| | - Benjamin Maas
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Medical Center, USA.
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, G.H. Sergievsky Center, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, USA.
| | - Janine D Flory
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, USA.
| | - Philip R Szeszko
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, NY, USA; James J. Peters VA Medical Center, Bronx, NY, USA.
| | - Rachel Yehuda
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, USA.
| | - Yuval Neria
- Department of Psychiatry, Columbia University Medical Center & New York State Psychiatric Institute, USA.
| | - Bret R Rutherford
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons & New York State Psychiatric Institute, USA.
| | - Frank A Provenzano
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Medical Center, USA.
| |
Collapse
|
23
|
Bremner JD, Hoffman M, Afzal N, Cheema FA, Novik O, Ashraf A, Brummer M, Nazeer A, Goldberg J, Vaccarino V. The environment contributes more than genetics to smaller hippocampal volume in Posttraumatic Stress Disorder (PTSD). J Psychiatr Res 2021; 137:579-588. [PMID: 33168198 PMCID: PMC8345282 DOI: 10.1016/j.jpsychires.2020.10.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Studies using structural magnetic resonance imaging (MRI) volumetrics showed smaller hippocampal volume in patients with post-traumatic stress disorder (PTSD). These studies were cross-sectional and did not address whether smaller volume is secondary to stress-induced damage, or whether pre-existing factors account for the findings. The purpose of this study was to use a co-twin case control design to assess the relative contribution of genetic and environmental factors to hippocampal volume in PTSD. METHODS Monozygotic (N = 13 pairs) and dizygotic (N = 21 pairs) twins with a history of Vietnam Era military service, where one brother went to Vietnam and developed PTSD, while his brother did not go to Vietnam or develop PTSD, underwent MR imaging of the brain. Structural MRI scans were used to manually outline the left and right hippocampus on multiple coronal slices, add the areas and adjust for slice thickness to determine hippocampal volume. RESULTS Twins with Vietnam combat-related PTSD had a mean 11% smaller right hippocampal volume in comparison to their twin brothers without combat exposure or PTSD (p < .05). There was no significant interaction by zygosity, suggesting that this was not a predisposing risk factor or genetic effect. CONCLUSIONS These findings are consistent with smaller hippocampal volume in PTSD, and suggest that the effects are primarily due to environmental effects such as the stress of combat.
Collapse
Affiliation(s)
- J. Douglas Bremner
- Departments of Psychiatry and Behavioral Sciences, USA, Radiology, and Medicine (Cardiology), USA, Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA, Corresponding author. Dept of Psychiatry & Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Dr NE, USA. (J.D. Bremner)
| | | | - Nadeem Afzal
- Departments of Psychiatry and Behavioral Sciences, USA
| | - Faiz A. Cheema
- Departments of Psychiatry and Behavioral Sciences, USA, The Vietnam Era Twin Registry, Seattle Veterans Administration Epidemiology Research, USA
| | - Olga Novik
- Departments of Psychiatry and Behavioral Sciences, USA, The Vietnam Era Twin Registry, Seattle Veterans Administration Epidemiology Research, USA
| | - Ali Ashraf
- Departments of Psychiatry and Behavioral Sciences, USA
| | | | - Ahsan Nazeer
- Departments of Psychiatry and Behavioral Sciences, USA
| | - Jack Goldberg
- Information Center and Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Viola Vaccarino
- Emory University School of Medicine, Atlanta GA; Atlanta VAMC, Decatur, GA, USA, The Vietnam Era Twin Registry, Seattle Veterans Administration Epidemiology Research, USA
| |
Collapse
|
24
|
Esopenko C, Meyer J, Wilde EA, Marshall AD, Tate DF, Lin AP, Koerte IK, Werner KB, Dennis EL, Ware AL, de Souza NL, Menefee DS, Dams-O'Connor K, Stein DJ, Bigler ED, Shenton ME, Chiou KS, Postmus JL, Monahan K, Eagan-Johnson B, van Donkelaar P, Merkley TL, Velez C, Hodges CB, Lindsey HM, Johnson P, Irimia A, Spruiell M, Bennett ER, Bridwell A, Zieman G, Hillary FG. A global collaboration to study intimate partner violence-related head trauma: The ENIGMA consortium IPV working group. Brain Imaging Behav 2021; 15:475-503. [PMID: 33405096 PMCID: PMC8785101 DOI: 10.1007/s11682-020-00417-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
Intimate partner violence includes psychological aggression, physical violence, sexual violence, and stalking from a current or former intimate partner. Past research suggests that exposure to intimate partner violence can impact cognitive and psychological functioning, as well as neurological outcomes. These seem to be compounded in those who suffer a brain injury as a result of trauma to the head, neck or body due to physical and/or sexual violence. However, our understanding of the neurobehavioral and neurobiological effects of head trauma in this population is limited due to factors including difficulty in accessing/recruiting participants, heterogeneity of samples, and premorbid and comorbid factors that impact outcomes. Thus, the goal of the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium Intimate Partner Violence Working Group is to develop a global collaboration that includes researchers, clinicians, and other key community stakeholders. Participation in the working group can include collecting harmonized data, providing data for meta- and mega-analysis across sites, or stakeholder insight on key clinical research questions, promoting safety, participant recruitment and referral to support services. Further, to facilitate the mega-analysis of data across sites within the working group, we provide suggestions for behavioral surveys, cognitive tests, neuroimaging parameters, and genetics that could be used by investigators in the early stages of study design. We anticipate that the harmonization of measures across sites within the working group prior to data collection could increase the statistical power in characterizing how intimate partner violence-related head trauma impacts long-term physical, cognitive, and psychological health.
Collapse
Affiliation(s)
- Carrie Esopenko
- Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, 07107, USA.
- Department of Health Informatics, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, 07107, USA.
| | - Jessica Meyer
- Department of Psychiatry, Summa Health System, Akron, OH, 44304, USA
| | - Elisabeth A Wilde
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA
| | - Amy D Marshall
- Department of Psychology, Pennsylvania State University, University Park, PA, 16802, USA
| | - David F Tate
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA
| | - Alexander P Lin
- Department of Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Inga K Koerte
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, 80336, Munich, Germany
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kimberly B Werner
- College of Nursing, University of Missouri, St. Louis, MO, 63121, USA
| | - Emily L Dennis
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA
| | - Ashley L Ware
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
- Department of Psychology, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Nicola L de Souza
- School of Graduate Studies, Biomedical Sciences, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | | | - Kristen Dams-O'Connor
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dan J Stein
- Department of Psychiatry and Neuroscience Institute, South African Medical Research Council Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Cape Town, 7501, South Africa
| | - Erin D Bigler
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
| | - Martha E Shenton
- College of Nursing, University of Missouri, St. Louis, MO, 63121, USA
- Departments of Psychiatry and Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Veterans Affairs, Boston Healthcare System, Boston, MA, 02130, USA
| | - Kathy S Chiou
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Judy L Postmus
- School of Social Work, University of Maryland, Baltimore, USA
| | - Kathleen Monahan
- School of Social Welfare, Stony Brook University, Stony Brook, NY, 11794-8231, USA
| | | | - Paul van Donkelaar
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Tricia L Merkley
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Carmen Velez
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Cooper B Hodges
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
| | - Hannah M Lindsey
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
| | - Paula Johnson
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA
- Neuroscience Center, Brigham Young University, Provo, UT, 84602, USA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Denney Research Center Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Matthew Spruiell
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Esther R Bennett
- Rutgers University School of Social Work, New Brunswick, NJ, 08901, USA
| | - Ashley Bridwell
- Barrow Concussion and Brain Injury Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Glynnis Zieman
- Barrow Concussion and Brain Injury Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Frank G Hillary
- Department of Psychology, Pennsylvania State University, University Park, PA, 16802, USA
- Social Life and Engineering Sciences Imaging Center, University Park, PA, 16802, USA
| |
Collapse
|
25
|
Misaki M, Mulyana B, Zotev V, Wurfel BE, Krueger F, Feldner M, Bodurka J. Hippocampal volume recovery with real-time functional MRI amygdala neurofeedback emotional training for posttraumatic stress disorder. J Affect Disord 2021; 283:229-235. [PMID: 33561804 DOI: 10.1016/j.jad.2021.01.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/08/2021] [Accepted: 01/30/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Small hippocampal volume is a prevalent neurostructural abnormality in posttraumatic stress disorder (PTSD). However, whether the hippocampal atrophy is the cause of disease symptoms or a pre-existing risk factor and whether it is a reversible alteration or a permanent trait are unclear. The trait- or state-dependent alteration could also differ among the hippocampal subfields. METHODS The study examined the longitudinal hippocampal volume changes due to positive emotional training with left amygdala (LA) real-time fMRI neurofeedback (rtfMRI-nf) in combat veterans with PTSD. The participants were trained to increase the neurofeedback signal from LA (experimental group, N = 20) or brain region not involved in emotion processing (control group, N = 9) by recalling a positive autobiographical memory. The pre- and post-training structural MRI brain images were processed with FreeSurfer to evaluate the hippocampal subfield volumes. Hippocampal volumes for healthy controls (N = 43) were also examined to evaluate the baseline abnormality in PTSD. RESULTS A significant group difference in volume change was found in the left CA1 head region. This region had the most significant volume reduction at the baseline in PTSD. The experimental group showed a significant volume increase, while the control group showed a significant volume decrease in this region. The volume change in the control group negatively correlated with interval days between the scans. LIMITATIONS A cognitive improvement due to the hippocampal volume increase could not be found with symptom scales. CONCLUSIONS RtfMRI-nf positive emotional training increased the hippocampus volume among people with PTSD, suggesting that hippocampal atrophy in PTSD is modifiable.
Collapse
Affiliation(s)
- Masaya Misaki
- Laureate Institute for Brain Research, Tulsa, OK, United States.
| | - Beni Mulyana
- Laureate Institute for Brain Research, Tulsa, OK, United States; Electrical and Computer Engineering, University of Oklahoma, Tulsa, OK, United States
| | - Vadim Zotev
- Laureate Institute for Brain Research, Tulsa, OK, United States
| | - Brent E Wurfel
- Laureate Institute for Brain Research, Tulsa, OK, United States; Laureate Psychiatric Clinic and Hospital, Tulsa, OK, United States
| | - Frank Krueger
- Neuroscience Department, George Mason University, Fairfax, VA, United States
| | - Matthew Feldner
- Department of Psychological Science, University of Arkansas, Fayetteville, AR, United States
| | - Jerzy Bodurka
- Laureate Institute for Brain Research, Tulsa, OK, United States; Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States.
| |
Collapse
|
26
|
Differential relationships of PTSD symptom clusters with cortical thickness and grey matter volumes among women with PTSD. Sci Rep 2021; 11:1825. [PMID: 33469080 PMCID: PMC7815843 DOI: 10.1038/s41598-020-80776-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
Structural neuroimaging studies of posttraumatic stress disorder (PTSD) have typically reported reduced cortical thickness (CT) and gray matter volume (GMV) in subcortical structures and networks involved in memory retrieval, emotional processing and regulation, and fear acquisition and extinction. Although PTSD is more common in women, and interpersonal violence (IPV) exposure is a more potent risk factor for developing PTSD relative to other forms of trauma, most of the existing literature examined combat-exposed men with PTSD. Vertex-wise CT and subcortical GMV analyses were conducted to examine potential differences in a large, well-characterized sample of women with PTSD stemming from IPV-exposure (n = 99) compared to healthy trauma-free women without a diagnosis of PTSD (n = 22). Subgroup analyses were also conducted to determine whether symptom severity within specific PTSD symptom clusters (e.g., re-experiencing, active avoidance, hyperarousal) predict CT and GMV after controlling for comorbid depression and anxiety. Results indicated that a diagnosis of PTSD in women with IPV-exposure did not significantly predict differences in CT across the cortex or GMV in the amygdala or hippocampus compared to healthy controls. However, within the PTSD group, greater re-experiencing symptom severity was associated with decreased CT in the left inferior and middle temporal gyrus, and decreased CT in the right parahippocampal and medial temporal gyrus. In contrast, greater active avoidance symptom severity was associated with greater CT in the left lateral fissure, postcentral gyrus, and middle/lateral occipital cortex, and greater CT in the right paracentral, posterior cingulate, and superior occipital gyrus. In terms of GMV, greater hyperarousal symptom severity was associated with reduced left amygdala GMV, while greater active avoidance symptom severity was associated with greater right amygdala GMV. These findings suggest that structural brain alterations among women with IPV-related PTSD may be driven by symptom severity within specific symptom clusters and that PTSD symptom clusters may have a differential (increased or decreased) association with brain structures.
Collapse
|
27
|
Alhalal E, Falatah R. Intimate partner violence and hair cortisol concentration: A biomarker for HPA axis function. Psychoneuroendocrinology 2020; 122:104897. [PMID: 33068953 DOI: 10.1016/j.psyneuen.2020.104897] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Intimate partner violence (IPV) is associated with various health issues, which may be explained by hypothalamic-pituitary-adrenal (HPA) axis dysfunction. There is a lack of research examining hair cortisol concentrations as a biomarker of HPA function alterations in the context of IPV with consideration to women's resilience. The study assessed whether IPV severity and resilience are associated with hair cortisol concentrations among Saudi women. This cross-sectional explanatory design used a convenience sample of 156 Saudi women from health care settings. A structured interview that included self-reported responses was performed, and hair samples were collected. The samples were analyzed using a salivary ELISA kit. The result showed a significant difference in hair cortisol concentration between women who have experienced IPV and women who have not experienced IPV. As well, controlling for depressive and post-traumatic stress disorder, IPV severity (β = -.281, 95 % CI = -.046 to -.003) and resilience (β = -.225, 95 % CI = -.038 to -.005) were significant predictors of lower hair cortisol concentrations. The effect of IPV severity on cortisol levels as a biomarker of HPA axis function could explain the poor health conditions among IPV survivors. This study highlights that IPV victimization leads to physiological changes and that hair cortisol is an indicator of women's health status.
Collapse
Affiliation(s)
- Eman Alhalal
- Community and Mental Health Nursing Department, Nursing College, King Saud University, Saudi Arabia.
| | - Rawaih Falatah
- Nursing Administration and Education Department, Nursing College, King Saud University, Saudi Arabia.
| |
Collapse
|
28
|
Alessandrino F, Keraliya A, Lebovic J, Mitchell Dyer GS, Harris MB, Tornetta P, Boland GWL, Seltzer SE, Khurana B. Intimate Partner Violence: A Primer for Radiologists to Make the "Invisible" Visible. Radiographics 2020; 40:2080-2097. [PMID: 33006922 DOI: 10.1148/rg.2020200010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Intimate partner violence (IPV) is the physical, sexual, or emotional violence between current or former partners. It is a major public health issue that affects nearly one out of four women. Nonetheless, IPV is greatly underdiagnosed. Imaging has played a significant role in identifying cases of nonaccidental trauma in children, and similarly, it has the potential to enable the identification of injuries resulting from IPV. Radiologists have early access to the radiologic history of such victims and may be the first to diagnose IPV on the basis of the distribution and imaging appearance of the patient's currrent and past injuries. Radiologists must be familiar with the imaging findings that are suggestive of injuries resulting from IPV. Special attention should be given to cases in which there are multiple visits for injury care; coexistent fractures at different stages of healing, which may help differentiate injuries related to IPV from those caused by a stranger; and injuries in defensive locations and target areas such as the face and upper extremities. The authors provide an overview of current methods for diagnosing IPV and define the role of the radiologist in cases of IPV. They also describe a successful diagnostic imaging-based approach for helping to identify IPV, with a specific focus on the associated imaging findings and mechanisms of injuries. In addition, current needs and future perspectives for improving the diagnosis of this hidden epidemic are identified. This information is intended to raise awareness among radiologists, with the ultimate goal of improving the diagnosis of IPV and thus reducing the devastating effects on victims' lives. ©RSNA, 2020.
Collapse
Affiliation(s)
- Francesco Alessandrino
- From the Departments of Radiology (F.A., A.K., G.W.L.B., S.E.S., B.K.) and Orthopaedic Surgery (G.S.M.D.) and the Trauma Imaging Research and Innovation Center (B.K.), Brigham and Women's Hospital; and Department of Orthopaedic Surgery, Massachusetts General Hospital (M.B.H.), Harvard Medical School (J.L.), 75 Francis St, Boston, MA 02115; and Department of Orthopaedic Surgery, Boston Medical Center, Boston University Medical School, Boston, Mass (P.T.)
| | - Abhishek Keraliya
- From the Departments of Radiology (F.A., A.K., G.W.L.B., S.E.S., B.K.) and Orthopaedic Surgery (G.S.M.D.) and the Trauma Imaging Research and Innovation Center (B.K.), Brigham and Women's Hospital; and Department of Orthopaedic Surgery, Massachusetts General Hospital (M.B.H.), Harvard Medical School (J.L.), 75 Francis St, Boston, MA 02115; and Department of Orthopaedic Surgery, Boston Medical Center, Boston University Medical School, Boston, Mass (P.T.)
| | - Jordan Lebovic
- From the Departments of Radiology (F.A., A.K., G.W.L.B., S.E.S., B.K.) and Orthopaedic Surgery (G.S.M.D.) and the Trauma Imaging Research and Innovation Center (B.K.), Brigham and Women's Hospital; and Department of Orthopaedic Surgery, Massachusetts General Hospital (M.B.H.), Harvard Medical School (J.L.), 75 Francis St, Boston, MA 02115; and Department of Orthopaedic Surgery, Boston Medical Center, Boston University Medical School, Boston, Mass (P.T.)
| | - George Sinclair Mitchell Dyer
- From the Departments of Radiology (F.A., A.K., G.W.L.B., S.E.S., B.K.) and Orthopaedic Surgery (G.S.M.D.) and the Trauma Imaging Research and Innovation Center (B.K.), Brigham and Women's Hospital; and Department of Orthopaedic Surgery, Massachusetts General Hospital (M.B.H.), Harvard Medical School (J.L.), 75 Francis St, Boston, MA 02115; and Department of Orthopaedic Surgery, Boston Medical Center, Boston University Medical School, Boston, Mass (P.T.)
| | - Mitchel B Harris
- From the Departments of Radiology (F.A., A.K., G.W.L.B., S.E.S., B.K.) and Orthopaedic Surgery (G.S.M.D.) and the Trauma Imaging Research and Innovation Center (B.K.), Brigham and Women's Hospital; and Department of Orthopaedic Surgery, Massachusetts General Hospital (M.B.H.), Harvard Medical School (J.L.), 75 Francis St, Boston, MA 02115; and Department of Orthopaedic Surgery, Boston Medical Center, Boston University Medical School, Boston, Mass (P.T.)
| | - Paul Tornetta
- From the Departments of Radiology (F.A., A.K., G.W.L.B., S.E.S., B.K.) and Orthopaedic Surgery (G.S.M.D.) and the Trauma Imaging Research and Innovation Center (B.K.), Brigham and Women's Hospital; and Department of Orthopaedic Surgery, Massachusetts General Hospital (M.B.H.), Harvard Medical School (J.L.), 75 Francis St, Boston, MA 02115; and Department of Orthopaedic Surgery, Boston Medical Center, Boston University Medical School, Boston, Mass (P.T.)
| | - Giles W L Boland
- From the Departments of Radiology (F.A., A.K., G.W.L.B., S.E.S., B.K.) and Orthopaedic Surgery (G.S.M.D.) and the Trauma Imaging Research and Innovation Center (B.K.), Brigham and Women's Hospital; and Department of Orthopaedic Surgery, Massachusetts General Hospital (M.B.H.), Harvard Medical School (J.L.), 75 Francis St, Boston, MA 02115; and Department of Orthopaedic Surgery, Boston Medical Center, Boston University Medical School, Boston, Mass (P.T.)
| | - Steven E Seltzer
- From the Departments of Radiology (F.A., A.K., G.W.L.B., S.E.S., B.K.) and Orthopaedic Surgery (G.S.M.D.) and the Trauma Imaging Research and Innovation Center (B.K.), Brigham and Women's Hospital; and Department of Orthopaedic Surgery, Massachusetts General Hospital (M.B.H.), Harvard Medical School (J.L.), 75 Francis St, Boston, MA 02115; and Department of Orthopaedic Surgery, Boston Medical Center, Boston University Medical School, Boston, Mass (P.T.)
| | - Bharti Khurana
- From the Departments of Radiology (F.A., A.K., G.W.L.B., S.E.S., B.K.) and Orthopaedic Surgery (G.S.M.D.) and the Trauma Imaging Research and Innovation Center (B.K.), Brigham and Women's Hospital; and Department of Orthopaedic Surgery, Massachusetts General Hospital (M.B.H.), Harvard Medical School (J.L.), 75 Francis St, Boston, MA 02115; and Department of Orthopaedic Surgery, Boston Medical Center, Boston University Medical School, Boston, Mass (P.T.)
| |
Collapse
|
29
|
Saquinaula-Salgado M, Castillo-Saavedra EF, Rosales Márquez C. Violencia de género y trastorno de estrés postraumático en mujeres peruanas. DUAZARY 2020. [DOI: 10.21676/2389783x.3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Se realizó un estudio descriptivo correlacional de corte transversal, que planteó determinar la asociación entre la violencia de género y el trastorno de estrés postraumático en mujeres peruanas. La muestra estuvo constituida por 105 mujeres que se atendieron en la División de Medicina Legal II de la provincia del Santa (Perú). Para recolección de la información se utilizaron dos instrumentos que fueron sometidos a validez y confiabilidad, la violencia de género se midió mediante un cuestionario constituido por 20 ítems, y el trastorno por estrés postraumático por un cuestionario de 16 ítems. Los resultados evidencian que el 56,2% de mujeres agredidas presentan violencia leve y el 61,9% no presentan síntomas de trastorno de estrés postraumático. Finalmente, se encontró alta asociación significativa entre la violencia de género y los trastornos de estrés postraumático.
Collapse
|
30
|
Kahl M, Wagner G, de la Cruz F, Köhler S, Schultz CC. Resilience and cortical thickness: a MRI study. Eur Arch Psychiatry Clin Neurosci 2020; 270:533-539. [PMID: 30542819 DOI: 10.1007/s00406-018-0963-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
Resilience is defined as the psychological resistance which enables the processing of stress and adverse life events and thus constitutes a key factor for the genesis of psychiatric illness. However, little is known about the morphological correlates of resilience in the human brain. Hence, the aim of this study is to examine the neuroanatomical expression of resilience in healthy individuals. 151 healthy subjects were recruited and had to complete a resilience-specific questionnaire (RS-11). All of them underwent a high-resolution T1-weighted MRI in a 3T scanner. Fine-grained cortical thickness was analyzed using FreeSurfer. We found a significant positive correlation between the individual extent of resilience and cortical thickness in a right hemispherical cluster incorporating the lateral occipital cortex, the fusiform gyrus, the inferior parietal cortex as well as the middle and inferior temporal cortex, i.e., a reduced resilience is associated with a decreased cortical thickness in these areas. We lend novel evidence for a direct linkage between psychometric resilience and local cortical thickness. Our findings in a sample of healthy individuals show that a lower resilience is associated with a lower cortical thickness in anatomical areas are known to be involved in the processing of emotional visual input. These regions have been demonstrated to play a role in the pathogenesis of stress and trauma-associated disorders. It can thus be assumed that neuroanatomical variations in these cortical regions might modulate the susceptibility for the development of stress-related disorders.
Collapse
Affiliation(s)
- Michael Kahl
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Psychiatric Brain and Body Research Group Jena, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Feliberto de la Cruz
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Psychiatric Brain and Body Research Group Jena, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Stefanie Köhler
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Psychiatric Brain and Body Research Group Jena, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - C Christoph Schultz
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany. .,Department of Psychiatry and Psychotherapy, Klinikum Fulda gAG, Universitätsmedizin Marburg, Campus Fulda, Fulda, Germany.
| |
Collapse
|
31
|
Qi R, Luo Y, Zhang L, Weng Y, Surento W, Jahanshad N, Xu Q, Yin Y, Li L, Cao Z, Thompson PM, Lu GM. Social support modulates the association between PTSD diagnosis and medial frontal volume in Chinese adults who lost their only child. Neurobiol Stress 2020; 13:100227. [PMID: 32490056 PMCID: PMC7256056 DOI: 10.1016/j.ynstr.2020.100227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/03/2020] [Accepted: 05/02/2020] [Indexed: 11/30/2022] Open
Abstract
Losing an only child is a devastating life event that a parent can experience and may lead to post-traumatic stress disorder (PTSD). Social support could buffer against the negative influence of this trauma, but the neural mechanism underlying this alleviation effect remains poorly understood. In this study, voxel-based morphometry was conducted on brain MRI of 220 Han Chinese adults who had lost their only child. We performed multiple regression analysis to investigate the associations between social support scores – along with PTSD diagnosis, age, sex, body mass index (BMI) – and brain grey matter (GM) volumes in these bereaved parents. For all trauma-exposed adults, social support-by-diagnosis interaction was significantly associated with medial prefrontal volume (multiple comparisons corrected P ˂ 0.05), where positive correlation was found in adults with PTSD but not in those without PTSD. Besides, PTSD diagnosis was associated with decreased GM volume in medial and middle frontal gyri (P ˂ 0.001, uncorrected); older age was associated with widespread GM volume deficits; male sex was associated with lower GM volume in rolandic operculum, insular, postcentral gyrus (corrected P ˂ 0.05), and lower GM in thalamus but greater GM in parahippocampus (P ˂ 0.001, uncorrected); higher BMI was associated with GM deficits in occipital gyrus (corrected P ˂ 0.05) and precuneus (P ˂ 0.001, uncorrected). In conclusions, social support modulates the association between PTSD diagnosis and medial frontal volume, which may play an important role in the emotional disturbance in PTSD development in adults who lost their only child.
Collapse
Affiliation(s)
- Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Yifeng Luo
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, 75 Tongzhenguan Road, 214200, Wuxi, China
| | - Li Zhang
- Mental Health Institute, The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, 410011, China
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Wesley Surento
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Yan Yin
- Hangzhou Seventh People's Hospital, Mental Health Center of Zhejiang University School of Medicine, 305 Tianmushan Road, Hangzhou, Zhejiang, 310013, China
| | - Lingjiang Li
- Mental Health Institute, The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, 410011, China
| | - Zhihong Cao
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, 75 Tongzhenguan Road, 214200, Wuxi, China
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
- Corresponding author.
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
- Corresponding author. Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China.
| |
Collapse
|
32
|
Setroikromo SN, Bauduin SE, Reesen JE, van der Werff SJ, Smit AS, Vermetten E, van der Wee NJ. Cortical Thickness in Dutch Police Officers: An Examination of Factors Associated with Resilience. J Trauma Stress 2020; 33:181-189. [PMID: 32162369 PMCID: PMC7216895 DOI: 10.1002/jts.22494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 08/18/2019] [Accepted: 08/25/2019] [Indexed: 12/31/2022]
Abstract
Previous neuroimaging studies on resilience have generally compared resilience and psychopathology after stress exposure, which does not allow for conclusions regarding correlates specific to resilience. The aim of the present study was to investigate resilience-specific correlates in cortical thickness and/or cortical surface area and their correlations with psychometric measurements, using a three-group design that included a non-trauma-exposed control group in order to disentangle effects related to resilience from those related to psychopathology. Structural magnetic resonance imaging scans were acquired from 82 Dutch police officers. Participants were categorized into resilient (n = 31; trauma exposure, no psychopathology), vulnerable (n = 32; trauma exposure, psychopathology), and control groups (n = 19; no trauma exposure, no psychopathology). Specific regions of interest (ROIs) were identified based on previous studies that found the rostral and caudal anterior cingulate cortex (ACC) to be implicated in trauma-related psychopathology. Cortical thickness and surface area of the ROIs-the rostral and caudal ACC-and of the whole brain were examined. No significant differences in cortical thickness or surface area were found between the resilient group and other groups in the ROI and whole-brain analyses. Thus, the results of the present study provide no evidence of an association between resilience to traumatic stress and measures of thickness and surface area in cortical regions of the brain in a sample of Dutch police officers.
Collapse
Affiliation(s)
- Santoucha N.W. Setroikromo
- Department of PsychiatryLeiden University Medical CenterLeidenThe Netherlands,Leiden Institute for Brain and CognitionLeidenthe Netherlands
| | - Stephanie E.E.C. Bauduin
- Department of PsychiatryLeiden University Medical CenterLeidenThe Netherlands,Leiden Institute for Brain and CognitionLeidenthe Netherlands
| | - Joyce E. Reesen
- Department of PsychiatryLeiden University Medical CenterLeidenThe Netherlands
| | - Steven J.A. van der Werff
- Department of PsychiatryLeiden University Medical CenterLeidenThe Netherlands,Leiden Institute for Brain and CognitionLeidenthe Netherlands
| | | | - Eric Vermetten
- Department of PsychiatryLeiden University Medical CenterLeidenThe Netherlands
| | - Nic. J.A. van der Wee
- Department of PsychiatryLeiden University Medical CenterLeidenThe Netherlands,Leiden Institute for Brain and CognitionLeidenthe Netherlands
| |
Collapse
|
33
|
Berman Z, Assaf Y, Tarrasch R, Joel D. Macro- and microstructural gray matter alterations in sexually assaulted women. J Affect Disord 2020; 262:196-204. [PMID: 31662209 DOI: 10.1016/j.jad.2019.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/13/2019] [Accepted: 10/14/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Studies with trauma survivors documented structural alterations in brain regions involved in posttraumatic stress disorder (PTSD) neurocircuitry. Nonetheless, whether such alterations exist in women who were sexually assaulted in adulthood is not clear. We investigated the macro- and microstructure of key regions implicated in PTSD pathophysiology, namely the amygdala, hippocampus, anterior cingulate cortex (ACC), and insula, in this population. METHODS Thirty-eight sexually assaulted women (PTSD, n = 25; non-PTSD, n = 13) and 24 non-exposed controls (NEC) were studied with T1- and diffusion-weighted MRI. Gray matter volume, mean diffusivity (MD), and fractional anisotropy (FA) were calculated for each region. Between-group comparisons and correlations with PTSD symptom severity were performed. RESULTS Volumetric analyses revealed lower amygdala and insula volumes in the PTSD compared with the non-PTSD group. In contrast, altered microstructure was observed in both traumatized groups compared with NEC, including higher MD and lower FA in the right amygdala, and higher FA in the ACC bilaterally. Finally, the non-PTSD group had higher FA in the right insula compared with the PTSD group. PTSD symptom severity was correlated with amygdala and insula volumes, as well as with hippocampal FA and MD. LIMITATIONS Sample size may have led to reduced statistical power. CONCLUSIONS Sexual assault and the development of PTSD in women are linked with structural alterations in key regions implicated in PTSD following other trauma types (e.g., combat), though hippocampal and ACC volumes were preserved. Further studies are needed to disentangle the unique contribution of trauma type and of sex/gender to these observations.
Collapse
Affiliation(s)
- Zohar Berman
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yaniv Assaf
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ricardo Tarrasch
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Jaime and Joan Constantiner School of Education, Tel Aviv University, Tel Aviv, Israel
| | - Daphna Joel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
34
|
Henigsberg N, Kalember P, Petrović ZK, Šečić A. Neuroimaging research in posttraumatic stress disorder - Focus on amygdala, hippocampus and prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:37-42. [PMID: 30419321 DOI: 10.1016/j.pnpbp.2018.11.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/26/2018] [Accepted: 11/03/2018] [Indexed: 01/21/2023]
Abstract
Neuroimaging research reflects the complexity of post-traumatic stress disorder and shares some common difficulties of post-traumatic stress disorder research, such as the different classifications of the disorder over time, changes in diagnostic criteria, and extensive comorbidities, as well as precisely delineated and prevailing genetic and environmental determinants in the development of the disorder and its clinical manifestations. Synthesis of neuroimaging findings in an effort to clarify causes, clinical manifestations, and consequences of the disorder is complicated by a variety of applied technical approaches in different brain regions, differences in symptom dimensions in a study population, and typically small sample sizes, with the interplay of all of these consequently bringing about divergent results. Furthermore, combinations of the aforementioned issues serve to weaken any comprehensive meta-analytic approach. In this review, we focus on recent neuroimaging studies and those performed on larger samples, with particular emphasis on research concerning the amygdala, hippocampus, and prefrontal cortex, as these are the brain regions postulated by the core research to play a prominent role in the pathophysiology of post-traumatic stress disorder. Additionally, we review the guidelines for future research and list a number of new intersectional and cross-sectional approaches in the area of neuroimaging. We conclude that future neuroimaging research in post-traumatic stress disorder will certainly benefit from a higher integration with genetic research, better profiling of control groups, and a greater involvement of the neuroimaging genetics approach and from larger collaborative studies.
Collapse
Affiliation(s)
- Neven Henigsberg
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Croatia; University Psychiatric Hospital Vrapče, Zagreb, Croatia
| | - Petra Kalember
- Polyclinic Neuron, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Croatia
| | - Zrnka Kovačić Petrović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Croatia; University Psychiatric Hospital Vrapče, Zagreb, Croatia
| | - Ana Šečić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Croatia; University Hospital Centre, 'Sestre milosrdnice', Zagreb, Croatia.
| |
Collapse
|
35
|
Abnormal metabolite concentrations and amygdala volume in patients with recent-onset posttraumatic stress disorder. J Affect Disord 2018; 241:539-545. [PMID: 30153637 DOI: 10.1016/j.jad.2018.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/08/2018] [Accepted: 08/07/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Previous psychoradiological studies of posttraumatic stress disorder (PTSD) were mainly of patients at a chronic stage, focusing on brain regions outside the amygdala. The goals of this study were to investigate the early biochemical and structural changes of anterior cingulate cortex (ACC) and amygdala in patients with PTSD and to explore their relationships. METHODS Seventy-eight drug-naïve PTSD subjects and 71 non-PTSD age- and sex-matched control subjects were enrolled, all of whom had suffered the same earthquake about one year before. Single-voxel proton magnetic resonance spectroscopy (1H-MRS) was performed and absolute metabolite concentrations in ACC and bilateral amygdalae were estimated with LCModel. Bilateral amygdalae were manually outlined and their volumes were calculated and corrected for the total intracranial volume. RESULTS The PTSD group showed significantly increased N-acetylaspartate (NAA) concentration in the ACC, increased creatine (Cr) concentration in the left amygdala, and increased myo-inositol (mI) concentration in the right amygdala, compared to non-PTSD controls. The NAA concentration in ACC was negatively correlated with the time since trauma. The PTSD group showed significantly decreased volumes of bilateral amygdalae compared to non-PTSD controls, but amygdala volumes were not correlated with metabolite concentrations. LIMITATIONS Longitudinal studies are needed to explore the metabolic and structural changes of PTSD at different stages. The volume of ACC was not measured. CONCLUSIONS This concurrent increase in some metabolite concentrations and decrease of amygdala volumes may represent a pattern of biochemical and morphological changes in recent-onset PTSD which is different from that reported in chronic PTSD.
Collapse
|
36
|
Logue MW, van Rooij SJH, Dennis EL, Davis SL, Hayes JP, Stevens JS, Densmore M, Haswell CC, Ipser J, Koch SBJ, Korgaonkar M, Lebois LAM, Peverill M, Baker JT, Boedhoe PSW, Frijling JL, Gruber SA, Harpaz-Rotem I, Jahanshad N, Koopowitz S, Levy I, Nawijn L, O'Connor L, Olff M, Salat DH, Sheridan MA, Spielberg JM, van Zuiden M, Winternitz SR, Wolff JD, Wolf EJ, Wang X, Wrocklage K, Abdallah CG, Bryant RA, Geuze E, Jovanovic T, Kaufman ML, King AP, Krystal JH, Lagopoulos J, Bennett M, Lanius R, Liberzon I, McGlinchey RE, McLaughlin KA, Milberg WP, Miller MW, Ressler KJ, Veltman DJ, Stein DJ, Thomaes K, Thompson PM, Morey RA. Smaller Hippocampal Volume in Posttraumatic Stress Disorder: A Multisite ENIGMA-PGC Study: Subcortical Volumetry Results From Posttraumatic Stress Disorder Consortia. Biol Psychiatry 2018; 83:244-253. [PMID: 29217296 PMCID: PMC5951719 DOI: 10.1016/j.biopsych.2017.09.006] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND Many studies report smaller hippocampal and amygdala volumes in posttraumatic stress disorder (PTSD), but findings have not always been consistent. Here, we present the results of a large-scale neuroimaging consortium study on PTSD conducted by the Psychiatric Genomics Consortium (PGC)-Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) PTSD Working Group. METHODS We analyzed neuroimaging and clinical data from 1868 subjects (794 PTSD patients) contributed by 16 cohorts, representing the largest neuroimaging study of PTSD to date. We assessed the volumes of eight subcortical structures (nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen, thalamus, and lateral ventricle). We used a standardized image-analysis and quality-control pipeline established by the ENIGMA consortium. RESULTS In a meta-analysis of all samples, we found significantly smaller hippocampi in subjects with current PTSD compared with trauma-exposed control subjects (Cohen's d = -0.17, p = .00054), and smaller amygdalae (d = -0.11, p = .025), although the amygdala finding did not survive a significance level that was Bonferroni corrected for multiple subcortical region comparisons (p < .0063). CONCLUSIONS Our study is not subject to the biases of meta-analyses of published data, and it represents an important milestone in an ongoing collaborative effort to examine the neurobiological underpinnings of PTSD and the brain's response to trauma.
Collapse
Affiliation(s)
- Mark W Logue
- National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, Massachusetts; Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts; Department of Biomedical Genetics, Boston University School of Medicine, Boston, Massachusetts; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Emily L Dennis
- Imaging Genetics Center, Mary and Mark Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, California
| | - Sarah L Davis
- Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham VA Medical Center, Durham, North Carolina; Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, North Carolina
| | - Jasmeet P Hayes
- National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, Massachusetts; Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Maria Densmore
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada
| | - Courtney C Haswell
- Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham VA Medical Center, Durham, North Carolina; Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, North Carolina
| | - Jonathan Ipser
- Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Saskia B J Koch
- Brain Imaging Center, Academic Medical Center, Amsterdam, the Netherlands
| | - Mayuresh Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical Research, Sydney, Australia
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; McLean Hospital, Harvard University, Belmont, Massachusetts
| | - Matthew Peverill
- Department of Psychology, University of Washington, Seattle, Washington
| | - Justin T Baker
- McLean Hospital, Harvard University, Belmont, Massachusetts
| | - Premika S W Boedhoe
- Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands
| | - Jessie L Frijling
- Department of Psychiatry, Academic Medical Center, Amsterdam, the Netherlands
| | - Staci A Gruber
- McLean Hospital, Harvard University, Belmont, Massachusetts
| | - Ilan Harpaz-Rotem
- Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut HealthCare System, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Neda Jahanshad
- Imaging Genetics Center, Mary and Mark Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, California
| | - Sheri Koopowitz
- Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Ifat Levy
- Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut HealthCare System, West Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Laura Nawijn
- Department of Psychiatry, Academic Medical Center, Amsterdam, the Netherlands
| | - Lauren O'Connor
- Department of Psychology, John Jay College of Criminal Justice, City University of New York, New York, New York; Graduate Center, City University of New York, New York, New York
| | - Miranda Olff
- Department of Psychiatry, Academic Medical Center, Amsterdam, the Netherlands; Department of Psychiatry, Arq National Trauma Center, Diemen, the Netherlands
| | - David H Salat
- Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, Massachusetts; Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Margaret A Sheridan
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina
| | - Jeffrey M Spielberg
- Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, Massachusetts; Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware
| | - Mirjam van Zuiden
- Department of Psychiatry, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Jonathan D Wolff
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; McLean Hospital, Harvard University, Belmont, Massachusetts
| | - Erika J Wolf
- National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, Massachusetts; Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
| | - Xin Wang
- Department of Psychiatry, University of Toledo, Toledo, Ohio
| | - Kristen Wrocklage
- Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut HealthCare System, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Chadi G Abdallah
- Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut HealthCare System, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Richard A Bryant
- Department of Psychology, University of New South Wales, Sydney, Australia
| | - Elbert Geuze
- Brain Center Rudolf Magnus, University Medical Center, Utrecht, the Netherlands
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; McLean Hospital, Harvard University, Belmont, Massachusetts
| | - Anthony P King
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - John H Krystal
- Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut HealthCare System, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Jim Lagopoulos
- Neuroimaging Brain & Mind Research Institute, University of Sydney, Sydney, Australia
| | - Maxwell Bennett
- Neuroimaging Brain & Mind Research Institute, University of Sydney, Sydney, Australia
| | - Ruth Lanius
- National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, Massachusetts; Department of Psychiatry, University of Western Ontario, London, Ontario, Canada
| | - Israel Liberzon
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Regina E McGlinchey
- Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare System, Boston, Massachusetts; Geriatric Research, Educational and Clinical Center, VA Boston Healthcare System, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | | | - William P Milberg
- Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare System, Boston, Massachusetts; Geriatric Research, Educational and Clinical Center, VA Boston Healthcare System, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Mark W Miller
- National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, Massachusetts; Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
| | - Kerry J Ressler
- McLean Hospital, Harvard University, Belmont, Massachusetts; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Dick J Veltman
- Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands
| | - Dan J Stein
- Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Kathleen Thomaes
- Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands
| | - Paul M Thompson
- Imaging Genetics Center, Mary and Mark Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, California
| | - Rajendra A Morey
- Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham VA Medical Center, Durham, North Carolina; Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, North Carolina; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina.
| |
Collapse
|
37
|
Zhang X, Zhang J, Wang L, Zhang W. Altered Gray Matter Volume and Its Correlation With PTSD Severity in Chinese Earthquake Survivors. Front Psychiatry 2018; 9:629. [PMID: 30555358 PMCID: PMC6284061 DOI: 10.3389/fpsyt.2018.00629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/06/2018] [Indexed: 12/25/2022] Open
Abstract
Objective: To detect the changes of gray matter volume (GMV) and their correlation with severity of symptom in patients with post-traumatic stress disorder (PTSD) who were defined with updated DSM-5 diagnostic criteria. Method: 71 participants were assigned into PTSD group (n = 35) or trauma-exposed control (TEC) group (n = 36) with the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Voxel-based morphometry analysis was used to detect alterations in GMV in the PTSD group. Results: We found that the PTSD group had larger GMV in the left middle temporal gyrus (MTG) and in the right dorsal medial prefrontal cortex (dmPFC), and smaller GMV in the region of the right temporal pole (TP) than the TEC group. We also found that PTSD Checklist for DSM-5 (PCL-5) scores correlated positively with the left MTG and right dmPFC GMV, and negatively with left TP GMV. These correlations were consistent with the findings of the between-group comparisons. Conclusions: GMV alterations in the MTG, dmPFC, and TP are detected in the group comparisons and correlated with symptom severity when classifying PTSD individuals according to DSM-5 diagnostic criteria within an earthquake-exposed population.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jianxin Zhang
- Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Li Wang
- Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Wencai Zhang
- Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Bolsinger J, Seifritz E, Kleim B, Manoliu A. Neuroimaging Correlates of Resilience to Traumatic Events-A Comprehensive Review. Front Psychiatry 2018; 9:693. [PMID: 30631288 PMCID: PMC6315158 DOI: 10.3389/fpsyt.2018.00693] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022] Open
Abstract
Improved understanding of the neurobiological correlates of resilience would be an important step toward recognizing individuals at risk of developing post-traumatic stress disorder (PTSD) or other trauma-related diseases, enabling both preventative measures and individually tailored therapeutic approaches. Studies on vulnerability factors allow drawing conclusions on resilience. Structural changes of cortical and subcortical structures, as well as alterations in functional connectivity and functional activity, have been demonstrated to occur in individuals with PTSD symptoms. Relevant areas of interest are hippocampus, amygdala, insula, anterior cingulate cortex, and prefrontal cortex, as well as related brain networks, such as the default-mode, salience, and central executive network. This review summarizes the existing literature and integrates findings from cross-sectional study designs with two-group designs (trauma exposed individuals with and without PTSD), three-group designs (with an additional group of unexposed, healthy controls), twin-studies and longitudinal studies. In terms of structural findings, decreased hippocampal volume in PTSD individuals might be either a vulnerability factor or a result of trauma exposure, or both. Reduced anterior cingulate cortex and prefrontal cortex volumes seem to be predisposing factors for increased vulnerability. Regarding functional connectivity, increased amygdala connectivity has been demonstrated selectively in PTSD individuals, as well as increased default-mode-network and salience network connectivity. In terms of functional activity, increased amygdala and anterior cingulate cortex activities, and decreased prefrontal cortex activity as a response to external stimuli have been associated with higher vulnerability. Increased prefrontal cortex activity seemed to be a protective factor. Selecting adequate study designs, optimizing the diagnostic criteria, as well as differentiating between types of trauma and accounting for other factors, such as gender-specific differences, would be well-served in future research. Conclusions on potential preventative measures, as well as clinical applications, can be drawn from the present literature, but more studies are needed.
Collapse
Affiliation(s)
- Julia Bolsinger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Zurich, Switzerland
| | - Birgit Kleim
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Zurich, Switzerland.,Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Andrei Manoliu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
39
|
Morey RA, Davis SL, Garrett ME, Haswell CC, Marx CE, Beckham JC, McCarthy G, Hauser MA, Ashley-Koch AE. Genome-wide association study of subcortical brain volume in PTSD cases and trauma-exposed controls. Transl Psychiatry 2017; 7:1265. [PMID: 29187748 PMCID: PMC5802459 DOI: 10.1038/s41398-017-0021-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 08/18/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
Depending on the traumatic event, a significant fraction of trauma survivors subsequently develop PTSD. The additional variability in PTSD risk is expected to arise from genetic susceptibility. Unfortunately, several genome-wide association studies (GWAS) have failed to identify a consistent genetic marker for PTSD. The heritability of intermediate phenotypes such as regional brain volumes is often 80% or higher. We conducted a GWAS of subcortical brain volumes in a sample of recent military veteran trauma survivors (n = 157), grouped into PTSD (n = 66) and non-PTSD controls (n = 91). Covariates included PTSD diagnosis, sex, intracranial volume, ancestry, childhood trauma, SNP×PTSD diagnosis, and SNP×childhood trauma. We identified several genetic markers in high linkage disequilibrium (LD) with rs9373240 (p = 2.0 × 10-7, FDR q = 0.0375) that were associated with caudate volume. We also observed a significant interaction between rs9373240 and childhood trauma (p-values = 0.0007-0.002), whereby increased trauma exposure produced a stronger association between SNPs and increased caudate volume. We identified several SNPs in high LD with rs34043524, which is downstream of the TRAM1L1 gene that were associated with right lateral ventricular volume (p = 1.73 × 10-7; FDR q = 0.032) and were also associated with lifetime alcohol abuse or dependence (p = 2.49 × 10-7; FDR q = 0.0375). Finally, we identified several SNPs in high LD with rs13140180 (p = 2.58 × 10-7; FDR q = .0016), an intergenic region on chromosome 4, and several SNPs in the TMPRSS15 associated with right nucleus accumbens volume (p = 2.58 × 10-7; FDR q = 0.017). Both TRAM1L1 and TMPRSS15 have been previously implicated in neuronal function. Key results survived genome-wide multiple-testing correction in our sample. Leveraging neuroimaging phenotypes may offer a shortcut, relative to clinical phenotypes, in mapping the genetic architecture and neurobiological pathways of PTSD.
Collapse
Affiliation(s)
- Rajendra A Morey
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA.
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.
| | - Sarah L Davis
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Melanie E Garrett
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
| | - Courtney C Haswell
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Christine E Marx
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Jean C Beckham
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | | | - Michael A Hauser
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
| | - Allison E Ashley-Koch
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
| |
Collapse
|
40
|
Mohlenhoff BS, O'Donovan A, Weiner MW, Neylan TC. Dementia Risk in Posttraumatic Stress Disorder: the Relevance of Sleep-Related Abnormalities in Brain Structure, Amyloid, and Inflammation. Curr Psychiatry Rep 2017; 19:89. [PMID: 29035423 PMCID: PMC5797832 DOI: 10.1007/s11920-017-0835-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Posttraumatic stress disorder (PTSD) is associated with increased risk for dementia, yet mechanisms are poorly understood. RECENT FINDINGS Recent literature suggests several potential mechanisms by which sleep impairments might contribute to the increased risk of dementia observed in PTSD. First, molecular, animal, and imaging studies indicate that sleep problems lead to cellular damage in brain structures crucial to learning and memory. Second, recent studies have shown that lack of sleep might precipitate the accumulation of harmful amyloid proteins. Finally, sleep and PTSD are associated with elevated inflammation, which, in turn, is associated with dementia, possibly via cytokine-mediated neural toxicity and reduced neurogenesis. A better understanding of these mechanisms may yield novel treatment approaches to reduce neurodegeneration in PTSD. The authors emphasize the importance of including sleep data in studies of PTSD and cognition and identify next steps.
Collapse
Affiliation(s)
- Brian S Mohlenhoff
- Departments of Psychiatry, University of California, San Francisco, CA, USA.
- Center for Imaging of Neurodegenerative Disease, Veterans Administration Medical Center, 4150 Clement Street (116P), San Francisco, CA, 94121, USA.
- Mental Health Service, Department of Veterans Affairs Medical Center, San Francisco, CA, USA.
| | - Aoife O'Donovan
- Departments of Psychiatry, University of California, San Francisco, CA, USA
- Mental Health Service, Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Michael W Weiner
- Departments of Psychiatry, University of California, San Francisco, CA, USA
- Center for Imaging of Neurodegenerative Disease, Veterans Administration Medical Center, 4150 Clement Street (116P), San Francisco, CA, 94121, USA
- Departments of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Thomas C Neylan
- Departments of Psychiatry, University of California, San Francisco, CA, USA
- Center for Imaging of Neurodegenerative Disease, Veterans Administration Medical Center, 4150 Clement Street (116P), San Francisco, CA, 94121, USA
| |
Collapse
|
41
|
Goodman J, McIntyre CK. Impaired Spatial Memory and Enhanced Habit Memory in a Rat Model of Post-traumatic Stress Disorder. Front Pharmacol 2017; 8:663. [PMID: 29018340 PMCID: PMC5614977 DOI: 10.3389/fphar.2017.00663] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/06/2017] [Indexed: 01/25/2023] Open
Abstract
High levels of emotional arousal can impair spatial memory mediated by the hippocampus, and enhance stimulus-response (S-R) habit memory mediated by the dorsolateral striatum (DLS). The present study was conducted to determine whether these memory systems may be similarly affected in an animal model of post-traumatic stress disorder (PTSD). Sprague-Dawley rats were subjected to a “single-prolonged stress” (SPS) procedure and 1 week later received training in one of two distinct versions of the plus-maze: a hippocampus-dependent place learning task or a DLS-dependent response learning task. Results indicated that, relative to non-stressed control rats, SPS rats displayed slower acquisition in the place learning task and faster acquisition in the response learning task. In addition, extinction of place learning and response learning was impaired in rats exposed to SPS, relative to non-stressed controls. The influence of SPS on hippocampal spatial memory and DLS habit memory observed in the present study may be relevant to understanding some common features of PTSD, including hippocampal memory deficits, habit-like avoidance responses to trauma-related stimuli, and greater likelihood of developing drug addiction and alcoholism.
Collapse
Affiliation(s)
- Jarid Goodman
- School of Behavioral and Brain Sciences, University of Texas at Dallas, RichardsonTX, United States
| | - Christa K McIntyre
- School of Behavioral and Brain Sciences, University of Texas at Dallas, RichardsonTX, United States
| |
Collapse
|
42
|
O'Doherty DCM, Tickell A, Ryder W, Chan C, Hermens DF, Bennett MR, Lagopoulos J. Frontal and subcortical grey matter reductions in PTSD. Psychiatry Res Neuroimaging 2017; 266:1-9. [PMID: 28549317 DOI: 10.1016/j.pscychresns.2017.05.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/12/2017] [Accepted: 05/19/2017] [Indexed: 12/18/2022]
Abstract
Post-traumatic stress disorder (PTSD) is characterised by a range of debilitating psychological, physical and cognitive symptoms. PTSD has been associated with grey matter atrophy in limbic and frontal cortical brain regions. However, previous studies have reported heterogeneous findings, with grey matter changes observed beyond limbic/frontal areas. Seventy-five adults were recruited from the community, 25 diagnosed with PTSD along with 25 healthy and 25 trauma exposed age and gender matched controls. Participants underwent clinical assessment and magnetic resonance imaging. The data-analyses method Voxel Based Morphometry (VBM) was used to estimate cortical grey matter volumes. When compared to both healthy and trauma exposed controls, PTSD subjects demonstrated decreased grey matter volumes within subcortical brain regions-including the hippocampus and amygdala-along with reductions in the anterior cingulate cortex, frontal medial cortex, middle frontal gyrus, superior frontal gyrus, paracingulate gyrus, and precuneus cortex. Significant negative correlations were found between total CAPS lifetime clinical scores/sub-scores and GM volume of both the PTSD and TC groups. GM volumes of the left rACC and right amygdala showed a significant negative correlation within PTSD diagnosed subjects.
Collapse
Affiliation(s)
- Daniel C M O'Doherty
- The University of Sydney, Brain and Mind Centre, 100 Mallett Street, Camperdown, NSW 2050, Australia.
| | - Ashleigh Tickell
- The University of Sydney, Brain and Mind Centre, 100 Mallett Street, Camperdown, NSW 2050, Australia
| | - Will Ryder
- The University of Sydney, Brain and Mind Centre, 100 Mallett Street, Camperdown, NSW 2050, Australia
| | - Charles Chan
- The University of Sydney, Brain and Mind Centre, 100 Mallett Street, Camperdown, NSW 2050, Australia
| | - Daniel F Hermens
- The University of Sydney, Brain and Mind Centre, 100 Mallett Street, Camperdown, NSW 2050, Australia
| | - Maxwell R Bennett
- The University of Sydney, Brain and Mind Centre, 100 Mallett Street, Camperdown, NSW 2050, Australia
| | - Jim Lagopoulos
- University of the Sunshine Coast, Sunshine Coast Mind and Neuroscience - Thompson Institute, 12 Innovation Parkway, Birtinya, QLD 4575, Australia
| |
Collapse
|
43
|
Akiki TJ, Averill CL, Wrocklage KM, Schweinsburg B, Scott JC, Martini B, Averill LA, Southwick SM, Krystal JH, Abdallah CG. The Association of PTSD Symptom Severity with Localized Hippocampus and Amygdala Abnormalities. ACTA ACUST UNITED AC 2017; 1. [PMID: 28825050 PMCID: PMC5562232 DOI: 10.1177/2470547017724069] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background The hippocampus and amygdala have been repeatedly implicated in the
psychopathology of posttraumatic stress disorder (PTSD). While numerous
structural neuroimaging studies examined these two structures in PTSD, these
analyses have largely been limited to volumetric measures. Recent advances
in vertex-based neuroimaging methods have made it possible to identify
specific locations of subtle morphometric changes within a structure of
interest. Methods In this cross-sectional study, we used high-resolution magnetic resonance
imaging to examine the relationship between PTSD symptomatology, as measured
using the Clinician Administered PTSD Scale for the DSM-IV, and structural
shape of the hippocampus and amygdala using vertex-wise shape analyses in a
group of combat-exposed U.S. Veterans (N = 69). Results Following correction for multiple comparisons and controlling for age and
cranial volume, we found that participants with more severe PTSD symptoms
showed an indentation in the anterior half of the right hippocampus and an
indentation in the dorsal region of the right amygdala (corresponding to the
centromedial amygdala). Post hoc analysis using stepwise regression suggest
that among PTSD symptom clusters, arousal symptoms explain most of the
variance in the hippocampal abnormality, whereas reexperiencing symptoms
explain most of the variance in the amygdala abnormality. Conclusion The results provide evidence of localized abnormalities in the anterior
hippocampus and centromedial amygdala in combat-exposed U.S. Veterans
suffering from PTSD symptoms. This novel finding provides a more
fine-grained analysis of structural abnormalities in PTSD and may be
informative for understanding the neurobiology of the disorder.
Collapse
Affiliation(s)
- Teddy J Akiki
- National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Christopher L Averill
- National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Kristen M Wrocklage
- National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Gaylord Specialty Healthcare, Department of Psychology, Wallingford, Connecticut
| | - Brian Schweinsburg
- National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - J Cobb Scott
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,VISN4 Mental Illness Research, Education, and Clinical Center at the Philadelphia VA Medical Center, Philadelphia, Pennsylvania
| | - Brenda Martini
- National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Lynnette A Averill
- National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Steven M Southwick
- National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - John H Krystal
- National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Chadi G Abdallah
- National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
44
|
Posttraumatic stress disorder symptom severity is associated with left hippocampal volume reduction: a meta-analytic study. CNS Spectr 2017; 22:363-372. [PMID: 27989265 DOI: 10.1017/s1092852916000833] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Many studies have reported hippocampal volume reductions associated with posttraumatic stress disorder (PTSD), while others have not. Here we provide an updated meta-analysis of such reductions associated with PTSD and evaluate the association between symptom severity and hippocampal volume. METHODS A total of 37 studies met the criteria for inclusion in the meta-analysis. Mean effect sizes (Hedges' g) and 95% confidence intervals (CI 95%) were computed for each study and then averaged to obtain an overall mean effect size across studies. Meta-regression was employed to examine the relationship between PTSD symptom severity and hippocampal volume. RESULTS Results showed that PTSD is associated with significant bilateral reduction of the hippocampus (left hippocampus effect size=-0.400, p<0.001, 5.24% reduction; right hippocampus effect size=-0.462, p<0.001, 5.23% reduction). Symptom severity, as measured by the Clinician-Administered PTSD Scale (CAPS), was significantly associated with decreased left, but not right, hippocampal volume. CONCLUSIONS PTSD was associated with significant bilateral volume reduction of the hippocampus. Increased symptom severity was significantly associated with reduced left hippocampal volume. This finding is consistent with the hypothesis that PTSD is more neurotoxic to the left hippocampus than to the right. However, whether the association between PTSD and lower hippocampal volume reflects a consequence of or a predisposition to PTSD remains unclear. More prospective studies are needed in this area.
Collapse
|
45
|
Lui S, Zhou XJ, Sweeney JA, Gong Q. Psychoradiology: The Frontier of Neuroimaging in Psychiatry. Radiology 2017; 281:357-372. [PMID: 27755933 DOI: 10.1148/radiol.2016152149] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Unlike neurologic conditions, such as brain tumors, dementia, and stroke, the neural mechanisms for all psychiatric disorders remain unclear. A large body of research obtained with structural and functional magnetic resonance imaging, positron emission tomography/single photon emission computed tomography, and optical imaging has demonstrated regional and illness-specific brain changes at the onset of psychiatric disorders and in individuals at risk for such disorders. Many studies have shown that psychiatric medications induce specific measurable changes in brain anatomy and function that are related to clinical outcomes. As a result, a new field of radiology, termed psychoradiology, seems primed to play a major clinical role in guiding diagnostic and treatment planning decisions in patients with psychiatric disorders. This article will present the state of the art in this area, as well as perspectives regarding preparations in the field of radiology for its evolution. Furthermore, this article will (a) give an overview of the imaging and analysis methods for psychoradiology; (b) review the most robust and important radiologic findings and their potential clinical value from studies of major psychiatric disorders, such as depression and schizophrenia; and (c) describe the main challenges and future directions in this field. An ongoing and iterative process of developing biologically based nomenclatures with which to delineate psychiatric disorders and translational research to predict and track response to different therapeutic drugs is laying the foundation for a shift in diagnostic practice in psychiatry from a psychologic symptom-based approach to an imaging-based approach over the next generation. This shift will require considerable innovations for the acquisition, analysis, and interpretation of brain images, all of which will undoubtedly require the active involvement of radiologists. © RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Su Lui
- From the Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China (S.L., J.A.S., Q.G.); and Center for MR Research and Departments of Radiology, Neurosurgery and Bioengineering, University of Illinois at Chicago, Chicago, Ill (X.J.Z.)
| | - Xiaohong Joe Zhou
- From the Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China (S.L., J.A.S., Q.G.); and Center for MR Research and Departments of Radiology, Neurosurgery and Bioengineering, University of Illinois at Chicago, Chicago, Ill (X.J.Z.)
| | - John A Sweeney
- From the Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China (S.L., J.A.S., Q.G.); and Center for MR Research and Departments of Radiology, Neurosurgery and Bioengineering, University of Illinois at Chicago, Chicago, Ill (X.J.Z.)
| | - Qiyong Gong
- From the Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China (S.L., J.A.S., Q.G.); and Center for MR Research and Departments of Radiology, Neurosurgery and Bioengineering, University of Illinois at Chicago, Chicago, Ill (X.J.Z.)
| |
Collapse
|
46
|
Weiner MW, Harvey D, Hayes J, Landau SM, Aisen PS, Petersen RC, Tosun D, Veitch DP, Jack CR, Decarli C, Saykin AJ, Grafman J, Neylan TC. Effects of traumatic brain injury and posttraumatic stress disorder on development of Alzheimer's disease in Vietnam Veterans using the Alzheimer's Disease Neuroimaging Initiative: Preliminary Report. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2017; 3:177-188. [PMID: 28758146 PMCID: PMC5526098 DOI: 10.1016/j.trci.2017.02.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) have previously been reported to be associated with increased risk of Alzheimer's disease (AD). We are using biomarkers to study Vietnam Veterans with/without mild cognitive impairment with a history of at least one TBI and/or ongoing PTSD to determine whether these contribute to the development of AD. METHODS Potential subjects identified by Veterans Administration records underwent an initial telephone screen. Consented subjects underwent clinical evaluation, lumbar puncture, structural MRI and amyloid PET scans. RESULTS We observed worse cognitive functioning in PTSD and TBI + PTSD groups, worse global cognitive functioning in the PTSD group, lower superior parietal volume in the TBI + PTSD group, and lower amyloid positivity in the PTSD group, but not the TBI group compared to controls without TBI/PTSD. Medial temporal lobe atrophy was not increased in the PTSD and/or TBI groups. DISCUSSION Preliminary results do not indicate that TBI or PTSD increase the risk for AD measured by amyloid PET. Additional recruitment, longitudinal follow-up, and tau PET scans will provide more information in the future.
Collapse
Affiliation(s)
- Michael W Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San, Francisco, CA, USA.,Department of Radiology, University of California, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco, CA, USA.,Department of Psychiatry, University of California, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, CA, USA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Jacqueline Hayes
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San, Francisco, CA, USA
| | - Susan M Landau
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Paul S Aisen
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| | | | - Duygu Tosun
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San, Francisco, CA, USA
| | - Dallas P Veitch
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San, Francisco, CA, USA
| | | | - Charles Decarli
- Imaging of Dementia and Aging (IDeA) Laboratory, Department of Neurology and Center for Neuroscience, University of California, Davis, CA, USA
| | - Andrew J Saykin
- Indiana Alzheimer Disease Center, Department of Radiology and Imaging Sciences, Indiana University, School of Medicine, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jordan Grafman
- Psychiatry and Behavioral Sciences & Cognitive Neurology/Alzheimer's Disease Research Center, Feinberg School of Medicine and Department of Psychology, Northwestern University, Chicago, IL, USA
| | - Thomas C Neylan
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | | |
Collapse
|
47
|
Hayes JP, Logue MW, Reagan A, Salat D, Wolf EJ, Sadeh N, Spielberg JM, Sperbeck E, Hayes SM, McGlinchey RE, Milberg WP, Verfaellie M, Stone A, Schichman SA, Miller MW. COMT Val158Met polymorphism moderates the association between PTSD symptom severity and hippocampal volume. J Psychiatry Neurosci 2017; 42:95-102. [PMID: 28234210 PMCID: PMC5373706 DOI: 10.1503/jpn.150339] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Memory-based alterations are among the hallmark symptoms of posttraumatic stress disorder (PTSD) and may be associated with the integrity of the hippocampus. However, neuroimaging studies of hippocampal volume in individuals with PTSD have yielded inconsistent results, raising the possibility that various moderators, such as genetic factors, may influence this association. We examined whether the catechol-O-methyltransferase (COMT) Val158Met polymorphism, which has previously been shown to be associated with hippocampal volume in healthy individuals, moderates the association between PTSD and hippocampal volume. METHODS Recent war veterans underwent structural MRI on a 3 T scanner. We extracted volumes of the right and left hippocampus using FreeSurfer and adjusted them for individual differences in intracranial volume. We assessed PTSD severity using the Clinician-Administered PTSD Scale. Hierarchical linear regression was used to model the genotype (Val158Met polymorphism) × PTSD severity interaction and its association with hippocampal volume. RESULTS We included 146 white, non-Hispanic recent war veterans (90% male, 53% with diagnosed PTSD) in our analyses. A significant genotype × PTSD symptom severity interaction emerged such that individuals with greater current PTSD symptom severity who were homozygous for the Val allele showed significant reductions in left hippocampal volume. LIMITATIONS The direction of proposed effects is unknown, thus precluding definitive assessment of whether differences in hippocampal volume reflect a consequence of PTSD, a pre-existing characteristic, or both. CONCLUSION Our findings suggest that the COMT polymorphism moderates the association between PTSD and hippocampal volume. These results highlight the role that the dopaminergic system has in brain structure and suggest a possible mechanism for memory disturbance in individuals with PTSD.
Collapse
Affiliation(s)
- Jasmeet P. Hayes
- Correspondence to: J.P. Hayes, National Center for PTSD (116B-2), VA Boston Healthcare System, 150 S. Huntington Ave., Boston MA 02130;
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Butler O, Adolf J, Gleich T, Willmund G, Zimmermann P, Lindenberger U, Gallinat J, Kühn S. Military deployment correlates with smaller prefrontal gray matter volume and psychological symptoms in a subclinical population. Transl Psychiatry 2017; 7:e1031. [PMID: 28195568 PMCID: PMC5438025 DOI: 10.1038/tp.2016.288] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/26/2016] [Accepted: 11/13/2016] [Indexed: 02/04/2023] Open
Abstract
Research investigating the effects of trauma exposure on brain structure and function in adults has mainly focused on post-traumatic stress disorder (PTSD), whereas trauma-exposed individuals without a clinical diagnoses often serve as controls. However, this assumes a dichotomy between clinical and subclinical populations that may not be supported at the neural level. In the current study we investigate whether the effects of repeated or long-term stress exposure on brain structure in a subclinical sample are similar to previous PTSD neuroimaging findings. We assessed 27 combat trauma-exposed individuals by means of whole-brain voxel-based morphometry on 3 T magnetic resonance imaging scans and identified a negative association between duration of military deployment and gray matter volumes in ventromedial prefrontal cortex (vmPFC) and dorsal anterior cingulate cortex (ACC). We also found a negative relationship between deployment-related gray matter volumes and psychological symptoms, but not between military deployment and psychological symptoms. To our knowledge, this is the first whole-brain analysis showing that longer military deployment is associated with smaller regional brain volumes in combat-exposed individuals without PTSD. Notably, the observed gray matter associations resemble those previously identified in PTSD populations, and concern regions involved in emotional regulation and fear extinction. These findings question the current dichotomy between clinical and subclinical populations in PTSD neuroimaging research. Instead, neural correlates of both stress exposure and PTSD symptomatology may be more meaningfully investigated at a continuous level.
Collapse
Affiliation(s)
- O Butler
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
| | - J Adolf
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
| | - T Gleich
- Charité University Medicine, Campus Charité Mitte, Clinic for Psychiatry and Psychotherapy, Berlin, Germany
| | - G Willmund
- Psychotrauma Center of the German Military, Military Hospital Berlin, Berlin, Germany
| | - P Zimmermann
- Psychotrauma Center of the German Military, Military Hospital Berlin, Berlin, Germany
| | - U Lindenberger
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
- European University Institute, Department of Political and Social Sciences, Badia Fiesolana, San Domenico di Fiesole, Italy
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - J Gallinat
- University Clinic Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Hamburg, Germany
| | - S Kühn
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
- University Clinic Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Hamburg, Germany
| |
Collapse
|
49
|
Shen C, Wang J, Ma G, Zhu Q, He H, Ding Q, Fan H, Lu Y, Wang W. Waking-hour cerebral activations in nightmare disorder: A resting-state functional magnetic resonance imaging study. Psychiatry Clin Neurosci 2016; 70:573-581. [PMID: 27611586 DOI: 10.1111/pcn.12455] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 08/04/2016] [Accepted: 09/04/2016] [Indexed: 11/29/2022]
Abstract
AIM The purpose of the current study was to explore the cerebral areas involved in nightmare disorder. METHODS Fifteen nightmare disorder patients and 15 healthy volunteers were invited to undergo resting-state functional magnetic resonance imaging and to complete the Nightmare Experience Questionnaire. RESULTS The nightmare disorder patients scored higher on the Physical Effect and Horrible Stimulation scales, had higher values of regional homogeneity in clusters within the left anterior cingulate cortex and right inferior parietal lobule, and lower regional homogeneity values within the left superior and inferior frontal gyri and bilateral middle occipital gyri. Physical Effect was negatively correlated with regional homogeneity values in anterior cingulate cortex and inferior parietal lobule in the nightmare disorder group, and was positively correlated with regional homogeneity value in the inferior frontal gyrus in the healthy control group. CONCLUSION To our best knowledge, this is the first neuroimaging study on nightmare disorder, and we have characterized the cerebral activities underlying altered hyperarousal and emotion regulation in nightmare disorder at resting-state.
Collapse
Affiliation(s)
- Chanchan Shen
- Department of Clinical Psychology and Psychiatry, Zhejiang University College of Medicine, Hangzhou, China
| | - Jiawei Wang
- Department of Clinical Psychology and Psychiatry, Zhejiang University College of Medicine, Hangzhou, China
| | - Guorong Ma
- Department of Clinical Psychology and Psychiatry, Zhejiang University College of Medicine, Hangzhou, China
| | - Qisha Zhu
- Department of Clinical Psychology and Psychiatry, Zhejiang University College of Medicine, Hangzhou, China
| | - Hongjian He
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Qiuping Ding
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Hongying Fan
- Department of Clinical Psychology and Psychiatry, Zhejiang University College of Medicine, Hangzhou, China
| | - Yanxia Lu
- Department of Clinical Psychology and Psychiatry, Zhejiang University College of Medicine, Hangzhou, China
| | - Wei Wang
- Department of Clinical Psychology and Psychiatry, Zhejiang University College of Medicine, Hangzhou, China
| |
Collapse
|
50
|
Gilpin NW, Weiner JL. Neurobiology of comorbid post-traumatic stress disorder and alcohol-use disorder. GENES BRAIN AND BEHAVIOR 2016; 16:15-43. [PMID: 27749004 DOI: 10.1111/gbb.12349] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/03/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022]
Abstract
Post-traumatic stress disorder (PTSD) and alcohol-use disorder (AUD) are highly comorbid in humans. Although we have some understanding of the structural and functional brain changes that define each of these disorders, and how those changes contribute to the behavioral symptoms that define them, little is known about the neurobiology of comorbid PTSD and AUD, which may be due in part to a scarcity of adequate animal models for examining this research question. The goal of this review is to summarize the current state-of-the-science on comorbid PTSD and AUD. We summarize epidemiological data documenting the prevalence of this comorbidity, review what is known about the potential neurobiological basis for the frequent co-occurrence of PTSD and AUD and discuss successes and failures of past and current treatment strategies. We also review animal models that aim to examine comorbid PTSD and AUD, highlighting where the models parallel the human condition, and we discuss the strengths and weaknesses of each model. We conclude by discussing key gaps in our knowledge and strategies for addressing them: in particular, we (1) highlight the need for better animal models of the comorbid condition and better clinical trial design, (2) emphasize the need for examination of subpopulation effects and individual differences and (3) urge cross-talk between basic and clinical researchers that is reflected in collaborative work with forward and reverse translational impact.
Collapse
Affiliation(s)
- N W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA.,Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - J L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|