1
|
Kondela T, Dushanov E, Vorobyeva M, Mamatkulov K, Drolle E, Soloviov D, Hrubovčák P, Kholmurodov K, Arzumanyan G, Leonenko Z, Kučerka N. Investigating the competitive effects of cholesterol and melatonin in model lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183651. [PMID: 34023300 DOI: 10.1016/j.bbamem.2021.183651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
We have studied the impact of cholesterol and/or melatonin on the static and dynamical properties of bilayers made of DPPC or DOPC utilizing neutron scattering techniques, Raman spectroscopy and molecular dynamics simulations. While differing in the amplitude of the effect due to cholesterol or melatonin when comparing their interactions with the two lipids, their addition ensued recognizable changes to both types of bilayers. As expected, based on the two-component systems of lipid/cholesterol or lipid/melatonin studied previously, we show the impact of cholesterol and melatonin being opposite and competitive in the case of three-component systems of lipid/cholesterol/melatonin. The effect of cholesterol appears to prevail over that of melatonin in the case of structural properties of DPPC-based bilayers, which can be explained by its interactions targeting primarily the saturated lipid chains. The dynamics of hydrocarbon chains represented by the ratio of trans/gauche conformers reveals the competitive effect of cholesterol and melatonin being somewhat more balanced. The additive yet opposing effects of cholesterol and melatonin have been observed also in the case of structural properties of DOPC-based bilayers. We report that cholesterol induced an increase in bilayer thickness, while melatonin induced a decrease in bilayer thickness in the three-component systems of DOPC/cholesterol/melatonin. Commensurately, by evaluating the projected area of DOPC, we demonstrate a lipid area decrease with an increasing concentration of cholesterol, and a lipid area increase with an increasing concentration of melatonin. The demonstrated condensing effect of cholesterol and the fluidizing effect of melatonin appear in an additive manner upon their mutual presence.
Collapse
Affiliation(s)
- Tomáš Kondela
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russian Federation; Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynska dolina, Bratislava 842 48, Slovakia
| | - Ermuhammad Dushanov
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russian Federation; Department of Biophysics, Dubna State University, Universitetskaya 19, Dubna, Moscow Region 141980, Russian Federation
| | - Maria Vorobyeva
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russian Federation
| | - Kahramon Mamatkulov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russian Federation
| | - Elizabeth Drolle
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Dmytro Soloviov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russian Federation; Faculty of Physics, Taras Shevchenko National University of Kyiv, Hlushkova Ave. 4, Kyiv 03127, Ukraine
| | - Pavol Hrubovčák
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russian Federation; Department of Condensed Matter Physics, P. J. Šafárik University, Park Angelinum 9, Košice 04154, Slovakia
| | - Kholmirzo Kholmurodov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russian Federation; Department of Chemistry, New Technologies and Materials, Dubna State University, Universitetskaya 19, Dubna, Moscow Region 141980, Russian Federation
| | - Grigory Arzumanyan
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russian Federation
| | - Zoya Leonenko
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada; Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada
| | - Norbert Kučerka
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russian Federation; Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, Bratislava 832 32, Slovakia.
| |
Collapse
|
2
|
Wood MH, Milan DC, Nichols RJ, Casford MTL, Horswell SL. A quantitative determination of lipid bilayer deposition efficiency using AFM. RSC Adv 2021; 11:19768-19778. [PMID: 35479201 PMCID: PMC9033767 DOI: 10.1039/d1ra01920a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
The efficacy of a number of different methods for depositing a dimyristoylphosphatidylcholine (DMPC) lipid bilayer or DMPC-cholesterol (3 : 1) mixed bilayer onto a silicon substrate has been investigated in a quantitative manner using atomic force microscopy (AFM) image analysis to extract surface coverage. Complementary AFM-IR measurements were used to confirm the presence of the lipids. For the Langmuir-Blodgett/Schaefer deposition method at temperatures below the chain-melting transition temperature (T m), a large number of bilayer defects resulted when DMPC was deposited from a water subphase. Addition of calcium ions to the trough led to smaller, more frequent defects, whereas addition of cholesterol to the lipid mixture led to a vast improvement in bilayer coverage. Poor coverage was achieved for deposition at temperatures above T m. Formation of the deposited bilayer from vesicle fusion proved a more reliable method for all systems, with formation of near-complete bilayers within 60 seconds at temperatures above T m, although this method led to a higher probability of multilayer formation and rougher bilayer surfaces.
Collapse
Affiliation(s)
- Mary H Wood
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
| | - David C Milan
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Richard J Nichols
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Michael T L Casford
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Sarah L Horswell
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
| |
Collapse
|
3
|
Bianchetti G, Azoulay-Ginsburg S, Keshet-Levy NY, Malka A, Zilber S, Korshin EE, Sasson S, De Spirito M, Gruzman A, Maulucci G. Investigation of the Membrane Fluidity Regulation of Fatty Acid Intracellular Distribution by Fluorescence Lifetime Imaging of Novel Polarity Sensitive Fluorescent Derivatives. Int J Mol Sci 2021; 22:ijms22063106. [PMID: 33803648 PMCID: PMC8002861 DOI: 10.3390/ijms22063106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/27/2022] Open
Abstract
Free fatty acids are essential structural components of the cell, and their intracellular distribution and effects on membrane organelles have crucial roles in regulating the metabolism, development, and cell cycle of most cell types. Here we engineered novel fluorescent, polarity-sensitive fatty acid derivatives, with the fatty acid aliphatic chain of increasing length (from 12 to 18 carbons). As in the laurdan probe, the lipophilic acyl tail is connected to the environmentally sensitive dimethylaminonaphthalene moiety. The fluorescence lifetime imaging analysis allowed us to monitor the intracellular distribution of the free fatty acids within the cell, and to simultaneously examine how the fluidity and the microviscosity of the membrane environment influence their localization. Each of these probes can thus be used to investigate the membrane fluidity regulation of the correspondent fatty acid intracellular distribution. We observed that, in PC-12 cells, fluorescent sensitive fatty acid derivatives with increased chain length compartmentalize more preferentially in the fluid regions, characterized by a low microviscosity. Moreover, fatty acid derivatives with the longest chain compartmentalize in lipid droplets and lysosomes with characteristic lifetimes, thus making these probes a promising tool for monitoring lipophagy and related events.
Collapse
Affiliation(s)
- Giada Bianchetti
- Neuroscience Department, Biophysics Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.B.); (M.D.S.)
- Fondazione Policlinico Universitario “A. Gemelli” IRCSS, 00168 Rome, Italy
| | - Salome Azoulay-Ginsburg
- Department of Chemistry, Bar-Ilan University, Ramat Gan 59290002, Israel; (S.A.-G.); (N.Y.K.-L.); (A.M.); (E.E.K.)
| | - Nimrod Yosef Keshet-Levy
- Department of Chemistry, Bar-Ilan University, Ramat Gan 59290002, Israel; (S.A.-G.); (N.Y.K.-L.); (A.M.); (E.E.K.)
- Department of Pathology, Shaare Zedek Medical Center, Jerusalem 9103102, Israel;
| | - Aviv Malka
- Department of Chemistry, Bar-Ilan University, Ramat Gan 59290002, Israel; (S.A.-G.); (N.Y.K.-L.); (A.M.); (E.E.K.)
| | - Sofia Zilber
- Department of Pathology, Shaare Zedek Medical Center, Jerusalem 9103102, Israel;
| | - Edward E. Korshin
- Department of Chemistry, Bar-Ilan University, Ramat Gan 59290002, Israel; (S.A.-G.); (N.Y.K.-L.); (A.M.); (E.E.K.)
| | - Shlomo Sasson
- Institute for Drug Research, Faculty of Medicine, The Hebrew University, Jerusalem 911210, Israel;
| | - Marco De Spirito
- Neuroscience Department, Biophysics Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.B.); (M.D.S.)
- Fondazione Policlinico Universitario “A. Gemelli” IRCSS, 00168 Rome, Italy
| | - Arie Gruzman
- Department of Chemistry, Bar-Ilan University, Ramat Gan 59290002, Israel; (S.A.-G.); (N.Y.K.-L.); (A.M.); (E.E.K.)
- Correspondence: (A.G.); (G.M.); Tel.: +972-54-7489041 (A.G.); +39-06-3015-4265 (G.M.)
| | - Giuseppe Maulucci
- Neuroscience Department, Biophysics Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.B.); (M.D.S.)
- Fondazione Policlinico Universitario “A. Gemelli” IRCSS, 00168 Rome, Italy
- Correspondence: (A.G.); (G.M.); Tel.: +972-54-7489041 (A.G.); +39-06-3015-4265 (G.M.)
| |
Collapse
|
4
|
Mitra S, Das R, Singh A, Mukhopadhyay MK, Roy G, Ghosh SK. Surface Activities of a Lipid Analogue Room-Temperature Ionic Liquid and Its Effects on Phospholipid Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:328-339. [PMID: 31826620 DOI: 10.1021/acs.langmuir.9b02716] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
There are great efforts of synthesizing imidazolium-based ionic liquids (ILs) for developing new antibiotics as these molecules have shown strong antibacterial activities. Compared to a single-hydrocarbon-chained IL, the lipid analogues (LAs) with two chains are more effective. In the present study, the LA molecule MeIm(COOH)Me(Oleylamine)Iodide has been synthesized and its surface activities along with the effectiveness in restructuring of a model cellular membrane have been quantified. The molecule is found to be highly surface active as estimated from the area-pressure isotherm of a monolayer of the molecules formed at the air-water interface. The X-ray reflectivity (XRR) studies of a monolayer dip-coated on a hydrophilic substrate have shown the structural properties of the layer which resembles to those of unsaturated phospholipids. The LA molecules are observed to fluidize a phospholipid bilayer formed by the saturated lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). At a lower surface pressure, the lipid monolayer of DPPC has exhibited a thickening effect at a low concentration of added LA and a thinning effect at higher concentration. However, at a high surface pressure of the monolayer, the thickness is found to decrease monotonically. The in-plane pressure-dependent interaction of LA molecules with model cellular membrane and the corresponding perturbation in the structure and physical properties of the membrane may be linked to the strong lysing effect of these types of molecules.
Collapse
Affiliation(s)
| | | | - A Singh
- Surface Physics and Material Science Division , Saha Institute of Nuclear Physics , AF Block, Bidhannagar , Kolkata 700064 , India
| | - M K Mukhopadhyay
- Surface Physics and Material Science Division , Saha Institute of Nuclear Physics , AF Block, Bidhannagar , Kolkata 700064 , India
| | | | | |
Collapse
|
5
|
Zhang W, Coughlin ML, Metzger JM, Hackel BJ, Bates FS, Lodge TP. Influence of Cholesterol and Bilayer Curvature on the Interaction of PPO-PEO Block Copolymers with Liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7231-7241. [PMID: 31117745 PMCID: PMC7050598 DOI: 10.1021/acs.langmuir.9b00572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Interactions of nonionic poly(ethylene oxide)- b-poly(propylene oxide) (PEO-PPO) block copolymers, known as Pluronics or poloxamers, with cell membranes have been widely studied for a host of biomedical applications. Herein, we report how cholesterol within phosphatidylcholine (POPC) lipid bilayer liposomes and bilayer curvature affects the binding of several PPO-PEO-PPO triblocks with varying PPO content and a tPPO-PEO diblock, where t refers to a tert-butyl end group. Pulsed-field-gradient NMR was employed to quantify the extent of copolymer associated with liposomes prepared with cholesterol concentrations ranging from 0 to 30 mol % relative to the total content of POPC and cholesterol and vesicle extrusion radii of 25, 50, or 100 nm. The fraction of polymer bound to the liposomes was extracted from NMR data on the basis of the very different mobilities of the bound and free polymers in aqueous solution. Cholesterol concentration was manipulated by varying the molar percentage of this sterol in the POPC bilayer preparation. The membrane curvature was varied by adjusting the liposome size through a conventional pore extrusion technique. Although the PPO content significantly influences the overall amount of block copolymer adsorbed to the liposome, we found that polymer binding decreases with increasing cholesterol concentration in a universal fashion, with the fraction of bound polymer dropping 10-fold between 0 and 30 mol % cholesterol relative to the total content of POPC and cholesterol. Increasing the bilayer curvature (decreasing the radius of the liposome) in the absence of cholesterol increases polymer binding between 2- and 4-fold over the range of liposome sizes studied. These results demonstrate that cholesterol plays a dominant role, and bilayer curvature has a less significant impact as the curvature decreases, on polymer-membrane association.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - McKenzie L. Coughlin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P. Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Leonard AN, Wang E, Monje-Galvan V, Klauda JB. Developing and Testing of Lipid Force Fields with Applications to Modeling Cellular Membranes. Chem Rev 2019; 119:6227-6269. [DOI: 10.1021/acs.chemrev.8b00384] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Klauda JB. Perspective: Computational modeling of accurate cellular membranes with molecular resolution. J Chem Phys 2018; 149:220901. [DOI: 10.1063/1.5055007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jeffery B. Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
- Biophysics Graduate Program, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
8
|
Leeb F, Maibaum L. Spatially Resolving the Condensing Effect of Cholesterol in Lipid Bilayers. Biophys J 2018; 115:2179-2188. [PMID: 30447996 DOI: 10.1016/j.bpj.2018.10.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 11/15/2022] Open
Abstract
We study the effect of cholesterol on the structure of dipalmitoylphosphatidylcholine phospholipid bilayers. Using extensive molecular dynamics computer simulations at atomistic resolution, we observe and quantify several structural changes upon increasing cholesterol content that are collectively known as the condensing effect: a thickening of the bilayer, an increase in lipid tail order, and a decrease in lateral area. We also observe a change in leaflet interdigitation and a lack thereof in the distributions of dipalmitoylphosphatidylcholine headgroup orientations. These results, obtained over a wide range of cholesterol mole fractions, are then used to calibrate the analysis of phospholipid properties in bilayers containing a single cholesterol molecule per leaflet, which we perform in a spatially resolved way. We find that a single cholesterol molecule affects phospholipids in its first and second solvation shells, which puts the range of this effective interaction to be on the order of 1-2 nm. We also observe a tendency of phospholipids to orient their polar headgroups toward the cholesterol, which provides additional support for the umbrella model of bilayer organization.
Collapse
Affiliation(s)
- Felix Leeb
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Lutz Maibaum
- Department of Chemistry, University of Washington, Seattle, Washington.
| |
Collapse
|
9
|
Parameterization of a coarse-grained model of cholesterol with point-dipole electrostatics. J Comput Aided Mol Des 2018; 32:1259-1271. [DOI: 10.1007/s10822-018-0164-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022]
|
10
|
Naumowicz M, Kruszewski MA, Gál M. Electrical properties of phosphatidylcholine bilayers containing canthaxanthin or β -carotene, investigated by electrochemical impedance spectroscopy. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Shrestha R, Anderson CM, Cardenas AE, Elber R, Webb LJ. Direct Measurement of the Effect of Cholesterol and 6-Ketocholestanol on the Membrane Dipole Electric Field Using Vibrational Stark Effect Spectroscopy Coupled with Molecular Dynamics Simulations. J Phys Chem B 2017; 121:3424-3436. [PMID: 28071910 PMCID: PMC5398937 DOI: 10.1021/acs.jpcb.6b09007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biological membranes are heterogeneous structures with complex electrostatic profiles arising from lipids, sterols, membrane proteins, and water molecules. We investigated the effect of cholesterol and its derivative 6-ketocholestanol (6-kc) on membrane electrostatics by directly measuring the dipole electric field (F⃗d) within lipid bilayers containing cholesterol or 6-kc at concentrations of 0-40 mol% through the vibrational Stark effect (VSE). We found that adding low concentrations of cholesterol, up to ∼10 mol %, increases F⃗d, while adding more cholesterol up to 40 mol% lowers F⃗d. In contrast, we measured a monotonic increase in F⃗d as 6-kc concentration increased. We propose that this membrane electric field is affected by multiple factors: the polarity of the sterol molecules, the reorientation of the phospholipid dipole due to sterol, and the impact of the sterol on hydrogen bonding with surface water. We used molecular dynamics simulations to examine the distribution of phospholipids, sterol, and helix in bilayers containing these sterols. At low concentrations, we observed clustering of sterols near the vibrational probe whereas at high concentrations, we observed spatial correlation between the positions of the sterol molecules. This work demonstrates how a one-atom difference in a sterol changes the physicochemical and electric field properties of the bilayer.
Collapse
Affiliation(s)
- Rebika Shrestha
- Department of Chemistry, ‡Institute for Cell and Molecular Biology, §Center for Nano- and Molecular Science and Technology, and ∥Institute for Computational Engineering and Sciences, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Cari M Anderson
- Department of Chemistry, ‡Institute for Cell and Molecular Biology, §Center for Nano- and Molecular Science and Technology, and ∥Institute for Computational Engineering and Sciences, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Alfredo E Cardenas
- Department of Chemistry, ‡Institute for Cell and Molecular Biology, §Center for Nano- and Molecular Science and Technology, and ∥Institute for Computational Engineering and Sciences, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Ron Elber
- Department of Chemistry, ‡Institute for Cell and Molecular Biology, §Center for Nano- and Molecular Science and Technology, and ∥Institute for Computational Engineering and Sciences, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Lauren J Webb
- Department of Chemistry, ‡Institute for Cell and Molecular Biology, §Center for Nano- and Molecular Science and Technology, and ∥Institute for Computational Engineering and Sciences, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
12
|
High Cholesterol/Low Cholesterol: Effects in Biological Membranes: A Review. Cell Biochem Biophys 2017; 75:369-385. [PMID: 28417231 DOI: 10.1007/s12013-017-0792-7] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/27/2017] [Indexed: 12/11/2022]
Abstract
Lipid composition determines membrane properties, and cholesterol plays a major role in this determination as it regulates membrane fluidity and permeability, as well as induces the formation of coexisting phases and domains in the membrane. Biological membranes display a very diverse lipid composition, the lateral organization of which plays a crucial role in regulating a variety of membrane functions. We hypothesize that, during biological evolution, membranes with a particular cholesterol content were selected to perform certain functions in the cells of eukaryotic organisms. In this review, we discuss the major membrane properties induced by cholesterol, and their relationship to certain membrane functions.
Collapse
|
13
|
Distributions of therapeutically promising neurosteroids in cellular membranes. Chem Phys Lipids 2017; 203:78-86. [DOI: 10.1016/j.chemphyslip.2016.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/25/2016] [Accepted: 12/26/2016] [Indexed: 10/20/2022]
|
14
|
Baczynski K, Markiewicz M, Pasenkiewicz-Gierula M. A computer model of a polyunsaturated monogalactolipid bilayer. Biochimie 2015; 118:129-40. [PMID: 26348551 DOI: 10.1016/j.biochi.2015.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/02/2015] [Indexed: 12/21/2022]
Abstract
1,2-di-O-acyl-3-O-β-D-galactopyranosyl-sn-glycerol (MGDG) is the main lipid component of thylakoid membranes of higher plants and algae. This monogalactolipid is thought of as a non-bilayer lipid but actually it can form both lamellar and nonlamellar phases. In this study, molecular dynamics (MD) simulations of the fully hydrated di-18:3 MGDG bilayer in the lamellar phase were carried out at 310 and 295 K for 200 and 450 ns, respectively, using the GROMACS 4 software package and OPLS-AA force field. At both temperatures, the lamellar phase of the systems was stable. The pure di-18:3 MGDG bilayer is the first step towards creating a computer model of the lipid matrix of the thylakoid membrane and the main aim of this study was to validate the computer model of di-18:3 MGDG in the bilayer and also to assess the properties of the bilayer. However, only a few of the predicted properties could be compared with those derived experimentally and in other MD simulations because of insufficient amount of such data. Thus, direct validation of the MGDG bilayer proved difficult. Therefore, in the validation process also an indirect approach was used, in which a computer model of the 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) bilayer simulated at the same temperatures using the same force field as the MGDG bilayer was assessed. Successful validation of the DOPC bilayer parameterized in the OPLS-AA force field and similar properties of the MGDG molecules in the pure 18:3 MGDG and in binary 18:3 MGDG-PC bilayers indicate that the computer model of the MDGD molecule is faithful and the MGDG bilayer is representative on the time scales covered in these MD simulations.
Collapse
Affiliation(s)
- Krzysztof Baczynski
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michal Markiewicz
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marta Pasenkiewicz-Gierula
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
15
|
Róg T, Pöyry S, Vattulainen I. Building Synthetic Sterols Computationally - Unlocking the Secrets of Evolution? Front Bioeng Biotechnol 2015; 3:121. [PMID: 26347865 PMCID: PMC4543873 DOI: 10.3389/fbioe.2015.00121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/07/2015] [Indexed: 01/28/2023] Open
Abstract
Cholesterol is vital in regulating the physical properties of animal cell membranes. While it remains unclear what renders cholesterol so unique, it is known that other sterols are less capable in modulating membrane properties, and there are membrane proteins whose function is dependent on cholesterol. Practical applications of cholesterol include its use in liposomes in drug delivery and cosmetics, cholesterol-based detergents in membrane protein crystallography, its fluorescent analogs in studies of cholesterol transport in cells and tissues, etc. Clearly, in spite of their difficult synthesis, producing the synthetic analogs of cholesterol is of great commercial and scientific interest. In this article, we discuss how synthetic sterols non-existent in nature can be used to elucidate the roles of cholesterol’s structural elements. To this end, we discuss recent atomistic molecular dynamics simulation studies that have predicted new synthetic sterols with properties comparable to those of cholesterol. We also discuss more recent experimental studies that have vindicated these predictions. The paper highlights the strength of computational simulations in making predictions for synthetic biology, thereby guiding experiments.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, Tampere University of Technology , Tampere , Finland
| | - Sanja Pöyry
- Department of Physics, Tampere University of Technology , Tampere , Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology , Tampere , Finland ; MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark , Odense , Denmark
| |
Collapse
|
16
|
Jalkute CB, Sonawane KD. Evaluation of a possible role of Stigmatella aurantiaca ACE in Aβ peptide degradation: a molecular modeling approach. J Mol Microbiol Biotechnol 2015; 25:26-36. [PMID: 25677850 DOI: 10.1159/000370114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Amyloid-β (Aβ)-degrading enzymes are known to degrade Aβ peptides, a causative agent of Alzheimer's disease. These enzymes are responsible for maintaining Aβ concentration. However, loss of such enzymes or their Aβ-degrading activity because of certain genetic as well as nongenetic reasons initiates the accumulation of Aβ peptides in the human brain. Considering the limitations of the human enzymes in clearing Aβ peptide, the search for microbial enzymes that could cleave Aβ is necessary. Hence, we built a three-dimensional model of angiotensin-converting enzyme (ACE) from Stigmatella aurantiaca using homology modeling technique. Molecular docking and molecular dynamics simulation techniques were used to outline the possible cleavage mechanism of Aβ peptide. These findings suggest that catalytic residue Glu 434 of the model could play a crucial role to degrade Aβ peptide between Asp 7 and Ser 8. Thus, ACE from S. aurantiaca might cleave Aβ peptides similar to human ACE and could be used to design new therapeutic strategies against Alzheimer's disease.
Collapse
|
17
|
Jalkute CB, Barage SH, Sonawane KD. Insight into molecular interactions of Aβ peptide and gelatinase from Enterococcus faecalis: a molecular modeling approach. RSC Adv 2015. [DOI: 10.1039/c4ra09354b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease is characterized by the presence of extracellular deposition of amyloid beta (Aβ) peptides.
Collapse
Affiliation(s)
| | - Sagar H. Barage
- Department of Biotechnology
- Shivaji University
- Kolhapur 416004
- India
| | - Kailas D. Sonawane
- Department of Microbiology
- Shivaji University
- Kolhapur 416004
- India
- Structural Bioinformatics Unit
| |
Collapse
|
18
|
Xu W, Hsu FF, Baykal E, Huang J, Zhang K. Sterol biosynthesis is required for heat resistance but not extracellular survival in leishmania. PLoS Pathog 2014; 10:e1004427. [PMID: 25340392 PMCID: PMC4207814 DOI: 10.1371/journal.ppat.1004427] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/27/2014] [Indexed: 12/25/2022] Open
Abstract
Sterol biosynthesis is a crucial pathway in eukaryotes leading to the production of cholesterol in animals and various C24-alkyl sterols (ergostane-based sterols) in fungi, plants, and trypanosomatid protozoa. Sterols are important membrane components and precursors for the synthesis of powerful bioactive molecules, including steroid hormones in mammals. Their functions in pathogenic protozoa are not well characterized, which limits the development of sterol synthesis inhibitors as drugs. Here we investigated the role of sterol C14α-demethylase (C14DM) in Leishmania parasites. C14DM is a cytochrome P450 enzyme and the primary target of azole drugs. In Leishmania, genetic or chemical inactivation of C14DM led to a complete loss of ergostane-based sterols and accumulation of 14-methylated sterols. Despite the drastic change in lipid composition, C14DM-null mutants (c14dm(-)) were surprisingly viable and replicative in culture. They did exhibit remarkable defects including increased membrane fluidity, failure to maintain detergent resistant membrane fraction, and hypersensitivity to heat stress. These c14dm(-) mutants showed severely reduced virulence in mice but were highly resistant to itraconazole and amphotericin B, two drugs targeting sterol synthesis. Our findings suggest that the accumulation of toxic sterol intermediates in c14dm(-) causes strong membrane perturbation and significant vulnerability to stress. The new knowledge may help improve the efficacy of current drugs against pathogenic protozoa by exploiting the fitness loss associated with drug resistance.
Collapse
Affiliation(s)
- Wei Xu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Fong-Fu Hsu
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Eda Baykal
- Department of Physics, Texas Tech University, Lubbock, Texas, United States of America
| | - Juyang Huang
- Department of Physics, Texas Tech University, Lubbock, Texas, United States of America
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
Jalkute CB, Barage SH, Dhanavade MJ, Sonawane KD. Identification of Angiotensin Converting Enzyme Inhibitor: An In Silico Perspective. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9434-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Maciejewski A, Pasenkiewicz-Gierula M, Cramariuc O, Vattulainen I, Rog T. Refined OPLS all-atom force field for saturated phosphatidylcholine bilayers at full hydration. J Phys Chem B 2014; 118:4571-81. [PMID: 24745688 DOI: 10.1021/jp5016627] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report parametrization of dipalmitoyl-phosphatidylcholine (DPPC) in the framework of the Optimized Parameters for Liquid Simulations all-atom (OPLS-AA) force field. We chose DPPC as it is one of the most studied phospholipid species and thus has plenty of experimental data necessary for model validation, and it is also one of the highly important and abundant lipid types, e.g., in lung surfactant. Overall, PCs have not been previously parametrized in the OPLS-AA force field; thus, there is a need to derive its bonding and nonbonding parameters for both the polar and nonpolar parts of the molecule. In the present study, we determined the parameters for torsion angles in the phosphatidylcholine and glycerol moieties and in the acyl chains, as well the partial atomic charges. In these calculations, we used three methods: (1) Hartree-Fock (HF), (2) second order Møller-Plesset perturbation theory (MP2), and (3) density functional theory (DFT). We also tested the effect of the polar environment by using the polarizable continuum model (PCM), and for acyl chains the van der Waals parameters were also adjusted. In effect, six parameter sets were generated and tested on a DPPC bilayer. Out of these six sets, only one was found to be able to satisfactorily reproduce experimental data for the lipid bilayer. The successful DPPC model was obtained from MP2 calculations in an implicit polar environment (PCM).
Collapse
Affiliation(s)
- Arkadiusz Maciejewski
- Department of Physics, Tampere University of Technology , PO Box 692, FI-33101 Tampere, Finland
| | | | | | | | | |
Collapse
|
21
|
Kuo AT, Chang CH. Cholesterol-induced condensing and disordering effects on a rigid catanionic bilayer: a molecular dynamics study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:55-62. [PMID: 24345203 DOI: 10.1021/la403676w] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Molecular dynamics simulation is applied to investigate the bilayer properties of a novel catanionic vesicle composed of an ion pair amphiphile, hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), with cholesterol. Structural properties, such as molecular organization, orientation, and conformation, were analyzed from the resulting trajectory. Simulation results showed that cholesterol could induce both condensing and disordering effects on the rigid HTMA-DS bilayer. The condensing effect of cholesterol was ascribed to the maximizing contact between cholesterol ring and the neighboring hydrocarbon chains. Thus, the inserted cholesterol ring restrained the neighboring hydrocarbon chain segments from motion and increased the order of the neighboring hydrocarbon chains. However, the presence of cholesterol would increase the distance between head groups of HTMA-DS and induce a shift of DS(-) head groups toward the inside of the bilayer. This led to the protrusion of the HTMA(+) head groups and conformational disorder in the front segments of HTMA(+) hydrocarbon chains. In addition, the cholesterol-induced void in the hydrophobic core of the HTMA-DS bilayer increased the motion freedom of the terminal segments of the hydrocarbon chains. The cholesterol-induced space in the polar region and void in the nonpolar region of the bilayer led to a conformational disorder. With high cholesterol contents, the conformational disorder effect would overwhelm the condensing effect, resulting in the apparent disordering effect on the rigid HTMA-DS bilayer.
Collapse
Affiliation(s)
- An-Tsung Kuo
- Department of Chemical Engineering, National Cheng Kung University , Tainan 701, Taiwan
| | | |
Collapse
|
22
|
Sodt AJ, Sandar ML, Gawrisch K, Pastor RW, Lyman E. The molecular structure of the liquid-ordered phase of lipid bilayers. J Am Chem Soc 2014; 136:725-32. [PMID: 24345334 DOI: 10.1021/ja4105667] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Molecular dynamics simulations reveal substructures within the liquid-ordered phase of lipid bilayers. These substructures, identified in a 10 μs all-atom trajectory of liquid-ordered/liquid-disordered coexistence (L(o)/L(d)) are composed of saturated hydrocarbon chains packed with local hexagonal order and separated by interstitial regions enriched in cholesterol and unsaturated chains. Lipid hydrocarbon chain order parameters calculated from the L(o) phase are in excellent agreement with (2)H NMR measurements; the local hexagonal packing is also consistent with (1)H-MAS NMR spectra of the L(o) phase, NMR diffusion experiments, and small-angle X-ray and neutron scattering. The balance of cholesterol-rich to local hexagonal order is proposed to control the partitioning of membrane components into the L(o) regions. The latter have been frequently associated with formation of so-called rafts, platforms in the plasma membranes of cells that facilitate interaction between components of signaling pathways.
Collapse
Affiliation(s)
- Alexander J Sodt
- National Heart, Lung, and Blood Institute and §National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health , Bethesda, Maryland 20892, United States
| | | | | | | | | |
Collapse
|
23
|
Domonkos I, Kis M, Gombos Z, Ughy B. Carotenoids, versatile components of oxygenic photosynthesis. Prog Lipid Res 2013; 52:539-61. [PMID: 23896007 DOI: 10.1016/j.plipres.2013.07.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/19/2013] [Accepted: 07/19/2013] [Indexed: 12/13/2022]
Abstract
Carotenoids (CARs) are a group of pigments that perform several important physiological functions in all kingdoms of living organisms. CARs serve as protective agents, which are essential structural components of photosynthetic complexes and membranes, and they play an important role in the light harvesting mechanism of photosynthesizing plants and cyanobacteria. The protection against reactive oxygen species, realized by quenching of singlet oxygen and the excited states of photosensitizing molecules, as well as by the scavenging of free radicals, is one of the main biological functions of CARs. X-ray crystallographic localization of CARs revealed that they are present at functionally and structurally important sites of both the PSI and PSII reaction centers. Characterization of a CAR-less cyanobacterial mutant revealed that while the absence of CARs prevents the formation of PSII complexes, it does not abolish the assembly and function of PSI. CAR molecules assist in the formation of protein subunits of the photosynthetic complexes by gluing together their protein components. In addition to their aforementioned indispensable functions, CARs have a substantial role in the formation and maintenance of proper cellular architecture, and potentially also in the protection of the translational machinery under stress conditions.
Collapse
Affiliation(s)
- Ildikó Domonkos
- Institute of Plant Biology, Biological Research Centre of Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary
| | | | | | | |
Collapse
|
24
|
Plesnar E, Subczynski WK, Pasenkiewicz-Gierula M. Comparative computer simulation study of cholesterol in hydrated unary and binary lipid bilayers and in an anhydrous crystal. J Phys Chem B 2013; 117:8758-69. [PMID: 23848956 DOI: 10.1021/jp402839r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Models created with molecular dynamics simulations are used to compare the organization and dynamics of cholesterol (Chol) molecules in three different environments: (1) a hydrated pure Chol bilayer that models the Chol bilayer domain, which is a pure Chol domain embedded in the bulk membrane; (2) a 2-palmitoyl-3-oleoyl-d-glycerol-1-phosphorylcholine bilayer saturated with cholesterol (POPC-Chol50) that models the bulk membrane; (3) a Chol crystal. The computer model of the hydrated pure Chol bilayer is stable on the microsecond time scale. Some structural characteristics of Chol molecules in the Chol bilayer are similar to those in the POPC-Chol50 bilayer (e.g., tilt of Chol rings and chains), while others are similar to those in Chol crystals (e.g., surface area per Chol, bilayer thickness). The key result of this study is that the Chol bilayer has, unexpectedly, a dynamic structure, with Chol mobility similar to that in the POPC-Chol50 bilayer though slower. This is the major difference compared to Chol crystals, where Chol molecules are immobile. Also, water accessibility to Chol-OH groups in the Chol bilayer is not limited. On average, each Chol molecule makes 2.3 hydrogen bonds with water in the Chol bilayer, compared with 1.7 hydrogen bonds in the POPC-Col50 bilayer.
Collapse
Affiliation(s)
- Elzbieta Plesnar
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | |
Collapse
|
25
|
Molecular Dynamics Simulation and Molecular Docking Studies of Angiotensin Converting Enzyme with Inhibitor Lisinopril and Amyloid Beta Peptide. Protein J 2013; 32:356-64. [DOI: 10.1007/s10930-013-9492-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Mainali L, Hyde JS, Subczynski WK. Using spin-label W-band EPR to study membrane fluidity profiles in samples of small volume. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 226:35-44. [PMID: 23207176 PMCID: PMC3529815 DOI: 10.1016/j.jmr.2012.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 10/15/2012] [Accepted: 11/03/2012] [Indexed: 05/18/2023]
Abstract
Conventional and saturation-recovery (SR) EPR at W-band (94GHz) using phosphatidylcholine spin labels (labeled at the alkyl chain [n-PC] and headgroup [T-PC]) to obtain profiles of membrane fluidity has been demonstrated. Dimyristoylphosphatidylcholine (DMPC) membranes with and without 50 mol% cholesterol have been studied, and the results have been compared with similar studies at X-band (9.4 GHz) (L. Mainali, J.B. Feix, J.S. Hyde, W.K. Subczynski, J. Magn. Reson. 212 (2011) 418-425). Profiles of the spin-lattice relaxation rate (T(1)(-1)) obtained from SR EPR measurements for n-PCs and T-PC were used as a convenient quantitative measure of membrane fluidity. Additionally, spectral analysis using Freed's MOMD (microscopic-order macroscopic-disorder) model (E. Meirovitch, J.H. Freed J. Phys. Chem. 88 (1984) 4995-5004) provided rotational diffusion coefficients (R(perpendicular) and R(||)) and order parameters (S(0)). Spectral analysis at X-band provided one rotational diffusion coefficient, R(perpendicular). T(1)(-1), R(perpendicular), and R(||) profiles reflect local membrane dynamics of the lipid alkyl chain, while the order parameter shows only the amplitude of the wobbling motion of the lipid alkyl chain. Using these dynamic parameters, namely T(1)(-1), R(perpendicular), and R(||), one can discriminate the different effects of cholesterol at different depths, showing that cholesterol has a rigidifying effect on alkyl chains to the depth occupied by the rigid steroid ring structure and a fluidizing effect at deeper locations. The nondynamic parameter, S(0), shows that cholesterol has an ordering effect on alkyl chains at all depths. Conventional and SR EPR measurements with T-PC indicate that cholesterol has a fluidizing effect on phospholipid headgroups. EPR at W-band provides more detailed information about the depth-dependent dynamic organization of the membrane compared with information obtained at X-band. EPR at W-band has the potential to be a powerful tool for studying membrane fluidity in samples of small volume, ~30 nL, compared with a representative sample volume of ~3 μL at X-band.
Collapse
Affiliation(s)
| | | | - Witold K. Subczynski
- Author to whom correspondence should be addressed: Witold Karol Subczynski, Ph.D., D.Sc., Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226-0509, Phone: (414) 456-4038, Fax: (414) 456-6512,
| |
Collapse
|
27
|
Europium Coordination Complexes as Potential Anticancer Drugs: Their Partitioning and Permeation Into Lipid Bilayers as Revealed by Pyrene Fluorescence Quenching. J Fluoresc 2012; 23:193-202. [DOI: 10.1007/s10895-012-1134-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 10/02/2012] [Indexed: 12/19/2022]
|
28
|
Kaszuba K, Róg T, Danne R, Canning P, Fülöp V, Juhász T, Szeltner Z, St. Pierre JF, García-Horsman A, Männistö PT, Karttunen M, Hokkanen J, Bunker A. Molecular dynamics, crystallography and mutagenesis studies on the substrate gating mechanism of prolyl oligopeptidase. Biochimie 2012; 94:1398-411. [DOI: 10.1016/j.biochi.2012.03.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/13/2012] [Indexed: 01/10/2023]
|
29
|
Paiva JG, Paradiso P, Serro AP, Fernandes A, Saramago B. Interaction of local and general anaesthetics with liposomal membrane models: A QCM-D and DSC study. Colloids Surf B Biointerfaces 2012; 95:65-74. [DOI: 10.1016/j.colsurfb.2012.02.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/10/2012] [Accepted: 02/10/2012] [Indexed: 12/14/2022]
|
30
|
Saito H, Shinoda W. Cholesterol Effect on Water Permeability through DPPC and PSM Lipid Bilayers: A Molecular Dynamics Study. J Phys Chem B 2011; 115:15241-50. [DOI: 10.1021/jp201611p] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hiroaki Saito
- Faculty of Mathematics and Physics, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Wataru Shinoda
- Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba 305-8568, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
31
|
Khelashvili G, Rappolt M, Chiu SW, Pabst G, Harries D. Impact of sterol tilt on membrane bending rigidity in cholesterol and 7DHC-containing DMPC membranes. SOFT MATTER 2011; 7:10299-10312. [PMID: 23173009 PMCID: PMC3500765 DOI: 10.1039/c1sm05937h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cholesterol is so essential to the proper function of mammalian cell membranes that even strikingly small inborn errors in cholesterol synthesis can be devastating. Here we combine molecular dynamics simulations with small angle x-ray diffraction experiments to compare mixed sterol/DMPC membranes over a wide range of sterol compositions for two types of sterols: cholesterol and its immediate metabolic precursor 7DHC, that differs from cholesterol by one double bond. We find that while most membrane properties are only slightly affected by the replacement of one sterol by the other, the tilt degree of freedom, as gauged by the tilt modulus, is significantly larger for cholesterol than for 7DHC over a large range of concentrations. In silico mutations of one sterol into the other further support these findings. Moreover, bending rigidities calculated from simulations and estimated in experiments show that cholesterol stiffens membranes to a larger extent than 7DHC. We discuss the possible mechanistic link between sterol tilt and the way it impacts the membrane mechanical properties, and comment on how this link may shed light on the way replacement of cholesterol by 7DHC leads to disease.
Collapse
Affiliation(s)
| | - Michael Rappolt
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, A-8042 Graz, Austria
| | - See-Wing Chiu
- Institute of Advanced Science and Technology, University of Illinois, Urbana, IL 61801, United States
| | - Georg Pabst
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, A-8042 Graz, Austria
| | - Daniel Harries
- Institute of Chemistry and the Fritz Haber Research Center, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
32
|
Plesnar E, Subczynski WK, Pasenkiewicz-Gierula M. Saturation with cholesterol increases vertical order and smoothes the surface of the phosphatidylcholine bilayer: a molecular simulation study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:520-9. [PMID: 22062420 DOI: 10.1016/j.bbamem.2011.10.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/22/2011] [Accepted: 10/24/2011] [Indexed: 02/05/2023]
Abstract
Molecular dynamics (MD) simulations of a mono-cis-unsaturated 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer and a POPC bilayer containing 50mol% cholesterol (POPC-Chol50) were carried out for 200ns to compare the spatial organizations of the pure POPC bilayer and the POPC bilayer saturated with Chol. The results presented here indicate that saturation with Chol significantly narrows the distribution of vertical positions of the center-of-mass of POPC molecules and POPC atoms in the bilayer. In the POPC-Chol50 bilayer, the same moieties of the lipid molecules are better aligned at a given bilayer depth, forming the following clearly separated membrane regions: the polar headgroup, the rigid core consisting of steroid rings and upper fragments of the acyl chains, and the fluid hydrocarbon core consisting of Chol chains and the lower fragments of POPC chains. The membrane surface of the POPC-Chol50 bilayer is smooth. The results have biological significance because the POPC-Chol50 bilayer models the bulk phospholipid portion of the fiber-cell membrane in the eye lens. It is hypothesized that in the eye lens cholesterol-induced smoothing of the membrane surface decreases light-scattering and helps to maintain lens transparency.
Collapse
Affiliation(s)
- Elżbieta Plesnar
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland.
| | | | | |
Collapse
|
33
|
Mainali L, Feix JB, Hyde JS, Subczynski WK. Membrane fluidity profiles as deduced by saturation-recovery EPR measurements of spin-lattice relaxation times of spin labels. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 212:418-25. [PMID: 21868272 PMCID: PMC3214655 DOI: 10.1016/j.jmr.2011.07.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/07/2011] [Accepted: 07/28/2011] [Indexed: 05/18/2023]
Abstract
There are no easily obtainable EPR spectral parameters for lipid spin labels that describe profiles of membrane fluidity. The order parameter, which is most often used as a measure of membrane fluidity, describes the amplitude of wobbling motion of alkyl chains relative to the membrane normal and does not contain explicitly time or velocity. Thus, this parameter can be considered as nondynamic. The spin-lattice relaxation rate (T(1)(-1)) obtained from saturation-recovery EPR measurements of lipid spin labels in deoxygenated samples depends primarily on the rotational correlation time of the nitroxide moiety within the lipid bilayer. Thus, T(1)(-1) can be used as a convenient quantitative measure of membrane fluidity that reflects local membrane dynamics. T(1)(-1) profiles obtained for 1-palmitoyl-2-(n-doxylstearoyl)phosphatidylcholine (n-PC) spin labels in dimyristoylphosphatidylcholine (DMPC) membranes with and without 50 mol% cholesterol are presented in parallel with profiles of the rotational diffusion coefficient, R(⊥), obtained from simulation of EPR spectra using Freed's model. These profiles are compared with profiles of the order parameter obtained directly from EPR spectra and with profiles of the order parameter obtained from simulation of EPR spectra. It is shown that T(1)(-1) and R(⊥) profiles reveal changes in membrane fluidity that depend on the motional properties of the lipid alkyl chain. We find that cholesterol has a rigidifying effect only to the depth occupied by the rigid steroid ring structure and a fluidizing effect at deeper locations. These effects cannot be differentiated by profiles of the order parameter. All profiles in this study were obtained at X-band (9.5 GHz).
Collapse
Affiliation(s)
- Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jimmy B. Feix
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James S. Hyde
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
34
|
Kett PJN, Casford MTL, Davies PB. Structure of mixed phosphatidylethanolamine and cholesterol monolayers in a supported hybrid bilayer membrane studied by sum frequency generation vibrational spectroscopy. J Phys Chem B 2011; 115:6465-73. [PMID: 21542565 DOI: 10.1021/jp1112685] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The structure of hybrid bilayer membranes (HBMs) containing either a pure cholesterol or mixed cholesterol/dipalmitoylphosphatidylethanolamine (DPPE) proximal layer adsorbed onto an octadecanethiol (ODT) self-assembled monolayer (SAM) on a gold substrate have been investigated by sum frequency generation (SFG) spectroscopy. The HBMs were formed by the adsorption of either a pure cholesterol or mixed DPPE/cholesterol monolayer from the air/water interface of a Langmuir-Blodgett trough at surface pressures of 1, 20, or 40 mN·m(-1). SFG spectra were also recorded of HBMs where cholesterol was replaced by cholesterol-d(7), in which the terminal isopropyl group of the alkyl chain of cholesterol was isotopically labeled. In order to isolate the contribution to the SFG spectra from the cholesterol in the mixed cholesterol/phospholipid films, DPPE-d was used, in which the alkyl chains of the phospholipid were deuterated. The infrared spectra of solvent-cast cholesterol and cholesterol-d(7) films were recorded to aid with assignment of the SFG spectra of the HBMs. Features corresponding to methyl, methylene, and methine stretches of cholesterol were identified in the SFG spectra. Information on the polar orientation of SFG-active groups was obtained from the phases of the spectral features. The structure of the HBMs showed little dependence on the surface pressure at which they were formed. SFG spectra of HBMs with a mixed cholesterol/DPPE proximal layer were very similar to the spectra of HBMs with a pure cholesterol proximal layer, although the features in the spectra were more intense than anticipated for a film with half the number of cholesterol molecules, indicating that DPPE did have some effect on the orientation of cholesterol molecules in the film.
Collapse
Affiliation(s)
- P J N Kett
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
35
|
Gorbenko G, Trusova V. Effects of oligomeric lysozyme on structural state of model membranes. Biophys Chem 2011; 154:73-81. [DOI: 10.1016/j.bpc.2011.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 01/12/2011] [Accepted: 01/14/2011] [Indexed: 12/01/2022]
|
36
|
Eriksson ESE, Eriksson LA. The Influence of Cholesterol on the Properties and Permeability of Hypericin Derivatives in Lipid Membranes. J Chem Theory Comput 2011; 7:560-74. [DOI: 10.1021/ct100528u] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Leif A. Eriksson
- School of Chemistry, National University of Ireland—Galway, Galway, Ireland
| |
Collapse
|
37
|
Transbilayer organization of membrane cholesterol at low concentrations: Implications in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:19-25. [PMID: 21035427 DOI: 10.1016/j.bbamem.2010.10.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/20/2010] [Accepted: 10/22/2010] [Indexed: 02/06/2023]
Abstract
Cholesterol is an essential and representative lipid in higher eukaryotic cellular membranes and is often found distributed nonrandomly in domains in biological membranes. A large body of literature exists on the organization of cholesterol in plasma membranes or membranes with high cholesterol content. However, very little is known about organization of cholesterol in membranes containing low amounts of cholesterol such as the endoplasmic reticulum or inner mitochondrial membranes. In this review, we have traced the discovery and subsequent development of the concept of transbilayer cholesterol dimers (domains) in membranes at low concentrations. We have further discussed the role of membrane curvature and thickness on the transbilayer organization of cholesterol. Interestingly, this type of cholesterol organization could be relevant in cellular sorting and trafficking, and in pathological conditions.
Collapse
|
38
|
Khelashvili G, Pabst G, Harries D. Cholesterol orientation and tilt modulus in DMPC bilayers. J Phys Chem B 2010; 114:7524-34. [PMID: 20518573 DOI: 10.1021/jp101889k] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We performed molecular dynamics (MD) simulations of hydrated bilayers containing mixtures of dimyristoylphosphatidylcholine (DMPC) and cholesterol at various ratios, to study the effect of cholesterol concentration on its orientation, and to characterize the link between cholesterol tilt and overall phospholipid membrane organization. The simulations show a substantial probability for cholesterol molecules to transiently orient perpendicular to the bilayer normal, and suggest that cholesterol tilt may be an important factor for inducing membrane ordering. In particular, we find that as cholesterol concentration increases (1-40% cholesterol) the average cholesterol orientation changes in a manner strongly (anti)correlated with the variation in membrane thickness. Furthermore, cholesterol orientation is found to be determined by the aligning force exerted by other cholesterol molecules. To quantify this aligning field, we analyzed cholesterol orientation using, to our knowledge, the first estimates of the cholesterol tilt modulus chi from MD simulations. Our calculations suggest that the aligning field that determines chi is indeed strongly linked to sterol composition. This empirical parameter (chi) should therefore become a useful quantitative measure to describe cholesterol interaction with other lipids in bilayers, particularly in various coarse-grained force fields.
Collapse
Affiliation(s)
- George Khelashvili
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, USA.
| | | | | |
Collapse
|
39
|
Martinez-Seara H, Róg T, Karttunen M, Vattulainen I, Reigada R. Cholesterol induces specific spatial and orientational order in cholesterol/phospholipid membranes. PLoS One 2010; 5:e11162. [PMID: 20567600 PMCID: PMC2887443 DOI: 10.1371/journal.pone.0011162] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 05/25/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In lipid bilayers, cholesterol facilitates the formation of the liquid-ordered phase and enables the formation of laterally ordered structures such as lipid rafts. While these domains have an important role in a variety of cellular processes, the precise atomic-level mechanisms responsible for cholesterol's specific ordering and packing capability have remained unresolved. METHODOLOGY/PRINCIPAL FINDINGS Our atomic-scale molecular dynamics simulations reveal that this ordering and the associated packing effects in membranes largely result from cholesterol's molecular structure, which differentiates cholesterol from other sterols. We find that cholesterol molecules prefer to be located in the second coordination shell, avoiding direct cholesterol-cholesterol contacts, and form a three-fold symmetric arrangement with proximal cholesterol molecules. At larger distances, the lateral three-fold organization is broken by thermal fluctuations. For other sterols having less structural asymmetry, the three-fold arrangement is considerably lost. CONCLUSIONS/SIGNIFICANCE We conclude that cholesterol molecules act collectively in lipid membranes. This is the main reason why the liquid-ordered phase only emerges for Chol concentrations well above 10 mol% where the collective self-organization of Chol molecules emerges spontaneously. The collective ordering process requires specific molecular-scale features that explain why different sterols have very different membrane ordering properties: the three-fold symmetry in the Chol-Chol organization arises from the cholesterol off-plane methyl groups allowing the identification of raft-promoting sterols from those that do not promote rafts.
Collapse
Affiliation(s)
- Hector Martinez-Seara
- Department of Physical Chemistry and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
| | - Tomasz Róg
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Mikko Karttunen
- Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, Tampere, Finland
- MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
- Department of Applied Physics, Aalto University School of Science and Technology, Espoo, Finland
| | - Ramon Reigada
- Department of Physical Chemistry and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Brüning B, Rheinstädter MC, Hiess A, Weinhausen B, Reusch T, Aeffner S, Salditt T. Influence of cholesterol on the collective dynamics of the phospholipid acyl chains in model membranes. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2010; 31:419-428. [PMID: 20405158 DOI: 10.1140/epje/i2010-10574-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 02/18/2010] [Accepted: 03/12/2010] [Indexed: 05/29/2023]
Abstract
We have studied the packing and collective dynamics of the phospholipid acyl chains in a model membrane composed of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) and cholesterol in varied phase state. After a structural characterization of this two-component model bilayer using X-ray reflectivity, we have carried out coherent inelastic neutron scattering to investigate the chain dynamics. Both DMPC/cholesterol membranes exhibited much sharper and more pronounced low-energy inelastic excitations than a pure DMPC membrane. In the high-energy regime above 10 meV, the insertion of cholesterol into the membrane was found to shift the position of the inelastic excitation towards values otherwise found in the pure lipids gel phase. Thus, the dissipative collective short-range dynamics of the acyl chains is strongly influenced by the presence of cholesterol.
Collapse
Affiliation(s)
- B Brüning
- Institut Laue-Langevin, B.P. 156, 38042, Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
41
|
Paila YD, Chattopadhyay A. Membrane cholesterol in the function and organization of G-protein coupled receptors. Subcell Biochem 2010; 51:439-66. [PMID: 20213554 DOI: 10.1007/978-90-481-8622-8_16] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cholesterol is an essential component of higher eukaryotic membranes and plays a crucial role in membrane organization, dynamics and function. The G-protein coupled receptors (GPCRs) are the largest class of molecules involved in signal transduction across membranes, and represent major targets in the development of novel drug candidates in all clinical areas. Membrane cholesterol has been reported to have a modulatory role in the function of a number of GPCRs. Two possible mechanisms have been previously suggested by which membrane cholesterol could influence the structure and function of GPCRs (i) through a direct/specific interaction with GPCRs, or (ii) through an indirect way by altering membrane physical properties in which the receptor is embedded, or due to a combination of both. Recently reported crystal structures of GPCRs have shown structural evidence of cholesterol binding sites. Against this backdrop, we recently proposed a novel mechanism by which membrane cholesterol could affect structure and function of GPCRs. According to our hypothesis, cholesterol binding sites in GPCRs could represent 'nonannular' binding sites. Interestingly, previous work from our laboratory has demonstrated that membrane cholesterol is required for the function of the serotonin(1A) receptor (a representative GPCR), which could be due to specific interaction of the receptor with cholesterol. Based on these results, we envisage that there could be specific/nonannular cholesterol binding site(s) in the serotonin(1A) receptor. We have analyzed putative cholesterol binding sites from protein databases in the serotonin(1A) receptor. Our analysis shows that cholesterol binding sites are inherent characteristic features of serotonin(1A) receptors and are conserved through natural evolution. Progress in deciphering molecular details of the GPCR-cholesterol interaction in the membrane would lead to better insight into our overall understanding of GPCR function in health and disease, thereby enhancing our ability to design better therapeutic strategies to combat diseases related to malfunctioning of GPCRs.
Collapse
Affiliation(s)
- Yamuna Devi Paila
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, 500 007, India
| | | |
Collapse
|
42
|
What Is the Difference Between a Supported and a Free Bilayer? Insights from Molecular Modeling on Different Scales. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1554-4516(10)11007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
43
|
Kaszuba K, Rog T, St Pierre JF, Mannisto PT, Karttunen M, Bunker A. Molecular dynamics study of prolyl oligopeptidase with inhibitor in binding cavity. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2009; 20:595-609. [PMID: 20024801 DOI: 10.1080/10629360903438198] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We used the crystal structure of prolyl oligopeptidase (POP) with bound Z-pro-prolinal (ZPP) inhibitor (Protein Data Bank (PDB) structure 1QFS) to perform an intensive molecular dynamics study of the POP-ZPP complex. We performed 100 ns of simulation with the hemiacetal bond, through which the ZPP is bound to the POP, removed in order to better investigate the binding cavity environment. From basic analysis, measuring the radius of gyration, root mean square deviation, solvent accessible surface area and definition of the secondary structure of protein, we determined that the protein structure is highly stable and maintains its structure over the entire simulation time. This demonstrates that such long time simulations can be performed without the protein structure losing stability. We found that water bridges and hydrogen bonds play a negligible role in binding the ZPP thus indicating the importance of the hemiacetal bond. The two domains of the protein are bound by a set of approximately 12 hydrogen bonds, specific to the particular POP protein.
Collapse
Affiliation(s)
- K Kaszuba
- Department of Physics, Tampere University of Technology, FI-33101 Tampere, Finland
| | | | | | | | | | | |
Collapse
|
44
|
Seemann H, Winter R. Volumetric Properties, Compressibilities and Volume Fluctuations in Phospholipid-Cholesterol Bilayers. ACTA ACUST UNITED AC 2009. [DOI: 10.1524/zpch.217.7.831.20388] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
We conducted detailed measurements of the apparent specific volume of dipalmitoylphosphatidylcholine (DPPC)–cholesterol mixtures in excess water as a function of pressure up to 70MPa (700bar) at 20, 38 and 50°C. The volumetric properties and the isothermal compressibility κ
T of the lipid vesicles were determined at cholesterol concentrations, χchol, ranging up to 50 mol. The thermodynamic data are compared with other physico-chemical properties of phospholipid–cholesterol mixtures. Furthermore, the thermodynamic properties of the system are discussed in the light of the various T, χchol–phase diagrams and computer simulation studies published in the literature.
Collapse
|
45
|
Ghimire H, Inbaraj JJ, Lorigan GA. A comparative study of the effect of cholesterol on bicelle model membranes using X-band and Q-band EPR spectroscopy. Chem Phys Lipids 2009; 160:98-104. [PMID: 19501076 PMCID: PMC2719848 DOI: 10.1016/j.chemphyslip.2009.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 11/16/2022]
Abstract
X-band and Q-band electron paramagnetic resonance (EPR) spectroscopic techniques were used to investigate the structure and dynamics of cholesterol containing phospholipid bicelles based upon molecular order parameters (S(mol)), orientational dependent hyperfine splittings and line shape analysis of the corresponding EPR spectra. The nitroxide spin-label 3-beta-doxyl-5-alpha-cholestane (cholestane) was incorporated into DMPC/DHPC bicelles to report the alignment of bicelles in the static magnetic field. The influence of cholesterol on aligned phospholipid bicelles in terms of ordering, the ease of alignment, phase transition temperature have been studied comparatively at X-band and Q-band. At a magnetic field of 1.25 T (Q-band), bicelles with 20 mol% cholesterol aligned at a much lower temperature (313 K), when compared to 318 K at a 0.35 T field strength for X-band, showed better hyperfine splitting values (18.29 G at X-band vs. 18.55 G at Q-band for perpendicular alignment and 8.25 G at X-band vs. 7.83 G at Q-band for the parallel alignment at 318 K) and have greater molecular order parameters (0.76 at X-band vs. 0.86 at Q-band at 318 K). Increasing cholesterol content increased the bicelle ordering, the bicelle-alignment temperature and the gel to liquid crystalline phase transition temperature. We observed that Q-band is more effective than X-band for studying aligned bicelles, because it yielded a higher ordered bicelle system for EPR spectroscopic studies.
Collapse
Affiliation(s)
| | - Johnson J. Inbaraj
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056,
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056,
| |
Collapse
|
46
|
Devireddy RV. Statistical thermodynamics of biomembranes. Cryobiology 2009; 60:80-90. [PMID: 19460363 DOI: 10.1016/j.cryobiol.2009.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 04/28/2009] [Accepted: 05/07/2009] [Indexed: 10/20/2022]
Abstract
An overview of the major issues involved in the statistical thermodynamic treatment of phospholipid membranes at the atomistic level is summarized: thermodynamic ensembles, initial configuration (or the physical system being modeled), force field representation as well as the representation of long-range interactions. This is followed by a description of the various ways that the simulated ensembles can be analyzed: area of the lipid, mass density profiles, radial distribution functions (RDFs), water orientation profile, deuterium order parameter, free energy profiles and void (pore) formation; with particular focus on the results obtained from our recent molecular dynamic (MD) simulations of phospholipids interacting with dimethylsulfoxide (Me(2)SO), a commonly used cryoprotective agent (CPA).
Collapse
Affiliation(s)
- Ram V Devireddy
- Department of Mechanical Engineering, Louisiana State University, 2508 Patrick F. Taylor Hall, Baton Rouge, LA 70803, USA.
| |
Collapse
|
47
|
Affiliation(s)
- Stefan Balaz
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, North Dakota 58105, USA.
| |
Collapse
|
48
|
Róg T, Murzyn K, Milhaud J, Karttunen M, Pasenkiewicz-Gierula M. Water Isotope Effect on the Phosphatidylcholine Bilayer Properties: A Molecular Dynamics Simulation Study. J Phys Chem B 2009; 113:2378-87. [DOI: 10.1021/jp8048235] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tomasz Róg
- Department of Physics, Tampere University of Technology, Tampere, Finland; Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland; Laboratoire de Biophysique Moléculaire, Cellulaire et Tissulaire, UFR SMBH Université Paris 13, Paris, France; and Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada
| | - Krzysztof Murzyn
- Department of Physics, Tampere University of Technology, Tampere, Finland; Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland; Laboratoire de Biophysique Moléculaire, Cellulaire et Tissulaire, UFR SMBH Université Paris 13, Paris, France; and Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada
| | - Jeannine Milhaud
- Department of Physics, Tampere University of Technology, Tampere, Finland; Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland; Laboratoire de Biophysique Moléculaire, Cellulaire et Tissulaire, UFR SMBH Université Paris 13, Paris, France; and Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada
| | - Mikko Karttunen
- Department of Physics, Tampere University of Technology, Tampere, Finland; Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland; Laboratoire de Biophysique Moléculaire, Cellulaire et Tissulaire, UFR SMBH Université Paris 13, Paris, France; and Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada
| | - Marta Pasenkiewicz-Gierula
- Department of Physics, Tampere University of Technology, Tampere, Finland; Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland; Laboratoire de Biophysique Moléculaire, Cellulaire et Tissulaire, UFR SMBH Université Paris 13, Paris, France; and Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
49
|
Róg T, Vattulainen I, Jansen M, Ikonen E, Karttunen M. Comparison of cholesterol and its direct precursors along the biosynthetic pathway: effects of cholesterol, desmosterol and 7-dehydrocholesterol on saturated and unsaturated lipid bilayers. J Chem Phys 2009; 129:154508. [PMID: 19045210 DOI: 10.1063/1.2996296] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite extensive studies, the remarkable structure-function relationship of cholesterol in cellular membranes has remained rather elusive. This is exemplified by the fact that the membrane properties of cholesterol are distinctly different from those of many other sterols. Here we elucidate this issue through atomic-scale simulations of desmosterol and 7-dehydrocholesterol (7DHC), which are immediate precursors of cholesterol in its two distinct biosynthetic pathways. While desmosterol and 7DHC differ from cholesterol only by one additional double bond, we find that their influence on saturated lipid bilayers is substantially different from cholesterol. The capability to form ordered regions in a saturated (dipalmitoyl-phosphatidylcholine) membrane is given by cholesterol > 7DHC > desmosterol, indicating the important role of cholesterol in saturated lipid environments. For comparison, in an unsaturated (dioleoyl-phosphatidylcholine) bilayer, the membrane properties of all sterols were found to be essentially identical. Our studies indicate that the different membrane ordering properties of sterols can be characterized by a single experimentally accessible parameter, the sterol tilt. The smaller the tilt, the more ordered are the lipids around a given sterol. The molecular level mechanisms responsible for tilt modulation are found to be related to changes in local packing around the additional double bonds.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, Helsinki University of Technology, Otakaari 1, F1-02150 Espoo, Finland
| | | | | | | | | |
Collapse
|
50
|
Detailed molecular dynamics simulations of model biological membranes containing cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:86-96. [DOI: 10.1016/j.bbamem.2008.09.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 11/18/2022]
|