1
|
Arige V, Terry LE, Wagner LE, Malik S, Baker MR, Fan G, Joseph SK, Serysheva II, Yule DI. Functional determination of calcium-binding sites required for the activation of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci U S A 2022; 119:e2209267119. [PMID: 36122240 PMCID: PMC9522344 DOI: 10.1073/pnas.2209267119] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/23/2022] [Indexed: 01/25/2023] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) initiate a diverse array of physiological responses by carefully orchestrating intracellular calcium (Ca2+) signals in response to various external cues. Notably, IP3R channel activity is determined by several obligatory factors, including IP3, Ca2+, and ATP. The critical basic amino acid residues in the N-terminal IP3-binding core (IBC) region that facilitate IP3 binding are well characterized. In contrast, the residues conferring regulation by Ca2+ have yet to be ascertained. Using comparative structural analysis of Ca2+-binding sites identified in two main families of intracellular Ca2+-release channels, ryanodine receptors (RyRs) and IP3Rs, we identified putative acidic residues coordinating Ca2+ in the cytosolic calcium sensor region in IP3Rs. We determined the consequences of substituting putative Ca2+ binding, acidic residues in IP3R family members. We show that the agonist-induced Ca2+ release, single-channel open probability (P0), and Ca2+ sensitivities are markedly altered when the negative charge on the conserved acidic side chain residues is neutralized. Remarkably, neutralizing the negatively charged side chain on two of the residues individually in the putative Ca2+-binding pocket shifted the Ca2+ required to activate IP3R to higher concentrations, indicating that these residues likely are a component of the Ca2+ activation site in IP3R. Taken together, our findings indicate that Ca2+ binding to a well-conserved activation site is a common underlying mechanism resulting in increased channel activity shared by IP3Rs and RyRs.
Collapse
Affiliation(s)
- Vikas Arige
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - Lara E. Terry
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - Larry E. Wagner
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - Mariah R. Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Guizhen Fan
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Suresh K. Joseph
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Irina I. Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| |
Collapse
|
2
|
Mehta YR, Lewis SA, Leo KT, Chen L, Park E, Raghuram V, Chou CL, Yang CR, Kikuchi H, Khundmiri S, Poll BG, Knepper MA. "ADPKD-omics": determinants of cyclic AMP levels in renal epithelial cells. Kidney Int 2022; 101:47-62. [PMID: 34757121 PMCID: PMC10671900 DOI: 10.1016/j.kint.2021.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/30/2022]
Abstract
The regulation of cyclic adenosine monophosphate (cAMP) levels in kidney epithelial cells is important in at least 2 groups of disorders, namely water balance disorders and autosomal dominant polycystic kidney disease. Focusing on the latter, we review genes that code for proteins that are determinants of cAMP levels in cells. We identify which of these determinants are expressed in the 14 kidney tubule segments using recently published RNA-sequencing and protein mass spectrometry data ("autosomal dominant polycystic kidney disease-omics"). This includes G protein-coupled receptors, adenylyl cyclases, cyclic nucleotide phosphodiesterases, cAMP transporters, cAMP-binding proteins, regulator of G protein-signaling proteins, G protein-coupled receptor kinases, arrestins, calcium transporters, and calcium-binding proteins. In addition, compartmentalized cAMP signaling in the primary cilium is discussed, and a specialized database of the proteome of the primary cilium of cultured "IMCD3" cells is provided as an online resource (https://esbl.nhlbi.nih.gov/Databases/CiliumProteome/). Overall, this article provides a general resource in the form of a curated list of proteins likely to play roles in determination of cAMP levels in kidney epithelial cells and, therefore, likely to be determinants of progression of autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- Yash R Mehta
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Spencer A Lewis
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kirby T Leo
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Euijung Park
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hiroaki Kikuchi
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Syed Khundmiri
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian G Poll
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
3
|
Dixon RE, Navedo MF, Binder MD, Santana LF. Mechanisms and Physiological Implications of Cooperative Gating of Ion Channels Clusters. Physiol Rev 2021; 102:1159-1210. [PMID: 34927454 DOI: 10.1152/physrev.00022.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ion channels play a central role in the regulation of nearly every cellular process. Dating back to the classic 1952 Hodgkin-Huxley model of the generation of the action potential, ion channels have always been thought of as independent agents. A myriad of recent experimental findings exploiting advances in electrophysiology, structural biology, and imaging techniques, however, have posed a serious challenge to this long-held axiom as several classes of ion channels appear to open and close in a coordinated, cooperative manner. Ion channel cooperativity ranges from variable-sized oligomeric cooperative gating in voltage-gated, dihydropyridine-sensitive Cav1.2 and Cav1.3 channels to obligatory dimeric assembly and gating of voltage-gated Nav1.5 channels. Potassium channels, transient receptor potential channels, hyperpolarization cyclic nucleotide-activated channels, ryanodine receptors (RyRs), and inositol trisphosphate receptors (IP3Rs) have also been shown to gate cooperatively. The implications of cooperative gating of these ion channels range from fine tuning excitation-contraction coupling in muscle cells to regulating cardiac function and vascular tone, to modulation of action potential and conduction velocity in neurons and cardiac cells, and to control of pace-making activity in the heart. In this review, we discuss the mechanisms leading to cooperative gating of ion channels, their physiological consequences and how alterations in cooperative gating of ion channels may induce a range of clinically significant pathologies.
Collapse
Affiliation(s)
- Rose Ellen Dixon
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA, United States
| | - Marc D Binder
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| |
Collapse
|
4
|
Type 3 inositol 1,4,5-trisphosphate receptor: A calcium channel for all seasons. Cell Calcium 2019; 85:102132. [PMID: 31790953 DOI: 10.1016/j.ceca.2019.102132] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022]
Abstract
Inositol 1,4,5 trisphosphate receptors (ITPRs) are a family of endoplasmic reticulum Ca2+ channels essential for the control of intracellular Ca2+ levels in virtually every mammalian cell type. The three isoforms (ITPR1, ITPR2 and ITPR3) are highly homologous in amino acid sequence, but they differ considerably in terms of biophysical properties, subcellular localization, and tissue distribution. Such differences underscore the variety of cellular responses triggered by each isoform and suggest that the expression/activity of specific isoforms might be linked to particular pathophysiological states. Indeed, recent findings demonstrate that changes in expression of ITPR isoforms are associated with a number of human diseases ranging from fatty liver disease to cancer. ITPR3 is emerging as the isoform that is particularly important in the pathogenesis of various human diseases. Here we review the physiological and pathophysiological roles of ITPR3 in various tissues and the mechanisms by which the expression of this isoform is modulated in health and disease.
Collapse
|
5
|
Potapenko E, Negrão NW, Huang G, Docampo R. The acidocalcisome inositol-1,4,5-trisphosphate receptor of Trypanosoma brucei is stimulated by luminal polyphosphate hydrolysis products. J Biol Chem 2019; 294:10628-10637. [PMID: 31138655 DOI: 10.1074/jbc.ra119.007906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/27/2019] [Indexed: 12/21/2022] Open
Abstract
Acidocalcisomes are acidic calcium stores rich in polyphosphate (polyP) and are present in trypanosomes and also in a diverse range of other organisms. Ca2+ is released from these organelles through a channel, inositol 1,4,5-trisphosphate receptor (TbIP3R), which is essential for growth and infectivity of the parasite Trypanosoma brucei However, the mechanism by which TbIP3R controls Ca2+ release is unclear. In this work, we expressed TbIP3R in a chicken B lymphocyte cell line in which the genes for all three vertebrate IP3Rs were stably ablated (DT40-3KO). We show that IP3-mediated Ca2+ release depends on Ca2+ but not on ATP concentration and is inhibited by heparin, caffeine, and 2-aminomethoxydiphenyl borate (2-APB). Excised patch clamp recordings from nuclear membranes of DT40 cells expressing only TbIP3R disclosed that luminal inorganic orthophosphate (Pi) or pyrophosphate (PPi), and neutral or alkaline pH can stimulate IP3-generated currents. In contrast, polyP or acidic pH did not induce these currents, and nuclear membranes obtained from cells expressing rat IP3R were unresponsive to polyP or its hydrolysis products. Our results are consistent with the notion that polyP hydrolysis products within acidocalcisomes or alkalinization of their luminal pH activate TbIP3R and Ca2+ release. We conclude that TbIP3R is well-adapted to its role as the major Ca2+ release channel of acidocalcisomes in T. brucei.
Collapse
Affiliation(s)
| | - Núria W Negrão
- From the Center for Tropical and Emerging Global Diseases and.,Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| | - Guozhong Huang
- From the Center for Tropical and Emerging Global Diseases and
| | - Roberto Docampo
- From the Center for Tropical and Emerging Global Diseases and .,Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
6
|
Lock JT, Alzayady KJ, Yule DI, Parker I. All three IP 3 receptor isoforms generate Ca 2+ puffs that display similar characteristics. Sci Signal 2018; 11:11/561/eaau0344. [PMID: 30563861 DOI: 10.1126/scisignal.aau0344] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inositol 1,4,5-trisphosphate (IP3) evokes Ca2+ release through IP3 receptors (IP3Rs) to generate both local Ca2+ puffs arising from concerted openings of clustered IP3Rs and cell-wide Ca2+ waves. Imaging Ca2+ puffs with single-channel resolution yields information on the localization and properties of native IP3Rs in intact cells, but interpretation has been complicated because cells express varying proportions of three structurally and functionally distinct isoforms of IP3Rs. Here, we used TIRF and light-sheet microscopy to image Ca2+ puffs in HEK-293 cell lines generated by CRISPR-Cas9 technology to express exclusively IP3R type 1, 2, or 3. Photorelease of the IP3 analog i-IP3 in all three cell lines evoked puffs with largely similar mean amplitudes, temporal characteristics, and spatial extents. Moreover, the single-channel Ca2+ flux was similar among isoforms, indicating that clusters of different IP3R isoforms contain comparable numbers of active channels. Our results show that all three IP3R isoforms cluster to generate local Ca2+ puffs and, contrary to findings of divergent properties from in vitro electrophysiological studies, display similar conductances and gating kinetics in intact cells.
Collapse
Affiliation(s)
- Jeffrey T Lock
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA.
| | - Kamil J Alzayady
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Box 711, Rochester, NY 14642, USA
| | - David I Yule
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Box 711, Rochester, NY 14642, USA
| | - Ian Parker
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA.,Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
7
|
Cryo-EM reveals ligand induced allostery underlying InsP 3R channel gating. Cell Res 2018; 28:1158-1170. [PMID: 30470765 PMCID: PMC6274648 DOI: 10.1038/s41422-018-0108-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/02/2018] [Accepted: 10/22/2018] [Indexed: 01/06/2023] Open
Abstract
Inositol-1,4,5-trisphosphate receptors (InsP3Rs) are cation channels that mobilize Ca2+ from intracellular stores in response to a wide range of cellular stimuli. The paradigm of InsP3R activation is the coupled interplay between binding of InsP3 and Ca2+ that switches the ion conduction pathway between closed and open states to enable the passage of Ca2+ through the channel. However, the molecular mechanism of how the receptor senses and decodes ligand-binding signals into gating motion remains unknown. Here, we present the electron cryo-microscopy structure of InsP3R1 from rat cerebellum determined to 4.1 Å resolution in the presence of activating concentrations of Ca2+ and adenophostin A (AdA), a structural mimetic of InsP3 and the most potent known agonist of the channel. Comparison with the 3.9 Å-resolution structure of InsP3R1 in the Apo-state, also reported herein, reveals the binding arrangement of AdA in the tetrameric channel assembly and striking ligand-induced conformational rearrangements within cytoplasmic domains coupled to the dilation of a hydrophobic constriction at the gate. Together, our results provide critical insights into the mechanistic principles by which ligand-binding allosterically gates InsP3R channel.
Collapse
|
8
|
Garcia MI, Boehning D. Cardiac inositol 1,4,5-trisphosphate receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:907-914. [PMID: 27884701 DOI: 10.1016/j.bbamcr.2016.11.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
Abstract
Calcium is a second messenger that regulates almost all cellular functions. In cardiomyocytes, calcium plays an integral role in many functions including muscle contraction, gene expression, and cell death. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are a family of calcium channels that are ubiquitously expressed in all tissues. In the heart, IP3Rs have been associated with regulation of cardiomyocyte function in response to a variety of neurohormonal agonists, including those implicated in cardiac disease. Notably, IP3R activity is thought to be essential for mediating the hypertrophic response to multiple stimuli including endothelin-1 and angiotensin II. In this review, we will explore the functional implications of IP3R activity in the heart in health and disease.
Collapse
Affiliation(s)
- M Iveth Garcia
- Cell Biology Graduate Program, University of Texas Medical Branch, Galveston, TX 77555, United States; Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, TX 77030, United States
| | - Darren Boehning
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, TX 77030, United States.
| |
Collapse
|
9
|
Mak DOD, Foskett JK. Inositol 1,4,5-trisphosphate receptors in the endoplasmic reticulum: A single-channel point of view. Cell Calcium 2014; 58:67-78. [PMID: 25555684 DOI: 10.1016/j.ceca.2014.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
As an intracellular Ca(2+) release channel at the endoplasmic reticulum membrane, the ubiquitous inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) plays a crucial role in the generation, propagation and regulation of intracellular Ca(2+) signals that regulate numerous physiological and pathophysiological processes. This review provides a concise account of the fundamental single-channel properties of the InsP3R channel: its conductance properties and its regulation by InsP3 and Ca(2+), its physiological ligands, studied using nuclear patch clamp electrophysiology.
Collapse
Affiliation(s)
- Don-On Daniel Mak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
10
|
Fedorenko OA, Popugaeva E, Enomoto M, Stathopulos PB, Ikura M, Bezprozvanny I. Intracellular calcium channels: inositol-1,4,5-trisphosphate receptors. Eur J Pharmacol 2013; 739:39-48. [PMID: 24300389 DOI: 10.1016/j.ejphar.2013.10.074] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 09/28/2013] [Accepted: 10/17/2013] [Indexed: 01/13/2023]
Abstract
The inositol-1,4,5-trisphosphate receptors (InsP3Rs) are the major intracellular Ca(2+)-release channels in cells. Activity of InsP3Rs is essential for elementary and global Ca(2+) events in the cell. There are three InsP3Rs isoforms that are present in mammalian cells. In this review we will focus primarily on InsP3R type 1. The InsP3R1 is a predominant isoform in neurons and it is the most extensively studied isoform. Combination of biophysical and structural methods revealed key mechanisms of InsP3R function and modulation. Cell biological and biochemical studies lead to identification of a large number of InsP3R-binding proteins. InsP3Rs are involved in the regulation of numerous physiological processes, including learning and memory, proliferation, differentiation, development and cell death. Malfunction of InsP3R1 play a role in a number of neurodegenerative disorders and other disease states. InsP3Rs represent a potentially valuable drug target for treatment of these disorders and for modulating activity of neurons and other cells. Future studies will provide better understanding of physiological functions of InsP3Rs in health and disease.
Collapse
Affiliation(s)
- Olena A Fedorenko
- Department of Brain Physiology, Bogomoletz Institute of Physiology, 01024 Kiev, Ukraine; State Key Laboratory of Molecular and Cellular Biology, 01024 Kiev, Ukraine
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, St. Petersburg State Polytechnical University, 195251 St. Petersburg, Russia
| | - Masahiro Enomoto
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, M5G1L7 Toronto, Ontario, Canada
| | - Peter B Stathopulos
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, M5G1L7 Toronto, Ontario, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, M5G1L7 Toronto, Ontario, Canada
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, St. Petersburg State Polytechnical University, 195251 St. Petersburg, Russia; Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
11
|
Mak DOD, Vais H, Cheung KH, Foskett JK. Patch-clamp electrophysiology of intracellular Ca2+ channels. Cold Spring Harb Protoc 2013; 2013:787-97. [PMID: 24003191 DOI: 10.1101/pdb.top066217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The modulation of cytoplasmic free Ca(2+) concentration ([Ca(2+)]i) is a universal intracellular signaling pathway that regulates numerous cellular physiological processes. Ubiquitous intracellular Ca(2+)-release channels localized to the endoplasmic/sarcoplasmic reticulum-inositol 1,4,5-trisphosphate receptor (InsP3R) and ryanodine receptor (RyR) channels-play a central role in [Ca(2+)]i signaling in all animal cells. Despite their intracellular localization, electrophysiological studies of the single-channel permeation and gating properties of these Ca(2+)-release channels using the powerful patch-clamp approach have been possible by application of this technique to isolated nuclei because the channels are present in membranes of the nuclear envelope. Here we provide a concise description of how nuclear patch-clamp experiments have been used to study single-channel properties of different InsP3R channels in the outer nuclear membrane. We compare this with other methods for studying intracellular Ca(2+) release. We also briefly describe application of the technique to InsP3R channels in the inner nuclear membrane and to channels in the outer nuclear membrane of HEK293 cells expressing recombinant RyR.
Collapse
Affiliation(s)
- Don-On Daniel Mak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
12
|
Alzayady KJ, Wagner LE, Chandrasekhar R, Monteagudo A, Godiska R, Tall GG, Joseph SK, Yule DI. Functional inositol 1,4,5-trisphosphate receptors assembled from concatenated homo- and heteromeric subunits. J Biol Chem 2013; 288:29772-84. [PMID: 23955339 DOI: 10.1074/jbc.m113.502203] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Vertebrate genomes code for three subtypes of inositol 1,4,5-trisphosphate (IP3) receptors (IP3R1, -2, and -3). Individual IP3R monomers are assembled to form homo- and heterotetrameric channels that mediate Ca(2+) release from intracellular stores. IP3R subtypes are regulated differentially by IP3, Ca(2+), ATP, and various other cellular factors and events. IP3R subtypes are seldom expressed in isolation in individual cell types, and cells often express different complements of IP3R subtypes. When multiple subtypes of IP3R are co-expressed, the subunit composition of channels cannot be specifically defined. Thus, how the subunit composition of heterotetrameric IP3R channels contributes to shaping the spatio-temporal properties of IP3-mediated Ca(2+) signals has been difficult to evaluate. To address this question, we created concatenated IP3R linked by short flexible linkers. Dimeric constructs were expressed in DT40-3KO cells, an IP3R null cell line. The dimeric proteins were localized to membranes, ran as intact dimeric proteins on SDS-PAGE, and migrated as an ∼1100-kDa band on blue native gels exactly as wild type IP3R. Importantly, IP3R channels formed from concatenated dimers were fully functional as indicated by agonist-induced Ca(2+) release. Using single channel "on-nucleus" patch clamp, the channels assembled from homodimers were essentially indistinguishable from those formed by the wild type receptor. However, the activity of channels formed from concatenated IP3R1 and IP3R2 heterodimers was dominated by IP3R2 in terms of the characteristics of regulation by ATP. These studies provide the first insight into the regulation of heterotetrameric IP3R of defined composition. Importantly, the results indicate that the properties of these channels are not simply a blend of those of the constituent IP3R monomers.
Collapse
Affiliation(s)
- Kamil J Alzayady
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The Ca(2) (+) signals evoked by inositol 1,4,5-trisphosphate (IP(3)) are built from elementary Ca(2) (+) release events involving progressive recruitment of IP(3) receptors (IP(3)R), intracellular Ca(2) (+) channels that are expressed in almost all animal cells. The smallest events ('blips') result from opening of single IP(3)R. Larger events ('puffs') reflect the near-synchronous opening of a small cluster of IP(3)R. These puffs become more frequent as the stimulus intensity increases and they eventually trigger regenerative Ca(2) (+) waves that propagate across the cell. This hierarchical recruitment of IP(3)R is important in allowing Ca(2) (+) signals to be delivered locally to specific target proteins or more globally to the entire cell. Co-regulation of IP(3)R by Ca(2) (+) and IP(3), the ability of a single IP(3)R rapidly to mediate a large efflux of Ca(2) (+) from the endoplasmic reticulum, and the assembly of IP(3)R into clusters are key features that allow IP(3)R to propagate Ca(2) (+) signals regeneratively. We review these properties of IP(3)R and the structural basis of IP(3)R behavior.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, Tennis Court Road, CB2 1PD, Cambridge, UK,
| | | |
Collapse
|
14
|
Rossi AM, Tovey SC, Rahman T, Prole DL, Taylor CW. Analysis of IP3 receptors in and out of cells. Biochim Biophys Acta Gen Subj 2011; 1820:1214-27. [PMID: 22033379 DOI: 10.1016/j.bbagen.2011.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/07/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
BACKGROUND Inositol 1,4,5-trisphosphate receptors (IP3R) are expressed in almost all animal cells. Three mammalian genes encode closely related IP3R subunits, which assemble into homo- or hetero-tetramers to form intracellular Ca2+ channels. SCOPE OF THE REVIEW In this brief review, we first consider a variety of complementary methods that allow the links between IP3 binding and channel gating to be defined. How does IP3 binding to the IP3-binding core in each IP3R subunit cause opening of a cation-selective pore formed by residues towards the C-terminal? We then describe methods that allow IP3, Ca2+ signals and IP3R mobility to be examined in intact cells. A final section briefly considers genetic analyses of IP3R signalling. MAJOR CONCLUSIONS All IP3R are regulated by both IP3 and Ca2+. This allows them to initiate and regeneratively propagate intracellular Ca2+ signals. The elementary Ca2+ release events evoked by IP3 in intact cells are mediated by very small numbers of active IP3R and the Ca2+-mediated interactions between them. The spatial organization of these Ca2+ signals and their stochastic dependence on so few IP3Rs highlight the need for methods that allow the spatial organization of IP3R signalling to be addressed with single-molecule resolution. GENERAL SIGNIFICANCE A variety of complementary methods provide insight into the structural basis of IP3R activation and the contributions of IP3-evoked Ca2+ signals to cellular physiology. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signaling.
Collapse
|
15
|
Vais H, Foskett JK, Daniel Mak DO. Unitary Ca(2+) current through recombinant type 3 InsP(3) receptor channels under physiological ionic conditions. J Gen Physiol 2010; 136:687-700. [PMID: 21078871 PMCID: PMC2995152 DOI: 10.1085/jgp.201010513] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/21/2010] [Indexed: 11/20/2022] Open
Abstract
The ubiquitous inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) channel, localized primarily in the endoplasmic reticulum (ER) membrane, releases Ca(2+) into the cytoplasm upon binding InsP(3), generating and modulating intracellular Ca(2+) signals that regulate numerous physiological processes. Together with the number of channels activated and the open probability of the active channels, the size of the unitary Ca(2+) current (i(Ca)) passing through an open InsP(3)R channel determines the amount of Ca(2+) released from the ER store, and thus the amplitude and the spatial and temporal nature of Ca(2+) signals generated in response to extracellular stimuli. Despite its significance, i(Ca) for InsP(3)R channels in physiological ionic conditions has not been directly measured. Here, we report the first measurement of i(Ca) through an InsP(3)R channel in its native membrane environment under physiological ionic conditions. Nuclear patch clamp electrophysiology with rapid perfusion solution exchanges was used to study the conductance properties of recombinant homotetrameric rat type 3 InsP(3)R channels. Within physiological ranges of free Ca(2+) concentrations in the ER lumen ([Ca(2+)](ER)), free cytoplasmic [Ca(2+)] ([Ca(2+)](i)), and symmetric free [Mg(2+)] ([Mg(2+)](f)), the i(Ca)-[Ca(2+)](ER) relation was linear, with no detectable dependence on [Mg(2+)](f). i(Ca) was 0.15 +/- 0.01 pA for a filled ER store with 500 microM [Ca(2+)](ER). The i(Ca)-[Ca(2+)](ER) relation suggests that Ca(2+) released by an InsP(3)R channel raises [Ca(2+)](i) near the open channel to approximately 13-70 microM, depending on [Ca(2+)](ER). These measurements have implications for the activities of nearby InsP(3)-liganded InsP(3)R channels, and they confirm that Ca(2+) released by an open InsP(3)R channel is sufficient to activate neighboring channels at appropriate distances away, promoting Ca(2+)-induced Ca(2+) release.
Collapse
Affiliation(s)
- Horia Vais
- Department of Physiology and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - J. Kevin Foskett
- Department of Physiology and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Don-On Daniel Mak
- Department of Physiology and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
16
|
Erdmann F, Schäuble N, Lang S, Jung M, Honigmann A, Ahmad M, Dudek J, Benedix J, Harsman A, Kopp A, Helms V, Cavalié A, Wagner R, Zimmermann R. Interaction of calmodulin with Sec61α limits Ca2+ leakage from the endoplasmic reticulum. EMBO J 2010; 30:17-31. [PMID: 21102557 DOI: 10.1038/emboj.2010.284] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 10/22/2010] [Indexed: 12/31/2022] Open
Abstract
In eukaryotes, protein transport into the endoplasmic reticulum (ER) is facilitated by a protein-conducting channel, the Sec61 complex. The presence of large, water-filled pores with uncontrolled ion permeability, as formed by Sec61 complexes in the ER membrane, would seriously interfere with the regulated release of calcium from the ER lumen into the cytosol, an essential mechanism for intracellular signalling. We identified a calmodulin (CaM)-binding motif in the cytosolic N-terminus of mammalian Sec61α that bound CaM but not Ca2+-free apocalmodulin with nanomolar affinity and sequence specificity. In single-channel measurements, CaM potently mediated Sec61-channel closure in Ca2+-dependent manner. At the cellular level, two different CaM antagonists stimulated calcium release from the ER through Sec61 channels. However, protein transport into microsomes was not modulated by Ca2+-CaM. Molecular modelling of the ribosome/Sec61/CaM complexes supports the view that simultaneous ribosome and CaM binding to the Sec61 complex may be possible. Overall, CaM is involved in limiting Ca2+ leakage from the ER.
Collapse
Affiliation(s)
- Frank Erdmann
- Biophysics, Osnabrück University, Osnabrück, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Taylor CW, Tovey SC. IP(3) receptors: toward understanding their activation. Cold Spring Harb Perspect Biol 2010; 2:a004010. [PMID: 20980441 DOI: 10.1101/cshperspect.a004010] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)R) and their relatives, ryanodine receptors, are the channels that most often mediate Ca(2+) release from intracellular stores. Their regulation by Ca(2+) allows them also to propagate cytosolic Ca(2+) signals regeneratively. This brief review addresses the structural basis of IP(3)R activation by IP(3) and Ca(2+). IP(3) initiates IP(3)R activation by promoting Ca(2+) binding to a stimulatory Ca(2+)-binding site, the identity of which is unresolved. We suggest that interactions of critical phosphate groups in IP(3) with opposite sides of the clam-like IP(3)-binding core cause it to close and propagate a conformational change toward the pore via the adjacent N-terminal suppressor domain. The pore, assembled from the last pair of transmembrane domains and the intervening pore loop from each of the four IP(3)R subunits, forms a structure in which a luminal selectivity filter and a gate at the cytosolic end of the pore control cation fluxes through the IP(3)R.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom.
| | | |
Collapse
|
18
|
Molecular architecture of the inositol 1,4,5-trisphosphate receptor pore. CURRENT TOPICS IN MEMBRANES 2010; 66:191-207. [PMID: 22353481 DOI: 10.1016/s1063-5823(10)66009-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Foskett JK, Daniel Mak DO. Regulation of IP(3)R Channel Gating by Ca(2+) and Ca(2+) Binding Proteins. CURRENT TOPICS IN MEMBRANES 2010; 66:235-72. [PMID: 22353483 PMCID: PMC6707373 DOI: 10.1016/s1063-5823(10)66011-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- J Kevin Foskett
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
20
|
Rahman T, Taylor CW. Nuclear Patch-Clamp Recording from Inositol 1,4,5-Trisphosphate Receptors. Methods Cell Biol 2010; 99:199-224. [DOI: 10.1016/b978-0-12-374841-6.00008-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Taylor CW, Rahman T, Tovey SC, Dedos SG, Taylor EJA, Velamakanni S. IP3 receptors: some lessons from DT40 cells. Immunol Rev 2009; 231:23-44. [PMID: 19754888 DOI: 10.1111/j.1600-065x.2009.00807.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inositol-1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels that are regulated by IP3 and Ca2+ and are modulated by many additional signals. These properties allow them to initiate and, via Ca2+-induced Ca2+ release, regeneratively propagate Ca2+ signals evoked by receptors that stimulate formation of IP3. The ubiquitous expression of IP3R highlights their importance, but it also presents problems when attempting to resolve the behavior of defined IP3R. DT40 cells are a pre-B-lymphocyte cell line in which high rates of homologous recombination afford unrivalled opportunities to disrupt endogenous genes. DT40-knockout cells with both alleles of each of the three IP3R genes disrupted provide the only null-background for analysis of homogenous recombinant IP3R. We review the properties of DT40 cells and consider three areas where they have contributed to understanding IP3R behavior. Patch-clamp recording from the nuclear envelope and Ca2+ release from intracellular stores loaded with a low-affinity Ca2+ indicator address the mechanisms leading to activation of IP(3)R. We show that IP3 causes intracellular IP3R to cluster and re-tune their responses to IP3 and Ca2+, better equipping them to mediate regenerative Ca2+ signals. Finally, we show that DT40 cells reliably count very few IP3R into the plasma membrane, where they mediate about half the Ca2+ entry evoked by the B-cell antigen receptor.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
22
|
Gin E, Wagner LE, Yule DI, Sneyd J. Inositol trisphosphate receptor and ion channel models based on single-channel data. CHAOS (WOODBURY, N.Y.) 2009; 19:037104. [PMID: 19792029 PMCID: PMC5848693 DOI: 10.1063/1.3184540] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 07/01/2009] [Indexed: 05/28/2023]
Abstract
The inositol trisphosphate receptor (IPR) plays an important role in controlling the dynamics of intracellular Ca(2+). Single-channel patch-clamp recordings are a typical way to study these receptors as well as other ion channels. Methods for analyzing and using this type of data have been developed to fit Markov models of the receptor. The usual method of parameter fitting is based on maximum-likelihood techniques. However, Bayesian inference and Markov chain Monte Carlo techniques are becoming more popular. We describe the application of the Bayesian methods to real experimental single-channel data in three ion channels: the ryanodine receptor, the K(+) channel, and the IPR. One of the main aims of all three studies was that of model selection with different approaches taken. We also discuss the modeling implications for single-channel data that display different levels of channel activity within one recording.
Collapse
Affiliation(s)
- Elan Gin
- Department of Mathematics, The University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
23
|
Wang Q, Rajshankar D, Branch DR, Siminovitch KA, Herrera Abreu MT, Downey GP, McCulloch CA. Protein-tyrosine phosphatase-alpha and Src functionally link focal adhesions to the endoplasmic reticulum to mediate interleukin-1-induced Ca2+ signaling. J Biol Chem 2009; 284:20763-72. [PMID: 19497848 DOI: 10.1074/jbc.m808828200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Calcium (Ca2+) signaling by the pro-inflammatory cytokine interleukin-1 (IL-1) is dependent on focal adhesions, which contain diverse structural and signaling proteins including protein phosphatases. We examined here the role of protein-tyrosine phosphatase (PTP) alpha in regulating IL-1-induced Ca2+ signaling in fibroblasts. IL-1 promoted recruitment of PTPalpha to focal adhesions and endoplasmic reticulum (ER) fractions, as well as tyrosine phosphorylation of the ER Ca2+ release channel IP3R. In response to IL-1, catalytically active PTPalpha was required for Ca2+ release from the ER, Src-dependent phosphorylation of IP3R1 and accumulation of IP3R1 in focal adhesions. In pulldown assays and immunoprecipitations PTPalpha was required for the association of PTPalpha with IP3R1 and c-Src, and this association was increased by IL-1. Collectively, these data indicate that PTPalpha acts as an adaptor to mediate functional links between focal adhesions and the ER that enable IL-1-induced Ca2+ signaling.
Collapse
Affiliation(s)
- Qin Wang
- Canadian Institutes of Health Research Group in Matrix Dynamics, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | | | | | | | | | | | | |
Collapse
|
24
|
Betzenhauser MJ, Wagner LE, Park HS, Yule DI. ATP regulation of type-1 inositol 1,4,5-trisphosphate receptor activity does not require walker A-type ATP-binding motifs. J Biol Chem 2009; 284:16156-16163. [PMID: 19386591 DOI: 10.1074/jbc.m109.006452] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP is known to increase the activity of the type-1 inositol 1,4,5-trisphosphate receptor (InsP3R1). This effect is attributed to the binding of ATP to glycine rich Walker A-type motifs present in the regulatory domain of the receptor. Only two such motifs are present in neuronal S2+ splice variant of InsP3R1 and are designated the ATPA and ATPB sites. The ATPA site is unique to InsP3R1, and the ATPB site is conserved among all three InsP3R isoforms. Despite the fact that both the ATPA and ATPB sites are known to bind ATP, the relative contribution of these two sites to the enhancing effects of ATP on InsP3R1 function is not known. We report here a mutational analysis of the ATPA and ATPB sites and conclude neither of these sites is required for ATP modulation of InsP3R1. ATP augmented InsP3-induced Ca2+ release from permeabilized cells expressing wild type and ATP-binding site-deficient InsP3R1. Similarly, ATP increased the single channel open probability of the mutated InsP3R1 to the same extent as wild type. ATP likely exerts its effects on InsP3R1 channel function via a novel and as yet unidentified mechanism.
Collapse
Affiliation(s)
- Matthew J Betzenhauser
- From the Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642
| | - Larry E Wagner
- From the Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642
| | - Hyung Seo Park
- From the Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642; Department of Physiology, College of Medicine, Konyang University, Daejeon 302-718, South Korea
| | - David I Yule
- From the Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642.
| |
Collapse
|
25
|
Taufiq-Ur-Rahman, Skupin A, Falcke M, Taylor CW. Clustering of InsP3 receptors by InsP3 retunes their regulation by InsP3 and Ca2+. Nature 2009; 458:655-9. [PMID: 19348050 PMCID: PMC2702691 DOI: 10.1038/nature07763] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The versatility of Ca2+ signals derives from their spatio-temporal organization. For Ca2+ signals initiated by inositol-1,4,5-trisphosphate (InsP3), this requires local interactions between InsP3 receptors (InsP3Rs) mediated by their rapid stimulation and slower inhibition\ by cytosolic Ca2+. This allows hierarchical recruitment of Ca2+ release events as the InsP3 concentration increases. Single InsP3Rs respond first, then clustered InsP3Rs open together giving a local 'Ca2+ puff', and as puffs become more frequent they ignite regenerative Ca2+ waves. Using nuclear patch-clamp recording, here we demonstrate that InsP3Rs are initially randomly distributed with an estimated separation of 1 m. Low concentrations of InsP3 cause InsP3Rs to aggregate rapidly and reversibly into small clusters of about four closely associated InsP3Rs. At resting cytosolic [Ca2+], clustered InsP3Rs open independently, but with lower open probability, shorter open time, and less InsP3 sensitivity than lone InsP3Rs. Increasing cytosolic [Ca2+] reverses the inhibition caused by clustering, InsP3R gating becomes coupled, and the duration of multiple openings is prolonged. Clustering both exposes InsP3Rs to local Ca2+ rises and increases the effects of Ca2+. Dynamic regulation of clustering by InsP3 retunes InsP3R sensitivity to InsP3 and Ca2+, facilitating hierarchical recruitment of the elementary events that underlie all InsP3-evoked Ca2+ signals.
Collapse
Affiliation(s)
- Taufiq-Ur-Rahman
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK
| | | | | | | |
Collapse
|
26
|
Nagaleekar VK, Diehl SA, Juncadella I, Charland C, Muthusamy N, Eaton S, Haynes L, Garrett-Sinha LA, Anguita J, Rincón M. IP3 receptor-mediated Ca2+ release in naive CD4 T cells dictates their cytokine program. THE JOURNAL OF IMMUNOLOGY 2009; 181:8315-22. [PMID: 19050248 DOI: 10.4049/jimmunol.181.12.8315] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IP(3) (inositol 1,4,5-trisphosphate) receptors (IP(3)Rs) regulate the release of Ca(2+) from intracellular stores in response to IP(3). Little is known about regulation of the expression of IP(3)Rs and their role during the activation of CD4 T cells. In this study we show that mouse naive CD4 T cells express IP(3)R1, IP(3)R2, and IP(3)R3, but that gene expression of IP(3)R3 primarily is down-regulated upon activation due to loss of the Ets-1 transcription factor. Down-regulation of IP(3)R expression in activated CD4 T cells is associated with the failure of TCR ligation to trigger Ca(2+) release in these cells. We also show that down-regulation of specific IP(3)Rs in activated CD4 T cells correlates with the requirement of IP(3)R-mediated Ca(2+) release only for the induction of, but not for the maintenance of, IL-2 and IFN-gamma expression. Interestingly, while inhibition of IP(3)R function early during activation blocks IL-2 and IFN-gamma production, it promotes the production of IL-17 by CD4 T cells. Thus, IP(3)Rs play a key role in the activation and differentiation of CD4 T cells. The immunosuppressive effect of pharmacological blockers of these receptors may be complicated by promoting the development of inflammatory CD4 T cells.
Collapse
Affiliation(s)
- Viswas K Nagaleekar
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Barrera NP, Morales B, Villalon M. ATP and adenosine trigger the interaction of plasma membrane IP3 receptors with protein kinase A in oviductal ciliated cells. Biochem Biophys Res Commun 2008; 364:815-21. [PMID: 18163243 DOI: 10.1016/j.bbrc.2007.10.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have demonstrated that adenosine did not produce any change of intracellular free Ca2+ concentration ([Ca2+]i) in oviductal ciliated cells; however, it increased the ATP-induced Ca2+ influx through the activation of protein kinase A (PKA). Uncaging of IP3 and cAMP triggered a larger Ca2+ influx than did IP3 alone. Furthermore, the IP3 effect was abolished by Xestospongin C, an IP3 receptor blocker. Whole-cell recordings demonstrated the presence of an ATP-induced Ca2+ current, and the addition of adenosine increased the peak of this current. This effect was not observed in the presence of H-89, a PKA inhibitor. Using excised macro-patches of plasma membrane, IP3 generated a current, which was higher in the presence of the catalytic PKA subunit and this current was blocked by Xestospongin C. We show here that activation of plasma membrane IP3 receptors directly triggers Ca2+ influx in response to ATP and that these receptors are modulated by adenosine-activated PKA.
Collapse
Affiliation(s)
- Nelson P Barrera
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 IEW, United Kingdom.
| | | | | |
Collapse
|
28
|
Schug ZT, da Fonseca PCA, Bhanumathy CD, Wagner L, Zhang X, Bailey B, Morris EP, Yule DI, Joseph SK. Molecular characterization of the inositol 1,4,5-trisphosphate receptor pore-forming segment. J Biol Chem 2007; 283:2939-48. [PMID: 18025085 DOI: 10.1074/jbc.m706645200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Specific residues in the putative pore helix, selectivity filter, and S6 transmembrane helix of the inositol 1,4,5-trisphosphate receptor were mutated in order to examine their effects on channel function. Mutation of 5 of 8 highly conserved residues in the pore helix/selectivity filter region inactivated the channel (C2533A, G2541A, G2545A, G2546A, and G2547A). Of the remaining three mutants, C2527A and R2543A were partially active and G2549A behaved like wild type receptor. Mutation of a putative glycine hinge residue in the S6 helix (G2586A) or a putative gating residue at the cytosolic end of S6 helix (F2592A) had minimal effects on function, although channel function was inactivated by G2586P and F2592D mutations. The mutagenesis data are interpreted in the context of a structural homology model of the inositol 1,4,5-trisphosphate receptor.
Collapse
Affiliation(s)
- Zachary T Schug
- Department of Pathology and Cell Biology, Thomas Jefferson University, 1020 Locust Drive, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ionescu L, White C, Cheung KH, Shuai J, Parker I, Pearson JE, Foskett JK, Mak DOD. Mode switching is the major mechanism of ligand regulation of InsP3 receptor calcium release channels. ACTA ACUST UNITED AC 2007; 130:631-45. [PMID: 17998395 PMCID: PMC2151663 DOI: 10.1085/jgp.200709859] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) plays a critical role in generation of complex Ca2+ signals in many cell types. In patch clamp recordings of isolated nuclei from insect Sf9 cells, InsP3R channels were consistently detected with regulation by cytoplasmic InsP3 and free Ca2+ concentrations ([Ca2+]i) very similar to that observed for vertebrate InsP3R. Long channel activity durations of the Sf9-InsP3R have now enabled identification of a novel aspect of InsP3R gating: modal gating. Using a novel algorithm to analyze channel modal gating kinetics, InsP3R gating can be separated into three distinct modes: a low activity mode, a fast kinetic mode, and a burst mode with channel open probability (Po) within each mode of 0.007 ± 0.002, 0.24 ± 0.03, and 0.85 ± 0.02, respectively. Channels reside in each mode for long periods (tens of opening and closing events), and transitions between modes can be discerned with high resolution (within two channel opening and closing events). Remarkably, regulation of channel gating by [Ca2+]i and [InsP3] does not substantially alter channel Po within a mode. Instead, [Ca2+]i and [InsP3] affect overall channel Po primarily by changing the relative probability of the channel being in each mode, especially the high and low Po modes. This novel observation therefore reveals modal switching as the major mechanism of physiological regulation of InsP3R channel activity, with implications for the kinetics of Ca2+ release events in cells.
Collapse
Affiliation(s)
- Lucian Ionescu
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kang J, Kang S, Yoo SH, Park S. Identification of residues participating in the interaction between an intraluminal loop of inositol 1,4,5-trisphosphate receptor and a conserved N-terminal region of chromogranin B. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:502-9. [PMID: 17395556 DOI: 10.1016/j.bbapap.2007.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 01/24/2007] [Accepted: 02/02/2007] [Indexed: 11/30/2022]
Abstract
The inositol 1,4,5-trisphosphate receptor (IP3R) is a membrane channel that conducts calcium ions from the intracellular calcium stores. Despite a wealth of information on the cytoplasmic regulation of the IP3R, little is known about its regulation on the luminal side of the calcium stores. Here, we report studies on the IP3R intraluminal loop L3-2 and a conserved N-terminal region of chromogranin B. The IP3R loop is an important part of the channel's pore-forming region, and the chromogranin peptide has been shown to competitively inhibit calcium signaling by IP3R. Using the NMR titration approach, we showed that a part of the L3-2 is involved in a specific interaction with the chromogranin B peptide. Further NMR resonance assignments revealed that the 14th-20th residues of L3-2 are the keys to the binding to the chromogranin B peptide. Through detailed analysis of the data, we suggest a mechanism of IP3R regulation by chromogranin B involving conformational exchanges of the L3-2 region. Our report presents the findings of the first study on the interaction between the luminal loop of the IP3 receptor and its regulator at residue-resolution. The approaches described here should help to guide further studies on the interactions between the IP3R and other luminal side regulators.
Collapse
Affiliation(s)
- Jinho Kang
- Department of Biochemistry and Center for Advanced Medical Education by BK21 Project, School of Medicine, Inha University, Shinheung-Dong, Chung-Gu, Incheon, Korea
| | | | | | | |
Collapse
|
31
|
Abstract
The inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) are a family of Ca2+ release channels localized predominately in the endoplasmic reticulum of all cell types. They function to release Ca2+ into the cytoplasm in response to InsP3 produced by diverse stimuli, generating complex local and global Ca2+ signals that regulate numerous cell physiological processes ranging from gene transcription to secretion to learning and memory. The InsP3R is a calcium-selective cation channel whose gating is regulated not only by InsP3, but by other ligands as well, in particular cytoplasmic Ca2+. Over the last decade, detailed quantitative studies of InsP3R channel function and its regulation by ligands and interacting proteins have provided new insights into a remarkable richness of channel regulation and of the structural aspects that underlie signal transduction and permeation. Here, we focus on these developments and review and synthesize the literature regarding the structure and single-channel properties of the InsP3R.
Collapse
Affiliation(s)
- J Kevin Foskett
- Department of Physiology, University of Pennsylvania, Philadelphia 19104-6085, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
Over 4 decades ago, microelectrode studies of in situ nuclei showed that, under certain conditions, the nuclear envelope (NE) behaves as a barrier opposing the nucleocytoplasmic flow of physiological ions. As the nuclear pore complexes (NPCs) of the NE are the only pathways for direct nucleocytoplasmic flow, those experiments implied that the NPCs are capable of restricting ion flow. These early studies validated electrophysiology as a useful approach to quantify some of the mechanisms by which NPCs mediate gene activity and expression. Since electron microscopy (EM) and other non-electrophysiological investigations, showed that the NPC lumen is a nanochannel, the opinion prevailed that the NPC could not oppose the flow of ions and, therefore, that electrophysiological observations resulted from technical artifacts. Consequently, the initial enthusiasm with nuclear electrophysiology faded out in less than a decade. In 1990, nuclear electrophysiology was revisited with patch-clamp, the most powerful electrophysiological technique to date. Patch-clamp has consistently demonstrated that the NE has intrinsic ion channel activity. Direct demonstrations of the NPC on-off ion channel gating behavior were published for artificial conditions in 1995 and for intact living nuclei in 2002. This on-off switching/gating behavior can be interpreted in terms of a metastable energy barrier. In the hope of advancing nuclear electrophysiology, and to complement the other papers contained in this special issue of the journal, here I review some of the main technical, experimental, and theoretical issues of the field, with special focus on NPCs.
Collapse
Affiliation(s)
- José Omar Bustamante
- The Nuclear Physiology Lab and The Nanobiotechnology Group, The Millenium Institute of Nanosciences, The South-American Network of Nanobiotechnology, Federal University of Sergipe, Department of Physics, Brazil.
| |
Collapse
|
33
|
White C, Yang J, Monteiro MJ, Foskett JK. CIB1, a Ubiquitously Expressed Ca2+-binding Protein Ligand of the InsP3 Receptor Ca2+ Release Channel. J Biol Chem 2006; 281:20825-20833. [PMID: 16723353 DOI: 10.1074/jbc.m602175200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A family of Ca(2+)-binding proteins (CaBPs) was shown to bind to the inositol 1,4,5-trisphosphate receptor (InsP(3)R) Ca(2+) release channel and gate it in the absence of InsP(3), establishing them as protein ligands (Yang, J., McBride, S., Mak, D.-O. D., Vardi, N., Palczewski, K., Haeseleer, F., and Foskett, J. K. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 7711-7716). However, the neuronally restricted expression of CaBP and its inhibition of InsP(3)R-mediated Ca(2+) signaling when overexpressed (Kasri, N. N., Holmes, A. M., Bultynck, G., Parys, J. B., Bootman, M. D., Rietdorf, K., Missiaen, L., McDonald, F., De Smedt, H., Conway, S. J., Holmes, A. B., Berridge, M. J., and Roderick, H. L. (2004) EMBO J. 23, 312-321; Haynes, L. P., Tepikin, A. V., and Burgoyne, R. D. (2004) J. Biol. Chem. 279, 547-555) have raised questions regarding the functional implications of this regulation. We have discovered the Ca(2+)-binding protein CIB1 (calmyrin) as a ubiquitously expressed ligand of the InsP(3)R. CIB1 binds to all mammalian InsP(3)R isoforms in a Ca(2+)-sensitive manner dependent on its two functional EF-hands and activates InsP(3)R channel gating in the absence of InsP(3). In contrast, overexpression of CIB1 or CaBP1 attenuated InsP(3)R-dependent Ca(2+) signaling, and in vitro pre-exposure to CIB1 reduced the number of channels available for subsequent stimulation by InsP(3). These results establish CIB1 as a ubiquitously expressed activating and inhibiting protein ligand of the InsP(3)R.
Collapse
Affiliation(s)
- Carl White
- Departments of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jun Yang
- Departments of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mervyn J Monteiro
- University of Maryland Biotechnology Institute and Medical Biotechnology Center, University of Maryland, Baltimore, Maryland 21201
| | - J Kevin Foskett
- Departments of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Departments of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
34
|
Ionescu L, Cheung KH, Vais H, Mak DOD, White C, Foskett JK. Graded recruitment and inactivation of single InsP3 receptor Ca2+-release channels: implications for quantal [corrected] Ca2+release. J Physiol 2006; 573:645-62. [PMID: 16644799 PMCID: PMC1779751 DOI: 10.1113/jphysiol.2006.109504] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Modulation of cytoplasmic free Ca2+ concentration ([Ca2+]i) by receptor-mediated generation of inositol 1,4,5-trisphosphate (InsP3) and activation of its receptor (InsP3R), a Ca2+-release channel in the endoplasmic reticulum, is a ubiquitous signalling mechanism. A fundamental aspect of InsP3-mediated signalling is the graded release of Ca2+ in response to incremental levels of stimuli. Ca2+ release has a transient fast phase, whose rate is proportional to [InsP3], followed by a much slower one even in constant [InsP3]. Many schemes have been proposed to account for quantal Ca2+ release, including the presence of heterogeneous channels and Ca2+ stores with various mechanisms of release termination. Here, we demonstrate that mechanisms intrinsic to the single InsP3R channel can account for quantal Ca2+ release. Patch-clamp electrophysiology of isolated insect Sf9 cell nuclei revealed a consistent and high probability of detecting functional endogenous InsP3R channels, enabling InsP3-induced channel inactivation to be identified as an inevitable consequence of activation, and allowing the average number of activated channels in the membrane patch (N(A)) to be accurately quantified. InsP3-activated channels invariably inactivated, with average duration of channel activity reduced by high [Ca2+]i and suboptimal [InsP3]. Unexpectedly, N(A) was found to be a graded function of both [Ca2+]i and [InsP3]. A qualitative model involving Ca2+-induced InsP3R sequestration and inactivation can account for these observations. These results suggest that apparent heterogeneous ligand sensitivity can be generated in a homogeneous population of InsP3R channels, providing a mechanism for graded Ca2+ release that is intrinsic to the InsP3R Ca2+ release channel itself.
Collapse
Affiliation(s)
- Lucian Ionescu
- Department of Physiology, B39 Anatomy-Chemistry Building, 414 Guardian Drive, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Woodcock EA, Matkovich SJ. Ins(1,4,5)P3 receptors and inositol phosphates in the heart-evolutionary artefacts or active signal transducers? Pharmacol Ther 2005; 107:240-51. [PMID: 15908009 DOI: 10.1016/j.pharmthera.2005.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The generation of the second messenger inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) and its associated release of Ca(2+) from internal stores is a highly conserved module in intracellular signaling from Drosophila to mammals. Many cell types, often nonexcitable cells, depend on this pathway to couple external signals to intracellular Ca(2+) release. However, despite the presence of the requisite Ins(1,4,5)P(3) signaling machinery, excitable cells such as cardiac myocytes employ a robust alternate system of intracellular Ca(2+) release, namely, a coupled system of Ca(2+) influx, followed by Ca(2+) release via the IP(3)R-related ryanodine receptors. In these systems, Ins(1,4,5)P(3) signaling pathways appear to be largely dormant. In this review, we consider the general features of inositol phosphate (InsP) responses in cardiac myocytes and the molecules mediating these responses. The spatial localization of Ins(1,4,5)P(3) generation and Ins(1,4,5)P(3) receptor (IP(3)Rs) is likely of key importance, and we examine the state of knowledge in atrial, ventricular, and Purkinje myocytes. Several studies have implicated Ins(1,4,5)P(3) generation in both arrhythmogenic and hypertrophic responses, and possible mechanisms involving Ins(1,4,5)P(3) are discussed. While Ins(1,4,5)P(3) is unlikely to be a key player in cardiac excitation-contraction (EC) coupling, its potential role in an alternate Ca(2+) release system to signal changes in gene transcription warrants further investigation. Such studies will help to determine whether cardiac Ins(1,4,5)P(3) generation represents a vestigial pathway or plays an active role in cardiac signaling.
Collapse
Affiliation(s)
- Elizabeth A Woodcock
- Cellular Biochemistry Laboratory, Baker Heart Research Institute, Commercial Road, Melbourne, Australia.
| | | |
Collapse
|
36
|
Espelt MV, Estevez AY, Yin X, Strange K. Oscillatory Ca2+ signaling in the isolated Caenorhabditis elegans intestine: role of the inositol-1,4,5-trisphosphate receptor and phospholipases C beta and gamma. J Gen Physiol 2005; 126:379-92. [PMID: 16186564 PMCID: PMC2266627 DOI: 10.1085/jgp.200509355] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 08/30/2005] [Indexed: 11/20/2022] Open
Abstract
Defecation in the nematode Caenorhabditis elegans is a readily observable ultradian behavioral rhythm that occurs once every 45-50 s and is mediated in part by posterior body wall muscle contraction (pBoc). pBoc is not regulated by neural input but instead is likely controlled by rhythmic Ca(2+) oscillations in the intestinal epithelium. We developed an isolated nematode intestine preparation that allows combined physiological, genetic, and molecular characterization of oscillatory Ca(2+) signaling. Isolated intestines loaded with fluo-4 AM exhibit spontaneous rhythmic Ca(2+) oscillations with a period of approximately 50 s. Oscillations were only detected in the apical cell pole of the intestinal epithelium and occur as a posterior-to-anterior moving intercellular Ca(2+) wave. Loss-of-function mutations in the inositol-1,4,5-trisphosphate (IP(3)) receptor ITR-1 reduce pBoc and Ca(2+) oscillation frequency and intercellular Ca(2+) wave velocity. In contrast, gain-of-function mutations in the IP(3) binding and regulatory domains of ITR-1 have no effect on pBoc or Ca(2+) oscillation frequency but dramatically increase the speed of the intercellular Ca(2+) wave. Systemic RNA interference (RNAi) screening of the six C. elegans phospholipase C (PLC)-encoding genes demonstrated that pBoc and Ca(2+) oscillations require the combined function of PLC-gamma and PLC-beta homologues. Disruption of PLC-gamma and PLC-beta activity by mutation or RNAi induced arrhythmia in pBoc and intestinal Ca(2+) oscillations. The function of the two enzymes is additive. Epistasis analysis suggests that PLC-gamma functions primarily to generate IP(3) that controls ITR-1 activity. In contrast, IP(3) generated by PLC-beta appears to play little or no direct role in ITR-1 regulation. PLC-beta may function instead to control PIP(2) levels and/or G protein signaling events. Our findings provide new insights into intestinal cell Ca(2+) signaling mechanisms and establish C. elegans as a powerful model system for defining the gene networks and molecular mechanisms that underlie the generation and regulation of Ca(2+) oscillations and intercellular Ca(2+) waves in nonexcitable cells.
Collapse
Affiliation(s)
- Maria V Espelt
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
37
|
Mak DOD, McBride SMJ, Petrenko NB, Foskett JK. Novel regulation of calcium inhibition of the inositol 1,4,5-trisphosphate receptor calcium-release channel. ACTA ACUST UNITED AC 2004; 122:569-81. [PMID: 14581583 PMCID: PMC2229581 DOI: 10.1085/jgp.200308808] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R), a Ca2+-release channel localized to the endoplasmic reticulum, plays a critical role in generating complex cytoplasmic Ca2+ signals in many cell types. Three InsP3R isoforms are expressed in different subcellular locations, at variable relative levels with heteromultimer formation in different cell types. A proposed reason for this diversity of InsP3R expression is that the isoforms are differentially inhibited by high cytoplasmic free Ca2+ concentrations ([Ca2+]i), possibly due to their different interactions with calmodulin. Here, we have investigated the possible roles of calmodulin and bath [Ca2+] in mediating high [Ca2+]i inhibition of InsP3R gating by studying single endogenous type 1 InsP3R channels through patch clamp electrophysiology of the outer membrane of isolated Xenopus oocyte nuclei. Neither high concentrations of a calmodulin antagonist nor overexpression of a dominant-negative Ca2+-insensitive mutant calmodulin affected inhibition of gating by high [Ca2+]i. However, a novel, calmodulin-independent regulation of [Ca2+]i inhibition of gating was revealed: whereas channels recorded from nuclei kept in the regular bathing solution with [Ca2+] approximately 400 nM were inhibited by 290 muM [Ca2+]i, exposure of the isolated nuclei to a bath solution with ultra-low [Ca2+] (<5 nM, for approximately 300 s) before the patch-clamp experiments reversibly relieved Ca2+ inhibition, with channel activities observed in [Ca2+]i up to 1.5 mM. Although InsP3 activates gating by relieving high [Ca2+]i inhibition, it was nevertheless still required to activate channels that lacked high [Ca2+]i inhibition. Our observations suggest that high [Ca2+]i inhibition of InsP3R channel gating is not regulated by calmodulin, whereas it can be disrupted by environmental conditions experienced by the channel, raising the possibility that presence or absence of high [Ca2+]i inhibition may not be an immutable property of different InsP3R isoforms. Furthermore, these observations support an allosteric model in which Ca2+ inhibition of the InsP3R is mediated by two Ca2+ binding sites, only one of which is sensitive to InsP3.
Collapse
Affiliation(s)
- Don-On Daniel Mak
- Department of Physiology, B39 Anatomy-Chemistry Bldg/6085, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| | | | | | | |
Collapse
|
38
|
Abstract
The inositol 1,4,5 trisphosphate (IP3) receptor (IP3R) is a Ca2+ release channel that responds to the second messenger IP3. Exquisite modulation of intracellular Ca2+ release via IP3Rs is achieved by the ability of IP3R to integrate signals from numerous small molecules and proteins including nucleotides, kinases, and phosphatases, as well as nonenzyme proteins. Because the ion conduction pore composes only approximately 5% of the IP3R, the great bulk of this large protein contains recognition sites for these substances. Through these regulatory mechanisms, IP3R modulates diverse cellular functions, which include, but are not limited to, contraction/excitation, secretion, gene expression, and cellular growth. We review the unique properties of the IP3R that facilitate cell-type and stimulus-dependent control of function, with special emphasis on protein-binding partners.
Collapse
Affiliation(s)
- Randen L Patterson
- Department of Neuroscience, Johns Hopkins University, Johns Hopkins Medical School, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
39
|
Garavito-Aguilar ZV, Recio-Pinto E, Corrales AV, Zhang J, Blanck TJJ, Xu F. Differential thapsigargin-sensitivities and interaction of Ca2+ stores in human SH-SY5Y neuroblastoma cells. Brain Res 2004; 1011:177-86. [PMID: 15157804 DOI: 10.1016/j.brainres.2004.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2004] [Indexed: 10/26/2022]
Abstract
In human SH-SY5Y neuroblastoma cells, two distinct intracellular Ca2+ stores, a KCl-/caffeine-sensitive and a carbachol-/IP3-sensitive store, were demonstrated previously. In this study, responses of these two intracellular Ca2+ stores to thapsigargin were characterized. Ca2+-release from these stores was evoked either by high K+ (100 mM KCl) or by 1 mM carbachol, and changes in the intracellular Ca2+ level were monitored using Fura-2 fluorimetry. A sequential stimulation protocol (KCl-->carbachol or vice versa) allowed evaluation of the individual contribution of different Ca2+ stores to the evoked intracellular Ca2+ ([Ca2+]i)-transients and the dynamic interaction between them. Thapsigargin (0.05 nM - 20 microM) alone induced a [Ca2+]i-transient. Both the carbachol- and the KCl-evoked [Ca2+]i-transients were inhibited by thapsigargin, but with very different sensitivities. Thapsigargin inhibited the carbachol-evoked [Ca2+]i-transients with (IC50 = 0.353 nM) or without (IC50 = 0.448 nM) a KCl-prestimulation, but an additional small component, with a much lower sensitivity (IC50=4814 nM), was observed in the absence of a KCl-prestimulation. In contrast, the KCl-evoked [Ca2+]i-transients displayed only one component with a very low sensitivity to thapsigargin in both absence (IC50=3343 nM) and presence (IC50=6858 nM) of a carbachol-prestimulation. These findings suggest that the sarco-/endoplasmic reticular Ca2+ ATPases associated with the KCl-/caffeine- and carbachol-/IP3-sensitive intracellular Ca2+ stores differ from each other, either in types or in their post-translational modification. Such difference might play important role in the regulation of neuronal Ca2+ homeostasis.
Collapse
Affiliation(s)
- Zayra V Garavito-Aguilar
- Department of Anesthesiology, New York University School of Medicine, 550 First Avenue, Tisch Building, 4th Floor, Room HE-438, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
40
|
Mak DOD, McBride SMJ, Foskett JK. Spontaneous channel activity of the inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R). Application of allosteric modeling to calcium and InsP3 regulation of InsP3R single-channel gating. J Gen Physiol 2003; 122:583-603. [PMID: 14581584 PMCID: PMC2229577 DOI: 10.1085/jgp.200308809] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Accepted: 09/16/2003] [Indexed: 12/05/2022] Open
Abstract
The InsP3R Ca2+ release channel has a biphasic dependence on cytoplasmic free Ca2+ concentration ([Ca2+]i). InsP3 activates gating primarily by reducing the sensitivity of the channel to inhibition by high [Ca2+]i. To determine if relieving Ca2+ inhibition is sufficient for channel activation, we examined single-channel activities in low [Ca2+]i in the absence of InsP3, by patch clamping isolated Xenopus oocyte nuclei. For both endogenous Xenopus type 1 and recombinant rat type 3 InsP3R channels, spontaneous InsP3-independent channel activities with low open probability Po ( approximately 0.03) were observed in [Ca2+]i < 5 nM with the same frequency as in the presence of InsP3, whereas no activities were observed in 25 nM Ca2+. These results establish the half-maximal inhibitory [Ca2+]i of the channel to be 1.2-4.0 nM in the absence of InsP3, and demonstrate that the channel can be active when all of its ligand-binding sites (including InsP3) are unoccupied. In the simplest allosteric model that fits all observations in nuclear patch-clamp studies of [Ca2+]i and InsP3 regulation of steady-state channel gating behavior of types 1 and 3 InsP3R isoforms, including spontaneous InsP3-independent channel activities, the tetrameric channel can adopt six different conformations, the equilibria among which are controlled by two inhibitory and one activating Ca2+-binding and one InsP3-binding sites in a manner outlined in the Monod-Wyman-Changeux model. InsP3 binding activates gating by affecting the Ca2+ affinities of the high-affinity inhibitory sites in different conformations, transforming it into an activating site. Ca2+ inhibition of InsP3-liganded channels is mediated by an InsP3-independent low-affinity inhibitory site. The model also suggests that besides the ligand-regulated gating mechanism, the channel has a ligand-independent gating mechanism responsible for maximum channel Po being less than unity. The validity of this model was established by its successful quantitative prediction of channel behavior after it had been exposed to ultra-low bath [Ca2+].
Collapse
Affiliation(s)
- Don-On Daniel Mak
- Department of Physiology, B39 Anatomy-Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| | | | | |
Collapse
|
41
|
Uchida K, Miyauchi H, Furuichi T, Michikawa T, Mikoshiba K. Critical regions for activation gating of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 2003; 278:16551-60. [PMID: 12621039 DOI: 10.1074/jbc.m300646200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the molecular mechanism of ligand-induced gating of the inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R)/Ca(2+) release channel, we analyzed the channel properties of deletion mutants retaining both the IP(3)-binding and channel-forming domains of IP(3)R1. Using intrinsically IP(3)R-deficient cells as the host cells for receptor expression, we determined that six of the mutants, those lacking residues 1-223, 651-1130, 1267-2110, 1845-2042, 1845-2216, and 2610-2748, did not exhibit any measurable Ca(2+) release activity, whereas the mutants lacking residues 1131-1379 and 2736-2749 retained the activity. Limited trypsin digestion showed that not only the IP(3)-gated Ca(2+)-permeable mutants lacking residues 1131-1379 and 2736-2749, but also two nonfunctional mutants lacking residues 1-223 and 651-1130, retained the normal folding structure of at least the C-terminal channel-forming domain. These results indicate that two regions of IP(3)R1, viz. residues 1-223 and 651-1130, are critical for IP(3)-induced gating. We also identified a highly conserved cysteine residue at position 2613, which is located within the C-terminal tail, as being essential for channel opening. Based on these results, we propose a novel five-domain structure model in which both N-terminal and internal coupling domains transduce ligand-binding signals to the C-terminal tail, which acts as a gatekeeper that triggers opening of the activation gate of IP(3)R1 following IP(3) binding.
Collapse
Affiliation(s)
- Keiko Uchida
- Department of Basic Medical Science, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
42
|
Ramos J, Jung W, Ramos-Franco J, Mignery GA, Fill M. Single channel function of inositol 1,4,5-trisphosphate receptor type-1 and -2 isoform domain-swap chimeras. J Gen Physiol 2003; 121:399-411. [PMID: 12695486 PMCID: PMC2217376 DOI: 10.1085/jgp.200208718] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The InsP3R proteins have three recognized domains, the InsP3-binding, regulatory/coupling, and channel domains (Mignery, G.A., and T.C. Südhof. 1990. EMBO J. 9:3893-3898). The InsP3 binding domain and the channel-forming domain are at opposite ends of the protein. Ligand regulation of the channel must involve communication between these different regions of the protein. This communication likely involves the interceding sequence (i.e., the regulatory/coupling domain). The single channel functional attributes of the full-length recombinant type-1, -2, and -3 InsP3R channels have been defined. Here, two type-1/type-2 InsP3R regulatory/coupling domain chimeras were created and their single channel function defined. One chimera (1-2-1) contained the type-2 regulatory/coupling domain in a type-1 backbone. The other chimera (2-1-2) contained the type-1 regulatory/coupling domain in a type-2 backbone. These chimeric proteins were expressed in COS cells, isolated, and then reconstituted in proteoliposomes. The proteoliposomes were incorporated into artificial planar lipid bilayers and the single-channel function of the chimeras defined. The chimeras had permeation properties like that of wild-type channels. The ligand regulatory properties of the chimeras were altered. The InsP3 and Ca2+ regulation had some unique features but also had features in common with wild-type channels. These results suggest that different independent structural determinants govern InsP3R permeation and ligand regulation. It also suggests that ligand regulation is a multideterminant process that involves several different regions of the protein. This study also demonstrates that a chimera approach can be applied to define InsP3R structure-function.
Collapse
Affiliation(s)
- Jorge Ramos
- Department of Physiology, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
43
|
Tu H, Miyakawa T, Wang Z, Glouchankova L, Iino M, Bezprozvanny I. Functional characterization of the type 1 inositol 1,4,5-trisphosphate receptor coupling domain SII(+/-) splice variants and the Opisthotonos mutant form. Biophys J 2002; 82:1995-2004. [PMID: 11916857 PMCID: PMC1301995 DOI: 10.1016/s0006-3495(02)75548-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The type 1 inositol (1,4,5)-trisphosphate receptor (InsP3R1) plays a critical role in Ca2+ signaling in cells. Neuronal and nonneuronal isoforms of the InsP3R1 differ by alternative splicing in the coupling domain of the InsP3R1 (SII site). Deletion of 107 amino acids from the coupling domain of the InsP3R1 results in epileptic-like behaviors in opisthotonos (opt) spontaneous mouse mutant. Using Spodoptera frugiperda cells expression system, we compared single-channel behavior of recombinant InsP3R1-SII(+), InsP3R1-SII(-), and InsP3R1-opt channels in planar lipid bilayers. The main results of our study are: 1) the InsP3R1-SII(-) has a higher conductance (94 pS) and the InsP3R1-opt has a lower conductance (64 pS) than the InsP3R1-SII(+) (81 pS); 2) the bell-shaped Ca2+-dependence peaks at 200-300 nM Ca2+ for all three InsP3R1 isoforms; 3) the bell-shaped Ca2+-dependence is wider for the InsP3R1-SII(+) and narrower for the InsP3R1-SII(-) and InsP3R1-opt; 4) the apparent affinity for ATP is sixfold lower for the InsP3R1-SII(-) (1.4 mM) and 20-fold lower for the InsP3R1-opt (5.3 mM) than for the InsP3R1-SII(+) (0.24 mM); 5) the InsP3R1-SII(-) is approximately twofold more active than the InsP3R1-SII(+) in the absence of ATP. Obtained results provide novel information about the molecular determinants of the InsP3R1 function.
Collapse
Affiliation(s)
- Huiping Tu
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | | | | | | | | | | |
Collapse
|