1
|
The Antimicrobial Peptide 1018-K6 Interacts Distinctly with Eukaryotic and Bacterial Membranes, the Basis of Its Specificity and Bactericidal Activity. Int J Mol Sci 2022; 23:ijms232012392. [PMID: 36293249 PMCID: PMC9603936 DOI: 10.3390/ijms232012392] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/12/2022] Open
Abstract
Since penicillin was discovered, antibiotics have been critical in the fight against infections. However, antibiotic misuse has led to drug resistance, which now constitutes a serious health problem. In this context, antimicrobial peptides (AMPs) constitute a natural group of short proteins, varying in structure and length, that act against certain types of bacterial pathogens. The antimicrobial peptide 1018-K6 (VRLIVKVRIWRR- NH2) has significant bactericidal and antibiofilm activity against Listeria monocytogenes isolates, and against different strains and serotypes of Salmonella. Here, the mechanism of action of 1018-K6 was explored further to understand the peptide-membrane interactions relevant to its activity, and to define their determinants. We combined studies with model synthetic membranes (liposomes) and model biological membranes, assessing the absorption maximum and the quenching of 1018-K6 fluorescence in aqueous and lipid environments, the self-quenching of carboxyfluorescein, as well as performing lipid sedimentation assays. The data obtained reflect the differential interactions of the 1018-K6 peptide with eukaryotic and prokaryotic membranes, and the specific interactions and mechanisms of action in the three prokaryotic species studied: Salmonella Typhimurium2GN, Escherichia coli3GN, and Staphylococcus aureus3GP. The AMP 1018-K6 is a candidate to prevent (food preservation) or treat (antibiotic use) infections caused by certain pathogenic bacteria, especially some that are resistant to current antibiotics.
Collapse
|
2
|
Kratochvil HT, Newberry RW, Mensa B, Mravic M, DeGrado WF. Spiers Memorial Lecture: Analysis and de novo design of membrane-interactive peptides. Faraday Discuss 2021; 232:9-48. [PMID: 34693965 PMCID: PMC8979563 DOI: 10.1039/d1fd00061f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Membrane-peptide interactions play critical roles in many cellular and organismic functions, including protection from infection, remodeling of membranes, signaling, and ion transport. Peptides interact with membranes in a variety of ways: some associate with membrane surfaces in either intrinsically disordered conformations or well-defined secondary structures. Peptides with sufficient hydrophobicity can also insert vertically as transmembrane monomers, and many associate further into membrane-spanning helical bundles. Indeed, some peptides progress through each of these stages in the process of forming oligomeric bundles. In each case, the structure of the peptide and the membrane represent a delicate balance between peptide-membrane and peptide-peptide interactions. We will review this literature from the perspective of several biologically important systems, including antimicrobial peptides and their mimics, α-synuclein, receptor tyrosine kinases, and ion channels. We also discuss the use of de novo design to construct models to test our understanding of the underlying principles and to provide useful leads for pharmaceutical intervention of diseases.
Collapse
Affiliation(s)
- Huong T Kratochvil
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Robert W Newberry
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Bruk Mensa
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Marco Mravic
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
3
|
Pal S, Koeppe RE, Chattopadhyay A. Membrane electrostatics sensed by tryptophan anchors in hydrophobic model peptides depends on non-aromatic interfacial amino acids: implications in hydrophobic mismatch. Faraday Discuss 2021; 232:330-346. [PMID: 34549729 DOI: 10.1039/d0fd00065e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
WALPs are synthetic α-helical membrane-spanning peptides that constitute a well-studied system for exploring hydrophobic mismatch. These peptides represent a simplified consensus motif for transmembrane domains of intrinsic membrane proteins due to their hydrophobic core of alternating leucine and alanine flanked by membrane-anchoring aromatic tryptophan residues. Although the modulation of mismatch responses in WALPs by tryptophan anchors has been reported earlier, there have been limited attempts to utilize the intrinsic tryptophan fluorescence of this class of peptides in mismatch sensors. We have previously shown, utilizing the red edge excitation shift (REES) approach, that interfacial WALP tryptophan residues in fluid phase bilayers experience a dynamically constrained membrane microenvironment. Interestingly, emerging reports suggest the involvement of non-aromatic interfacially localized residues in modulating local structure and dynamics in WALP analogs. In this backdrop, we have explored the effect of interfacial amino acids, such as lysine (in KWALPs) and glycine (in GWALPs), on the tryptophan microenvironment of WALP analogs in zwitterionic and negatively charged membranes. We show that interfacial tryptophans in KWALP and GWALP experience a more restricted microenvironment, as reflected in the substantial increase in magnitude of REES and apparent rotational correlation time, relative to those in WALP in zwitterionic membranes. Interestingly, in contrast to WALP, the tryptophan anchors in KWALP and GWALP appear insensitive to the presence of negatively charged lipids in the membrane. These results reveal a subtle interplay between non-aromatic flanking residues in transmembrane helices and negatively charged lipids at the membrane interface, which could modulate the membrane microenvironment experienced by interfacially localized tryptophan residues. Since interfacial tryptophans are known to influence mismatch responses in WALPs, our results highlight the possibility of utilizing the fluorescence signatures of tryptophans in membrane proteins or model peptides such as WALP as markers for assessing protein responses to hydrophobic mismatch. More importantly, these results constitute one of the first reports on the influence of lipid headgroup charge in fine-tuning hydrophobic mismatch in membrane bilayers, thereby enriching the existing framework of hydrophobic mismatch.
Collapse
Affiliation(s)
- Sreetama Pal
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India. .,CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| | - Roger E Koeppe
- Department of Chemistry and Biochemistry, University of Arkansas, AR 72701, USA
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India. .,Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| |
Collapse
|
4
|
Abstract
Proteins are molecular machines whose function depends on their ability to achieve complex folds with precisely defined structural and dynamic properties. The rational design of proteins from first-principles, or de novo, was once considered to be impossible, but today proteins with a variety of folds and functions have been realized. We review the evolution of the field from its earliest days, placing particular emphasis on how this endeavor has illuminated our understanding of the principles underlying the folding and function of natural proteins, and is informing the design of macromolecules with unprecedented structures and properties. An initial set of milestones in de novo protein design focused on the construction of sequences that folded in water and membranes to adopt folded conformations. The first proteins were designed from first-principles using very simple physical models. As computers became more powerful, the use of the rotamer approximation allowed one to discover amino acid sequences that stabilize the desired fold. As the crystallographic database of protein structures expanded in subsequent years, it became possible to construct proteins by assembling short backbone fragments that frequently recur in Nature. The second set of milestones in de novo design involves the discovery of complex functions. Proteins have been designed to bind a variety of metals, porphyrins, and other cofactors. The design of proteins that catalyze hydrolysis and oxygen-dependent reactions has progressed significantly. However, de novo design of catalysts for energetically demanding reactions, or even proteins that bind with high affinity and specificity to highly functionalized complex polar molecules remains an importnant challenge that is now being achieved. Finally, the protein design contributed significantly to our understanding of membrane protein folding and transport of ions across membranes. The area of membrane protein design, or more generally of biomimetic polymers that function in mixed or non-aqueous environments, is now becoming increasingly possible.
Collapse
|
5
|
Pal S, Koeppe RE, Chattopadhyay A. Wavelength-Selective Fluorescence of a Model Transmembrane Peptide: Constrained Dynamics of Interfacial Tryptophan Anchors. J Fluoresc 2018; 28:1317-1323. [PMID: 30225736 DOI: 10.1007/s10895-018-2293-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/03/2018] [Indexed: 11/27/2022]
Abstract
WALPs are prototypical, α-helical transmembrane peptides that represent a consensus sequence for transmembrane segments of integral membrane proteins and serve as excellent models for exploring peptide-lipid interactions and hydrophobic mismatch in membranes. Importantly, the WALP peptides are in direct contact with the lipids. They consist of a central stretch of alternating hydrophobic alanine and leucine residues capped at both ends by tryptophans. In this work, we employ wavelength-selective fluorescence approaches to explore the intrinsic fluorescence of tryptophan residues in WALP23 in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes. Our results show that the four tryptophan residues in WALP23 exhibit an average red edge excitation shift (REES) of 6 nm, implying their localization at the membrane interface, characterized by a restricted microenvironment. This result is supported by fluorescence anisotropy and lifetime measurements as a function of wavelength displayed by WALP23 tryptophans in POPC membranes. These results provide a new approach based on intrinsic fluorescence of interfacial tryptophans to address protein-lipid interaction and hydrophobic mismatch.
Collapse
Affiliation(s)
- Sreetama Pal
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Roger E Koeppe
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Amitabha Chattopadhyay
- Academy of Scientific and Innovative Research, Ghaziabad, India.
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India.
| |
Collapse
|
6
|
Phambu N, Almarwani B, Alwadai A, Phambu EN, Faciane N, Marion C, Sunda-Meya A. Calorimetric and Spectroscopic Studies of the Effects of the Cell Penetrating Peptide Pep-1 and the Antimicrobial Peptide Combi-2 on Vesicles Mimicking Escherichia coli Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12908-12915. [PMID: 29039950 DOI: 10.1021/acs.langmuir.7b01910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The objective of this study is to measure and compare the effects of the cell penetrating peptide (CPP) Pep-1 and the antimicrobial peptide (AMP) combi-2 on vesicles of membranes mimicking Escherichia coli (E. coli). To characterize the effects of Pep-1 and combi-2 on E. coli membrane vesicles, a combination of five biophysical techniques was employed: fluorescence, infrared, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) techniques. Upon addition of E. coli membranes, tryptophan fluorescence intensity of Pep-1 showed a sudden blue-shift and decreased in a nonconcentration-dependent manner while the intensity of combi-2 decreased in a concentration-dependent manner, most significantly for a very low peptide-to-lipid ratio of 1:40. Complexes of Pep-1 and combi-2 with E. coli membrane mimicking vesicles having shown a significant blue-shift in fluorescence intensity were then prepared and studied in freeze-dried states. IR results indicate that Pep-1 and combi-2 adopt a major 310-helix structure in the presence of E. coli membrane mimicking vesicles at low peptide concentration. Pep-1 and combi-2 have a similar effect on E. coli membrane mimicking vesicles at low concentration even though combi-2 is in the interfacial region of the bilayer while Pep-1 is located between the interfacial region and the hydrophobic region. Combi-2 at low concentration acts as a CPP. TGA and DSC results reveal that combi-2 has a stabilizing effect on E. coli at any concentration while Pep-1 stabilizes the E. coli membrane only at high concentration. Both peptides show a preferential interaction with one of the anionic lipids leading to clustering in E. coli membrane. SEM images reveal that Pep-1 and combi-2 form superstructures including fibrils in the presence of E. coli membrane mimicking vesicles. Calorimetric and spectroscopic techniques may be used in a complementary way with imaging techniques to gain more insights into peptide-lipid interactions.
Collapse
Affiliation(s)
- Nsoki Phambu
- Department of Chemistry, Tennessee State University , Nashville, Tennessee 37209, United States
| | - Bashiyar Almarwani
- Department of Chemistry, Tennessee State University , Nashville, Tennessee 37209, United States
| | - Amjad Alwadai
- Department of Chemistry, Tennessee State University , Nashville, Tennessee 37209, United States
| | - Esther N Phambu
- Department of Chemical & Biomolecular Engineering, New York University , Brooklyn, New York 11201, United States
| | - Natalie Faciane
- Department of Physics and Computer Science, Xavier University of Louisiana , New Orleans, Louisiana 70125, United States
| | - Carmel Marion
- Department of Physics and Computer Science, Xavier University of Louisiana , New Orleans, Louisiana 70125, United States
| | - Anderson Sunda-Meya
- Department of Physics and Computer Science, Xavier University of Louisiana , New Orleans, Louisiana 70125, United States
| |
Collapse
|
7
|
Yang P, Wu FG, Chen Z. Lipid Fluid-Gel Phase Transition Induced Alamethicin Orientational Change Probed by Sum Frequency Generation Vibrational Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2013; 117:17039-17049. [PMID: 24124624 PMCID: PMC3792402 DOI: 10.1021/jp4047215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Alamethicin has been extensively studied as an antimicrobial peptide (AMP) and is widely used as a simple model for ion channel proteins. It has been shown that the antimicrobial activity of AMPs is related to their cell membrane orientation, which may be influenced by the phase of the lipid molecules in the cell membrane. The "healthy" cell membranes contain fluid phase lipids, while gel phase lipids can be found in injured or aged cells or in some phase separated membrane regions. Thus, investigations on how the phase of the lipids influences the membrane orientation of AMPs are important to understand more details regarding the AMP's action on cell membranes. In this study, we determined the orientational changes of alamethicin molecules associated with planar substrate supported single lipid bilayers (serving as model cell membranes) with different phases (fluid or gel) as a function of peptide concentration using sum frequency generation (SFG) vibrational spectroscopy. The phase changes of the lipid bilayers were realized by varying the sample temperature. Our SFG results indicated that alamethicin lies down on the surface of fluid and gel phase 1,2-dimyristoyl(d54)-sn-glycero-3-phosphocholine (d-DMPC) lipid bilayers when the lipid bilayers are in contact with a peptide solution with a low concentration of 0.84 μM. However, at a medium peptide concentration of 10.80 μM, alamethicin inserts into the fluid phase lipid bilayer. Its orientation switches from a transmembrane to an in-plane (or lying down) orientation when the phase of the lipid bilayer changes from a fluid state to a gel state. At a high peptide concentration of 21.60 μM, alamethicin adopts a transmembrane orientation while associated with both fluid and gel phase lipid bilayers. We also studied the structural changes of the fluid and gel phase lipid bilayers upon their interactions with alamethicin molecules at different peptide concentrations.
Collapse
Affiliation(s)
| | | | - Zhan Chen
- To whom correspondence should be addressed. Fax: 734-647-4865;
| |
Collapse
|
8
|
Mäler L. Solution NMR studies of cell-penetrating peptides in model membrane systems. Adv Drug Deliv Rev 2013; 65:1002-11. [PMID: 23137785 DOI: 10.1016/j.addr.2012.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/17/2012] [Accepted: 10/22/2012] [Indexed: 12/29/2022]
Abstract
Cell-penetrating peptides (CPPs) are a class of short, often cationic peptides that have the capability to translocate across cellular membranes, and although the translocation most likely involves several pathways, they interact directly with membranes, as well as with model bilayers. Most CPPs attain a three-dimensional structure when interacting with bilayers, while they are more or less unstructured in aqueous solution. To understand the relationship between structure and the effect that CPPs have on membranes it is of great importance to investigate CPPs at atomic resolution in a suitable membrane model. Moreover, the location in bilayers is likely to be correlated with the translocation mechanism. Solution-state NMR offers a unique possibility to investigate structure, dynamics and location of proteins and peptides in bilayers. This review focuses on solution NMR as a tool for investigating CPP-lipid interactions. Structural propensities and cell-penetrating capabilities can be derived from a combination of CPP solution structures and studies of the effect that the peptides have on bilayers and the localization in a bilayer.
Collapse
Affiliation(s)
- Lena Mäler
- Department of Biochemistry and Biophysics, The Arrhenius Laboratory, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
9
|
Caputo GA. Analyzing the effects of hydrophobic mismatch on transmembrane α-helices using tryptophan fluorescence spectroscopy. Methods Mol Biol 2013; 1063:95-116. [PMID: 23975773 DOI: 10.1007/978-1-62703-583-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrophobic matching between transmembrane protein segments and the lipid bilayer in which they are embedded is a significant factor in the behavior and orientation of such transmembrane segments. The condition of hydrophobic mismatch occurs when the hydrophobic thickness of a lipid bilayer is significantly different than the length of the membrane spanning segment of a protein, resulting in a mismatch. This mismatch can result in altered function of proteins as well as nonnative structural arrangements including effects on transmembrane α-helix tilt angles, oligomerization state, and/or the formation of non-transmembrane topographies. Here, a fluorescence-based protocol is described for testing model transmembrane α-helices and their sensitivity to hydrophobic mismatch by measuring the propensity of these helices to form non-transmembrane structures. Overall, good hydrophobic matching between the bilayer and transmembrane segments is an important factor that must be considered when designing membrane proteins or peptides.
Collapse
Affiliation(s)
- Gregory A Caputo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, USA
| |
Collapse
|
10
|
Soto-Arriaza M, Olivares-Ortega C, Lissi E. Effect of the addition of alkanols of different topology to dipalmitoyl-phosphatidylcholine vesicles in the presence of gramicidin. J Colloid Interface Sci 2012; 385:48-57. [DOI: 10.1016/j.jcis.2012.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/06/2012] [Accepted: 07/07/2012] [Indexed: 11/29/2022]
|
11
|
Mura M, Dennison SR, Zvelindovsky AV, Phoenix DA. Aurein 2.3 functionality is supported by oblique orientated α-helical formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:586-94. [PMID: 22960040 DOI: 10.1016/j.bbamem.2012.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/20/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
Abstract
In this study, an amphibian antimicrobial peptide, aurein 2.3, was predicted to use oblique orientated α-helix formation in its mechanism of membrane destabilisation. Molecular dynamic (MD) simulations and circular dichroism (CD) experimental data suggested that aurein 2.3 exists in solution as unstructured monomers and folds to form predominantly α-helical structures in the presence of a dimyristoylphosphatidylcholine membrane. MD showed that the peptide was highly surface active, which supported monolayer data where the peptide induced surface pressure changes>34 mNm(-1). In the presence of a lipid membrane MD simulations suggested that under hydrophobic mismatch the peptide is seen to insert via oblique orientation with a phenylalanine residue (PHE3) playing a key role in the membrane interaction. There is evidence of snorkelling leucine residues leading to further membrane disruption and supporting the high level of lysis observed using calcein release assays (76%). Simulations performed at higher peptide/lipid ratio show peptide cooperativity is key to increased efficiency leading to pore-formation.
Collapse
Affiliation(s)
- Manuela Mura
- Computational Physics Group and Institute for nanotechnology and Bioengineering, University of Central Lancashire, Preston PR1 2HE, UK
| | | | | | | |
Collapse
|
12
|
Mueller NS, Wedlich-Söldner R, Spira F. From mosaic to patchwork: matching lipids and proteins in membrane organization. Mol Membr Biol 2012; 29:186-96. [PMID: 22594654 DOI: 10.3109/09687688.2012.687461] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Biological membranes encompass and compartmentalize cells and organelles and are a prerequisite to life as we know it. One defining feature of membranes is an astonishing diversity of building blocks. The mechanisms and principles organizing the thousands of proteins and lipids that make up membrane bilayers in cells are still under debate. Many terms and mechanisms have been introduced over the years to account for certain phenomena and aspects of membrane organization and function. Recently, the different viewpoints - focusing on lipids vs. proteins or physical vs. molecular driving forces for membrane organization - are increasingly converging. Here we review the basic properties of biological membranes and the most common theories for lateral segregation of membrane components before discussing an emerging model of a self-organized, multi-domain membrane or 'patchwork membrane'.
Collapse
Affiliation(s)
- Nikola S Mueller
- Cellular Dynamics and Cell Patterning, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | |
Collapse
|
13
|
|
14
|
Hanulová M, Weiss M. Membrane-mediated interactions – a physico-chemical basis for protein sorting. Mol Membr Biol 2012; 29:177-85. [DOI: 10.3109/09687688.2012.667838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Cardoso AM, Trabulo S, Cardoso AL, Lorents A, Morais CM, Gomes P, Nunes C, Lúcio M, Reis S, Padari K, Pooga M, Pedroso de Lima MC, Jurado AS. S4(13)-PV cell-penetrating peptide induces physical and morphological changes in membrane-mimetic lipid systems and cell membranes: Implications for cell internalization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:877-88. [DOI: 10.1016/j.bbamem.2011.12.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/05/2011] [Accepted: 12/21/2011] [Indexed: 01/09/2023]
|
16
|
Trabulo S, Cardoso AL, Cardoso AMS, Düzgüneş N, Jurado AS, de Lima MCP. Cell-penetrating peptide-based systems for nucleic acid delivery: a biological and biophysical approach. Methods Enzymol 2012; 509:277-300. [PMID: 22568911 DOI: 10.1016/b978-0-12-391858-1.00014-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The increasing knowledge on the genetic basis of disease provides a platform for the development of promising gene-targeted therapies that can be applied to numerous pathological conditions, including cancer. Such genetic-based approaches involve the use of nucleic acids as therapeutic agents, either for the insertion or for the repair and regulation of specific genes. However, despite the huge pharmacological potential of these molecules, their application remains highly dependent on the development of delivery systems capable of mediating efficient cellular uptake. The discovery of a class of small peptides, the so-called cell-penetrating peptides (CPPs), which are able to very efficiently cross cell membranes through a mechanism that is independent of membrane receptors or transporters and avoids lysosomal enzymatic degradation, has been enthusiastically considered of key interest to improve noninvasive cellular delivery of therapeutic molecules. A large number of CPPs have been applied successfully to mediate the intracellular delivery of nucleic acids, including the S4(13)PV peptide for which interactions with membranes and resulting biological effects are illustrated in this chapter. Here, we provide a description of the experimental procedures for the preparation of CPP-based nucleic acid complexes and assessment of their formation, the selection of those protocols leading to the most efficient complexes, the biophysical characterization of CPP membrane interactions, and the evaluation of the biological and cytotoxic activity of the complexes.
Collapse
Affiliation(s)
- Sara Trabulo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
17
|
Coarse grained molecular dynamics simulations of transmembrane protein-lipid systems. Int J Mol Sci 2010; 11:2393-420. [PMID: 20640160 PMCID: PMC2904924 DOI: 10.3390/ijms11062393] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/16/2010] [Accepted: 05/30/2010] [Indexed: 12/24/2022] Open
Abstract
Many biological cellular processes occur at the micro- or millisecond time scale. With traditional all-atom molecular modeling techniques it is difficult to investigate the dynamics of long time scales or large systems, such as protein aggregation or activation. Coarse graining (CG) can be used to reduce the number of degrees of freedom in such a system, and reduce the computational complexity. In this paper the first version of a coarse grained model for transmembrane proteins is presented. This model differs from other coarse grained protein models due to the introduction of a novel angle potential as well as a hydrogen bonding potential. These new potentials are used to stabilize the backbone. The model has been validated by investigating the adaptation of the hydrophobic mismatch induced by the insertion of WALP-peptides into a lipid membrane, showing that the first step in the adaptation is an increase in the membrane thickness, followed by a tilting of the peptide.
Collapse
|
18
|
Prades J, Encinar JA, Prades J, Encinar JA, Funari SS, González-Ros JM, Escribá PV, Barceló F. Interaction of transmembrane-spanning segments of the α2-adrenergic receptor with model membranes. Mol Membr Biol 2009; 26:265-78. [DOI: 10.1080/09687680903081610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Tiburu EK, Bowman AL, Struppe JO, Janero DR, Avraham HK, Makriyannis A. Solid-state NMR and molecular dynamics characterization of cannabinoid receptor-1 (CB1) helix 7 conformational plasticity in model membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1788:1159-67. [PMID: 19366584 PMCID: PMC3712639 DOI: 10.1016/j.bbamem.2009.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 01/30/2009] [Accepted: 02/02/2009] [Indexed: 11/30/2022]
Abstract
Little direct information is available regarding the influence of membrane environment on transmembrane (TM) G-protein-coupled receptor (GPCR) conformation and dynamics. The human CB1 cannabinoid receptor (hCB1) is a prominent GPCR pharmacotherapeutic target in which helix 7 appears critical to ligand recognition. We have chemically synthesized a hCB1 peptide corresponding to a segment of TM helix 7 and the entire contiguous helix 8 domain (fourth cytoplasmic loop) and reconstituted it in defined phospholipid-bilayer model membranes. Using an NMR-based strategy combined with molecular dynamics simulations, we provide the first direct experimental description of the orientation of hCB1 helix 7 in phospholipid membranes of varying thickness and the mechanism by which helix-7 conformation adjusts to avoid hydrophobic mismatch. Solid-state (15)N NMR data show that hCB1 helices 7 and 8 reconstituted into phospholipid bilayers are oriented in a TM and in-plane (i.e., parallel to the phospholipid membrane surface) fashion, respectively. TM helix orientation is influenced by the thickness of the hydrophobic membrane bilayer as well as the interaction of helix 8 with phospholipid polar headgroups. Molecular dynamics simulations show that a decrease in phospholipid chain-length induces a kink at P394 in TM helix 7 to avoid hydrophobic mismatch. Thus, the NP(X)nY motif found in hCB1 and highly conserved throughout the GPCR superfamily is important for flexing helix 7 to accommodate bilayer thickness. Dynamic modulation of hCB1-receptor TM helix conformation by its membrane environment may have general relevance to GPCR structure and function.
Collapse
Affiliation(s)
- Elvis K. Tiburu
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Anna L. Bowman
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | | | - David R. Janero
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | | | | |
Collapse
|
20
|
Lind J, Nordin J, Mäler L. Lipid dynamics in fast-tumbling bicelles with varying bilayer thickness: Effect of model transmembrane peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2526-34. [DOI: 10.1016/j.bbamem.2008.07.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 07/15/2008] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
|
21
|
Affiliation(s)
- Kevin R Mackenzie
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
22
|
Lorin A, Charloteaux B, Fridmann-Sirkis Y, Thomas A, Shai Y, Brasseur R. Mode of Membrane Interaction and Fusogenic Properties of a de Novo Transmembrane Model Peptide Depend on the Length of the Hydrophobic Core. J Biol Chem 2007; 282:18388-18396. [PMID: 17459883 DOI: 10.1074/jbc.m700099200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Model peptides composed of alanine and leucine residues are often used to mimic single helical transmembrane domains. Many studies have been carried out to determine how they interact with membranes. However, few studies have investigated their lipid-destabilizing effect. We designed three peptides designated KALRs containing a hydrophobic stretch of 14, 18, or 22 alanines/leucines surrounded by charged amino acids. Molecular modeling simulations in an implicit membrane model as well as attenuated total reflection-Fourier transform infrared analyses show that KALR is a good model of a transmembrane helix. However, tryptophan fluorescence and attenuated total reflection-Fourier transform infrared spectroscopy indicate that the extent of binding and insertion into lipids increases with the length of the peptide hydrophobic core. Although binding can be directly correlated to peptide hydrophobicity, we show that insertion of peptides into a membrane is determined by the length of the peptide hydrophobic core. Functional studies were performed by measuring the ability of peptides to induce lipid mixing and leakage of liposomes. The data reveal that whereas KALR14 does not destabilize liposomal membranes, KALR18 and KALR22 induce 40 and 50% of lipid-mixing, and 65 and 80% of leakage, respectively. These results indicate that a transmembrane model peptide can induce liposome fusion in vitro if it is long enough. The reasons for the link between length and fusogenicity are discussed in relation to studies of transmembrane domains of viral fusion proteins. We propose that fusogenicity depends not only on peptide insertion but also on the ability of peptides to destabilize the two leaflets of the liposome membrane.
Collapse
Affiliation(s)
- Aurélien Lorin
- Gembloux Agricultural University, Centre de Biophysique Moléculaire Numérique, B-5030 Gembloux, Belgium
| | - Benoit Charloteaux
- Gembloux Agricultural University, Centre de Biophysique Moléculaire Numérique, B-5030 Gembloux, Belgium
| | - Yael Fridmann-Sirkis
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Annick Thomas
- Gembloux Agricultural University, Centre de Biophysique Moléculaire Numérique, B-5030 Gembloux, Belgium
| | - Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Robert Brasseur
- Gembloux Agricultural University, Centre de Biophysique Moléculaire Numérique, B-5030 Gembloux, Belgium.
| |
Collapse
|
23
|
Yaghmur A, Laggner P, Zhang S, Rappolt M. Tuning curvature and stability of monoolein bilayers by designer lipid-like peptide surfactants. PLoS One 2007; 2:e479. [PMID: 17534429 PMCID: PMC1868779 DOI: 10.1371/journal.pone.0000479] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 05/03/2007] [Indexed: 11/19/2022] Open
Abstract
This study reports the effect of loading four different charged designer lipid-like short anionic and cationic peptide surfactants on the fully hydrated monoolein (MO)-based Pn3m phase (Q(224)). The studied peptide surfactants comprise seven amino acid residues, namely A(6)D, DA(6), A(6)K, and KA(6). D (aspartic acid) bears two negative charges, K (lysine) bears one positive charge, and A (alanine) constitutes the hydrophobic tail. To elucidate the impact of these peptide surfactants, the ternary MO/peptide/water system has been investigated using small-angle X-ray scattering (SAXS), within a certain range of peptide concentrations (R
Collapse
Affiliation(s)
- Anan Yaghmur
- Institute of Biophysics and Nanosystems Research (IBN), Austrian Academy of Sciences, Graz, Austria.
| | | | | | | |
Collapse
|
24
|
Atilgan E, Sun SX. Shape transitions in lipid membranes and protein mediated vesicle fusion and fission. J Chem Phys 2007; 126:095102. [PMID: 17362130 DOI: 10.1063/1.2483862] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the cell, the plasma membrane is often densely decorated by transmembrane proteins. The morphology and dynamics of the membrane are strongly influenced by the presence of proteins. In this paper, we use a coarse-grained model to explore the composite membrane-protein system and develop a simulation methodology based on thermodynamic integration to examine free energy changes during membrane shape transitions. The authors show that a critical concentration of conical membrane proteins or proteins with nonzero spontaneous curvature can drive the formation of small vesicles. The driving force of vesicle budding stems from the preference of proteins to gather in regions of high curvature. A sufficiently high concentration of proteins therefore can influence the topology of the membrane. The biological significance of our results is discussed.
Collapse
Affiliation(s)
- Erdinç Atilgan
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
25
|
Pedersen UR, Leidy C, Westh P, Peters GH. The effect of calcium on the properties of charged phospholipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:573-82. [PMID: 16730642 DOI: 10.1016/j.bbamem.2006.03.035] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 03/08/2006] [Accepted: 03/14/2006] [Indexed: 11/28/2022]
Abstract
We have performed molecular dynamics simulations to investigate the structure and dynamics of charged bilayers as well as the distribution of counterions at the bilayer interface. For this, we have considered the negatively charged di-myristoyl-phosphatidyl-glycerol (DMPG) and di-myristoyl-phosphatidyl-serine (DMPS) bilayers as well as a protonated di-myristoyl-phosphatidyl-serine (DMPSH) bilayer. We were particularly interested in calcium ions due to their important role in biological systems. Simulations performed in the presence of calcium ions (DMPG, DMPS) or sodium ions (DMPS) were run for 45-60 ns. Simulation results for DMPG are compared with fluorescence measurements. The average areas per molecule were 47.4+/-0.5 A2 (DMPG with calcium), 47.3+/-0.5 A2 (DMPS with calcium), 51.3+/-1.0 A2 (DMPS with sodium) and 45.3+/-0.5 A2 (DMPSH). The structure of the negatively charged lipids is significantly affected by the counterions, where calcium ions have a more pronounced effect than sodium ions. Calcium ions were found to be tightly bound to the anionic groups of the lipid molecules and as such appear to constitute an integral part of the membrane interface on nanoseconds time scales. In contrast to sodium ions, calcium ions are localised in a narrow (approximately 10 A) band around the phosphate group. The interaction of calcium with the lipid molecules enhances the molecular packing of the PG and PS lipids. This observation is in good agreement with emission spectra of the membrane partitioning probe Laurdan in DMPG multilamellar vesicles that indicate an increase in the ordering of the DMPG bilayer due to the presence of calcium. Our results indicate that calcium ions, which often function as a second messengers in living cells have a pronounced effect on membrane structures, which may have implications during signal transduction events.
Collapse
Affiliation(s)
- Ulf R Pedersen
- Department of Life Science and Chemistry, Roskilde University, MEMPHYS-Center for Biomembrane Physics, 1 Universitetsvej, DK-4000 Roskilde, Denmark
| | | | | | | |
Collapse
|
26
|
Siegel DP. Determining the ratio of the Gaussian curvature and bending elastic moduli of phospholipids from Q(II) phase unit cell dimensions. Biophys J 2006; 91:608-18. [PMID: 16648171 PMCID: PMC1483111 DOI: 10.1529/biophysj.106.085225] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A method is presented for measuring M, the ratio of the Gaussian (saddle splay) elastic modulus to the bending elastic modulus of a lipid monolayer. The ratio M is determined from measurements of the equilibrium bicontinuous inverted cubic (Q(II)) phase unit cell size in excess water as a function of temperature. The analysis includes the effect of a curvature elastic term that is second-order in the Gaussian curvature, K. Preliminary results using data on DOPE-Me validate the method. The fitted value of M is within 8% of the value estimated in an earlier treatment. The method can be used to measure changes in M due to addition of exogenous lipids and peptides to a host lipid system. The Gaussian elastic modulus has a substantial effect on the stability of fusion intermediates (stalks, hemifusion diaphragms, and fusion pores). Studying the effects of peptides and different lipids on M via this method may yield insights into how fusion protein moieties stabilize intermediates in membrane fusion in vivo. The contribution of the K2 curvature elastic term to the free energy of Q(II) phase and fusion pores explains some features of fusion pore stability and dynamics, and some peculiar observations concerning the mechanism of L(alpha)/Q(II) phase transitions.
Collapse
|
27
|
Nymeyer H, Woolf TB, Garcia AE. Folding is not required for bilayer insertion: replica exchange simulations of an alpha-helical peptide with an explicit lipid bilayer. Proteins 2006; 59:783-90. [PMID: 15828005 DOI: 10.1002/prot.20460] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We implement the replica exchange molecular dynamics algorithm to study the interactions of a model peptide (WALP-16) with an explicitly represented DPPC membrane bilayer. We observe the spontaneous, unbiased insertion of WALP-16 into the DPPC bilayer and its folding into an alpha-helix with a transbilayer orientation. The free energy surface suggests that the insertion of the peptide into the DPPC bilayer precedes secondary structure formation. Although the peptide has some propensity to form a partially helical structure in the interfacial region of the DPPC/water system, this state is not a productive intermediate but rather an off-pathway trap for WALP-16 insertion. Equilibrium simulations show that the observed insertion/folding pathway mirrors the potential of mean force (PMF). Calculation of the enthalpic and entropic contributions to this PMF show that the surface bound conformation of WALP-16 is significantly lower in energy than other conformations, and that the insertion of WALP-16 into the bilayer without regular secondary structure is enthalpically unfavorable by 5-10 kcal/mol/residue. The observed insertion/folding pathway disagrees with the dominant conceptual model, which is that a surface-bound helix is an obligatory intermediate for the insertion of alpha-helical peptides into lipid bilayers. In our simulations, the observed insertion/folding pathway is favored because of a large (>100 kcal/mol) increase in system entropy that occurs when the unstructured WALP-16 peptide enters the lipid bilayer interior. The insertion/folding pathway that is lowest in free energy depends sensitively on the near cancellation of large enthalpic and entropic terms. This suggests the possibility that intrinsic membrane peptides may have a diversity of insertion/folding behaviors depending on the exact system of peptide and lipid under consideration.
Collapse
Affiliation(s)
- Hugh Nymeyer
- Theoretical Biology & Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | |
Collapse
|
28
|
Siegel DP, Cherezov V, Greathouse DV, Koeppe RE, Killian JA, Caffrey M. Transmembrane peptides stabilize inverted cubic phases in a biphasic length-dependent manner: implications for protein-induced membrane fusion. Biophys J 2005; 90:200-11. [PMID: 16214859 PMCID: PMC1367019 DOI: 10.1529/biophysj.105.070466] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
WALP peptides consist of repeating alanine-leucine sequences of different lengths, flanked with tryptophan "anchors" at each end. They form membrane-spanning alpha-helices in lipid membranes, and mimic protein transmembrane domains. WALP peptides of increasing length, from 19 to 31 amino acids, were incorporated into N-monomethylated dioleoylphosphatidylethanolamine (DOPE-Me) at concentrations up to 0.5 mol % peptide. When pure DOPE-Me is heated slowly, the lamellar liquid crystalline (L(alpha)) phase first forms an inverted cubic (Q(II)) phase, and the inverted hexagonal (H(II)) phase at higher temperatures. Using time-resolved x-ray diffraction and slow temperature scans (1.5 degrees C/h), WALP peptides were shown to decrease the temperatures of Q(II) and H(II) phase formation (T(Q) and T(H), respectively) as a function of peptide concentration. The shortest and longest peptides reduced T(Q) the most, whereas intermediate lengths had weaker effects. These findings are relevant to membrane fusion because the first step in the L(alpha)/Q(II) phase transition is believed to be the formation of fusion pores between pure lipid membranes. These results imply that physiologically relevant concentrations of these peptides could increase the susceptibility of biomembrane lipids to fusion through an effect on lipid phase behavior, and may explain one role of the membrane-spanning domains in the proteins that mediate membrane fusion.
Collapse
|
29
|
Strandberg E, Ozdirekcan S, Rijkers DTS, van der Wel PCA, Koeppe RE, Liskamp RMJ, Killian JA. Tilt angles of transmembrane model peptides in oriented and non-oriented lipid bilayers as determined by 2H solid-state NMR. Biophys J 2005; 86:3709-21. [PMID: 15189867 PMCID: PMC1304272 DOI: 10.1529/biophysj.103.035402] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Solid-state NMR methods employing (2)H NMR and geometric analysis of labeled alanines (GALA) were used to study the structure and orientation of the transmembrane alpha-helical peptide acetyl-GWW(LA)(8)LWWA-amide (WALP23) in phosphatidylcholine (PC) bilayers of varying thickness. In all lipids the peptide was found to adopt a transmembrane alpha-helical conformation. A small tilt angle of 4.5 degrees was observed in di-18:1-PC, which has a hydrophobic bilayer thickness that approximately matches the hydrophobic length of the peptide. This tilt angle increased slightly but systematically with increasing positive mismatch to 8.2 degrees in di-C12:0-PC, the shortest lipid used. This small increase in tilt angle is insufficient to significantly change the effective hydrophobic length of the peptide and thereby to compensate for the increasing hydrophobic mismatch, suggesting that tilt of these peptides in a lipid bilayer is energetically unfavorable. The tilt and also the orientation around the peptide axis were found to be very similar to the values previously reported for a shorter WALP19 peptide (GWW(LA)(6)LWWA). As also observed in this previous study, the peptide rotates rapidly around the bilayer normal, but not around its helix axis. Here we show that these properties allow application of the GALA method not only to macroscopically aligned samples but also to randomly oriented samples, which has important practical advantages. A minimum of four labeled alanine residues in the hydrophobic transmembrane sequence was found to be required to obtain accurate tilt values using the GALA method.
Collapse
Affiliation(s)
- Erik Strandberg
- Department of Biochemistry of Membranes, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
Siegel DP, Kozlov MM. The gaussian curvature elastic modulus of N-monomethylated dioleoylphosphatidylethanolamine: relevance to membrane fusion and lipid phase behavior. Biophys J 2004; 87:366-74. [PMID: 15240471 PMCID: PMC1304357 DOI: 10.1529/biophysj.104.040782] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Accepted: 03/12/2004] [Indexed: 11/18/2022] Open
Abstract
The energy of intermediates in fusion of phospholipid bilayers is sensitive to kappa(m), the saddle splay (Gaussian curvature) elastic modulus of the lipid monolayers. The value kappa(m) is also important in understanding the stability of inverted cubic (Q(II)) and rhombohedral (R) phases relative to the lamellar (L(alpha)) and inverted hexagonal (H(II)) phases in phospholipids. However, kappa(m) cannot be measured directly. It was previously measured by observing changes in Q(II) phase lattice dimensions as a function of water content. Here we use observations of the phase behavior of N-mono-methylated dioleoylphosphatidylethanolamine (DOPE-Me) to determine kappa(m). At the temperature of the L(alpha)/Q(II) phase transition, T(Q), the partial energies of the two phases are equal, and we can express kappa(m) in terms of known lipid monolayer parameters: the spontaneous curvature of DOPE-Me, the monolayer bending modulus kappa(m), and the distance of the monolayer neutral surface from the bilayer midplane, delta. The calculated ratio kappa(m)/kappa(m) is -0.83 +/- 0.08 at T(Q) approximately 55 degrees C. The uncertainty is due primarily to uncertainty in the value of delta for the L(alpha) phase. This value of kappa(m)/kappa(m) is in accord with theoretical expectations, including recent estimates of the value required to rationalize observations of rhombohedral (R) phase stability in phospholipids. The value kappa(m) substantially affects the free energy of formation of fusion intermediates: more energy (tens of k(B)T) is required to form stalks and fusion pores (ILAs) than estimated solely on the basis of the bending elastic energy. In particular, ILAs are much higher in energy than previously estimated. This rationalizes the action of fusion-catalyzing proteins in stabilizing nascent fusion pores in biomembranes; a function inferred from recent experiments in viral systems. These results change predictions of earlier work on ILA and Q(II) phase stability and L(alpha)/Q(II) phase transition mechanisms. To our knowledge, this is the first determination of the saddle splay (Gaussian) modulus in a lipid system consisting only of phospholipids.
Collapse
Affiliation(s)
- D P Siegel
- Givaudan, Inc., Cincinnati, Ohio 45216, USA.
| | | |
Collapse
|
31
|
Mosbahi K, Walker D, Lea E, Moore GR, James R, Kleanthous C. Destabilization of the Colicin E9 Endonuclease Domain by Interaction with Negatively Charged Phospholipids. J Biol Chem 2004; 279:22145-51. [PMID: 15044477 DOI: 10.1074/jbc.m400402200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown previously that the 134-residue endonuclease domain of the bacterial cytotoxin colicin E9 (E9 DNase) forms channels in planar lipid bilayers (Mosbahi, K., Lemaître, C., Keeble, A. H., Mobasheri, H., Morel, B., James, R., Moore, G. R., Lea, E. J., and Kleanthous, C. (2002) Nat. Struct. Biol. 9, 476-484). It was proposed that the E9 DNase mediates its own translocation across the cytoplasmic membrane and that the formation of ion channels is essential to this process. Here we describe changes to the structure and stability of the E9 DNase that accompany interaction of the protein with phospholipid vesicles. Formation of the protein-lipid complex at pH 7.5 resulted in a red-shift of the intrinsic protein fluorescence emission maximum (lambda(max)) from 333 to 346 nm. At pH 4.0, where the E9 DNase lacks tertiary structure but retains secondary structure, DOPG induced a blue-shift in lambda(max), from 354 to 342 nm. Changes in lambda(max) were specific for anionic phospholipid vesicles at both pHs, suggesting electrostatics play a role in this association. The effects of phospholipid were negated by Im9 binding, the high affinity, acidic, exosite inhibitor protein, but not by zinc, which binds at the active site. Fluorescence-quenching experiments further demonstrated that similar protein-phospholipid complexes are formed regardless of whether the E9 DNase is initially in its native conformation. Consistent with these observations, chemical and thermal denaturation data as well as proteolytic susceptibility experiments showed that association with negatively charged phospholipids destabilize the E9 DNase. We suggest that formation of a destabilizing protein-lipid complex pre-empts channel formation by the E9 DNase and constitutes the initial step in its translocation across the Escherichia coli inner membrane.
Collapse
Affiliation(s)
- Khédidja Mosbahi
- Department of Biology, University of York, York YO10 5YW, United Kingdom
| | | | | | | | | | | |
Collapse
|
32
|
Basyn F, Spies B, Bouffioux O, Thomas A, Brasseur R. Insertion of X-ray structures of proteins in membranes. J Mol Graph Model 2003; 22:11-21. [PMID: 12798387 DOI: 10.1016/s1093-3263(03)00122-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Few structures of membrane proteins are known and their relationships with the membrane are unclear. In a previous report, 20 X-ray structures of transmembrane proteins were analyzed in silico for their orientation in a 36A-thick membrane [J. Mol. Graph. Model. 20 (2001) 235]. In this paper, we use the same approach to analyze how the insertion of the X-ray structures varies with the bilayer thickness. The protein structures are kept constant and, at each membrane thickness, the protein is allowed to tilt and rotate in order to accommodate at their best. The conditions are said to be optimal when the energy of insertion is minimal. The results show that most helix bundles require thicker membranes than porin barrels. Moreover, in a few instances, the ideal membrane thickness is unrealistic with respect to natural membranes supporting that the X-ray structure requires adaptation to stabilize in membrane. For instance, the squalene cyclase could adapt by bending the side chains of its ring of lysine and arginine in order to increase the hydrophobic surface in contact with membranes. We analyzed the distribution of amino acids in the water, interface and acyl chain layers of the membrane and compared with the literature.
Collapse
Affiliation(s)
- Frederic Basyn
- Centre de Biophysique Moléculaire Numérique, Faculté Agronomique, 2 Passage des déportés, FSAGX, 5030, Gembloux, Belgium.
| | | | | | | | | |
Collapse
|
33
|
Abstract
Transmembrane segments of proteins are often flanked by lysine residues. The side chains of these residues may snorkel, i.e. they may bury themselves with their aliphatic part in the hydrophobic region of the lipid bilayer, while positioning the charged amino group in the more polar interface. Here we estimate the free energy cost of snorkeling from thermodynamical calculations based on studies with synthetic transmembrane peptides [Strandberg et al. (2002) Biochemistry 41, 7190-7198]. The value is estimated to be between 0.07 and 0.7 kcal mol(-1) for a lysine side chain. This very low value indicates that snorkeling may be a common process, which should be taken into consideration both in experimental and in theoretical studies on protein-lipid interactions.
Collapse
Affiliation(s)
- Erik Strandberg
- Department of Biochemistry of Membranes, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, The Netherlands.
| | | |
Collapse
|
34
|
Zemel A, Fattal DR, Ben-Shaul A. Energetics and self-assembly of amphipathic peptide pores in lipid membranes. Biophys J 2003; 84:2242-55. [PMID: 12668433 PMCID: PMC1302791 DOI: 10.1016/s0006-3495(03)75030-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Accepted: 12/13/2002] [Indexed: 11/25/2022] Open
Abstract
We present a theoretical study of the energetics, equilibrium size, and size distribution of membrane pores composed of electrically charged amphipathic peptides. The peptides are modeled as cylinders (mimicking alpha-helices) carrying different amounts of charge, with the charge being uniformly distributed over a hydrophilic face, defined by the angle subtended by polar amino acid residues. The free energy of a pore of a given radius, R, and a given number of peptides, s, is expressed as a sum of the peptides' electrostatic charging energy (calculated using Poisson-Boltzmann theory), and the lipid-perturbation energy associated with the formation of a membrane rim (which we model as being semitoroidal) in the gap between neighboring peptides. A simple phenomenological model is used to calculate the membrane perturbation energy. The balance between the opposing forces (namely, the radial free energy derivatives) associated with the electrostatic free energy that favors large R, and the membrane perturbation term that favors small R, dictates the equilibrium properties of the pore. Systematic calculations are reported for circular pores composed of various numbers of peptides, carrying different amounts of charge (1-6 elementary, positive charges) and characterized by different polar angles. We find that the optimal R's, for all (except, possibly, very weakly) charged peptides conform to the "toroidal" pore model, whereby a membrane rim larger than approximately 1 nm intervenes between neighboring peptides. Only weakly charged peptides are likely to form "barrel-stave" pores where the peptides essentially touch one another. Treating pore formation as a two-dimensional self-assembly phenomenon, a simple statistical thermodynamic model is formulated and used to calculate pore size distributions. We find that the average pore size and size polydispersity increase with peptide charge and with the amphipathic polar angle. We also argue that the transition of peptides from the adsorbed to the inserted (membrane pore) state is cooperative and thus occurs rather abruptly upon a change in ambient conditions.
Collapse
Affiliation(s)
- Assaf Zemel
- Department of Physical Chemistry and the Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel
| | | | | |
Collapse
|
35
|
Grage SL, Wang J, Cross TA, Ulrich AS. Solid-state 19F-NMR analysis of 19F-labeled tryptophan in gramicidin A in oriented membranes. Biophys J 2002; 83:3336-50. [PMID: 12496101 PMCID: PMC1302409 DOI: 10.1016/s0006-3495(02)75334-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The response of membrane-associated peptides toward the lipid environment or other binding partners can be monitored by solid-state NMR of suitably labeled side chains. Tryptophan is a prominent amino acid in transmembrane helices, and its (19)F-labeled analogues are generally biocompatible and cause little structural perturbation. Hence, we use 5F-Trp as a highly sensitive NMR probe to monitor the conformation and dynamics of the indole ring. To establish this (19)F-NMR strategy, gramicidin A was labeled with 5F-Trp in position 13 or 15, whose chi(1)/chi(2) torsion angles are known from previous (2)H-NMR studies. First, the alignment of the (19)F chemical shift anisotropy tensor within the membrane was deduced by lineshape analysis of oriented samples. Next, the three principal axes of the (19)F chemical shift anisotropy tensor were assigned within the molecular frame of the indole ring. Finally, determination of chi(1)/chi(2) for 5F-Trp in the lipid gel phase showed that the side chain alignment differs by up to 20 degrees from its known conformation in the liquid crystalline state. The sensitivity gain of (19)F-NMR and the reduction in the amount of material was at least 10-fold compared with previous (2)H-NMR studies on the same system and 100-fold compared with (15)N-NMR.
Collapse
|
36
|
Whiles JA, Glover KJ, Vold RR, Komives EA. Methods for studying transmembrane peptides in bicelles: consequences of hydrophobic mismatch and peptide sequence. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2002; 158:149-156. [PMID: 12419680 DOI: 10.1016/s1090-7807(02)00068-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have shown that bicelles prepared from dilauryl phosphatidylcholine (DLPC) and dipalmitoyl phosphatidylcholine (DPPC) align in a magnetic field under conditions similar to the more common dimyristoyl phosphatidylcholine (DMPC) bicelles. In addition, a model transmembrane peptide, P16, with a hydrophobic stretch of 24 A, and specific alanine-d(3) labels, was incorporated into all of the different bicelles. The long-chain phospholipid (DLPC, DMPC, or DPPC) remained unperturbed upon incorporation of the peptide while the quadrupolar splitting of the short-chain phospholipid along the bicelle rim increased by varying degrees in the different bicelle systems. The change in quadrupolar splitting of the short-chain phospholipids was attributed to changes in either fluidity of the planar region of the bicelle or differences in overall lipid packing. When the hydrophobic stretch of the bilayer was 22.8 (DMPC) or 26.3 A (DPPC), the peptide tilt was found to be transmembrane (33-35 degrees with respect to the bicelle normal). When the hydrophobic stretch of the bilayer was 19.5 A (DLPC), the peptide quadrupolar splittings suggested a loss of transmembrane orientation. When tryptophan was incorporated in the middle of the transmembrane region, the transmembrane orientation was also lost.
Collapse
Affiliation(s)
- Jennifer A Whiles
- University of California, San Diego 9500 Gilman Dr, La Jolla, CA 92093-0359, USA
| | | | | | | |
Collapse
|
37
|
Strandberg E, Morein S, Rijkers DTS, Liskamp RMJ, van der Wel PCA, Killian JA. Lipid dependence of membrane anchoring properties and snorkeling behavior of aromatic and charged residues in transmembrane peptides. Biochemistry 2002; 41:7190-8. [PMID: 12044149 DOI: 10.1021/bi012047i] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
31P NMR spectroscopy was used to investigate the effects of transmembrane alpha-helical peptides with different flanking residues on the phase behavior of phosphatidylethanolamine and phosphatidylethanolamine/phosphatidylglycerol (molar ratio 7:3) model membranes. It was found that tryptophan-flanked (WALP) peptides and lysine-flanked (KALP) peptides both promote formation of nonlamellar phases in these lipid systems in a mismatch-dependent manner. Based on this mismatch dependence, it was concluded that the effective hydrophobic length of KALP peptides is considerably shorter than that of the corresponding WALP peptides. Peptides with other positively charged residues showed very similar effects as KALP. The results suggest that the peptides have a well-defined effective hydrophobic length, which is different for charged and aromatic flanking residues, but which is independent of the precise chemical nature of the side chain. Strikingly, the effective length of KALP peptides in the lipid systems investigated here is much smaller than that previously found for the same peptides in phosphatidylcholine. This suggests that snorkeling of lysine side chains, as proposed to occur in phosphatidylcholine, does not occur in lipid systems that are prone to form nonlamellar phases by themselves. This suggestion was supported by using peptides with shortened lysine side chains and by investigating the effects of mixtures of WALP and KALP peptides. The lipid dependency of the snorkeling behavior is explained by considering the free energy cost of snorkeling in relation to the free energy cost of the formation of nonlamellar phases.
Collapse
Affiliation(s)
- Erik Strandberg
- Department of Biochemistry of Membranes, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
38
|
Hallock KJ, Henzler Wildman K, Lee DK, Ramamoorthy A. An innovative procedure using a sublimable solid to align lipid bilayers for solid-state NMR studies. Biophys J 2002; 82:2499-503. [PMID: 11964237 PMCID: PMC1302039 DOI: 10.1016/s0006-3495(02)75592-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Uniaxially aligned phospholipid bilayers are often used as model membranes to obtain structural details of membrane-associated molecules, such as peptides, proteins, drugs, and cholesterol. Well-aligned bilayer samples can be difficult to prepare and no universal procedure has been reported that orients all combinations of membrane-embedded components. In this study, a new method for producing mechanically aligned phospholipid bilayer samples using naphthalene, a sublimable solid, was developed. Using (31)P-NMR spectroscopy, comparison of a conventional method of preparing mechanically aligned samples with the new naphthalene procedure found that the use of naphthalene significantly enhanced the alignment of 3:1 1-palmitoyl-2-oleoyl-phosphatidylethanolamine to 1-palmitoyl-2-oleoyl-phosphatidylglycerol. The utility of the naphthalene procedure is also demonstrated on bilayers of many different compositions, including bilayers containing peptides such as pardaxin and gramicidin. These results show that the naphthalene procedure is a generally applicable method for producing mechanically aligned samples for use in NMR spectroscopy. The increase in bilayer alignment implies that this procedure will improve the sensitivity of solid-state NMR experiments, in particular those techniques that detect low-sensitivity nuclei, such as 15N and 13C.
Collapse
Affiliation(s)
- Kevin J Hallock
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | |
Collapse
|
39
|
Morein S, Killian JA, Sperotto MM. Characterization of the thermotropic behavior and lateral organization of lipid-peptide mixtures by a combined experimental and theoretical approach: effects of hydrophobic mismatch and role of flanking residues. Biophys J 2002; 82:1405-17. [PMID: 11867456 PMCID: PMC1301942 DOI: 10.1016/s0006-3495(02)75495-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A combined experimental and theoretical study was performed on a series of mixtures of dipalmitoylphosphatidylcholine (DPPC) and synthetic peptides to investigate their thermotropic behavior and lateral organization. The experimental study was based on differential scanning calorimetry (DSC) and phosphorous nuclear magnetic resonance ((31)P-NMR) techniques; the theoretical study was based on calculations on a microscopic molecular interaction model, where the lipid-peptide interaction is built on the hydrophobic matching principle. The chosen peptides, WALP and KALP, consist of a hydrophobic stretch, of variable length, of alternating leucine and alanine residues, flanked on both ends with tryptophan and lysine residues, respectively. By systematically varying the peptide hydrophobic length it was thus possible to explore different matching conditions between the peptide's hydrophobic length and the lipid bilayer hydrophobic thickness, and to investigate the potential role of flanking residues. The results show that both the WALP and the KALP peptides tend to favor the liquid-crystalline (or fluid) phase of the system; i.e., they tend to depress the main-transition temperature, T(m), of pure DPPC. However, the detailed effects of both peptides on the lateral phase behavior of the lipid-peptide system are dependent on the peptide length and the type of flanking residues. The results suggest that below T(m), the shortest among the WALP and KALP peptides induce gel-fluid phase separation in the system within an extensive temperature-composition region. The longer the hydrophobic length of the peptides is, the more narrow this region appears to become.
Collapse
Affiliation(s)
- Sven Morein
- Department of Biochemistry of Membranes, Utrecht University, NL-3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
40
|
Kol MA, de Kroon AI, Rijkers DT, Killian JA, de Kruijff B. Membrane-spanning peptides induce phospholipid flop: a model for phospholipid translocation across the inner membrane of E. coli. Biochemistry 2001; 40:10500-6. [PMID: 11523991 DOI: 10.1021/bi010627+] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism by which phospholipids translocate (flop) across the E. coli inner membrane remains to be elucidated. We tested the hypothesis that the membrane-spanning domains of proteins catalyze phospholipid flop by their mere presence in the membrane. As a model, peptides mimicking the transmembrane stretches of proteins, with the amino acid sequence GXXL(AL)(n)XXA (with X = K, H, or W and n = 8 or 12), were incorporated in large unilamellar vesicles composed of E. coli phospholipids. Phospholipid flop was measured by assaying the increase in accessibility to dithionite of a 2,6-(7-nitro-2,1,3-benzoxadiazol-4-yl)aminocaproyl (C(6)NBD)-labeled phospholipid analogue, initially exclusively present in the inner leaflet of the vesicle membrane. Fast flop of C(6)NBD-phosphatidylglycerol (C(6)NBD-PG) was observed in vesicles in which GKKL(AL)(12)KKA was incorporated, with the apparent first-order flop rate constant (K(flop)) linearly increasing with peptide:phospholipid molar ratios, reaching a translocation half-time of approximately 10 min at a 1:250 peptide:phospholipid molar ratio at 25 degrees C. The peptides of the series GXXL(AL)(8)XXA also induced flop of C(6)NBD-PG, supporting the hypothesis that transmembrane parts of proteins mediate phospholipid translocation. In this series, K(flop) decreased in the order X = K > H > W, indicating that peptide-lipid interactions in the interfacial region of the membrane modulate the efficiency of a peptide to cause flop. For the peptides tested, flop of C(6)NBD-phosphatidylethanolamine (C(6)NBD-PE) was substantially slower than that of C(6)NBD-PG. In vesicles without peptide, flop was negligible both for C(6)NBD-PG and for C(6)NBD-PE. A model for peptide-induced flop is proposed, which takes into account the observed peptide and lipid specificity.
Collapse
Affiliation(s)
- M A Kol
- Department Biochemistry of Membranes, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
41
|
Epand RF, Epand RM, Formaggio F, Crisma M, Wu H, Lehrer RI, Toniolo C. Analogs of the antimicrobial peptide trichogin having opposite membrane properties. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:703-12. [PMID: 11168409 DOI: 10.1046/j.1432-1327.2001.01922.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Four analogs of the antimicrobial peptide trichogin GA IV were studied. Their sequences are as follows: GT, n-octanoyl-Aib-Gly-Leu-Aib-Gly-Gly-Leu-Aib-Gly-Ile-Leu-OMe; ST, n-octanoyl-Aib-Ser-Leu-Aib-Ser-Ser-Leu-Aib-Ser-Ile-Leu-OMe; BT, n-octanoyl-Aib-Ser(tBu)-Leu-Aib-Ser(tBu)-Ser(tBu)-Leu-Aib-Ser(tBu)-Ile-Leu-OMe; and DT, n-octanoyl-Aib-Ser(tBu)-Leu-Aib-Ser(tBu)-Ser(tBu)-Leu-Aib-Ser(tBu)-Ile-Leu-Aib-Ser(tBu)-Leu-Aib-Ser(tBu)-Ser(tBu)-Leu-Aib-Ser(tBu)-Ile-Leu-OMe. The trichogin GA IV differs from GT only in the nature of the C-terminal residue, being a 1,2 aminoalcohol (leucinol) in the case of the parent peptide. Compared with GT, ST has an increased amphiphilicity. In contrast, BT has little amphiphilicity being composed only of hydrophobic amino acids. DT is an octanoylated head-to-tail dimer of BT. We show that BT and DT lower the bilayer-to-hexagonal phase transition temperature (T(H)) of dipalmitoleoylphosphatidylethanolamine, indicating that the peptides promote negative curvature. These two peptides, composed of only hydrophobic amino acids, have their bulkier groups on one face of the helix, suggesting that they may penetrate membranes at an oblique angle. In contrast, GT and ST, like trichogin itself, increase TH, promoting positive curvature. These peptides have contrasting membrane lytic activities. Whereas DT and BT did not produce leakage of aqueous contents, GT and ST, like trichogin, did cause rapid leakage. The leakage activity with liposomes also correlates with the greater potency of GT and ST, compared with the hydrophobic analogs, in their hemolytic and bacteriostatic action. ST has greater lytic ability than GT in liposomal leakage as well as hemolysis. We also measured the rate of peptide-promoted lipid mixing as an indication of membrane fusion. BT produced lipid mixing only with large unilamellar vesicles enriched with dioleoylphosphatidylethanolamine; ST did not produce lipid mixing, as its apparent reduction of energy transfer proved to be artifactual. Quasi-elastic light scattering of large unilamellar vesicles was also carried out after adding ST and BT. Peptide BT, but not ST, was able to aggregate large unilamellar vesicles. Thus, one of the properties of BT that leads to the induction of lipid mixing is that it is able to aggregate vesicles, placing the bilayers in juxtaposition. Thus, the two pairs of peptides, BT and DT vs GT and ST, exhibit contrasting behaviour with respect to a number of membrane biophysical properties. This occurs despite the fact that the chemical structures of the peptides are rather similar. Such distinct behavior is also reflected in their hemolytic and bacteriostatic actions.
Collapse
Affiliation(s)
- R F Epand
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
42
|
Liu F, Lewis RN, Hodges RS, McElhaney RN. A differential scanning calorimetric and 31P NMR spectroscopic study of the effect of transmembrane alpha-helical peptides on the lamellar-reversed hexagonal phase transition of phosphatidylethanolamine model membranes. Biochemistry 2001; 40:760-8. [PMID: 11170393 DOI: 10.1021/bi001942j] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated the effects of the model alpha-helical transmembrane peptide Ac-K(2)L(24)K(2)-amide (L(24)) on the thermotropic phase behavior of aqueous dispersions of 1,2-dielaidoylphosphatidylethanolamine (DEPE) to understand better the interactions between lipid bilayers and the membrane-spanning segments of integral membrane proteins. We studied in particular the effect of L(24) and three derivatives thereof on the liquid-crystalline lamellar (L(alpha))-reversed hexagonal (H(II)) phase transition of DEPE model membranes by differential scanning calorimetry and (31)P nuclear magnetic resonance spectroscopy. We found that the incorporation of L(24) progressively decreases the temperature, enthalpy, and cooperativity of the L(alpha)-H(II) phase transition, as well as induces the formation of an inverted cubic phase, indicating that this transmembrane peptide promotes the formation of inverted nonlamellar phases, despite the fact that the hydrophobic length of this peptide exceeds the hydrophobic thickness of the host lipid bilayer. These characteristic effects are not altered by truncation of the side chains of the terminal lysine residues or by replacing each of the leucine residues at the end of the polyleucine core of L(24) with a tryptophan residue. Thus, the characteristic effects of these transmembrane peptides on DEPE thermotropic phase behavior are independent of their detailed chemical structure. Importantly, significantly shortening the polyleucine core of L(24) results in a smaller decrease in the L(alpha)-H(II) phase transition temperature of the DEPE matrix into which it is incorporated, and reducing the thickness of the host phosphatidylethanolamine bilayer results in a larger reduction in the L(alpha)-H(II) phase transition temperature. These results are not those predicted by hydrophobic mismatch considerations or reported in previous studies of other transmembrane alpha-helical peptides containing a core of an alternating sequence of leucine and alanine residues. We thus conclude that the hydrophobicity and conformational flexibility of transmembrane peptides can affect their propensity to induce the formation of inverted nonlamellar phases by mechanisms not primarily dependent on lipid-peptide hydrophobic mismatch.
Collapse
Affiliation(s)
- F Liu
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | |
Collapse
|
43
|
Belohorcová K, Qian J, Davis JH. Molecular dynamics and (2)H-NMR study of the influence of an amphiphilic peptide on membrane order and dynamics. Biophys J 2000; 79:3201-16. [PMID: 11106624 PMCID: PMC1301195 DOI: 10.1016/s0006-3495(00)76553-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A molecular dynamics simulation of a fully hydrated model membrane consisting of 12 molecules of 1, 2-dimyristoyl-sn-glycero-3-phosphocholine, one amphiphilic peptide with the sequence acetyl-Lys-Lys-Gly-Leu(16)-Lys-Lys-Ala-amide, and 593 water molecules was performed for 1.06 ns (Belohorcova, K., J. H. Davis, T. B. Woolf, and B. Roux. 1997. Biophys. J. 73:3039-3055). The analysis presented here is primarily focused on the phospholipid component and the results are compared with experimental (2)H-NMR studies of the lipid component of mixtures of the same peptide and lipid at a molar ratio of 1:32, and with earlier studies of closely related peptide/lipid mixtures. The phospholipid chain and headgroup isomer populations and isomerization rates compare favorably with previous simulations and experimental measurements. Of particular interest is the effect of the peptide on the phospholipid headgroup and hydrocarbon chain orientational order calculated from the simulation, which also agree well with experimental measurements performed on this and closely related systems. Comparison of the experimental results with the simulations not only shows that there is significant agreement between the two methods, but also provides new insight into the effect of the peptide on the lipid dynamics. In particular, these results confirm that a membrane spanning peptide has little effect on lipid chain order, and bilayer thickness if its hydrophobic length closely matches the lipid hydrocarbon thickness. In addition, we find that the peptide can have a strong ordering effect if it is longer than the lipid hydrophobic thickness.
Collapse
Affiliation(s)
- K Belohorcová
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
44
|
|