1
|
Molecular Aspects Implicated in Dantrolene Selectivity with Respect to Ryanodine Receptor Isoforms. Int J Mol Sci 2023; 24:ijms24065409. [PMID: 36982484 PMCID: PMC10049336 DOI: 10.3390/ijms24065409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/24/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Dantrolene is an intra-cellularly acting skeletal muscle relaxant used for the treatment of the rare genetic disorder, malignant hyperthermia (MH). In most cases, MH susceptibility is caused by dysfunction of the skeletal ryanodine receptor (RyR1) harboring one of nearly 230 single-point MH mutations. The therapeutic effect of dantrolene is the result of a direct inhibitory action on the RyR1 channel, thus suppressing aberrant Ca2+ release from the sarcoplasmic reticulum. Despite the almost identical dantrolene-binding sequence exits in all three mammalian RyR isoforms, dantrolene appears to be an isoform-selective inhibitor. Whereas RyR1 and RyR3 channels are competent to bind dantrolene, the RyR2 channel, predominantly expressed in the heart, is unresponsive. However, a large body of evidence suggests that the RyR2 channel becomes sensitive to dantrolene-mediated inhibition under certain pathological conditions. Although a consistent picture of the dantrolene effect emerges from in vivo studies, in vitro results are often contradictory. Hence, our goal in this perspective is to provide the best possible clues to the molecular mechanism of dantrolene’s action on RyR isoforms by identifying and discussing potential sources of conflicting results, mainly coming from cell-free experiments. Moreover, we propose that, specifically in the case of the RyR2 channel, its phosphorylation could be implicated in acquiring the channel responsiveness to dantrolene inhibition, interpreting functional findings in the structural context.
Collapse
|
2
|
Rideaux R, Goncalves NR, Welchman AE. Mixed-polarity random-dot stereograms alter GABA and Glx concentration in the early visual cortex. J Neurophysiol 2019; 122:888-896. [PMID: 31291136 PMCID: PMC6734395 DOI: 10.1152/jn.00208.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The offset between images projected onto the left and right retina (binocular disparity) provides a powerful cue to the three-dimensional structure of the environment. It was previously shown that depth judgements are better when images comprise both light and dark features, rather than only light or only dark elements. Since Harris and Parker (Nature 374: 808-811, 1995) discovered the "mixed-polarity benefit," there has been limited evidence supporting their hypothesis that the benefit is due to separate bright and dark channels. Goncalves and Welchman (Curr Biol 27: 1403-1412, 2017) observed that single- and mixed-polarity stereograms evoke different levels of positive and negative activity in a deep neural network trained on natural images to make depth judgements, which also showed the mixed-polarity benefit. Motivated by this discovery, we seek to test the potential for changes in the balance of excitation and inhibition that are produced by viewing these stimuli. In particular, we use magnetic resonance spectroscopy to measure Glx and GABA concentrations in the early visual cortex of adult humans during viewing of single- and mixed-polarity random-dot stereograms (RDS). We find that participants' Glx concentration is significantly higher, whereas GABA concentration is significantly lower, when mixed-polarity RDS are viewed than when single-polarity RDS are viewed. These results indicate that excitation and inhibition facilitate processing of single- and mixed-polarity stereograms in the early visual cortex to different extents, consistent with recent theoretical work (Goncalves NR, Welchman AE. Curr Biol 27: 1403-1412, 2017).NEW & NOTEWORTHY Depth judgements are better when images comprise both light and dark features, rather than only light or only dark elements. Using magnetic resonance spectroscopy, we show that adult human participants' Glx concentration is significantly higher whereas GABA concentration is significantly lower in the early visual cortex when participants view mixed-polarity random-dot stereograms (RDS) compared with single-polarity RDS. These results indicate that excitation and inhibition facilitate processing of single- and mixed-polarity stereograms in the early visual cortex to different extents.
Collapse
Affiliation(s)
- Reuben Rideaux
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Nuno R Goncalves
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew E Welchman
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Bondarenko V, Wells M, Xu Y, Tang P. Solution NMR Studies of Anesthetic Interactions with Ion Channels. Methods Enzymol 2018; 603:49-66. [PMID: 29673534 DOI: 10.1016/bs.mie.2018.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
NMR spectroscopy is one of the major tools to provide atomic resolution protein structural information. It has been used to elucidate the molecular details of interactions between anesthetics and ion channels, to identify anesthetic binding sites, and to characterize channel dynamics and changes introduced by anesthetics. In this chapter, we present solution NMR methods essential for investigating interactions between ion channels and general anesthetics, including both volatile and intravenous anesthetics. Case studies are provided with a focus on pentameric ligand-gated ion channels and the voltage-gated sodium channel NaChBac.
Collapse
Affiliation(s)
- Vasyl Bondarenko
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Marta Wells
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yan Xu
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Pei Tang
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
4
|
Machta BB, Gray E, Nouri M, McCarthy NLC, Gray EM, Miller AL, Brooks NJ, Veatch SL. Conditions that Stabilize Membrane Domains Also Antagonize n-Alcohol Anesthesia. Biophys J 2016; 111:537-545. [PMID: 27508437 PMCID: PMC4982967 DOI: 10.1016/j.bpj.2016.06.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022] Open
Abstract
Diverse molecules induce general anesthesia with potency strongly correlated with both their hydrophobicity and their effects on certain ion channels. We recently observed that several n-alcohol anesthetics inhibit heterogeneity in plasma-membrane-derived vesicles by lowering the critical temperature (Tc) for phase separation. Here, we exploit conditions that stabilize membrane heterogeneity to further test the correlation between the anesthetic potency of n-alcohols and effects on Tc. First, we show that hexadecanol acts oppositely to n-alcohol anesthetics on membrane mixing and antagonizes ethanol-induced anesthesia in a tadpole behavioral assay. Second, we show that two previously described "intoxication reversers" raise Tc and counter ethanol's effects in vesicles, mimicking the findings of previous electrophysiological and behavioral measurements. Third, we find that elevated hydrostatic pressure, long known to reverse anesthesia, also raises Tc in vesicles with a magnitude that counters the effect of butanol at relevant concentrations and pressures. Taken together, these results demonstrate that ΔTc predicts anesthetic potency for n-alcohols better than hydrophobicity in a range of contexts, supporting a mechanistic role for membrane heterogeneity in general anesthesia.
Collapse
Affiliation(s)
| | | | | | - Nicola L C McCarthy
- Department of Chemistry, Imperial College London, South Kensington Campus, London, United Kingdom
| | | | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Nicholas J Brooks
- Department of Chemistry, Imperial College London, South Kensington Campus, London, United Kingdom
| | | |
Collapse
|
5
|
Direct Pore Binding as a Mechanism for Isoflurane Inhibition of the Pentameric Ligand-gated Ion Channel ELIC. Sci Rep 2015; 5:13833. [PMID: 26346220 PMCID: PMC4561908 DOI: 10.1038/srep13833] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/10/2015] [Indexed: 12/22/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) are targets of general anesthetics, but molecular mechanisms underlying anesthetic action remain debatable. We found that ELIC, a pLGIC from Erwinia chrysanthemi, can be functionally inhibited by isoflurane and other anesthetics. Structures of ELIC co-crystallized with isoflurane in the absence or presence of an agonist revealed double isoflurane occupancies inside the pore near T237(6′) and A244(13′). A pore-radius contraction near the extracellular entrance was observed upon isoflurane binding. Electrophysiology measurements with a single-point mutation at position 6′ or 13′ support the notion that binding at these sites renders isoflurane inhibition. Molecular dynamics simulations suggested that isoflurane binding was more stable in the resting than in a desensitized pore conformation. This study presents compelling evidence for a direct pore-binding mechanism of isoflurane inhibition, which has a general implication for inhibitory action of general anesthetics on pLGICs.
Collapse
|
6
|
Trudell JR, Messing RO, Mayfield J, Harris RA. Alcohol dependence: molecular and behavioral evidence. Trends Pharmacol Sci 2014; 35:317-23. [PMID: 24865944 PMCID: PMC4089033 DOI: 10.1016/j.tips.2014.04.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/18/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
Abstract
Alcohol dependence is a complex condition with clear genetic factors. Some of the leading candidate genes code for subunits of the inhibitory GABAA and glycine receptors. These and related ion channels are also targets for the acute actions of alcohol, and there is considerable progress in understanding interactions of alcohol with these proteins at the molecular and even atomic levels. X-ray structures of open and closed states of ion channels combined with structural modeling and site-directed mutagenesis have elucidated direct actions of alcohol. Alcohol also alters channel function by translational and post-translational mechanisms, including phosphorylation and protein trafficking. Construction of mutant mice with either deletion of key proteins or introduction of alcohol-resistant channels has further linked specific proteins with discrete behavioral effects of alcohol. A combination of approaches, including genome wide association studies in humans, continues to advance the molecular basis of alcohol action on receptor structure and function.
Collapse
Affiliation(s)
- James R Trudell
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jody Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
7
|
Bondarenko V, Mowrey DD, Tillman TS, Seyoum E, Xu Y, Tang P. NMR structures of the human α7 nAChR transmembrane domain and associated anesthetic binding sites. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1389-95. [PMID: 24384062 DOI: 10.1016/j.bbamem.2013.12.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/19/2013] [Accepted: 12/23/2013] [Indexed: 12/11/2022]
Abstract
The α7 nicotinic acetylcholine receptor (nAChR), assembled as homomeric pentameric ligand-gated ion channels, is one of the most abundant nAChR subtypes in the brain. Despite its importance in memory, learning and cognition, no structure has been determined for the α7 nAChR TM domain, a target for allosteric modulators. Using solution state NMR, we determined the structure of the human α7 nAChR TM domain (PDB ID: 2MAW) and demonstrated that the α7 TM domain formed functional channels in Xenopus oocytes. We identified the associated binding sites for the anesthetics halothane and ketamine; the former cannot sensitively inhibit α7 function, but the latter can. The α7 TM domain folds into the expected four-helical bundle motif, but the intra-subunit cavity at the extracellular end of the α7 TM domain is smaller than the equivalent cavity in the α4β2 nAChRs (PDB IDs: 2LLY; 2LM2). Neither drug binds to the extracellular end of the α7 TM domain, but two halothane molecules or one ketamine molecule binds to the intracellular end of the α7 TM domain. Halothane and ketamine binding sites are partially overlapped. Ketamine, but not halothane, perturbed the α7 channel-gate residue L9'. Furthermore, halothane did not induce profound dynamics changes in the α7 channel as observed in α4β2. The study offers a novel high-resolution structure for the human α7 nAChR TM domain that is invaluable for developing α7-specific therapeutics. It also provides evidence to support the hypothesis: only when anesthetic binding perturbs the channel pore or alters the channel motion, can binding generate functional consequences.
Collapse
Affiliation(s)
- Vasyl Bondarenko
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA
| | - David D Mowrey
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, USA
| | - Tommy S Tillman
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA
| | - Edom Seyoum
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA
| | - Yan Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA; Department of Structural Biology, University of Pittsburgh School of Medicine, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, USA
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, USA.
| |
Collapse
|
8
|
Mowrey DD, Liu Q, Bondarenko V, Chen Q, Seyoum E, Xu Y, Wu J, Tang P. Insights into distinct modulation of α7 and α7β2 nicotinic acetylcholine receptors by the volatile anesthetic isoflurane. J Biol Chem 2013; 288:35793-800. [PMID: 24194515 PMCID: PMC3861630 DOI: 10.1074/jbc.m113.508333] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/16/2013] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are targets of general anesthetics, but functional sensitivity to anesthetic inhibition varies dramatically among different subtypes of nAChRs. Potential causes underlying different functional responses to anesthetics remain elusive. Here we show that in contrast to the α7 nAChR, the α7β2 nAChR is highly susceptible to inhibition by the volatile anesthetic isoflurane in electrophysiology measurements. Isoflurane-binding sites in β2 and α7 were found at the extracellular and intracellular end of their respective transmembrane domains using NMR. Functional relevance of the identified β2 site was validated via point mutations and subsequent functional measurements. Consistent with their functional responses to isoflurane, β2 but not α7 showed pronounced dynamics changes, particularly for the channel gate residue Leu-249(9'). These results suggest that anesthetic binding alone is not sufficient to generate functional impact; only those sites that can modulate channel dynamics upon anesthetic binding will produce functional effects.
Collapse
Affiliation(s)
- David D. Mowrey
- From the Departments of Anesthesiology
- Computational and Systems Biology, and
| | - Qiang Liu
- the Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013
| | | | | | | | - Yan Xu
- From the Departments of Anesthesiology
- Structural Biology
- Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260 and
| | - Jie Wu
- the Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013
| | - Pei Tang
- From the Departments of Anesthesiology
- Computational and Systems Biology, and
- Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260 and
| |
Collapse
|
9
|
Boretius S, Tammer R, Michaelis T, Brockmöller J, Frahm J. Halogenated volatile anesthetics alter brain metabolism as revealed by proton magnetic resonance spectroscopy of mice in vivo. Neuroimage 2013; 69:244-55. [DOI: 10.1016/j.neuroimage.2012.12.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 12/02/2012] [Accepted: 12/11/2012] [Indexed: 11/17/2022] Open
|
10
|
NMR resolved multiple anesthetic binding sites in the TM domains of the α4β2 nAChR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:398-404. [PMID: 23000369 DOI: 10.1016/j.bbamem.2012.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/09/2012] [Accepted: 09/14/2012] [Indexed: 12/12/2022]
Abstract
The α4β2 nicotinic acetylcholine receptor (nAChR) has significant roles in nervous system function and disease. It is also a molecular target of general anesthetics. Anesthetics inhibit the α4β2 nAChR at clinically relevant concentrations, but their binding sites in α4β2 remain unclear. The recently determined NMR structures of the α4β2 nAChR transmembrane (TM) domains provide valuable frameworks for identifying the binding sites. In this study, we performed solution NMR experiments on the α4β2 TM domains in the absence and presence of halothane and ketamine. Both anesthetics were found in an intra-subunit cavity near the extracellular end of the β2 transmembrane helices, homologous to a common anesthetic binding site observed in X-ray structures of anesthetic-bound GLIC (Nury et al., [32]). Halothane, but not ketamine, was also found in cavities adjacent to the common anesthetic site at the interface of α4 and β2. In addition, both anesthetics bound to cavities near the ion selectivity filter at the intracellular end of the TM domains. Anesthetic binding induced profound changes in protein conformational exchanges. A number of residues, close to or remote from the binding sites, showed resonance signal splitting from single to double peaks, signifying that anesthetics decreased conformation exchange rates. It was also evident that anesthetics shifted population of two conformations. Altogether, the study comprehensively resolved anesthetic binding sites in the α4β2 nAChR. Furthermore, the study provided compelling experimental evidence of anesthetic-induced changes in protein dynamics, especially near regions of the hydrophobic gate and ion selectivity filter that directly regulate channel functions.
Collapse
|
11
|
General anesthetics predicted to block the GLIC pore with micromolar affinity. PLoS Comput Biol 2012; 8:e1002532. [PMID: 22693438 PMCID: PMC3364936 DOI: 10.1371/journal.pcbi.1002532] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/02/2012] [Indexed: 01/23/2023] Open
Abstract
Although general anesthetics are known to modulate the activity of ligand-gated ion channels in the Cys-loop superfamily, there is at present neither consensus on the underlying mechanisms, nor predictive models of this modulation. Viable models need to offer quantitative assessment of the relative importance of several identified anesthetic binding sites. However, to date, precise affinity data for individual sites has been challenging to obtain by biophysical means. Here, the likely role of pore block inhibition by the general anesthetics isoflurane and propofol of the prokaryotic pentameric channel GLIC is investigated by molecular simulations. Microscopic affinities are calculated for both single and double occupancy binding of isoflurane and propofol to the GLIC pore. Computations are carried out for an open-pore conformation in which the pore is restrained to crystallographic radius, and a closed-pore conformation that results from unrestrained molecular dynamics equilibration of the structure. The GLIC pore is predicted to be blocked at the micromolar concentrations for which inhibition by isofluorane and propofol is observed experimentally. Calculated affinities suggest that pore block by propofol occurs at signifcantly lower concentrations than those for which inhibition is observed: we argue that this discrepancy may result from binding of propofol to an allosteric site recently identified by X-ray crystallography, which may cause a competing gain-of-function effect. Affinities of isoflurane and propofol to the allosteric site are also calculated, and shown to be 3 mM for isoflurane and for propofol; both anesthetics have a lower affinity for the allosteric site than for the unoccupied pore. Although general anesthesia is performed every day on thousands of people, its detailed microscopic mechanisms are not known. What is known is that general anesthetic drugs modulate the activity of ion channels in the central nervous system. These channels are proteins that open in response to binding of neurotransmitter molecules, creating an electric current through the cell membrane and thus propagating nerve impulses between cells. One possible mechanism for ion channel inhibition by anesthetics is that the drugs bind inside the pore of the channels, blocking ion current. Here we investigate such a pore block mechanism by computing the strength of the drugs' interaction with the pore – and hence the likelihood of binding, in the case of GLIC, a bacterial channel protein. The results, obtained from numerical simulations of atomic models of GLIC, indicate that the anesthetics isoflurane and propofol have a tendency to bind in the pore that is strong enough to explain blocking of the channel, even at low concentration of the drugs.
Collapse
|
12
|
Cui T, Mowrey D, Bondarenko V, Tillman T, Ma D, Landrum E, Perez-Aguilar JM, He J, Wang W, Saven JG, Eckenhoff RG, Tang P, Xu Y. NMR structure and dynamics of a designed water-soluble transmembrane domain of nicotinic acetylcholine receptor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:617-26. [PMID: 22155685 DOI: 10.1016/j.bbamem.2011.11.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 11/22/2011] [Indexed: 11/29/2022]
Abstract
The nicotinic acetylcholine receptor (nAChR) is an important therapeutic target for a wide range of pathophysiological conditions, for which rational drug designs often require receptor structures at atomic resolution. Recent proof-of-concept studies demonstrated a water-solubilization approach to structure determination of membrane proteins by NMR (Slovic et al., PNAS, 101: 1828-1833, 2004; Ma et al., PNAS, 105: 16537-42, 2008). We report here the computational design and experimental characterization of WSA, a water-soluble protein with ~83% sequence identity to the transmembrane (TM) domain of the nAChR α1 subunit. Although the design was based on a low-resolution structural template, the resulting high-resolution NMR structure agrees remarkably well with the recent crystal structure of the TM domains of the bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC), demonstrating the robustness and general applicability of the approach. NMR T(2) dispersion measurements showed that the TM2 domain of the designed protein was dynamic, undergoing conformational exchange on the NMR timescale. Photoaffinity labeling with isoflurane and propofol photolabels identified a common binding site in the immediate proximity of the anesthetic binding site found in the crystal structure of the anesthetic-GLIC complex. Our results illustrate the usefulness of high-resolution NMR analyses of water-solubilized channel proteins for the discovery of potential drug binding sites.
Collapse
Affiliation(s)
- Tanxing Cui
- Department of Anesthesiology, University of Pittsburgh School of Medicine, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen Q, Cheng MH, Xu Y, Tang P. Anesthetic binding in a pentameric ligand-gated ion channel: GLIC. Biophys J 2010; 99:1801-9. [PMID: 20858424 PMCID: PMC2941008 DOI: 10.1016/j.bpj.2010.07.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 07/15/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022] Open
Abstract
Cys-loop receptors are molecular targets of general anesthetics, but the knowledge of anesthetic binding to these proteins remains limited. Here we investigate anesthetic binding to the bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC), a structural homolog of cys-loop receptors, using an experimental and computational hybrid approach. Tryptophan fluorescence quenching experiments showed halothane and thiopental binding at three tryptophan-associated sites in the extracellular (EC) domain, transmembrane (TM) domain, and EC-TM interface of GLIC. An additional binding site at the EC-TM interface was predicted by docking analysis and validated by quenching experiments on the N200W GLIC mutant. The binding affinities (K(D)) of 2.3 ± 0.1 mM and 0.10 ± 0.01 mM were derived from the fluorescence quenching data of halothane and thiopental, respectively. Docking these anesthetics to the original GLIC crystal structure and the structures relaxed by molecular dynamics simulations revealed intrasubunit sites for most halothane binding and intersubunit sites for thiopental binding. Tryptophans were within reach of both intra- and intersubunit binding sites. Multiple molecular dynamics simulations on GLIC in the presence of halothane at different sites suggested that anesthetic binding at the EC-TM interface disrupted the critical interactions for channel gating, altered motion of the TM23 linker, and destabilized the open-channel conformation that can lead to inhibition of GLIC channel current. The study has not only provided insights into anesthetic binding in GLIC, but also demonstrated a successful fusion of experiments and computations for understanding anesthetic actions in complex proteins.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mary Hongying Cheng
- Department of Chemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yan Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Computational Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Multiple binding sites for the general anesthetic isoflurane identified in the nicotinic acetylcholine receptor transmembrane domain. Proc Natl Acad Sci U S A 2010; 107:14122-7. [PMID: 20660787 DOI: 10.1073/pnas.1008534107] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
An extensive search for isoflurane binding sites in the nicotinic acetylcholine receptor (nAChR) and the proton gated ion channel from Gloebacter violaceus (GLIC) has been carried out based on molecular dynamics (MD) simulations in fully hydrated lipid membrane environments. Isoflurane introduced into the aqueous phase readily partitions into the lipid membrane and the membrane-bound protein. Specifically, isoflurane binds persistently to three classes of sites in the nAChR transmembrane domain: (i) An isoflurane dimer occludes the pore, contacting residues identified by previous mutagenesis studies; analogous behavior is observed in GLIC. (ii) Several nAChR subunit interfaces are also occupied, in a site suggested by photoaffinity labeling and thought to positively modulate the receptor; these sites are not occupied in GLIC. (iii) Isoflurane binds to the subunit centers of both nAChR alpha chains and one of the GLIC chains, in a site that has had little experimental targeting. Interpreted in the context of existing structural and physiological data, the present MD results support a multisite model for the mechanism of receptor-channel modulation by anesthetics.
Collapse
|
15
|
Vemparala S, Domene C, Klein ML. Computational studies on the interactions of inhalational anesthetics with proteins. Acc Chem Res 2010; 43:103-10. [PMID: 19788306 DOI: 10.1021/ar900149j] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite the widespread clinical use of anesthetics since the 19th century, a clear understanding of the mechanism of anesthetic action has yet to emerge. On the basis of early experiments by Meyer, Overton, and subsequent researchers, the cell's lipid membrane was generally concluded to be the primary site of action of anesthetics. However, later experiments with lipid-free globular proteins, such as luciferase and apoferritin, shifted the focus of anesthetic action to proteins. Recent experimental studies, such as photoaffinity labeling and mutagenesis on membrane proteins, have suggested specific binding sites for anesthetic molecules, further strengthening the proteocentric view of anesthetic mechanism. With the increased availability of high-resolution crystal structures of ion channels and other integral membrane proteins, as well as the availability of powerful computers, the structure-function relationship of anesthetic-protein interactions can now be investigated in atomic detail. In this Account, we review recent experiments and related computer simulation studies involving interactions of inhalational anesthetics and proteins, with a particular focus on membrane proteins. Globular proteins have long been used as models for understanding the role of protein-anesthetic interactions and are accordingly examined in this Account. Using selected examples of membrane proteins, such as nicotinic acetyl choline receptor (nAChR) and potassium channels, we address the issues of anesthetic binding pockets in proteins, the role of conformation in anesthetic effects, and the modulation of local as well as global dynamics of proteins by inhaled anesthetics. In the case of nicotinic receptors, inhalational anesthetic halothane binds to the hydrophobic cavity close to the M2-M3 loop. This binding modulates the dynamics of the M2-M3 loop, which is implicated in allosterically transmitting the effects to the channel gate, thus altering the function of the protein. In potassium channels, anesthetic molecules preferentially potentiate the open conformation by quenching the motion of the aromatic residues implicated in the gating of the channel. These simulations suggest that low-affinity drugs (such as inhalational anesthetics) modulate the protein function by influencing local as well as global dynamics of proteins. Because of intrinsic experimental limitations, computational approaches represent an important avenue for exploring the mode of action of anesthetics. Molecular dynamics simulations-a computational technique frequently used in the general study of proteins-offer particular insight in the study of the interaction of inhalational anesthetics with membrane proteins.
Collapse
Affiliation(s)
- Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T Campus, Taramani, Chennai 600 113, India
| | - Carmen Domene
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ U.K
| | - Michael L. Klein
- Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323
| |
Collapse
|
16
|
Liu LT, Willenbring D, Xu Y, Tang P. General anesthetic binding to neuronal alpha4beta2 nicotinic acetylcholine receptor and its effects on global dynamics. J Phys Chem B 2009; 113:12581-9. [PMID: 19697903 DOI: 10.1021/jp9039513] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The neuronal alpha4beta2 nicotinic acetylcholine receptor (nAChR) is a target for general anesthetics. Currently available experimental structural information is inadequate to understand where anesthetics bind and how they modulate the receptor motions essential to function. Using our published open-channel structure model of alpha4beta2 nAChR, we identified and evaluated six amphiphilic interaction sites for the volatile anesthetic halothane via flexible ligand docking and subsequent 20-ns molecular dynamics simulations. Halothane binding energies ranged from -6.8 to -2.4 kcal/mol. The primary binding sites were located at the interface of extracellular and transmembrane domains, where halothane perturbed conformations of, and widened the gap among, the Cys loop, the beta1-beta2 loop, and the TM2-TM3 linker. The halothane with the highest binding affinity at the interface between the alpha4 and beta2 subunits altered interactions between the protein and nearby lipids by competing for hydrogen bonds. Gaussian network model analyses of the alpha4beta2 nAChR structures at the end of 20-ns simulations in the absence or presence of halothane revealed profound changes in protein residue mobility. The concerted motions critical to protein function were also perturbed considerably. Halothane's effect on protein dynamics was not confined to the residues adjacent to the binding sites, indicating an action on a more global scale.
Collapse
Affiliation(s)
- Lu Tian Liu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
17
|
Liu R, Yang J, Ha CE, Bhagavan N, Eckenhoff R. Truncated human serum albumin retains general anaesthetic binding activity. Biochem J 2009; 388:39-45. [PMID: 15634193 PMCID: PMC1186691 DOI: 10.1042/bj20041224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Multiple binding sites for anaesthetics in HSA (human serum albumin) make solution studies difficult to interpret. In the present study, we expressed the wild-type HSA domain 3 (wtHSAd3), a peptide with two known anaesthetic binding sites in a yeast expression system. We also expressed a site-directed mutant of domain 3 (Y411Wd3). The stability and secondary structure of the constructed fragments were determined by HX (hydrogen-tritium exchange) and CD spectroscopy. The binding of two general anaesthetics, 2-bromo-2-chloro-1,1,1-trifluoroethane and propofol, to wtHSAd3 and Y411Wd3 was determined using isothermal titration calorimetry, HX and intrinsic tryptophan fluorescence quenching. Although the expressed fragments are less stable than intact wtHSA as indicated by both CD and HX, they retain the secondary structure and anaesthetic-binding characteristics of an intact HSA molecule, but with fewer binding sites. Y411Wd3 had decreased affinity for propofol but not for 2-bromo-2-chloro-1,1,1-trifluoroethane, consistent with steric hindrance. Retention of structural features and anaesthetic binding properties with fewer binding sites in this truncated protein provide feasibility for using scaled-down models of otherwise intractable systems to gain an understanding of anaesthetic binding requirements and binding-stability relationships.
Collapse
Affiliation(s)
- Renyu Liu
- *Department of Anesthesia, University of Pennsylvania Medical Center, 3400 Spruce Street, 7 Dulles, Philadelphia, PA 19104-4283, U.S.A
| | - Jinsheng Yang
- †Department of Biochemistry and Biophysics, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, U.S.A
| | - Chung-Eun Ha
- †Department of Biochemistry and Biophysics, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, U.S.A
| | - Nadhipuram V. Bhagavan
- †Department of Biochemistry and Biophysics, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, U.S.A
| | - Roderic G. Eckenhoff
- *Department of Anesthesia, University of Pennsylvania Medical Center, 3400 Spruce Street, 7 Dulles, Philadelphia, PA 19104-4283, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
18
|
Bojko B, Sułkowska A, Maciazek-Jurczyk M, Równicka J, Sułkowski WW. The influence of dietary habits and pathological conditions on the binding of theophylline to serum albumin. J Pharm Biomed Anal 2009; 52:384-90. [PMID: 19800191 DOI: 10.1016/j.jpba.2009.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 09/01/2009] [Accepted: 09/05/2009] [Indexed: 11/26/2022]
Abstract
The influence of fatty acids (FA) on theophylline (Th) binding to human serum albumin (HSA) in its high and low affinity binding sites was investigated. The content of studied FA solutions corresponds to the ones associating with different dietary habits and pathological states in vivo. Using fluorescence and (1)H NMR spectroscopy two high and two low affinity binding sites of Th in HSA structure were found. For each site several binding parameters in the absence and presence of FA were estimated. The results showed that the impact of FA on the affinity of HSA towards Th in high affinity binding sites is negligible whereas binding of the drug in low affinity sites decreases significantly in the presence of FA. It was observed that this effect is dependent on the number of fatty acid molecules bound to the protein while the chemical structure of fatty acids contained in the solution plays a minor role.
Collapse
Affiliation(s)
- B Bojko
- Department of Physical Pharmacy, Faculty of Pharmacy, Medical University of Silesia, 41-200 Sosnowiec, Poland.
| | | | | | | | | |
Collapse
|
19
|
Cui T, Canlas CG, Xu Y, Tang P. Anesthetic effects on the structure and dynamics of the second transmembrane domains of nAChR alpha4beta2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:161-6. [PMID: 19715664 DOI: 10.1016/j.bbamem.2009.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 07/31/2009] [Accepted: 08/12/2009] [Indexed: 01/03/2023]
Abstract
Channel functions of the neuronal alpha4beta2 nicotinic acetylcholine receptor (nAChR), one of the most widely expressed subtypes in the brain, can be inhibited by volatile anesthetics. Our Na(+) flux experiments confirmed that the second transmembrane domains (TM2) of alpha4 and beta2 in 2:3 stoichiometry, (alpha4)(2)(beta2)(3), could form pentameric channels, whereas the alpha4 TM2 alone could not. The structure, topology, and dynamics of the alpha4 TM2 and (alpha4)(2)(beta2)(3) TM2 in magnetically aligned phospholipid bicelles were investigated using solid-state NMR spectroscopy in the absence and presence of halothane and isoflurane, two clinically used volatile anesthetics. (2)H NMR demonstrated that anesthetics increased lipid conformational heterogeneity. Such anesthetic effects on lipids became more profound in the presence of transmembrane proteins. PISEMA experiments on the selectively (15)N-labeled alpha4 TM2 showed that the TM2 formed transmembrane helices with tilt angles of 12 degrees +/-1 degrees and 16 degrees +/-1 degrees relative to the bicelle normal for the alpha4 and (alpha4)(2)(beta2)(3) samples, respectively. Anesthetics changed the tilt angle of the alpha4 TM2 from 12 degrees +/-1 degrees to 14 degrees +/-1 degrees , but had only a subtle effect on the tilt angle of the (alpha4)(2)(beta2)(3) TM2. A small degree of wobbling motion of the helix axis occurred in the (alpha4)(2)(beta2)(3) TM2. In addition, a subset of the (alpha4)(2)(beta2)(3) TM2 exhibited counterclockwise rotational motion around the helix axis on a time scale slower than 10(-4) s in the presence of anesthetics. Both helical tilting and rotational motions have been identified computationally as critical elements for ion channel functions. This study suggested that anesthetics could alter these motions to modulate channel functions.
Collapse
Affiliation(s)
- Tanxing Cui
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
20
|
Canlas CG, Cui T, Li L, Xu Y, Tang P. Anesthetic modulation of protein dynamics: insight from an NMR study. J Phys Chem B 2008; 112:14312-8. [PMID: 18821786 DOI: 10.1021/jp805952w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Mistic (membrane integrating sequence for translation of integral membrane protein constructs) comprises the four-alpha-helix bundle scaffold found in the transmembrane domains of the Cys-loop receptors that are plausible targets for general anesthetics. Nuclear magnetic resonance (NMR) studies of anesthetic halothane interaction with Mistic in dodecyl phosphocholine (DPC) micelles provide an experimental basis for understanding molecular mechanisms of general anesthesia. Halothane was found to interact directly with Mistic, mostly in the interfacial loop regions. Although the presence of halothane had little effect on Mistic structure, (15)N NMR relaxation dispersion measurements revealed that halothane affected Mistic's motion on the microsecond-millisecond time scale. Halothane shifted the equilibrium of chemical exchange in some residues and made the exchange faster or slower in comparison to the original state in the absence of halothane. The motion on the microsecond-millisecond time scale in several residues disappeared in response to the addition of halothane. Most of the residues experiencing halothane-induced dynamics changes also exhibited profound halothane-induced changes in chemical shift, suggesting that dynamics modification of these residues might result from their direct interaction with halothane molecules. Allosteric modulation by halothane also contributed to dynamics changes, as reflected in residues I52 and Y82 where halothane introduction brought about dynamics changes but not chemical shift changes. The study suggests that inhaled general anesthetics could act on proteins via altering protein motion on the microsecond-millisecond time scale, especially motion in the flexible loops that link different alpha helices. The validation of anesthetic effect on protein dynamics that are potentially correlated with protein functions is a critical step in unraveling the mechanisms of anesthetic action on proteins.
Collapse
Affiliation(s)
- Christian G Canlas
- Department of Anesthesiology, Pharmacology and Chemical Biology, and Computational Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
21
|
Clinically relevant concentration determination of inhaled anesthetics (halothane, isoflurane, sevoflurane, and desflurane) by 19F NMR. Cell Biochem Biophys 2008; 52:31-5. [PMID: 18719861 DOI: 10.1007/s12013-008-9022-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
Abstract
Biophysical studies of protein-anesthetic interactions using nuclear magnetic resonance (NMR) spectroscopy are often conducted by the addition of micro amounts of neat inhaled anesthetic which yields much higher than clinically relevant (0.2-0.5 mM) anesthetic concentrations. We report a 19F NMR technique to measure clinically relevant inhaled anesthetic concentrations from saturated aqueous solutions of these anesthetics (halothane, isoflurane, sevoflurane, and desflurane). We use a setup with a 3-mm NMR tube (containing trifluoroacetic acid as standard), coaxially inserted in a 5-mm NMR tube containing anesthetic solution under investigation. All experiments are conducted in a 5-mm NMR probe. We also have provided standard curves for four inhaled anesthetics using NMR technique. The standard curve for each of these anesthetics is helpful in determining the prerequisite amount of aqueous anesthetic solution required to prepare clinically relevant concentrations for protein-anesthetic interaction studies.
Collapse
|
22
|
|
23
|
Four-alpha-helix bundle with designed anesthetic binding pockets. Part II: halothane effects on structure and dynamics. Biophys J 2008; 94:4464-72. [PMID: 18310239 DOI: 10.1529/biophysj.107.117853] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As a model of the protein targets for volatile anesthetics, the dimeric four-alpha-helix bundle, (Aalpha(2)-L1M/L38M)(2), was designed to contain a long hydrophobic core, enclosed by four amphipathic alpha-helices, for specific anesthetic binding. The structural and dynamical analyses of (Aalpha(2)-L1M/L38M)(2) in the absence of anesthetics (another study) showed a highly dynamic antiparallel dimer with an asymmetric arrangement of the four helices and a lateral accessing pathway from the aqueous phase to the hydrophobic core. In this study, we determined the high-resolution NMR structure of (Aalpha(2)-L1M/L38M)(2) in the presence of halothane, a clinically used volatile anesthetic. The high-solution NMR structure, with a backbone root mean-square deviation of 1.72 A (2JST), and the NMR binding measurements revealed that the primary halothane binding site is located between two side-chains of W15 from each monomer, different from the initially designed anesthetic binding sites. Hydrophobic interactions with residues A44 and L18 also contribute to stabilizing the bound halothane. Whereas halothane produces minor changes in the monomer structure, the quaternary arrangement of the dimer is shifted by about half a helical turn and twists relative to each other, which leads to the closure of the lateral access pathway to the hydrophobic core. Quantitative dynamics analyses, including Modelfree analysis of the relaxation data and the Carr-Purcell-Meiboom-Gill transverse relaxation dispersion measurements, suggest that the most profound anesthetic effect is the suppression of the conformational exchange both near and remote from the binding site. Our results revealed a novel mechanism of an induced fit between anesthetic molecule and its protein target, with the direct consequence of protein dynamics changing on a global rather than a local scale. This mechanism may be universal to anesthetic action on neuronal proteins.
Collapse
|
24
|
Abstract
The molecular basis of anesthetic interaction with membrane proteins has been explored via determination of anesthetic effects on the structure and dynamics of the extended second transmembrane domain (TM2e) of the human neuronal nicotinic acetylcholine receptor (nAChR) beta(2) subunit in dodecylphosphocholine (DPC) micelles by (1)H and (15)N solution-state NMR. Both 1-chloro-1,2,2-trifluorocyclobutane (F3) and isoflurane, two volatile general anesthetics, induced nonuniform changes in chemical shifts among residues in TM2e. Saturation transfer difference NMR experiments further confirmed the direct anesthetic interaction with TM2e. A significant and more specific anesthetic interaction was observed on three leucine residues at the helix C-terminus. Although the TM2e helical structure remained after addition of anesthetics, plausible shortening and lengthening of helix hydrogen bonds were evidenced by periodic changes in backbone amide chemical shifts. The TM2e backbone dynamics were determined on the basis of the (15)N relaxation rate constants, R(1) and R(2), and the (15)N-[(1)H] NOE using the model-free approach. The global tumbling time (11.7 ns) of TM2e in micelles slightly increased ( approximately 12.3-12.5 ns) in the presence of anesthetics. The order parameter, S(2), exceeded 0.9 for all (15)N-labeled residues, showing a restricted internal motion. Anesthetics appear to have minor effect on the TM2e's internal motion. This study provided the basis for subsequent more comprehensive studies of anesthetic effects on the transmembrane domain complex of neuronal nAChR.
Collapse
|
25
|
Streiff JH, Allen TW, Atanasova E, Juranic N, Macura S, Penheiter AR, Jones KA. Prediction of volatile anesthetic binding sites in proteins. Biophys J 2006; 91:3405-14. [PMID: 16877516 PMCID: PMC1614498 DOI: 10.1529/biophysj.106.082586] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Computational methods designed to predict and visualize ligand protein binding interactions were used to characterize volatile anesthetic (VA) binding sites and unoccupied pockets within the known structures of VAs bound to serum albumin, luciferase, and apoferritin. We found that both the number of protein atoms and methyl hydrogen, which are within approximately 8 A of a potential ligand binding site, are significantly greater in protein pockets where VAs bind. This computational approach was applied to structures of calmodulin (CaM), which have not been determined in complex with a VA. It predicted that VAs bind to [Ca(2+)](4)-CaM, but not to apo-CaM, which we confirmed with isothermal titration calorimetry. The VA binding sites predicted for the structures of [Ca(2+)](4)-CaM are located in hydrophobic pockets that form when the Ca(2+) binding sites in CaM are saturated. The binding of VAs to these hydrophobic pockets is supported by evidence that halothane predominantly makes contact with aliphatic resonances in [Ca(2+)](4)-CaM (nuclear Overhauser effect) and increases the Ca(2+) affinity of CaM (fluorescence spectroscopy). Our computational analysis and experiments indicate that binding of VA to proteins is consistent with the hydrophobic effect and the Meyer-Overton rule.
Collapse
Affiliation(s)
- John H Streiff
- Departments of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, Mayo College of Medicine, Rochester, Minnesota, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Solt K, Johansson JS, Raines DE. Kinetics of anesthetic-induced conformational transitions in a four-alpha-helix bundle protein. Biochemistry 2006; 45:1435-41. [PMID: 16445285 PMCID: PMC2581500 DOI: 10.1021/bi052206o] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inhaled anesthetics are thought to alter the conformational states of Cys-loop ligand-gated ion channels (LGICs) by binding within discrete cavities that are lined by portions of four alpha-helical transmembrane domains. Because Cys-loop LGICs are complex molecules that are notoriously difficult to express and purify, scaled-down models have been used to better understand the basic molecular mechanisms of anesthetic action. In this study, stopped-flow fluorescence spectroscopy was used to define the kinetics with which inhaled anesthetics interact with (Aalpha(2)-L1M/L38M)(2), a four-alpha-helix bundle protein that was designed to model anesthetic binding sites on Cys-loop LGICs. Stopped-flow fluorescence traces obtained upon mixing (Aalpha(2)-L1M/L38M)(2) with halothane revealed immediate, fast, and slow components of quenching. The immediate component, which occurred within the mixing time of the spectrofluorimeter, was attributed to direct quenching of tryptophan fluorescence upon halothane binding to (Aalpha(2)-L1M/L38M)(2). This was followed by a biexponential fluorescence decay containing fast and slow components, reflecting anesthetic-induced conformational transitions. Fluorescence traces obtained in studies using sevoflurane, isoflurane, and desflurane, which poorly quench tryptophan fluorescence, did not contain the immediate component. However, these anesthetics did produce the fast and slow components, indicating that they also alter the conformation of (Aalpha(2)-L1M/L38M)(2). Cyclopropane, an anesthetic that acts with unusually low potency on Cys-loop LGICs, acted with low apparent potency on (Aalpha(2)-L1M/L38M)(2). These results suggest that four-alpha-helix bundle proteins may be useful models of in vivo sites of action that allow the use of a wide range of techniques to better understand how anesthetic binding leads to changes in protein structure and function.
Collapse
Affiliation(s)
| | | | - Douglas E. Raines
- Corresponding author. Address: Department of Anesthesia and Critical Care, Massachusetts General Hospital, 55 Fruit Street, Clinics Building 3, Boston MA 02114. Telephone: (617) 724−0343. Fax: (617) 724−8644. E-mail:
| |
Collapse
|
27
|
Johansson JS, Manderson GA, Ramoni R, Grolli S, Eckenhoff RG. Binding of the volatile general anesthetics halothane and isoflurane to a mammalian beta-barrel protein. FEBS J 2005; 272:573-81. [PMID: 15654894 DOI: 10.1111/j.1742-4658.2004.04500.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A molecular understanding of volatile anesthetic mechanisms of action will require structural descriptions of anesthetic-protein complexes. Porcine odorant binding protein is a 157 residue member of the lipocalin family that features a large beta-barrel internal cavity (515 +/- 30 angstroms(3)) lined predominantly by aromatic and aliphatic residues. Halothane binding to the beta-barrel cavity was determined using fluorescence quenching of Trp16, and a competitive binding assay with 1-aminoanthracene. In addition, the binding of halothane and isoflurane were characterized thermodynamically using isothermal titration calorimetry. Hydrogen exchange was used to evaluate the effects of bound halothane and isoflurane on global protein dynamics. Halothane bound to the cavity in the beta-barrel of porcine odorant binding protein with dissociation constants of 0.46 +/- 0.10 mM and 0.43 +/- 0.12 mM determined using fluorescence quenching and competitive binding with 1-aminoanthracene, respectively. Isothermal titration calorimetry revealed that halothane and isoflurane bound with K(d) values of 80 +/- 10 microM and 100 +/- 10 microM, respectively. Halothane and isoflurane binding resulted in an overall stabilization of the folded conformation of the protein by -0.9 +/- 0.1 kcal.mol(-1). In addition to indicating specific binding to the native protein conformation, such stabilization may represent a fundamental mechanism whereby anesthetics reversibly alter protein function. Because porcine odorant binding protein has been successfully analyzed by X-ray diffraction to 2.25 angstroms resolution [1], this represents an attractive system for atomic-level structural studies in the presence of bound anesthetic. Such studies will provide much needed insight into how volatile anesthetics interact with biological macromolecules.
Collapse
Affiliation(s)
- Jonas S Johansson
- Department of Anesthesia, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
28
|
Ye S, Strzalka J, Churbanova IY, Zheng S, Johansson JS, Blasie JK. A model membrane protein for binding volatile anesthetics. Biophys J 2004; 87:4065-74. [PMID: 15465862 PMCID: PMC1304915 DOI: 10.1529/biophysj.104.051045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Earlier work demonstrated that a water-soluble four-helix bundle protein designed with a cavity in its nonpolar core is capable of binding the volatile anesthetic halothane with near-physiological affinity (0.7 mM Kd). To create a more relevant, model membrane protein receptor for studying the physicochemical specificity of anesthetic binding, we have synthesized a new protein that builds on the anesthetic-binding, hydrophilic four-helix bundle and incorporates a hydrophobic domain capable of ion-channel activity, resulting in an amphiphilic four-helix bundle that forms stable monolayers at the air/water interface. The affinity of the cavity within the core of the bundle for volatile anesthetic binding is decreased by a factor of 4-3.1 mM Kd as compared to its water-soluble counterpart. Nevertheless, the absence of the cavity within the otherwise identical amphiphilic peptide significantly decreases its affinity for halothane similar to its water-soluble counterpart. Specular x-ray reflectivity shows that the amphiphilic protein orients vectorially in Langmuir monolayers at higher surface pressure with its long axis perpendicular to the interface, and that it possesses a length consistent with its design. This provides a successful starting template for probing the nature of the anesthetic-peptide interaction, as well as a potential model system in structure/function correlation for understanding the anesthetic binding mechanism.
Collapse
Affiliation(s)
- Shixin Ye
- Department of Chemistry, Department of Anesthesiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
29
|
Streiff JH, Juranic NO, Macura SI, Warner DO, Jones KA, Perkins WJ. Saturation Transfer Difference Nuclear Magnetic Resonance Spectroscopy As a Method for Screening Proteins for Anesthetic Binding. Mol Pharmacol 2004. [DOI: 10.1124/mol.66.4.929] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
30
|
Zhang T, Johansson JS. An isothermal titration calorimetry study on the binding of four volatile general anesthetics to the hydrophobic core of a four-alpha-helix bundle protein. Biophys J 2004; 85:3279-85. [PMID: 14581228 PMCID: PMC1303604 DOI: 10.1016/s0006-3495(03)74746-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A molecular understanding of volatile anesthetic mechanisms of action will require structural descriptions of anesthetic-protein complexes. Previous work has demonstrated that the halogenated alkane volatile anesthetics halothane and chloroform bind to the hydrophobic core of the four-alpha-helix bundle (Aalpha(2)-L38M)(2) (Johansson et al., 2000, 2003). This study shows that the halogenated ether anesthetics isoflurane, sevoflurane, and enflurane are also bound to the hydrophobic core of the four-alpha-helix bundle, using isothermal titration calorimetry. Isoflurane and sevoflurane both bound to the four-alpha-helix bundle with K(d) values of 140 +/- 10 micro M, whereas enflurane bound with a K(d) value of 240 +/- 10 micro M. The DeltaH degrees values associated with isoflurane, sevoflurane, and enflurane binding were -7.7 +/- 0.1 kcal/mol, -8.2 +/- 0.2 kcal/mol, and -7.2 +/- 0.1 kcal/mol, respectively. The DeltaS degrees values accompanying isoflurane, sevoflurane, and enflurane binding were -8.5 cal/mol K, -10.4 cal/mol K, and -8.0 cal/mol K, respectively. The results indicate that the hydrophobic core of (Aalpha(2)-L38M)(2) is able to accommodate three modern ether anesthetics with K(d) values that approximate their clinical EC(50) values. The DeltaH degrees values point to the importance of polar interactions for volatile general anesthetic binding, and suggest that hydrogen bonding to the ether oxygens may be operative.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Anesthesia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
31
|
|
32
|
Arias HR, Kem WR, Trudell JR, Blanton MP. Unique general anesthetic binding sites within distinct conformational states of the nicotinic acetylcholine receptor. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 54:1-50. [PMID: 12785284 DOI: 10.1016/s0074-7742(03)54002-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
General anesthesia is a complex behavioral state provoked by the pharmacological action of a broad range of structurally different hydrophobic molecules called general anesthetics (GAs) on receptor members of the genetically linked ligand-gated ion channel (LGIC) superfamily. This superfamily includes nicotinic acetylcholine (AChRs), type A and C gamma-aminobutyric acid (GABAAR and GABACR), glycine (GlyR), and type 3 5-hydroxytryptamine (5-HT3R) receptors. This review focuses on recent advances in the localization of GA binding sites on conformationally and compositionally distinct AChRs. The experimental evidence outlined in this review suggests that: 1. Several neuronal-type AChRs might be targets for the pharmacological action of distinct GAs. 2. The molecular components of a specific GA binding site on a certain receptor subtype are different from the structural determinants of the locus for the same GA on a different receptor subtype. 3. There are unique binding sites for distinct GAs in the same receptor protein. 4. A GA can activate, potentiate, or inhibit an ion channel, indicating the existence of more than one binding site for the same GA. 5. The affinity of a specific GA depends on the conformational state of the receptor. 6. GAs inhibition channels by at least two mechanisms, an open-channel-blocking and/or an allosteric mechanism. 7. Certain GAs may inhibit AChR function by competing for the agonist binding sites or by augmenting the desensitization rate.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California 91766, USA
| | | | | | | |
Collapse
|
33
|
Tang P, Xu Y. Large-scale molecular dynamics simulations of general anesthetic effects on the ion channel in the fully hydrated membrane: the implication of molecular mechanisms of general anesthesia. Proc Natl Acad Sci U S A 2002; 99:16035-40. [PMID: 12438684 PMCID: PMC138560 DOI: 10.1073/pnas.252522299] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interactions of volatile anesthetics with the central nervous system are characterized by low yet specific binding affinities. Although neurotransmitter-gated ion channels are considered the primary anesthetic targets, the mechanism of action at the molecular level remains elusive. We consider here the theoretical implications of channel dynamics on anesthetic action in a simplified membrane-channel system. Large-scale 2.2-ns all-atom molecular dynamics simulations were performed to study the effects of halothane, a clinical anesthetic, on a gramicidin A (gA) channel in a fully hydrated dimyristoyl phosphatidylcholine membrane. In agreement with experimental results, anesthetics preferentially target the anchoring residues at the channel-lipid-water interface. Although the anesthetic effect on channel structure is minimal, the presence of halothane profoundly affects channel dynamics. For 2.2-ns simulation, the rms fluctuation of gA backbone in the lipid core increases from approximately equal 1 A in the absence of anesthetics to approximately equal 1.5 A in the presence of halothane. Autocorrelation analysis reveals that halothane (i) has no effect on the subpicosecond librational motion, (ii) prolongs the backbone autocorrelation time in the 10- to 100-ps time scale, and (iii) significantly decreases the asymptotic values of generalized order parameter and correlation time of nanosecond motions for the inner but not the outer residues. The simulation results discount the viewpoint of a structure-function paradigm that overrates the importance of structural fitting between general anesthetics and yet-unidentified hydrophobic protein pockets. Instead, the results underscore the global, as opposed to local, effects of anesthetics on protein dynamics as the underlying mechanisms for the action of general anesthetics and possibly of other low-affinity drugs.
Collapse
Affiliation(s)
- Pei Tang
- Departments of Anesthesiology and Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
34
|
Abstract
Volatile anesthetic agent, 1-chloro-1,2,2-trifluorocyclobutane (F3), was found to alter gramicidin A channel function by enhancing Na(+) transport (. Biophys. J. 77:739-746). Whether this functional change is associated with structural alternation is evaluated by circular dichroism and nuclear magnetic resonance spectroscopy. The circular dichroism and nuclear magnetic resonance results indicate that at low millimolar concentrations, 1-chloro-1,2,2-trifluorocyclobutane causes minimal changes in gramicidin A channel structure in sodium dodecyl sulfate micelles. All hydrogen bonds between channel backbones are well maintained in the presence of 1-chloro-1,2,2-trifluorocyclobutane, and the channel structure is stable. The finding supports the notion that low affinity drugs such as volatile anesthetics and alcohols can cause significant changes in protein function without necessarily producing associated changes in protein structure. To understand the molecular mechanism of general anesthesia, it is important to recognize that in addition to structural changes, other protein properties, including dynamic characteristics of channel motions, may also be of functional significance.
Collapse
Affiliation(s)
- Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 USA.
| | | | | |
Collapse
|
35
|
Trudell JR, Bertaccini E. Molecular modelling of specific and non-specific anaesthetic interactions. Br J Anaesth 2002; 89:32-40. [PMID: 12173239 DOI: 10.1093/bja/aef157] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There has been rapid progress in molecular modelling in recent years. The convergence of improved software for molecular mechanics and dynamics, techniques for chimeric substitution and site-directed mutations, and the first x-ray structures of transmembrane ion channels have made it possible to build and test models of anaesthetic binding sites. These models have served as guides for site-directed mutagenesis and as starting points for understanding the molecular dynamics of anaesthetic-site interactions. Ligand-gated ion channels are targets for inhaled anaesthetics and alcohols in the central nervous system. The inhibitory strychnine-sensitive glycine and gamma-aminobutyric acid type A receptors are positively modulated by anaesthetics and alcohols; site-directed mutagenesis techniques have identified amino acid residues important for the action of volatile anaesthetics and alcohols in these receptors. Key questions are whether these amino acid mutations form part of alcohol- or anaesthetic-binding sites or if they alter protein stability in a way that allows anaesthetic molecules to act remotely by non-specific mechanisms. It is likely that molecular modelling will play a major role in answering these questions.
Collapse
Affiliation(s)
- J R Trudell
- Department of Anaesthesia, Beckman Program for Molecular and Genetic Medicine, Stanford University, Stanford, CA 94305-5117, USA
| | | |
Collapse
|
36
|
Chan K, Meng QC, Johansson JS, Eckenhoff RG. Low-affinity analytical chromatography for measuring inhaled anesthetic binding to isolated proteins. Anal Biochem 2002; 301:308-13. [PMID: 11814301 DOI: 10.1006/abio.2001.5506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The direct measure of volatile anesthetic binding to protein is complicated by weak affinity and therefore rapid kinetics. Consequently, several puted targets for these clinically important drugs have only functional data to support a direct mode of action. While several methods for measuring some aspects of binding are available, all have significant limitations. We introduce the use of analytical chromatography for the purpose of directly measuring volatile anesthetic binding to protein, and show that it can provide estimates of both affinity and stoichiometry for proteins that can be obtained in fairly high purity and mass. Using this approach we characterize halothane binding to serum albumin as low affinity and multisite, and to myoglobin or cytochrome C as strictly nonspecific. This approach will be useful in directly characterizing equilibrium, solution binding to isolated proteins in preparation for more time-consuming methods with structural resolution.
Collapse
Affiliation(s)
- Kin Chan
- Department of Anesthesia, University of Pennsylvania Health System, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
37
|
Eckenhoff MF, Chan K, Eckenhoff RG. Multiple specific binding targets for inhaled anesthetics in the mammalian brain. J Pharmacol Exp Ther 2002; 300:172-9. [PMID: 11752113 DOI: 10.1124/jpet.300.1.172] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous work showed widespread saturable binding of halothane in rat brain. To determine whether this represents selective binding to a few widespread proteins or less selective binding to many different proteins, we used [(14)C]halothane photolabeling and quantitative electrophoresis/autoradiography in rat cerebellar homogenates. Many proteins incorporate label. Stoichiometry values ranged from 0 to 4 at 0.2 mM [(14)C]halothane in a group of 24 randomly selected protein bands. Apparent IC(50) values from unlabeled halothane competition experiments ranged from 0.2 to 2.0 mM, with soluble protein having significantly lower values (higher affinity) than membrane protein. Chloroform inhibited halothane labeling similar to unlabeled halothane but with higher apparent IC(50) values, whereas isoflurane and an anesthetic, cyclobutane (1-chloro-1,2,2-trifluorocyclobutane), inhibited halothane labeling to a smaller degree. A nonanesthetic, cyclobutane (1,2-dichlorohexafluorocyclobutane), inhibited halothane labeling the least. We conclude that halothane binding motifs are sufficiently degenerate to be found in many proteins, both soluble and membrane-bound.
Collapse
|
38
|
Tang P, Zubryzcki I, Xu Y. Ab Initio Calculation of structures and properties of halogenated general anesthetics: halothane and sevoflurane. J Comput Chem 2001. [DOI: 10.1002/1096-987x(200103)22:4<436::aid-jcc1014>3.0.co;2-u] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Seto T, Firestone LL. Effects of normal alcohols and isoflurane on lipid headgroup dynamics in nicotinic acetylcholine receptor-rich lipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1509:111-22. [PMID: 11118523 DOI: 10.1016/s0005-2736(00)00285-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The trend of evidence suggests that general anesthetics act directly on proteins in the neural membrane. However, the fact that the functions of nicotinic acetylcholine receptor (sodium permeability, desensitization rate) are modulated by the composition of the membrane in which it is reconstituted has been thought to be a result of the variation of interactions between acetylcholine receptor and membrane. In this study, protein-lipid interaction at the level of the lipid headgroup was investigated using electron paramagnetic resonance (EPR) and headgroup spin label. Lipid headgroup mobility was evaluated with rotational correlation time from the EPR spectrum. Protein-lipid interaction at headgroup depth was demonstrated from the motionally restricted component of the spectrum. Rotational correlation time increased to 13 ns from 7 ns due to protein-lipid interaction. The effect of anesthetic (ethanol, 1-hexanol, and isoflurane) on protein-lipid interaction was investigated, and the correlation time was 13 ns. It is concluded that the anesthetics used in this study did not alter protein-lipid interaction at the level of the lipid headgroup, so far as observed by rotational correlation time, without excluding the possibility that anesthetics that perturb protein-lipid interactions modulate receptor functions via this mechanism.
Collapse
Affiliation(s)
- T Seto
- Department of Anesthesiology and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|