1
|
Rasouli A, Jamali Y, Tajkhorshid E, Bavi O, Pishkenari HN. Mechanical properties of ester- and ether-DPhPC bilayers: A molecular dynamics study. J Mech Behav Biomed Mater 2021; 117:104386. [PMID: 33588213 PMCID: PMC8009841 DOI: 10.1016/j.jmbbm.2021.104386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/03/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
In addition to its biological importance, DPhPC lipid bilayers are widely used in droplet bilayers, study of integral membrane proteins, drug delivery systems as well as patch-clamp electrophysiology of ion channels, yet their mechanical properties are not fully measured. Herein, we examined the effect of the ether linkage on the mechanical properties of ester- and ether-DPhPC lipid bilayers using all-atom molecular dynamics simulation. The values of area per lipid, thickness, intrinsic lateral pressure profile, order parameter, and elasticity moduli were estimated using various computational frameworks and were compared with available experimental values. Overall, a good agreement was observed between the two. The global properties of the two lipid bilayers are vastly different, with ether bilayer being stiffer, less ordered, and thicker than ester bilayer. Moreover, ether linkage decreased the area per lipid in the ether lipid bilayer. Our computational framework and output demonstrate how ether modification changes the mechano-chemical properties of DPhPC bilayers.
Collapse
Affiliation(s)
- Ali Rasouli
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, And Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yousef Jamali
- School of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, And Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran.
| | | |
Collapse
|
2
|
Ortiz J, Oliva A, Teruel JA, Aranda FJ, Ortiz A. Effect of pH and temperature on the aggregation behaviour of dirhamnolipid biosurfactant. An experimental and molecular dynamics study. J Colloid Interface Sci 2021; 597:160-170. [PMID: 33872875 DOI: 10.1016/j.jcis.2021.03.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022]
Abstract
HYPOTHESIS Pseudomonas aeruginosa dirhamnolipid (diRL) has been shown to form aggregates of different size and structure, under various conditions. Due to the presence of a carboxyl group in the molecule, it is expected that pH would strongly affect this aggregation behaviour. In addition, preliminary observations of temperature-induced changes in the states of aggregation of diRL supported the need of further investigation. EXPERIMENTS A systematic experimental study, using differential scanning calorimetry (DSC), small-angle Xray diffraction (SAXD), and Fourier-transform infrared spectroscopy (FTIR), has been carried out to characterize pH and temperature driven changes in the aggregation behavior of diRL biosurfactant. Molecular dynamics (MD) simulations, supported by the experimental results, allowed depicting molecular details on formation of diRL membranes and other aggregated structures under various physicochemical conditions. FINDINGS DiRL could adopt fairly organized multilayered structures (membranes) at low pH and temperature, which became highly disordered upon increasing either of these parameters. The effect of pH on the gauche/all-trans conformer ratio of the diRL acyl chains was not of significance, whereas temperature-induced effects were observed. For the first time it is described that diRL underwent an endothermic thermotropic transition with Tc = 34 °C as observed by DSC, at pH 4.5 (protonated diRL), but not at pH 7.4 (unprotonated diRL). FTIR confirmed these findings, showing a significant additional disordering of the all-trans acyl chains upon increasing temperature around that same value in the protonated form, an effect not observed for the dissociated form of the biosurfactant. In addition, at pH 7.4, changing temperature did not modify the hydration state of the polar moiety of diRL, whereas at pH 4.5 a significant decrease in the hydration state around 34 °C took place. SAXD data showed that protonated diRL formed multilayered structures at 20 °C, which converted into poorly correlated layers at 50 °C. MD simulations supported these findings, showing that the membrane-like structures formed by protonated diRL at 20 °C became unstable at higher temperatures, tending to form other structures, which could be micelles or other type of layered structures, whereas the negatively charged form of diRL organized in micelle-type aggregates in the whole range of temperature under study.
Collapse
Affiliation(s)
- Julia Ortiz
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - Alfonso Oliva
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - José A Teruel
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - Francisco J Aranda
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - Antonio Ortiz
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain.
| |
Collapse
|
3
|
Bale NJ, Palatinszky M, Rijpstra WIC, Herbold CW, Wagner M, Sinninghe Damsté JS. Membrane Lipid Composition of the Moderately Thermophilic Ammonia-Oxidizing Archaeon " Candidatus Nitrosotenuis uzonensis" at Different Growth Temperatures. Appl Environ Microbiol 2019; 85:e01332-19. [PMID: 31420340 PMCID: PMC6805073 DOI: 10.1128/aem.01332-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/12/2019] [Indexed: 11/20/2022] Open
Abstract
"Candidatus Nitrosotenuis uzonensis" is the only cultured moderately thermophilic member of the thaumarchaeotal order Nitrosopumilales (NP) that contains many mesophilic marine strains. We examined its membrane lipid composition at different growth temperatures (37°C, 46°C, and 50°C). Its lipids were all membrane-spanning glycerol dialkyl glycerol tetraethers (GDGTs), with 0 to 4 cyclopentane moieties. Crenarchaeol (cren), the characteristic thaumarchaeotal GDGT, and its isomer (cren') were present in high abundance (30 to 70%). The GDGT polar headgroups were mono-, di-, and trihexoses and hexose/phosphohexose. The ratio of glycolipid to phospholipid GDGTs was highest in the cultures grown at 50°C. With increasing growth temperatures, the relative contributions of cren and cren' increased, while those of GDGT-0 to GDGT-4 (including isomers) decreased. TEX86 (tetraether index of tetraethers consisting of 86 carbons)-derived temperatures were much lower than the actual growth temperatures, further demonstrating that TEX86 does not accurately reflect the membrane lipid adaptation of thermophilic Thaumarchaeota As the temperature increased, specific GDGTs changed relative to their isomers, possibly representing temperature adaption-induced changes in cyclopentane ring stereochemistry. Comparison of a wide range of thaumarchaeotal core lipid compositions revealed that the "Ca Nitrosotenuis uzonensis" cultures clustered separately from other members of the NP order and the Nitrososphaerales (NS) order. While phylogeny generally seems to have a strong influence on GDGT distribution, our analysis of "Ca Nitrosotenuis uzonensis" demonstrates that its terrestrial, higher-temperature niche has led to a lipid composition that clearly differentiates it from other NP members and that this difference is mostly driven by its high cren' content.IMPORTANCE For Thaumarchaeota, the ratio of their glycerol dialkyl glycerol tetraether (GDGT) lipids depends on growth temperature, a premise that forms the basis of the widely applied TEX86 paleotemperature proxy. A thorough understanding of which GDGTs are produced by which Thaumarchaeota and what the effect of temperature is on their GDGT composition is essential for constraining the TEX86 proxy. "Ca Nitrosotenuis uzonensis" is a moderately thermophilic thaumarchaeote enriched from a thermal spring, setting it apart in its environmental niche from the other marine mesophilic members of its order. Indeed, we found that the GDGT composition of "Ca Nitrosotenuis uzonensis" cultures was distinct from those of other members of its order and was more similar to those of other thermophilic, terrestrial Thaumarchaeota This suggests that while phylogeny has a strong influence on GDGT distribution, the environmental niche that a thaumarchaeote inhabits also shapes its GDGT composition.
Collapse
Affiliation(s)
- Nicole J Bale
- NIOZ Royal Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, Texel, The Netherlands
| | - Marton Palatinszky
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - W Irene C Rijpstra
- NIOZ Royal Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, Texel, The Netherlands
| | - Craig W Herbold
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Michael Wagner
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Jaap S Sinninghe Damsté
- NIOZ Royal Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, Texel, The Netherlands
- Faculty of Geosciences, Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Chaves Torres L, Kaur G, Melbourne LA, Pancost RD. Selective chemical degradation of silica sinters of the Taupo Volcanic Zone (New Zealand). Implications for early Earth and Astrobiology. GEOBIOLOGY 2019; 17:449-464. [PMID: 31020785 DOI: 10.1111/gbi.12340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/26/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Most organic matter (OM) on Earth occurs as kerogen-like materials, that is naturally formed macromolecules insoluble with standard organic solvents. The formation of this insoluble organic matter (IOM) is a topic of much interest, especially when it limits the detection of compounds of geomicrobiological interest. For example, studies that search for biomarker evidence of life on early Earth or other planets usually use solvent-based extractions. This leaves behind a pool of OM as unexplored post-extraction residues, potentially containing diagnostic biomarkers. Since the IOM has an enhanced potential for preservation compared to soluble OM, analysing IOM-released biomarkers can also provide even deeper insights into the ecology of ancient settings, with implications for early Earth and Astrobiology investigations. Here, we analyse the prokaryotic lipid biosignature within soluble and IOM of the Taupo Volcanic Zone (TVZ) silica sinters, which are key analogues in the search for life. We apply sequential solvent extractions and a selective chemical degradation upon the post-solvent extraction residue. Moreover, we compare the IOM from TVZ sinters to analogous studies on peat and marine sediments to assess patterns in OM insolubilisation across the geosphere. Consistent with previous work, we find significant but variable proportions-1%-45% of the total prokaryotic lipids recovered-associated with IOM fractions. This occurs even in recently formed silica sinters, likely indicating inherent cell insolubility. Moreover, archaeal lipids seem more prone to insolubilisation as compared to the bacterial analogues, which might enhance their preservation and also bias overall biomarkers interpretation. These observations are similar to those observed in other settings, confirming that even in a setting where the OM derives predominantly from prokaryotic sources, patterns of IOM formation/occurrence are conserved. Differences with other settings, however, such as the occurrence of archaeol in IOM fractions, could be indicative of different mechanisms for IOM formation that merit further exploration.
Collapse
Affiliation(s)
- Lidia Chaves Torres
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
- Cabot Institute, University of Bristol, Bristol, UK
| | - Gurpreet Kaur
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
- Cabot Institute, University of Bristol, Bristol, UK
| | - Leanne A Melbourne
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
- Cabot Institute, University of Bristol, Bristol, UK
| | - Richard D Pancost
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
- Cabot Institute, University of Bristol, Bristol, UK
- School of Earth Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
5
|
Sollich M, Yoshinaga MY, Häusler S, Price RE, Hinrichs KU, Bühring SI. Heat Stress Dictates Microbial Lipid Composition along a Thermal Gradient in Marine Sediments. Front Microbiol 2017; 8:1550. [PMID: 28878741 PMCID: PMC5572230 DOI: 10.3389/fmicb.2017.01550] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022] Open
Abstract
Temperature exerts a first-order control on microbial populations, which constantly adjust the fluidity and permeability of their cell membrane lipids to minimize loss of energy by ion diffusion across the membrane. Analytical advances in liquid chromatography coupled to mass spectrometry have allowed the detection of a stunning diversity of bacterial and archaeal lipids in extreme environments such as hot springs, hydrothermal vents and deep subsurface marine sediments. Here, we investigated a thermal gradient from 18 to 101°C across a marine sediment field and tested the hypothesis that cell membrane lipids provide a major biochemical basis for the bioenergetics of archaea and bacteria under heat stress. This paper features a detailed lipidomics approach with the focus on membrane lipid structure-function. Membrane lipids analyzed here include polar lipids of bacteria and polar and core lipids of archaea. Reflecting the low permeability of their ether-linked isoprenoids, we found that archaeal polar lipids generally dominate over bacterial lipids in deep layers of the sediments influenced by hydrothermal fluids. A close examination of archaeal and bacterial lipids revealed a membrane quandary: not only low permeability, but also increased fluidity of membranes are required as a unified property of microbial membranes for energy conservation under heat stress. For instance, bacterial fatty acids were composed of longer chain lengths in concert with higher degree of unsaturation while archaea modified their tetraethers by incorporation of additional methyl groups at elevated sediment temperatures. It is possible that these configurations toward a more fluidized membrane at elevated temperatures are counterbalanced by the high abundance of archaeal glycolipids and bacterial sphingolipids, which could reduce membrane permeability through strong intermolecular hydrogen bonding. Our results provide a new angle for interpreting membrane lipid structure-function enabling archaea and bacteria to survive and grow in hydrothermal systems.
Collapse
Affiliation(s)
- Miriam Sollich
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany
| | - Marcos Y Yoshinaga
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany.,Institute of Chemistry, University of São PauloSão Paulo, Brazil
| | - Stefan Häusler
- Department of Molecular Ecology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Roy E Price
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany.,School of Marine and Atmospheric Sciences, Stony Brook University, Stony BrookNY, United States
| | - Kai-Uwe Hinrichs
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany
| | - Solveig I Bühring
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany
| |
Collapse
|
6
|
Kellermann MY, Yoshinaga MY, Valentine RC, Wörmer L, Valentine DL. Important roles for membrane lipids in haloarchaeal bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2940-2956. [PMID: 27565574 DOI: 10.1016/j.bbamem.2016.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/11/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
Abstract
Recent advances in lipidomic analysis in combination with various physiological experiments set the stage for deciphering the structure-function of haloarchaeal membrane lipids. Here we focused primarily on changes in lipid composition of Haloferax volcanii, but also performed a comparative analysis with four other haloarchaeal species (Halobacterium salinarum, Halorubrum lacusprofundi, Halorubrum sodomense and Haloplanus natans) all representing distinctive cell morphologies and behaviors (i.e., rod shape vs. pleomorphic behavior). Common to all five haloarchaea, our data reveal an extraordinary high level of menaquinone, reaching up to 72% of the total lipids. This ubiquity suggests that menaquinones may function beyond their ordinary role as electron and proton transporter, acting simultaneously as ion permeability barriers and as powerful shield against oxidative stress. In addition, we aimed at understanding the role of cations interacting with the characteristic negatively charged surface of haloarchaeal membranes. We propose for instance that by bridging the negative charges of adjacent anionic phospholipids, Mg2+ acts as surrogate for cardiolipin, a molecule that is known to control curvature stress of membranes. This study further provides a bioenergetic perspective as to how haloarchaea evolved following oxygenation of Earth's atmosphere. The success of the aerobic lifestyle of haloarchaea includes multiple membrane-based strategies that successfully balance the need for a robust bilayer structure with the need for high rates of electron transport - collectively representing the molecular basis to inhabit hypersaline water bodies around the planet.
Collapse
Affiliation(s)
- Matthias Y Kellermann
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, CA 93106, USA.
| | - Marcos Y Yoshinaga
- MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany
| | | | - Lars Wörmer
- MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany
| | - David L Valentine
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
7
|
Najem JS, Dunlap MD, Rowe ID, Freeman EC, Grant JW, Sukharev S, Leo DJ. Activation of bacterial channel MscL in mechanically stimulated droplet interface bilayers. Sci Rep 2015; 5:13726. [PMID: 26348441 PMCID: PMC4562232 DOI: 10.1038/srep13726] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/03/2015] [Indexed: 02/01/2023] Open
Abstract
MscL, a stretch-activated channel, saves bacteria experiencing hypo-osmotic shocks from lysis. Its high conductance and controllable activation makes it a strong candidate to serve as a transducer in stimuli-responsive biomolecular materials. Droplet interface bilayers (DIBs), flexible insulating scaffolds for such materials, can be used as a new platform for incorporation and activation of MscL. Here, we report the first reconstitution and activation of the low-threshold V23T mutant of MscL in a DIB as a response to axial compressions of the droplets. Gating occurs near maximum compression of both droplets where tension in the membrane is maximal. The observed 0.1-3 nS conductance levels correspond to the V23T-MscL sub-conductive and fully open states recorded in native bacterial membranes or liposomes. Geometrical analysis of droplets during compression indicates that both contact angle and total area of the water-oil interfaces contribute to the generation of tension in the bilayer. The measured expansion of the interfaces by 2.5% is predicted to generate a 4-6 mN/m tension in the bilayer, just sufficient for gating. This work clarifies the principles of interconversion between bulk and surface forces in the DIB, facilitates the measurements of fundamental membrane properties, and improves our understanding of MscL response to membrane tension.
Collapse
Affiliation(s)
- Joseph S. Najem
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Myles D. Dunlap
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Ian D. Rowe
- Department of Biology, University of Maryland, College Park, Maryland 20742, United States
| | - Eric C. Freeman
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - John W. Grant
- Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Sergei Sukharev
- Department of Biology, University of Maryland, College Park, Maryland 20742, United States
| | - Donald J. Leo
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
8
|
Hoffmann A, Kovermann M, Oberwinkler T, Siedler F, Cortina NS, Balbach J, Oesterhelt D. Novel sulfated phosphoglycolipids from Natronomonas moolapensis. Chem Phys Lipids 2015; 191:8-15. [PMID: 26134137 DOI: 10.1016/j.chemphyslip.2015.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 01/09/2023]
Abstract
Polar lipid pattern determination is often used for the taxonomic classification of halophilic Archaea in addition to a genomic characterization. During the analysis of polar lipid extracts from the recently described haloarchaeon Natrononomonas moolapensis, an unknown glycolipid was detected. Fragmentation patterns observed from preliminary mass spectrometric analysis initially suggested the presence of a sulfo-hexosyl-phosphatidylglycerol. However, by NMR spectroscopy and enzymatic assays the existence of two isomeric molecules with different hexoses (1-(6-sulfo-d-glcp/galf-β1,2-glycero)-phospho-2,3-diphytanylglycerol) could be shown. The structural origin from phosphatidylglycerol distinguishes these glycolipids within Archaea, because all other characterized haloarchaeal glycolipids consist of diphytanylglycerol directly linked to an oligoglycosyl moiety. Now the door is open to investigate the physical and functional consequences of these architectural differences of the head groups.
Collapse
Affiliation(s)
- Andreas Hoffmann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Michael Kovermann
- Institute of Physics, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle, Germany; Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Tanja Oberwinkler
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Frank Siedler
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Niña Socorro Cortina
- Institute of Organic Chemistry and Chemical Biology, Goethe University, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Jochen Balbach
- Institute of Physics, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle, Germany
| | - Dieter Oesterhelt
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
9
|
Balleza D, Garcia-Arribas AB, Sot J, Ruiz-Mirazo K, Goñi FM. Ether- versus ester-linked phospholipid bilayers containing either linear or branched apolar chains. Biophys J 2015; 107:1364-74. [PMID: 25229144 DOI: 10.1016/j.bpj.2014.07.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/03/2014] [Accepted: 07/15/2014] [Indexed: 10/24/2022] Open
Abstract
We studied the properties of bilayers formed by ether-and ester-containing phospholipids, whose hydrocarbon chains can be either linear or branched, using sn-1,2 dipalmitoyl, dihexadecyl, diphytanoyl, and diphytanyl phosphatidylcholines (DPPC, DHPC, DPhoPC, and DPhPC, respectively) either pure or in binary mixtures. Differential scanning calorimetry and confocal fluorescence microscopy of giant unilamellar vesicles concurred in showing that equimolar mixtures of linear and branched lipids gave rise to gel/fluid phase coexistence at room temperature. Mixtures containing DHPC evolved in time (0.5 h) from initial reticulated domains to extended solid ones when an equilibrium was achieved. The nanomechanical properties of supported planar bilayers formed by each of the four lipids studied by atomic force microscopy revealed average breakdown forces Fb decreasing in the order DHPC ≥ DPPC > DPhoPC >> DPhPC. Moreover, except for DPPC, two different Fb values were found for each lipid. Atomic force microscopy imaging of DHPC was peculiar in showing two coexisting phases of different heights, probably corresponding to an interdigitated gel phase that gradually transformed, over a period of 0.5 h, into a regular tilted gel phase. Permeability to nonelectrolytes showed that linear-chain phospholipids allowed a higher rate of solute + water diffusion than branched-chain phospholipids, yet the former supported a smaller extent of swelling of the corresponding vesicles. Ether or ester bonds appeared to have only a minor effect on permeability.
Collapse
Affiliation(s)
- Daniel Balleza
- Unidad de Biofísica CSIC, UPV/EHU, Universidad del País Vasco, Leioa, Spain; Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain
| | - Aritz B Garcia-Arribas
- Unidad de Biofísica CSIC, UPV/EHU, Universidad del País Vasco, Leioa, Spain; Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain
| | - Jesús Sot
- Unidad de Biofísica CSIC, UPV/EHU, Universidad del País Vasco, Leioa, Spain; Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain
| | - Kepa Ruiz-Mirazo
- Unidad de Biofísica CSIC, UPV/EHU, Universidad del País Vasco, Leioa, Spain; Departamento de Lógica y Filosofía de la Ciencia, UPV/EHU, Donostia-San Sebastián, Spain
| | - Félix M Goñi
- Unidad de Biofísica CSIC, UPV/EHU, Universidad del País Vasco, Leioa, Spain; Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain.
| |
Collapse
|
10
|
Yoshinaga MY, Gagen EJ, Wörmer L, Broda NK, Meador TB, Wendt J, Thomm M, Hinrichs KU. Methanothermobacter thermautotrophicus modulates its membrane lipids in response to hydrogen and nutrient availability. Front Microbiol 2015; 6:5. [PMID: 25657645 PMCID: PMC4302986 DOI: 10.3389/fmicb.2015.00005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/04/2015] [Indexed: 11/13/2022] Open
Abstract
Methanothermobacter thermautotrophicus strain ΔH is a model hydrogenotrophic methanogen, for which extensive biochemical information, including the complete genome sequence, is available. Nevertheless, at the cell membrane lipid level, little is known about the responses of this archaeon to environmental stimuli. In this study, the lipid composition of M. thermautotrophicus was characterized to verify how this archaeon modulates its cell membrane components during growth phases and in response to hydrogen depletion and nutrient limitation (potassium and phosphate). As opposed to the higher abundance of phospholipids in the stationary phase of control experiments, cell membranes under nutrient, and energy stress were dominated by glycolipids that likely provided a more effective barrier against ion leakage. We also identified particular lipid regulatory mechanisms in M. thermautotrophicus, which included the accumulation of polyprenols under hydrogen-limited conditions and an increased content of sodiated adducts of lipids in nutrient-limited cells. These findings suggest that M. thermautotrophicus intensely modulates its cell membrane lipid composition to cope with energy and nutrient availability in dynamic environments.
Collapse
Affiliation(s)
- Marcos Y Yoshinaga
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| | - Emma J Gagen
- Department of Microbiology and Archaea Center, University of Regensburg Regensburg, Germany
| | - Lars Wörmer
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| | - Nadine K Broda
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| | - Travis B Meador
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| | - Jenny Wendt
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| | - Michael Thomm
- Department of Microbiology and Archaea Center, University of Regensburg Regensburg, Germany
| | - Kai-Uwe Hinrichs
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| |
Collapse
|
11
|
Poger D, Caron B, Mark AE. Effect of Methyl-Branched Fatty Acids on the Structure of Lipid Bilayers. J Phys Chem B 2014; 118:13838-48. [DOI: 10.1021/jp503910r] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David Poger
- School of Chemistry and Molecular
Biosciences and ‡Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bertrand Caron
- School of Chemistry and Molecular
Biosciences and ‡Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alan E. Mark
- School of Chemistry and Molecular
Biosciences and ‡Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
12
|
Carrer DC, Higa LH, Tesoriero MVD, Morilla MJ, Roncaglia DI, Romero EL. Structural features of ultradeformable archaeosomes for topical delivery of ovalbumin. Colloids Surf B Biointerfaces 2014; 121:281-9. [DOI: 10.1016/j.colsurfb.2014.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/03/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
|
13
|
Atomistic simulation studies of the α/β-glucoside and galactoside in anhydrous bilayers: effect of the anomeric and epimeric configurations. J Mol Model 2014; 20:2165. [DOI: 10.1007/s00894-014-2165-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
|
14
|
Antonopoulos E, Freisleben HJ, Krisnamurti D, Estuningtyas A, Mulyanto C, Ridwan R, Freisleben S. Fractionation and purification of membrane lipids from the archaeon Thermoplasma acidophilum DSM 1728/10217. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Elkehal R, Becker T, Sommer MS, Königer M, Schleiff E. Specific lipids influence the import capacity of the chloroplast outer envelope precursor protein translocon. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1033-40. [PMID: 22425965 DOI: 10.1016/j.bbamcr.2012.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 01/30/2012] [Accepted: 02/29/2012] [Indexed: 11/29/2022]
Abstract
Recent studies demonstrated that lipids influence the assembly and efficiency of membrane-embedded macromolecular complexes. Similarly, lipids have been found to influence chloroplast precursor protein binding to the membrane surface and to be associated with the Translocon of the Outer membrane of Chloroplasts (TOC). We used a system based on chloroplast outer envelope vesicles from Pisum sativum to obtain an initial understanding of the influence of lipids on precursor protein translocation across the outer envelope. The ability of the model precursor proteins p(OE33)titin and pSSU to be recognized and translocated in this simplified system was investigated. We demonstrate that transport across the outer membrane can be observed in the absence of the inner envelope translocon. The translocation, however, was significantly slower than that observed for chloroplasts. Enrichment of outer envelope vesicles with different lipids natively found in chloroplast membranes altered the binding and transport behavior. Further, the results obtained using outer envelope vesicles were consistent with the results observed for the reconstituted isolated TOC complex. Based on both approaches we concluded that the lipids sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylinositol (PI) increased TOC-mediated binding and import for both precursor proteins. In contrast, enrichment in digalactosyldiacylglycerol (DGDG) improved TOC-mediated binding for pSSU, but decreased import for both precursor proteins. Optimal import occurred only in a narrow concentration range of DGDG.
Collapse
Affiliation(s)
- Rajae Elkehal
- Center of Membrane Proteomic, Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
16
|
Jeworrek C, Evers F, Erlkamp M, Grobelny S, Tolan M, Chong PLG, Winter R. Structure and phase behavior of archaeal lipid monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:13113-13121. [PMID: 21910469 DOI: 10.1021/la202027s] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report X-ray reflectivity (XRR) and grazing incidence X-ray diffraction (GIXD) measurements of archaeal bipolar tetraether lipid monolayers at the air-water interface. Specifically, Langmuir films made of the polar lipid fraction E (PLFE) isolated from the thermoacidophilic archaeon Sulfolobus acidocaldarius grown at three different temperatures, i.e., 68, 76, and 81 °C, were examined. The dependence of the structure and packing properties of PLFE monolayers on surface pressure were analyzed in a temperature range between 10 and 50 °C at different pH values. Additionally, the interaction of PLFE monolayers (using lipids derived from cells grown at 76 °C) with the ion channel peptide gramicidin was investigated as a function of surface pressure. A total monolayer thickness of approximately 30 Å was found for all monolayers, hinting at a U-shaped conformation of the molecules with both head groups in contact with the interface. The monolayer thickness increased with rising film pressure and decreased with increasing temperature. At 10 and 20 °C, large, highly crystalline domains were observed by GIXD, whereas at higher temperatures no distinct crystallinity could be observed. For lipids derived from cells grown at higher temperatures, a slightly more rigid structure in the lipid dibiphytanyl chains was observed. A change in the pH of the subphase had an influence only on the structure of the lipid head groups. The addition of gramicidin to an PLFE monolayer led to a more disordered state as observed by XRR. In GIXD measurements, no major changes in lateral organization could be observed, except for a decrease of the size of crystalline domains, indicating that gramicidin resides mainly in the disordered areas of the monolayer and causes local membrane perturbation, only.
Collapse
Affiliation(s)
- Christoph Jeworrek
- Physical Chemistry I, Faculty of Chemistry, TU Dortmund University, Dortmund, Otto-Hahn-Strasse 6, D-44221 Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Lipid chain branching at the iso- and anteiso-positions in complex Chlamydia membranes: a molecular dynamics study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:323-31. [PMID: 20692231 DOI: 10.1016/j.bbamem.2010.07.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 07/28/2010] [Accepted: 07/29/2010] [Indexed: 11/22/2022]
Abstract
Membranes in the intracellular eubacterial parasite Chlamydia trachomatis consist of the elementary body (EB) and reticular body (RB), and contain methyl branches at the iso- and anteiso-positions for some phospholipid chains. Acyl chain branching is the focus of this study. Molecular dynamics simulations were used to study bilayers of 1-13-methylpentadecanoyl-2-palmitoyl-phosphatidylcholine (13-MpPPC), 1-14-methylpentadecanoyl-2-palmitoyl-phosphatidylcholine (14-MpPPC), and diphytanoylphosphatidylcholine (DPhPC). These three membranes were simulated at 323K and simulations of DPhPC at 298K were also performed for better comparison to existing experimental data. Two simulations of representative EB and RB membranes of C. trachomatis composed of nine different lipid components were performed at 310.15K, to accurately reflect compositions determined by experiment and physiological conditions. Based on nearly 0.5μs of simulation data, we report that branching increases average lipid surface area, area elastic moduli, and lipid axial relaxation times, while decreasing lipid chain order. Branching also has a distinct effect on electron density profiles. Due to their high cholesterol concentrations, the EB and RB membranes were found to have relatively high area elastic moduli, which may have important biological implications.
Collapse
|
18
|
Shinoda W, DeVane R, Klein ML. Zwitterionic lipid assemblies: molecular dynamics studies of monolayers, bilayers, and vesicles using a new coarse grain force field. J Phys Chem B 2010; 114:6836-49. [PMID: 20438090 PMCID: PMC2876730 DOI: 10.1021/jp9107206] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new coarse-grained (CG) intermolecular force field is presented for a series of zwitterionic lipids. The model is an extension of our previous work on nonionic surfactants and is designed to reproduce experimental surface/interfacial properties as well as distribution functions from all-atom molecular dynamics (MD) simulations. Using simple functional forms, the force field parameters are optimized for multiple lipid molecules, simultaneously. The resulting CG lipid bilayers have reasonable molecular areas, chain order parameters, and elastic properties. The computed surface pressure vs area (pi-A) curve for a dipalmitoyl phosphatidylcholine (DPPC) monolayer demonstrates a significant improvement over the previous CG models. The DPPC monolayer has a longer persistence length than a polyethyleneglycol (PEG) lipid monolayer, exhibiting a long-lived curved monolayer surface under negative tension. The bud ejected from an oversaturated DPPC monolayer has a large bicelle-like structure, which is different from the micellar bud formed from an oversaturated PEG lipid monolayer. We have successfully observed vesicle formation during CG-MD simulations, starting from an aggregate of dimyristoyl phosphatidylcholine (DMPC) molecules. Depending on the aggregate size, the lipid assembly spontaneously transforms into a closed vesicle or a bicelle. None of the various intermediate structures between these extremes seem to be stable. An attempt to observe fusion of two vesicles through the application of an external adhesion force was not successful. The present CG force field also supports stable multilamellar DMPC vesicles.
Collapse
Affiliation(s)
- Wataru Shinoda
- Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Central-2, Umezono 1-1-1, Tsukuba 305-8568, Japan.
| | | | | |
Collapse
|
19
|
Bipolar tetraether archaeosomes exhibit unusual stability against autoclaving as studied by dynamic light scattering and electron microscopy. Chem Phys Lipids 2009; 159:95-103. [PMID: 19477316 DOI: 10.1016/j.chemphyslip.2009.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/26/2009] [Accepted: 03/23/2009] [Indexed: 11/24/2022]
Abstract
The stability of liposomes made of the polar lipid fraction E (PLFE) isolated from the thermoacidophilic archaeon Sulfolobus acidocaldarius against autoclaving has been studied by using dynamic light scattering and transmission electron microscopy. PLFE lipids have structures distinctly different from those derived from eukaryotes and prokaryotes. PLFE lipids are bipolar tetraether molecules and may contain up to four cyclopentane rings in each of the two dibiphytanyl chains. In the pH range 4-10, PLFE-based archaeosomes, with and without polyethyleneglycol- and maleimide-lipids, are able to retain vesicle size, size distribution, and morphology through at least six autoclaving cycles. The cell growth temperature (65 degrees C vs. 78 degrees C), hence the number of cyclopentane rings in the hydrocarbon chains, does not affect this general conclusion. By contrast, at the same pH range, most conventional liposomes made of monopolar diester lipids and cholesterol or pegylated lipids cannot withhold vesicle size and size distribution against just one cycle of autoclaving. At pH<4, the particle size and polydispersity of PLFE-based archaeosomes increase with autoclaving cycles, suggesting that aggregation or membrane disruption may have occurred at extreme acidic conditions during heat sterilization. Under high salt conditions, dye leakage from PLFE archaeosomes due to autoclaving is significantly less than that from pegylated liposomes composed of conventional lipids. The ability to maintain vesicle integrity after multiple autoclaving cycles indicates the potential usefulness of utilizing PLFE-based archaeosomes as autoclavable and durable drug (including genes, peptides, vaccines, siRNA) delivery vehicles.
Collapse
|
20
|
Arcisio-Miranda M, Abdulkader F, Brunaldi K, Curi R, Procopio J. Proton flux induced by free fatty acids across phospholipid bilayers: New evidences based on short-circuit measurements in planar lipid membranes. Arch Biochem Biophys 2009; 484:63-9. [DOI: 10.1016/j.abb.2009.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/29/2008] [Accepted: 01/20/2009] [Indexed: 01/27/2023]
|
21
|
Synthesis of archaeal glycolipid adjuvants—what is the optimum number of sugars? Carbohydr Res 2008; 343:2349-60. [DOI: 10.1016/j.carres.2008.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 06/20/2008] [Accepted: 06/26/2008] [Indexed: 11/19/2022]
|
22
|
Effects of pH and temperature on the composition of polar lipids in Thermoplasma acidophilum HO-62. J Bacteriol 2008; 190:5404-11. [PMID: 18539746 DOI: 10.1128/jb.00415-08] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermoplasma acidophilum HO-62 was grown at different pHs and temperatures, and its polar lipid compositions were determined. Although the number of cyclopentane rings in the caldarchaeol moiety increased when T. acidophilum was cultured at high temperature, the number decreased at low pHs. Glycolipids, phosphoglycolipids, and phospholipids were analyzed by high-performance liquid chromatography with an evaporative light-scattering detector. The amount of caldarchaeol with more than two sugar units on one side increased under low-pH and high-temperature conditions. The amounts of glycolipids increased and those of phosphoglycolipids decreased under these conditions. The proton permeability of the liposomes obtained from the phosphoglycolipids that contained two or more sugar units was lower than that of the liposomes obtained from the phosphoglycolipids that contained one sugar unit. From these results, we propose the hypothesis that T. acidophilum adapts to low pHs and high temperatures by extending sugar chains on their cell surfaces, as well as by varying the number of cyclopentane rings.
Collapse
|
23
|
Febo-Ayala W, Holland DP, Bradley SA, Thompson DH. Lateral diffusion coefficients of an eicosanyl-based bisglycerophosphocholine determined by PFG-NMR and FRAP. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:6276-80. [PMID: 17465580 PMCID: PMC2527033 DOI: 10.1021/la063720d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We report the lateral diffusion properties of 2,2'-di-O-decyl-3,3'-di-O-(eicosanyl)-bis-(rac-glycero)-1,1'-diphosphocholine (C20BAS) using pulsed-field gradient NMR (PFG-NMR) and fluorescence recovery after photobleaching (FRAP). C20BAS membranes display a melting transition at Tm = 15.7 degrees C, as determined by differential scanning calorimetry and 31P NMR chemical shift anisotropy. The lateral diffusion coefficient of C20BAS, as determined by PFG-NMR and FRAP, at 25 degrees C, were DPFG-NMR = 1.9 +/- 0.6 x 10(-8) cm2/s and DFRAP C20BAS = 1.2 +/- 0.1 x 10(-8) cm2/s, respectively. In comparison, the lateral diffusion coefficient of the monopolar phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), was 1.8 +/- 0.9 x 10(-8) and 2.5 +/- 0.9 x 10(-8) cm2/s using PFG-NMR and FRAP, respectively.
Collapse
Affiliation(s)
- Wilma Febo-Ayala
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2038
| | - David P. Holland
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2038
| | - Scott A. Bradley
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2038
| | - David H. Thompson
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2038
| |
Collapse
|
24
|
Valentine DL. Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol 2007; 5:316-23. [PMID: 17334387 DOI: 10.1038/nrmicro1619] [Citation(s) in RCA: 389] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The three domains of life on Earth include the two prokaryotic groups, Archaea and Bacteria. The Archaea are distinguished from Bacteriabased on phylogenetic and biochemical differences, but currently there is no unifying ecological principle to differentiate these groups. The ecology of the Archaea is reviewed here in terms of cellular bioenergetics. Adaptation to chronic energy stress is hypothesized to be the crucial factor that distinguishes the Archaea from Bacteria. The biochemical mechanisms that enable archaea to cope with chronic energy stress include low-permeability membranes and specific catabolic pathways. Based on the ecological unity and biochemical adaptations among archaea, I propose the hypothesis that chronic energy stress is the primary selective pressure governing the evolution of the Archaea.
Collapse
Affiliation(s)
- David L Valentine
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|
25
|
Hartley PG, Alderton MR, Dawson RM, Wells D. Ricin Antitoxins Based on Lyotropic Mesophases Containing Galactose Amphiphiles. Bioconjug Chem 2006; 18:152-9. [PMID: 17226968 DOI: 10.1021/bc060216b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lyotropic mesophases of the inverse hexagonal or cubic type are nanostructured materials that result from the self-assembly of amphiphilic surfactant molecules in water. The extremely large area of the surfactant-water interface inherent within these structures makes them attractive media for sorbent or encapsulant systems. Here, we report on the development of a new class of polyvalent materials that are based on the incorporation of bioactive ligands within lyotropic mesophases. In particular, we have studied the potential for these materials to behave as polyvalent antitoxins by incorporating synthetic galactose amphiphiles, which mimic the natural cell surface ligand for the protein toxin ricin. The study demonstrates that cubic morphology lyotropic mesophases containing galactose amphiphiles exhibit high specificity ricin uptake, with favorably high dissociation constants and high capacities. We suggest that lyotropic mesophase polyvalent ligands are thus promising materials for the incorporation of a broad range of cell surface recognition moieties and hence may have wide applicability as materials capable of partaking in biological recognition processes.
Collapse
Affiliation(s)
- P G Hartley
- CSIRO Molecular & Health Technologies, Private Bag 10, Clayton South, Victoria 3169, Australia.
| | | | | | | |
Collapse
|
26
|
Nicolas JP. A molecular dynamics study of an archaeal tetraether lipid membrane: comparison with a dipalmitoylphosphatidylcholine lipid bilayer. Lipids 2006; 40:1023-30. [PMID: 16382574 DOI: 10.1007/s11745-005-1465-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Molecular dynamics simulations of an archaeal membrane made up of bipolar tetraether lipids and a dipalmitoylphosphatidylcholine (DPPC) lipid membrane were performed and compared for the first time. The simulated archaeal membrane consists of a pure monolayer of asymmetrical lipids, analogous to the main polar lipid [MPL; Swain, M., Brisson, J.-R., Sprott, G.D., Cooper, F.P., and Patel, G.B., (1997) Identification of beta-L-Gulose as the Sugar Moiety of the Main Polar Lipid of Thermoplasma acidophilum, Biochim. Biophys. Acta 1345, 56-64] found in T. acidophilum, an extremophile archaeal organism. This simulated membrane lipid contains two cyclopentane rings located on one of the two aliphatic chains of the lipid. The archaeal membrane is simulated at 62degreesC, slightly above the optimal growth temperature of T. acidophilum. We compared the organization of this tetraether lipid monolayer with a DPPC bilayer simulated at 50degreesC, both of them being modeled in a partially hydrated state. Our results assess the singularity of the tetraether lipid organization, in particular the influence of the spanning structure on the molecular ordering within the archaeal membrane.
Collapse
Affiliation(s)
- J P Nicolas
- van 't Hoff Institute for Molecular Sciences Universiteit van Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Chong PLG, Ravindra R, Khurana M, English V, Winter R. Pressure perturbation and differential scanning calorimetric studies of bipolar tetraether liposomes derived from the thermoacidophilic archaeon Sulfolobus acidocaldarius. Biophys J 2005; 89:1841-9. [PMID: 15980181 PMCID: PMC1366687 DOI: 10.1529/biophysj.105.063933] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 06/17/2005] [Indexed: 11/18/2022] Open
Abstract
Differential scanning calorimetry (DSC) and pressure perturbation calorimetry (PPC) were used to characterize thermal phase transitions, membrane packing, and volumetric properties in multilamellar vesicles (MLVs) composed of the polar lipid fraction E (PLFE) isolated from the thermoacidophilic archaeon Sulfolobus acidocaldarius grown at different temperatures. For PLFE MLVs derived from cells grown at 78 degrees C, the first DSC heating scan exhibits an endothermic transition at 46.7 degrees C, a small hump near 60 degrees C, and a broad exothermic transition at 78.5 degrees C, whereas the PPC scan reveals two transitions at approximately 45 degrees C and 60 degrees C. The endothermic peak at 46.7 degrees C is attributed to a lamellar-to-lamellar phase transition and has an unusually low DeltaH (3.5 kJ/mol) and DeltaV/V (0.1%) value, as compared to those for the main phase transitions of saturated diacyl monopolar diester lipids. This result may arise from the restricted trans-gauche conformational changes in the dibiphytanyl chain due to the presence of cyclopentane rings and branched methyl groups and due to the spanning of the lipid molecules over the whole membrane. The exothermic peak at 78.5 degrees C probably corresponds to a lamellar-to-cubic phase transition and exhibits a large and negative DeltaH value (-23.2 kJ/mol), which is uncommon for normal lamellar-to-cubic phospholipid phase transformations. This exothermic transition disappears in the subsequent heating scans and thus may involve a metastable phase, which is irreversible at the scan rate used. Further, there is no distinct peak in the plot of the thermal expansion coefficient alpha versus temperature near 78.5 degrees C, indicating that this lamellar-to-cubic phase transition is not accompanied by any significant volume change. For PLFE MLVs derived from cells grown at 65 degrees C, similar DSC and PPC profiles and thermal history responses were obtained. However, the lower growth temperature yields a higher DeltaV/V ( approximately 0.25%) and DeltaH (14 kJ/mol) value for the lamellar-to-lamellar phase transition measured at the same pH (2.1). A lower growth temperature also generates a less negative temperature dependence of alpha. The changes in DeltaV/V, DeltaH, and the temperature dependence of alpha can be attributed to the decrease in the number of cyclopentane rings in PLFE at the lower growth temperature. The relatively low DeltaV/V and small DeltaH involved in the phase transitions help to explain why PLFE liposomes are remarkably thermally stable and also echo the proposal that PLFE liposomes are generally rigid and tightly packed. These results help us to understand why, despite the occurrence of thermal-induced phase transitions, PLFE liposomes exhibit a remarkably low temperature sensitivity of proton permeation and dye leakage.
Collapse
Affiliation(s)
- Parkson Lee-Gau Chong
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | |
Collapse
|
28
|
Shinoda W, Shinoda K, Baba T, Mikami M. Molecular dynamics study of bipolar tetraether lipid membranes. Biophys J 2005; 89:3195-202. [PMID: 16100279 PMCID: PMC1366815 DOI: 10.1529/biophysj.105.060962] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membranes composed of bipolar tetraether lipids have been studied by a series of 25-ns molecular dynamics simulations to understand the microscopic structure and dynamics as well as membrane area elasticity. By comparing macrocyclic and acyclic tetraether and diether archaeal lipids, the effect of tail linkage of the two phytanyl-chained lipids on the membrane properties is elucidated. Tetraether lipids show smaller molecular area and lateral mobility. For the latter, calculated diffusion coefficients are indeed one order-of-magnitude smaller than that of the diether lipid. These two tetraether membranes are alike in many physical properties except for membrane area elasticity. The macrocyclic tetraether membrane shows a higher elastic area expansion modulus than its acyclic counterpart by a factor of three. Free energy profiles of a water molecule crossing the membranes show no major difference in barrier height; however, a significant difference is observed near the membrane center due to the lack of the slip-plane in tetraether membranes.
Collapse
Affiliation(s)
- Wataru Shinoda
- Research Institute for Computational Sciences, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8568, Japan.
| | | | | | | |
Collapse
|
29
|
Shinoda K, Shinoda W, Baba T, Mikami M. Comparative molecular dynamics study of ether- and ester-linked phospholipid bilayers. J Chem Phys 2004; 121:9648-54. [PMID: 15538887 DOI: 10.1063/1.1806791] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The lipid membranes found in archaea have high bilayer stability and low permeability. The molecular structure of their constituent lipids is characterized by ether-linked, branched hydrophobic chains, whereas the conventional lipids obtained from eukaryotic or eubacterial sources have ester linked straight chains. In order to elucidate the influence of the ether linkage, instead of an ester one, on the physical properties of the lipid bilayers, we have carried out comparative 10 ns molecular dynamics simulations of diphytanyl phosphatidylcholine (ether-DPhPC) and diphytanoyl phosphatidylcholine (ester-DPhPC) bilayers in water, respectively. We analyze bilayer structures, hydration of the lipids, membrane dipole potentials, and free energy profiles of water and oxygen across the bilayers. We observe that the membrane dipole potential for the ether-DPhPC bilayer, which arises mainly from the ether linkage, is about half of that of the ester-DPhPC. The calculated free energy barrier for a water molecule in the ether-DPhPC bilayer system is slightly higher than that in the ester-DPhPC counterpart, which is in accord with experimental data.
Collapse
Affiliation(s)
- Keiko Shinoda
- Research Institute for Computational Sciences, Research Institute of Advanced Industrial Science and Technology, Tsukuba Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| | | | | | | |
Collapse
|
30
|
Ding L, Liu W, Wang W, Glinka CJ, Worcester DL, Yang L, Huang HW. Diffraction techniques for nonlamellar phases of phospholipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:9262-9269. [PMID: 15461516 DOI: 10.1021/la048720x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A neutron diffraction method applicable to nonlamellar phases of substrate-supported lipid membranes is described and validated. When prepared on a flat substrate, the resulting nonlamellar phases have layered symmetry which provides some advantages over powder diffraction for detailed structure determination. This approach recently led to the detection of a rhombohedral phase and a distorted hexagonal phase of lipids. Here the determination of intensity and phase information for such phases is demonstrated by application to the hexagonal phase of diphytanoyl phosphatidylcholine (DPhPC). The hexagonal symmetry is used to verify the data reduction procedure for the intensities of the diffraction peaks. Diffraction intensities measured while varying the D2O/H2O ratio in the relative humidity was used to solve the phase problem. The neutron scattering length density distribution of the hexagonal phase was constructed and analyzed to elucidate the packing of the lipid molecules. The structure of DPhPC in the hexagonal phase is of interest in connection with its stalk structure in the rhombohedral phase. We also found that the incorporation of tetradecane into the DPhPC hexagonal phase is limited, similar to the case for dioleoyl phosphatidylethanolamine.
Collapse
Affiliation(s)
- Lai Ding
- Department of Physics & Astronomy, Rice University, Houston, Texas 77251, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Shinoda W, Mikami M, Baba T, Hato M. Molecular Dynamics Study on the Effects of Chain Branching on the Physical Properties of Lipid Bilayers: 2. Permeability. J Phys Chem B 2004. [DOI: 10.1021/jp035998+] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Shinoda W, Mikami M, Baba T, Hato M. Dynamics of a highly branched lipid bilayer: a molecular dynamics study. Chem Phys Lett 2004. [DOI: 10.1016/j.cplett.2004.03.145] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Abstract
Archaea or archaebacteria are the microorganism living in extreme environments such as hot springs and salt lakes. The membrane is featured universally by lipids which possess saturated polyisoprenoid chains in the hydrophobic moiety. This paper concerns the surface properties of Langmuir membranes made of archaeal lipid models (AL) bearing a phytanyl group or (3RS, 7R, 11R)-3,7,11,15-tetramethylhexadecyl group. All of the AL provide a Langmuir membrane on an air-water interface with an abnormally low surface tension (32-37 mN/m at 20-70 degrees C), while the conventional lipids having n-alkyl chains give membranes of 54-56 mN/m. The abnormally low energy surface of AL lipids is considered to arise from the bulky and fluid polyisoprenoid chain.
Collapse
Affiliation(s)
- Takahiro Kitano
- Department of Bioapplied Chemistry, Graduate School of Engineering, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | | | |
Collapse
|
34
|
Shinoda W, Mikami M, Baba T, Hato M. Molecular Dynamics Study on the Effect of Chain Branching on the Physical Properties of Lipid Bilayers: Structural Stability. J Phys Chem B 2003. [DOI: 10.1021/jp035493j] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wataru Shinoda
- Research Institute for Computational Sciences (RICS), National Institute of Advanced Industrial Science and Technology (AIST), Central-2, Umezono 1-1-1, Tsukuba 305-8568, Japan, and Nanotechnology Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Central-5, Higashi 1-1-1, Tsukuba 305-8565, Japan
| | - Masuhiro Mikami
- Research Institute for Computational Sciences (RICS), National Institute of Advanced Industrial Science and Technology (AIST), Central-2, Umezono 1-1-1, Tsukuba 305-8568, Japan, and Nanotechnology Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Central-5, Higashi 1-1-1, Tsukuba 305-8565, Japan
| | - Teruhiko Baba
- Research Institute for Computational Sciences (RICS), National Institute of Advanced Industrial Science and Technology (AIST), Central-2, Umezono 1-1-1, Tsukuba 305-8568, Japan, and Nanotechnology Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Central-5, Higashi 1-1-1, Tsukuba 305-8565, Japan
| | - Masakatsu Hato
- Research Institute for Computational Sciences (RICS), National Institute of Advanced Industrial Science and Technology (AIST), Central-2, Umezono 1-1-1, Tsukuba 305-8568, Japan, and Nanotechnology Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Central-5, Higashi 1-1-1, Tsukuba 305-8565, Japan
| |
Collapse
|
35
|
Popova AV, Hincha DK. Intermolecular interactions in dry and rehydrated pure and mixed bilayers of phosphatidylcholine and digalactosyldiacylglycerol: a Fourier transform infrared spectroscopy study. Biophys J 2003; 85:1682-90. [PMID: 12944283 PMCID: PMC1303342 DOI: 10.1016/s0006-3495(03)74598-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Glycolipids are an important part of almost all biological membranes. Their effects on membrane structure and their interactions with phospholipids, however, have not been extensively studied so far. We have investigated the phase behavior and intermolecular interactions in dry and rehydrated bilayers made from the phospholipid egg phosphatidylcholine (EPC) and the plant chloroplast glycolipid digalactosyldiacylglycerol (DGDG), or from a mixture (1:1) of these lipids, using Fourier transform infrared spectroscopy. We show that there are extensive interactions between EPC and DGDG in mixed membranes, and also between DGDG molecules in pure DGDG membranes, involving sugar OH groups and C[double bond]O, P[double bond]O, and choline moieties in dry membranes. These interactions persist to a certain degree even after rehydration. We present evidence that these interactions influence the mixing behavior in phosphatidylcholine/DGDG membranes and also the phase behavior of both EPC/DGDG and pure DGDG membranes in the dry state.
Collapse
Affiliation(s)
- Antoaneta V Popova
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14424 Potsdam, Germany
| | | |
Collapse
|