1
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
2
|
Zhang L, Sun Z, Yang Y, Mack A, Rodgers M, Aroor A, Jia G, Sowers JR, Hill MA. Endothelial cell serum and glucocorticoid regulated kinase 1 (SGK1) mediates vascular stiffening. Metabolism 2024; 154:155831. [PMID: 38431129 DOI: 10.1016/j.metabol.2024.155831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Excessive dietary salt intake increases vascular stiffness in humans, especially in salt-sensitive populations. While we recently suggested that the endothelial sodium channel (EnNaC) contributes to salt-sensitivity related endothelial cell (EC) and arterial stiffening, mechanistic understanding remains incomplete. This study therefore aimed to explore the role of EC-serum and glucocorticoid regulated kinase 1 (SGK1), as a reported regulator of sodium channels, in EC and arterial stiffening. METHODS AND RESULTS A mouse model of salt sensitivity-associated vascular stiffening was produced by subcutaneous implantation of slow-release deoxycorticosterone acetate (DOCA) pellets, with salt (1 % NaCl, 0.2 % KCl) administered via drinking water. Preliminary data showed that global SGK1 deletion caused significantly decreased blood pressure (BP), EnNaC activity and aortic endothelium stiffness as compared to control mice following DOCA-salt treatment. To probe EC signaling pathways, selective deletion of EC-SGK1 was performed by cross-breeding cadherin 5-Cre mice with sgk1flox/flox mice. DOCA-salt treated control mice had significantly increased BP, EC and aortic stiffness in vivo and ex vivo, which were attenuated by EC-SGK1 deficiency. To demonstrate relevance to humans, human aortic ECs were cultured in the absence or presence of aldosterone and high salt with or without the SGK1 inhibitor, EMD638683 (10uM or 25uM). Treatment with aldosterone and high salt increased intrinsic stiffness of ECs, which was prevented by SGK1 inhibition. Further, the SGK1 inhibitor prevented aldosterone and high salt induced actin polymerization, a key mechanism in cellular stiffening. CONCLUSION EC-SGK1 contributes to salt-sensitivity related EC and aortic stiffening by mechanisms appearing to involve regulation of actin polymerization.
Collapse
Affiliation(s)
- Liping Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Austin Mack
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Mackenna Rodgers
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Annayya Aroor
- Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Guanghong Jia
- Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - James R Sowers
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
3
|
Kashlan OB, Wang XP, Sheng S, Kleyman TR. Epithelial Na + Channels Function as Extracellular Sensors. Compr Physiol 2024; 14:1-41. [PMID: 39109974 PMCID: PMC11309579 DOI: 10.1002/cphy.c230015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The epithelial Na + channel (ENaC) resides on the apical surfaces of specific epithelia in vertebrates and plays a critical role in extracellular fluid homeostasis. Evidence that ENaC senses the external environment emerged well before the molecular identity of the channel was reported three decades ago. This article discusses progress toward elucidating the mechanisms through which specific external factors regulate ENaC function, highlighting insights gained from structural studies of ENaC and related family members. It also reviews our understanding of the role of ENaC regulation by the extracellular environment in physiology and disease. After familiarizing the reader with the channel's physiological roles and structure, we describe the central role protein allostery plays in ENaC's sensitivity to the external environment. We then discuss each of the extracellular factors that directly regulate the channel: proteases, cations and anions, shear stress, and other regulators specific to particular extracellular compartments. For each regulator, we discuss the initial observations that led to discovery, studies investigating molecular mechanism, and the physiological and pathophysiological implications of regulation. © 2024 American Physiological Society. Compr Physiol 14:5407-5447, 2024.
Collapse
Affiliation(s)
- Ossama B. Kashlan
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xue-Ping Wang
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaohu Sheng
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R. Kleyman
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
5
|
Paudel P, van Hout I, Bunton RW, Parry DJ, Coffey S, McDonald FJ, Fronius M. Epithelial Sodium Channel δ Subunit Is Expressed in Human Arteries and Has Potential Association With Hypertension. Hypertension 2022; 79:1385-1394. [PMID: 35510563 DOI: 10.1161/hypertensionaha.122.18924] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Elevated expression and increased activity of vascular epithelial sodium channel (ENaC) can result in vascular dysfunction in small animal models. However, there is limited or no knowledge on expression and function of ENaC channels in human vasculature. Hence, this study explored the expression and function of ENaC in human arteries and their association with hypertension. METHODS Human internal mammary artery (IMA) and aorta were obtained from cardiovascular patients undergoing coronary artery bypass graft surgery. Expression of the ENaC subunit was analyzed by polymerase chain reaction, Western blot, and immunohistochemistry. ENaC function was observed by patch-clamp electrophysiology in endothelial cells isolated from IMA. Levels of ENaC subunit expression levels were compared between arteries from normotensive, uncontrolled hypertensive, and controlled hypertensive patients. RESULTS For the first time, expression of α, β, γ, and δ was detected at mRNA and protein levels in human IMA and aorta. Single-channel patch-clamp recordings identified both αβγ- and δβγ-like channel conductance in primary endothelial cells isolated and cultured from IMA. Reduced expression of the δ subunit was observed in controlled hypertensive IMA, whereas reduced expression of γ-ENaC was observed in controlled hypertensive aorta. CONCLUSIONS These data suggest that functional ENaC channels are expressed in human arteries and their expression levels are associated with hypertension.
Collapse
Affiliation(s)
- Puja Paudel
- Department of Physiology, School of Biomedical Sciences (P.P., I.v.H., F.J.M., M.F.), University of Otago, Dunedin, New Zealand.,HeartOtago (P.P., I.v.H., S.C., M.F.), University of Otago, Dunedin, New Zealand
| | - Isabelle van Hout
- Department of Physiology, School of Biomedical Sciences (P.P., I.v.H., F.J.M., M.F.), University of Otago, Dunedin, New Zealand.,HeartOtago (P.P., I.v.H., S.C., M.F.), University of Otago, Dunedin, New Zealand
| | - Richard W Bunton
- Department of Cardiothoracic Surgery, Otago Medical School, Dunedin Hospital, New Zealand (R.W.B., D.J.P.)
| | - Dominic J Parry
- Department of Cardiothoracic Surgery, Otago Medical School, Dunedin Hospital, New Zealand (R.W.B., D.J.P.)
| | - Sean Coffey
- HeartOtago (P.P., I.v.H., S.C., M.F.), University of Otago, Dunedin, New Zealand.,Department of Medicine, Otago Medical School (S.C.), University of Otago, Dunedin, New Zealand
| | - Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences (P.P., I.v.H., F.J.M., M.F.), University of Otago, Dunedin, New Zealand
| | - Martin Fronius
- Department of Physiology, School of Biomedical Sciences (P.P., I.v.H., F.J.M., M.F.), University of Otago, Dunedin, New Zealand.,HeartOtago (P.P., I.v.H., S.C., M.F.), University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Mutchler SM, Kleyman TR. Effects of amiloride on acetylcholine-dependent arterial vasodilation evolve over time in mice on a high salt diet. Physiol Rep 2022; 10:e15255. [PMID: 35384364 PMCID: PMC8984245 DOI: 10.14814/phy2.15255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
The maintenance of endothelial health is required for normal vascular function and blood pressure regulation. The epithelial Na+ channel (ENaC) in endothelial cells has emerged as a new molecular player in the regulation of endothelial nitric oxide production and vascular stiffness. While ENaC expression in the kidney is negatively regulated by high [Na+ ], ENaC expression in isolated endothelial cells has been shown to increase in response to a high extracellular [Na+ ]. In culture, this increased expression leads to cellular stiffening and decreased nitric oxide release. In vivo, the effects of high salt diet on endothelial ENaC expression and activity have varied depending on the animal model utilized. Our aim in the present study was to examine the role of endothelial ENaC in mediating vasorelaxation in the C57Bl/6 mouse strain. We utilized pressure myography to test the responsiveness of thoracodorsal arteries to acetylcholine in mice with increased sodium consumption both in the presence and absence of increased aldosterone. ENaC's contribution was assessed with the use of the specific inhibitor amiloride. We found that while aldosterone had very little effect on ENaC's contribution to acetylcholine sensitivity, a high salt diet led to an amiloride-dependent shift in the acetylcholine response of vessels. However, the direction of this shift was dependent on the length of high salt diet administration. Overall, our studies reveal that ENaC's role in the endothelium may be more complicated than previously thought. The channel does not simply inhibit nitric oxide generation, but instead helps preserve a homeostatic response.
Collapse
Affiliation(s)
| | - Thomas R. Kleyman
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Departments of Cell Biology and of Pharmacology and Chemical BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
7
|
Gruszczynska-Biegala J, Stefan A, Kasprzak AA, Dobryszycki P, Khaitlina S, Strzelecka-Gołaszewska H. Myopathy-Sensitive G-Actin Segment 227-235 Is Involved in Salt-Induced Stabilization of Contacts within the Actin Filament. Int J Mol Sci 2021; 22:ijms22052327. [PMID: 33652657 PMCID: PMC7956362 DOI: 10.3390/ijms22052327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 01/09/2023] Open
Abstract
Formation of stable actin filaments, critically important for actin functions, is determined by the ionic strength of the solution. However, not much is known about the elements of the actin fold involved in ionic-strength-dependent filament stabilization. In this work, F-actin was destabilized by Cu2+ binding to Cys374, and the effects of solvent conditions on the dynamic properties of F-actin were correlated with the involvement of Segment 227-235 in filament stabilization. The results of our work show that the presence of Mg2+ at the high-affinity cation binding site of Cu-modified actin polymerized with MgCl2 strongly enhances the rate of filament subunit exchange and promotes the filament instability. In the presence of 0.1 M KCl, the filament subunit exchange was 2-3-fold lower than that in the MgCl2-polymerized F-actin. This effect correlates with the reduced accessibility of the D-loop and Segment 227-235 on opposite filament strands, consistent with an ionic-strength-dependent conformational change that modulates involvement of Segment 227-235 in stabilization of the intermonomer interface. KCl may restrict the mobility of the α-helix encompassing part of Segment 227-235 and/or be bound to Asp236 at the boundary of Segment 227-235. These results provide experimental evidence for the involvement of Segment 227-235 in salt-induced stabilization of contacts within the actin filament and suggest that they can be weakened by mutations characteristic of actin-associated myopathies.
Collapse
Affiliation(s)
- Joanna Gruszczynska-Biegala
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.G.-B.); (A.S.); (A.A.K.); (H.S.-G.)
- Molecular Biology Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Andrzej Stefan
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.G.-B.); (A.S.); (A.A.K.); (H.S.-G.)
| | - Andrzej A. Kasprzak
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.G.-B.); (A.S.); (A.A.K.); (H.S.-G.)
| | - Piotr Dobryszycki
- Faculty of Chemistry, Wrocław University of Technology, 50-370 Wroclaw, Poland;
| | - Sofia Khaitlina
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
- Correspondence:
| | - Hanna Strzelecka-Gołaszewska
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.G.-B.); (A.S.); (A.A.K.); (H.S.-G.)
| |
Collapse
|
8
|
Abstract
The development of high blood pressure is influenced by genetic and environmental factors, with high salt intake being a known environmental contributor. Humans display a spectrum of sodium-sensitivity, with some individuals displaying a significant blood pressure rise in response to increased sodium intake while others experience almost no change. These differences are, in part, attributable to genetic variation in pathways involved in sodium handling and excretion. ENaC (epithelial sodium channel) is one of the key transporters responsible for the reabsorption of sodium in the distal nephron. This channel has an important role in the regulation of extracellular fluid volume and consequently blood pressure. Herein, we review the role of ENaC in the development of salt-sensitive hypertension, and present mechanistic insights into the regulation of ENaC activity and how it may accelerate sodium-induced damage and dysfunction. We discuss the traditional role of ENaC in renal sodium reabsorption and review work addressing ENaC expression and function in the brain, vasculature, and immune cells, and how this has expanded the implications for its role in the initiation and progression of salt-sensitive hypertension.
Collapse
Affiliation(s)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, and Department of Molecular Physiology and Biophysics Vanderbilt University, Nashville, TN (A.K.)
| | - Thomas R Kleyman
- From the Department of Medicine (S.M.M., T.R.K.), University of Pittsburgh, PA.,Department of Cell Biology (T.R.K.), University of Pittsburgh, PA.,Department of Pharmacology and Chemical Biology (T.R.K.), University of Pittsburgh, PA
| |
Collapse
|
9
|
Paudel P, McDonald FJ, Fronius M. The δ subunit of epithelial sodium channel in humans-a potential player in vascular physiology. Am J Physiol Heart Circ Physiol 2020; 320:H487-H493. [PMID: 33275523 DOI: 10.1152/ajpheart.00800.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular epithelial sodium channels (ENaCs) made up of canonical α, β, and γ subunits have attracted more attention recently owing to their physiological role in vascular health and disease. A fourth subunit, δ-ENaC, is expressed in various mammalian species, except mice and rats, which are common animal models for cardiovascular research. Accordingly, δ-ENaC is the least understood subunit. However, the recent discovery of δ subunit in human vascular cells indicates that this subunit may play a significant role in normal/pathological vascular physiology in humans. Channels containing the δ subunit have different biophysical and pharmacological properties compared with channels containing the α subunit, with the potential to alter the vascular function of ENaC in health and disease. Hence, it is important to investigate the expression and function of δ-ENaC in the vasculature to identify whether δ-ENaC is a potential new drug target for the treatment of cardiovascular disease. In this review, we will focus on the existing knowledge of δ-ENaC and implications for vascular physiology and pathophysiology in humans.
Collapse
Affiliation(s)
- Puja Paudel
- Department of Physiology, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| | - Fiona J McDonald
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Martin Fronius
- Department of Physiology, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
It takes more than two to tango: mechanosignaling of the endothelial surface. Pflugers Arch 2020; 472:419-433. [PMID: 32239285 PMCID: PMC7165135 DOI: 10.1007/s00424-020-02369-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
The endothelial surface is a highly flexible signaling hub which is able to sense the hemodynamic forces of the streaming blood. The subsequent mechanosignaling is basically mediated by specific structures, like the endothelial glycocalyx building the top surface layer of endothelial cells as well as mechanosensitive ion channels within the endothelial plasma membrane. The mechanical properties of the endothelial cell surface are characterized by the dynamics of cytoskeletal proteins and play a key role in the process of signal transmission from the outside (lumen of the blood vessel) to the interior of the cell. Thus, the cell mechanics directly interact with the function of mechanosensitive structures and ion channels. To precisely maintain the vascular tone, a coordinated functional interdependency between endothelial cells and vascular smooth muscle cells is necessary. This is given by the fact that mechanosensitive ion channels are expressed in both cell types and that signals are transmitted via autocrine/paracrine mechanisms from layer to layer. Thus, the outer layer of the endothelial cells can be seen as important functional mechanosensitive and reactive cellular compartment. This review aims to describe the known mechanosensitive structures of the vessel building a bridge between the important role of physiological mechanosignaling and the proper vascular function. Since mutations and dysfunction of mechanosensitive proteins are linked to vascular pathologies such as hypertension, they play a potent role in the field of channelopathies and mechanomedicine.
Collapse
|
11
|
Porta J, Lovelace J, Borgstahl GEO. How to assign a (3 + 1)-dimensional superspace group to an incommensurately modulated biological macromolecular crystal. J Appl Crystallogr 2017; 50:1200-1207. [PMID: 28808437 PMCID: PMC5541356 DOI: 10.1107/s1600576717007294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/17/2017] [Indexed: 11/21/2022] Open
Abstract
Periodic crystal diffraction is described using a three-dimensional (3D) unit cell and 3D space-group symmetry. Incommensurately modulated crystals are a subset of aperiodic crystals that need four to six dimensions to describe the observed diffraction pattern, and they have characteristic satellite reflections that are offset from the main reflections. These satellites have a non-integral relationship to the primary lattice and require q vectors for processing. Incommensurately modulated biological macromolecular crystals have been frequently observed but so far have not been solved. The authors of this article have been spearheading an initiative to determine this type of crystal structure. The first step toward structure solution is to collect the diffraction data making sure that the satellite reflections are well separated from the main reflections. Once collected they can be integrated and then scaled with appropriate software. Then the assignment of the superspace group is needed. The most common form of modulation is in only one extra direction and can be described with a (3 + 1)D superspace group. The (3 + 1)D superspace groups for chemical crystallographers are fully described in Volume C of International Tables for Crystallography. This text includes all types of crystallographic symmetry elements found in small-molecule crystals and can be difficult for structural biologists to understand and apply to their crystals. This article provides an explanation for structural biologists that includes only the subset of biological symmetry elements and demonstrates the application to a real-life example of an incommensurately modulated protein crystal.
Collapse
Affiliation(s)
- Jason Porta
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jeff Lovelace
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gloria E. O. Borgstahl
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
12
|
Salt-induced Na+/K+-ATPase-α/β expression involves soluble adenylyl cyclase in endothelial cells. Pflugers Arch 2017; 469:1401-1412. [DOI: 10.1007/s00424-017-1999-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 04/03/2017] [Accepted: 05/15/2017] [Indexed: 12/28/2022]
|
13
|
Hanč P, Schulz O, Fischbach H, Martin SR, Kjær S, Reis e Sousa C. A pH- and ionic strength-dependent conformational change in the neck region regulates DNGR-1 function in dendritic cells. EMBO J 2016; 35:2484-2497. [PMID: 27753620 PMCID: PMC5109244 DOI: 10.15252/embj.201694695] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/18/2016] [Accepted: 09/15/2016] [Indexed: 12/30/2022] Open
Abstract
DNGR-1 is receptor expressed by certain dendritic cell (DC) subsets and by DC precursors in mouse. It possesses a C-type lectin-like domain (CTLD) followed by a poorly characterized neck region coupled to a transmembrane region and short intracellular tail. The CTLD of DNGR-1 binds F-actin exposed by dead cell corpses and causes the receptor to signal and potentiate cross-presentation of dead cell-associated antigens by DCs. Here, we describe a conformational change that occurs in the neck region of DNGR-1 in a pH- and ionic strength-dependent manner and that controls cross-presentation of dead cell-associated antigens. We identify residues in the neck region that, when mutated, lock DNGR-1 in one of the two conformational states to potentiate cross-presentation. In contrast, we show that chimeric proteins in which the neck region of DNGR-1 is replaced by that of unrelated C-type lectin receptors fail to promote cross-presentation. Our results suggest that the neck region of DNGR-1 is an integral receptor component that senses receptor progression through the endocytic pathway and has evolved to maximize extraction of antigens from cell corpses, coupling DNGR-1 function to its cellular localization.
Collapse
Affiliation(s)
- Pavel Hanč
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | - Oliver Schulz
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | - Hanna Fischbach
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | - Stephen R Martin
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Svend Kjær
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | | |
Collapse
|
14
|
Toba S, Iwamoto H, Kamimura S, Oiwa K. X-Ray Fiber Diffraction Recordings from Oriented Demembranated Chlamydomonas Flagellar Axonemes. Biophys J 2016; 108:2843-53. [PMID: 26083924 DOI: 10.1016/j.bpj.2015.04.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/05/2015] [Accepted: 04/30/2015] [Indexed: 10/23/2022] Open
Abstract
The high homology of its axonemal components with humans and a large repertoire of axonemal mutants make Chlamydomonas a useful model system for experiments on the structure and function of eukaryotic cilia and flagella. Using this organism, we explored the spatial arrangement of axonemal components under physiological conditions by small-angle x-ray fiber diffraction. Axonemes were oriented in physiological solution by continuous shear flow and exposed to intense and stable x rays generated in the synchrotron radiation facility SPring-8, BL45XU. We compared diffraction patterns from axonemes isolated from wild-type and mutant strains lacking the whole outer arm (oda1), radial spoke (pf14), central apparatus (pf18), or the α-chain of the outer arm dynein (oda11). Diffraction of the axonemes showed a series of well-defined meridional/layer-line and equatorial reflections. Diffraction patterns from mutant axonemes exhibited a systematic loss/attenuation of meridional/layer-line reflections, making it possible to determine the origin of various reflections. The 1/24 and 1/12 nm(-1) meridional reflections of oda1 and oda11 were much weaker than those of the wild-type, suggesting that the outer dynein arms are the main contributor to these reflections. The weaker 1/32 and 1/13.7 nm(-1) meridional reflections from pf14 compared with the wild-type suggest that these reflections come mainly from the radial spokes. The limited contribution of the central pair apparatus to the diffraction patterns was confirmed by the similarity between the patterns of the wild-type and pf18. The equatorial reflections were complex, but a comparison with electron micrograph-based models allowed the density of each axonemal component to be estimated. Addition of ATP to rigor-state axonemes also resulted in subtle changes in equatorial intensity profiles, which could report nucleotide-dependent structural changes of the dynein arms. The first detailed description of axonemal reflections presented here serves as a landmark for further x-ray diffraction studies to monitor the action of constituent proteins in functional axonemes.
Collapse
Affiliation(s)
- Shiori Toba
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Hiroyuki Iwamoto
- SPring-8, Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Shinji Kamimura
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan; Graduate School of Life Science, University of Hyogo, Hyogo, Japan; CREST, Japan Science and Technology Agency, Tokyo, Japan.
| |
Collapse
|
15
|
Orlov SN, Hamet P. Salt and gene expression: evidence for [Na+]i/[K+]i-mediated signaling pathways. Pflugers Arch 2014; 467:489-98. [PMID: 25479826 DOI: 10.1007/s00424-014-1650-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/27/2014] [Accepted: 11/07/2014] [Indexed: 01/11/2023]
Abstract
Our review focuses on the recent data showing that gene transcription and translation are under the control of signaling pathways triggered by modulation of the intracellular sodium/potassium ratio ([Na+]i/[K+]i). Side-by-side with sensing of osmolality elevation by tonicity enhancer-binding protein (TonEBP, NFAT5), [Na+]i/[K+]i-mediated excitation-transcription coupling may contribute to the transcriptomic changes evoked by high salt consumption. This novel mechanism includes the sensing of heightened Na+ concentration in the plasma, interstitial, and cerebrospinal fluids via augmented Na+ influx in the endothelium, immune system cells, and the subfornical organ, respectively. In these cells, [Na+]i/[K+]i ratio elevation, triggered by augmented Na+ influx, is further potentiated by increased production of endogenous Na+,K+-ATPase inhibitors documented in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Sergei N Orlov
- Laboratory of Biological Membranes, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119991, Russia,
| | | |
Collapse
|
16
|
Kusche-Vihrog K, Schmitz B, Brand E. Salt controls endothelial and vascular phenotype. Pflugers Arch 2014; 467:499-512. [DOI: 10.1007/s00424-014-1657-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/11/2014] [Accepted: 11/14/2014] [Indexed: 01/11/2023]
|
17
|
Korte S, Sträter AS, Drüppel V, Oberleithner H, Jeggle P, Grossmann C, Fobker M, Nofer JR, Brand E, Kusche-Vihrog K. Feedforward activation of endothelial ENaC by high sodium. FASEB J 2014; 28:4015-25. [PMID: 24868010 DOI: 10.1096/fj.14-250282] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/19/2014] [Indexed: 01/11/2023]
Abstract
Kidney epithelial sodium channels (ENaCs) are known to be inactivated by high sodium concentrations (feedback inhibition). Recently, the endothelial sodium channel (EnNaC) was identified to control the nanomechanical properties of the endothelium. EnNaC-dependent endothelial stiffening reduces the release of nitric oxide, the hallmark of endothelial dysfunction. To study the regulatory impact of sodium on EnNaC, endothelial cells (EA.hy926 and ex vivo mouse endothelium) were incubated in aldosterone-free solutions containing either low (130 mM) or high (150 mM) sodium concentrations. By applying atomic force microscopy-based nanoindentation, an unexpected positive correlation between increasing sodium concentrations and cortical endothelial stiffness was observed, which can be attributed to functional EnNaC. In particular, an acute rise in sodium concentration (+20 mM) was sufficient to increase EnNaC membrane abundance by 90% and stiffening of the endothelial cortex by 18%. Despite the absence of exogenous aldosterone, these effects were prevented by the aldosterone synthase inhibitor FAD286 (100 nM) or the mineralocorticoid receptor (MR)-antagonist spironolactone (100 nM), indicating endogenous aldosterone synthesis and MR-dependent signaling. Interestingly, in the presence of high-sodium concentrations, FAD286 increased the transcription of the MR by 69%. Taken together, a novel feedforward activation of EnNaC by sodium is proposed that contrasts ENaC feedback inhibition in kidney.
Collapse
Affiliation(s)
- Stefanie Korte
- Institute of Physiology II, University of Münster, Münster, Germany
| | | | - Verena Drüppel
- Institute of Physiology II, University of Münster, Münster, Germany
| | | | - Pia Jeggle
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Claudia Grossmann
- Julius-Bernstein-Institute of Physiology, University Halle-Wittenberg, Halle, Germany
| | - Manfred Fobker
- Center of Laboratory Medicine, University of Münster, Münster, Germany; and
| | - Jerzy-Roch Nofer
- Center of Laboratory Medicine, University of Münster, Münster, Germany; and
| | - Eva Brand
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| | | |
Collapse
|
18
|
DuPont JJ, Hill MA, Bender SB, Jaisser F, Jaffe IZ. Aldosterone and vascular mineralocorticoid receptors: regulators of ion channels beyond the kidney. Hypertension 2014; 63:632-7. [PMID: 24379184 PMCID: PMC3954941 DOI: 10.1161/hypertensionaha.113.01273] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Warnock DG, Kusche-Vihrog K, Tarjus A, Sheng S, Oberleithner H, Kleyman TR, Jaisser F. Blood pressure and amiloride-sensitive sodium channels in vascular and renal cells. Nat Rev Nephrol 2014; 10:146-57. [PMID: 24419567 DOI: 10.1038/nrneph.2013.275] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sodium transport in the distal nephron is mediated by epithelial sodium channel activity. Proteolytic processing of external domains and inhibition with increased sodium concentrations are important regulatory features of epithelial sodium channel complexes expressed in the distal nephron. By contrast, sodium channels expressed in the vascular system are activated by increased external sodium concentrations, which results in changes in the mechanical properties and function of endothelial cells. Mechanosensitivity and shear stress affect both epithelial and vascular sodium channel activity. Guyton's hypothesis stated that blood pressure control is critically dependent on vascular tone and fluid handling by the kidney. The synergistic effects, and complementary regulation, of the epithelial and vascular systems are consistent with the Guytonian model of volume and blood pressure regulation, and probably reflect sequential evolution of the two systems. The integration of vascular tone, renal perfusion and regulation of renal sodium reabsorption is the central underpinning of the Guytonian model. In this Review, we focus on the expression and regulation of sodium channels, and we outline the emerging evidence that describes the central role of amiloride-sensitive sodium channels in the efferent (vascular) and afferent (epithelial) arms of this homeostatic system.
Collapse
Affiliation(s)
- David G Warnock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 34294-0007, USA
| | - Kristina Kusche-Vihrog
- Institut für Physiologie II, Westfälische Wilhelms Universität, Robert-Koch-Straße 27, 48149 Münster, Germany
| | - Antoine Tarjus
- INSERM U872 Team 1, Centre de Recherche des Cordeliers, Université René Descartes, Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Shaohu Sheng
- Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Hans Oberleithner
- Institut für Physiologie II, Westfälische Wilhelms Universität, Robert-Koch-Straße 27, 48149 Münster, Germany
| | - Thomas R Kleyman
- Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Frederic Jaisser
- INSERM U872 Team 1, Centre de Recherche des Cordeliers, Université René Descartes, Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| |
Collapse
|
20
|
Kang H, Bradley MJ, Elam WA, De La Cruz EM. Regulation of actin by ion-linked equilibria. Biophys J 2013; 105:2621-8. [PMID: 24359734 PMCID: PMC3882474 DOI: 10.1016/j.bpj.2013.10.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 11/22/2022] Open
Abstract
Actin assembly, filament mechanical properties, and interactions with regulatory proteins depend on the types and concentrations of salts in solution. Salts modulate actin through both nonspecific electrostatic effects and specific binding to discrete sites. Multiple cation-binding site classes spanning a broad range of affinities (nanomolar to millimolar) have been identified on actin monomers and filaments. This review focuses on discrete, low-affinity cation-binding interactions that drive polymerization, regulate filament-bending mechanics, and modulate interactions with regulatory proteins. Cation binding may be perturbed by actin post-translational modifications and linked equilibria. Partial cation occupancy under physiological and commonly used in vitro solution conditions likely contribute to filament mechanical heterogeneity and structural polymorphism. Site-specific cation-binding residues are conserved in Arp2 and Arp3, and may play a role in Arp2/3 complex activation and actin-filament branching activity. Actin-salt interactions demonstrate the relevance of ion-linked equilibria in the operation and regulation of complex biological systems.
Collapse
Affiliation(s)
- Hyeran Kang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Michael J Bradley
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - W Austin Elam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.
| |
Collapse
|
21
|
Kusche-Vihrog K, Jeggle P, Oberleithner H. The role of ENaC in vascular endothelium. Pflugers Arch 2013; 466:851-9. [PMID: 24046153 DOI: 10.1007/s00424-013-1356-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 12/31/2022]
Abstract
Once upon a time, the expression of the epithelial sodium channel (ENaC) was mainly assigned to the kidneys, colon and sweat glands where it was considered to be the main determinant of sodium homeostasis. Recent, though indirect, evidence for the possible existence of ENaC in a non-epithelial tissue was derived from the observation that the vascular endothelium is a target for aldosterone. Inhibitory actions of the intracellular aldosterone receptors by spironolactone and, more directly, by ENaC blockers such as amiloride supported this view. Shortly after, direct data on the expression of ENaC in vascular endothelium could be demonstrated. There, endothelial ENaC (EnNaC) could be defined as a major regulator of cellular mechanics which is a critical parameter in differentiating between vascular function and dysfunction. Foremost, the mechanical stiffness of the endothelial cell cortex, a layer 50-200 nm beneath the plasma membrane, has been shown to play a crucial role as it controls the production of the endothelium-derived vasodilator nitric oxide (NO) which directly affects the tone of the vascular smooth muscle cells. In contrast to soft endothelial cells, stiff endothelial cells release reduced amounts of NO, the hallmark of endothelial dysfunction. Thus, the combination of endothelial stiffness and myogenic tone might increase the peripheral vascular resistance. An elevation of arterial blood pressure is supposed to be the consequence of such functional changes. In this review, EnNaC is discussed as an aldosterone-regulated plasma membrane protein of the vascular endothelium that could significantly contribute to maintaining of an appropriate arterial blood pressure but, if overexpressed, could participate in the pathogenesis of arterial hypertension.
Collapse
Affiliation(s)
- Kristina Kusche-Vihrog
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany,
| | | | | |
Collapse
|
22
|
Crevenna AH, Naredi-Rainer N, Schönichen A, Dzubiella J, Barber DL, Lamb DC, Wedlich-Söldner R. Electrostatics control actin filament nucleation and elongation kinetics. J Biol Chem 2013; 288:12102-13. [PMID: 23486468 DOI: 10.1074/jbc.m113.456327] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The actin cytoskeleton is a central mediator of cellular morphogenesis, and rapid actin reorganization drives essential processes such as cell migration and cell division. Whereas several actin-binding proteins are known to be regulated by changes in intracellular pH, detailed information regarding the effect of pH on the actin dynamics itself is still lacking. Here, we combine bulk assays, total internal reflection fluorescence microscopy, fluorescence fluctuation spectroscopy techniques, and theory to comprehensively characterize the effect of pH on actin polymerization. We show that both nucleation and elongation are strongly enhanced at acidic pH, with a maximum close to the pI of actin. Monomer association rates are similarly affected by pH at both ends, although dissociation rates are differentially affected. This indicates that electrostatics control the diffusional encounter but not the dissociation rate, which is critical for the establishment of actin filament asymmetry. A generic model of protein-protein interaction, including electrostatics, explains the observed pH sensitivity as a consequence of charge repulsion. The observed pH effect on actin in vitro agrees with measurements of Listeria propulsion in pH-controlled cells. pH regulation should therefore be considered as a modulator of actin dynamics in a cellular environment.
Collapse
Affiliation(s)
- Alvaro H Crevenna
- AG Cellular Dynamics and Cell Patterning, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Jeggle P, Callies C, Tarjus A, Fassot C, Fels J, Oberleithner H, Jaisser F, Kusche-Vihrog K. Epithelial sodium channel stiffens the vascular endothelium in vitro and in Liddle mice. Hypertension 2013; 61:1053-9. [PMID: 23460285 DOI: 10.1161/hypertensionaha.111.199455] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Liddle syndrome, an inherited form of hypertension, is caused by gain-of-function mutations in the epithelial Na(+) channel (ENaC), the principal mediator of Na(+) reabsorption in the kidney. Accordingly, the disease pathology was ascribed to a primary renal mechanism. Whether this is the sole responsible mechanism, however, remains uncertain as dysregulation of ENaC in other tissues may also be involved. Previous work indicates that ENaC in the vascular endothelium is crucial for the regulation of cellular mechanics and thus vascular function. The hormone aldosterone has been shown to concomitantly increase ENaC surface expression and stiffness of the cell cortex in vascular endothelial cells. The latter entails a reduced release of the vasodilator nitric oxide, which eventually leads to an increase in vascular tone and blood pressure. Using atomic force microscopy, we have found a direct correlation between ENaC surface expression and the formation of cortical stiffness in endothelial cells. Stable knockdown of αENaC in endothelial cells evoked a reduced channel surface density and a lower cortical stiffness compared with the mock control. In turn, an increased αENaC expression induced an elevated cortical stiffness. More importantly, using ex vivo preparations from a mouse model for Liddle syndrome, we show that this disorder evokes enhanced ENaC expression and increased cortical stiffness in vascular endothelial cells in situ. We conclude that ENaC in the vascular endothelium determines cellular mechanics and hence might participate in the control of vascular function.
Collapse
Affiliation(s)
- Pia Jeggle
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Identification of cation-binding sites on actin that drive polymerization and modulate bending stiffness. Proc Natl Acad Sci U S A 2012; 109:16923-7. [PMID: 23027950 DOI: 10.1073/pnas.1211078109] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The assembly of actin monomers into filaments and networks plays vital roles throughout eukaryotic biology, including intracellular transport, cell motility, cell division, determining cellular shape, and providing cells with mechanical strength. The regulation of actin assembly and modulation of filament mechanical properties are critical for proper actin function. It is well established that physiological salt concentrations promote actin assembly and alter the overall bending mechanics of assembled filaments and networks. However, the molecular origins of these salt-dependent effects, particularly if they involve nonspecific ionic strength effects or specific ion-binding interactions, are unknown. Here, we demonstrate that specific cation binding at two discrete sites situated between adjacent subunits along the long-pitch helix drive actin polymerization and determine the filament bending rigidity. We classify the two sites as "polymerization" and "stiffness" sites based on the effects that mutations at the sites have on salt-dependent filament assembly and bending mechanics, respectively. These results establish the existence and location of the cation-binding sites that confer salt dependence to the assembly and mechanics of actin filaments.
Collapse
|
25
|
Porta J, Lovelace JJ, Schreurs AMM, Kroon-Batenburg LMJ, Borgstahl GEO. Processing incommensurately modulated protein diffraction data with Eval15. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:628-38. [PMID: 21697601 PMCID: PMC3121298 DOI: 10.1107/s0907444911017884] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 05/11/2011] [Indexed: 11/10/2022]
Abstract
Recent challenges in biological X-ray crystallography include the processing of modulated diffraction data. A modulated crystal has lost its three-dimensional translational symmetry but retains long-range order that can be restored by refining a periodic modulation function. The presence of a crystal modulation is indicated by an X-ray diffraction pattern with periodic main reflections flanked by off-lattice satellite reflections. While the periodic main reflections can easily be indexed using three reciprocal-lattice vectors a*, b*, c*, the satellite reflections have a non-integral relationship to the main lattice and require a q vector for indexing. While methods for the processing of diffraction intensities from modulated small-molecule crystals are well developed, they have not been applied in protein crystallography. A recipe is presented here for processing incommensurately modulated data from a macromolecular crystal using the Eval program suite. The diffraction data are from an incommensurately modulated crystal of profilin-actin with single-order satellites parallel to b*. The steps taken in this report can be used as a guide for protein crystallographers when encountering crystal modulations. To our knowledge, this is the first report of the processing of data from an incommensurately modulated macromolecular crystal.
Collapse
Affiliation(s)
- Jason Porta
- The Eppley Institute for Research in Cancer and Allied Diseases, Nebraska Medical Center, Omaha, NE 68198-7696, USA
- Department of Biochemistry and Molecular Biology, Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - Jeffrey J. Lovelace
- The Eppley Institute for Research in Cancer and Allied Diseases, Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - Antoine M. M. Schreurs
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht , The Netherlands
| | - Loes M. J. Kroon-Batenburg
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht , The Netherlands
| | - Gloria E. O. Borgstahl
- The Eppley Institute for Research in Cancer and Allied Diseases, Nebraska Medical Center, Omaha, NE 68198-7696, USA
- Department of Biochemistry and Molecular Biology, Nebraska Medical Center, Omaha, NE 68198-7696, USA
| |
Collapse
|
26
|
Schmitz S, Schaap IAT, Kleinjung J, Harder S, Grainger M, Calder L, Rosenthal PB, Holder AA, Veigel C. Malaria parasite actin polymerization and filament structure. J Biol Chem 2010; 285:36577-85. [PMID: 20826799 PMCID: PMC2978586 DOI: 10.1074/jbc.m110.142638] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 09/02/2010] [Indexed: 11/06/2022] Open
Abstract
A novel form of acto-myosin regulation has been proposed in which polymerization of new actin filaments regulates motility of parasites of the apicomplexan class of protozoa. In vivo and in vitro parasite F-actin is very short and unstable, but the structural basis and details of filament dynamics remain unknown. Here, we show that long actin filaments can be obtained by polymerizing unlabeled rabbit skeletal actin (RS-actin) onto both ends of the short rhodamine-phalloidin-stabilized Plasmodium falciparum actin I (Pf-actin) filaments. Following annealing, hybrid filaments of micron length and "zebra-striped" appearance are observed by fluorescence microscopy that are stable enough to move over myosin class II motors in a gliding filament assay. Using negative stain electron microscopy we find that pure Pf-actin stabilized by jasplakinolide (JAS) also forms long filaments, indistinguishable in length from RS-actin filaments, and long enough to be characterized structurally. To compare structures in near physiological conditions in aqueous solution we imaged Pf-actin and RS-actin filaments by atomic force microscopy (AFM). We found the monomer stacking to be distinctly different for Pf-actin compared with RS-actin, such that the pitch of the double helix of Pf-actin filaments was 10% larger. Our results can be explained by a rotational angle between subunits that is larger in the parasite compared with RS-actin. Modeling of the AFM data using high-resolution actin filament models supports our interpretation of the data. The structural differences reported here may be a consequence of weaker inter- and intra-strand contacts, and may be critical for differences in filament dynamics and for regulation of parasite motility.
Collapse
Affiliation(s)
| | | | | | - Simone Harder
- From the Division of Physical Biochemistry
- the Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Munira Grainger
- the Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | - Anthony A. Holder
- the Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | | |
Collapse
|
27
|
Hild G, Bugyi B, Nyitrai M. Conformational dynamics of actin: effectors and implications for biological function. Cytoskeleton (Hoboken) 2010; 67:609-29. [PMID: 20672362 PMCID: PMC3038201 DOI: 10.1002/cm.20473] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 07/15/2010] [Indexed: 12/30/2022]
Abstract
Actin is a protein abundant in many cell types. Decades of investigations have provided evidence that it has many functions in living cells. The diverse morphology and dynamics of actin structures adapted to versatile cellular functions is established by a large repertoire of actin-binding proteins. The proper interactions with these proteins assume effective molecular adaptations from actin, in which its conformational transitions play essential role. This review attempts to summarise our current knowledge regarding the coupling between the conformational states of actin and its biological function.
Collapse
Affiliation(s)
- Gábor Hild
- Department of Biophysics, University of Pécs, Faculty of Medicine, Pécs, Szigeti str. 12, H-7624, Hungary
| | | | | |
Collapse
|
28
|
Kohlstedt KL, Vernizzi G, Olvera de la Cruz M. Electrostatics and optimal arrangement of ionic triangular lattices confined to cylindrical fibers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:051503. [PMID: 20364988 DOI: 10.1103/physreve.80.051503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Indexed: 05/29/2023]
Abstract
We study the optimal packing of triangular ionic lattices on the surface of nanofibers. We compute the favored orientation of the lattice with respect to the axis of the cylindrical fiber, and we determine the effects of the surface curvature. Electrostatic interactions prefer chiral arrangements only for special families of lattices that depend on the fiber diameter. However, there are families of lattices that energetically promote achiral configurations. Besides the long-range Coulomb interactions we consider the behavior of short-range elastic forces, represented by interconnected springs between neighboring ions. In this case a different family of achiral lattices is always preferred. We also show that varying the stoichiometric composition of charges, as well as including higher-order curvature effects, does not significantly modify such a scenario.
Collapse
Affiliation(s)
- Kevin L Kohlstedt
- Department of Materials Science, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
29
|
Galińska-Rakoczy A, Wawro B, Strzelecka-Gołaszewska H. New aspects of the spontaneous polymerization of actin in the presence of salts. J Mol Biol 2009; 387:869-82. [PMID: 19340945 DOI: 10.1016/j.jmb.2009.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mechanism of salt-induced actin polymerization involves the energetically unfavorable nucleation step, followed by filament elongation by the addition of monomers. The use of a bifunctional cross-linker, N,N'-(1,4-phenylene)dimaleimide, revealed rapid formation of the so-called lower dimers (LD) in which actin monomers are arranged in an antiparallel fashion. The filament elongation phase is characterized by a gradual LD decay and an increase in the yield of "upper dimers" (UD) characteristic of F-actin. Here we have used 90 degrees light scattering, electron microscopy, and N, N'-(1,4-phenylene)dimaleimide cross-linking to reinvestigate relationships between changes in filament morphology, LD decay, and increase in the yield of UD during filament growth in a wide range of conditions influencing the rate of the nucleation reaction. The results show irregularity and instability of filaments at early stages of polymerization under all conditions used, and suggest that an earlier documented coassembling of LD with monomeric actin contributes to the initial disordering of the filaments rather than to the nucleation of polymerization. The effects of the type of G-actin-bound divalent cation (Ca2+/Mg2+), nucleotide (ATP/ADP), and polymerizing salt on the relation between changes in filament morphology and progress in G-actin-to-F-actin transformation show that ligand-dependent alterations in G-actin conformation determine not only the nucleation rate but also the kinetics of ordering of the filament structure in the elongation phase. The time courses of changes in the yield of UD suggest that filament maturation involves cooperative propagation of "proper" interprotomer contacts. Acceleration of this process by the initially bound MgATP supports the view that the filament-destabilizing conformational changes triggered by ATP hydrolysis and Pi liberation during polymerization are constrained by the intermolecular contacts established between MgATP monomers prior to ATP hydrolysis. An important role of contacts involving the DNase-I-binding loop and the C-terminus of actin is proposed.
Collapse
|
30
|
Arii Y, Hatori K. Relationship between the flexibility and the motility of actin filaments: effects of pH. Biochem Biophys Res Commun 2008; 371:772-6. [PMID: 18457659 DOI: 10.1016/j.bbrc.2008.04.135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
Abstract
Both the sliding velocity of fluorescently labeled actin filament and its persistence length as an index of the bending flexibility of the filament were examined in the motility assay as varying the pH values of the solution for preparing actin filaments. When the pH value was varied from 5.0 to 9.0 in the solution in which actin filaments were formed from the constituent monomers, the motile performance of Mg(2+) bound actin filaments (Mg-F-actin) was apparently suppressed compared to the case of Ca(2+) bound ones (Ca-F-actin). The persistence length for Ca-F-actin gradually increased with the increase of the pH value while the similar length for Mg-F-actin remained rather independent of the value. The largest sliding velocity of the filament, on the other hand, obtained at the persistence length of roughly 6 microm for both cases of Mg-F-actin and Ca-F-actin.
Collapse
Affiliation(s)
- Yusuke Arii
- Department of Bio-System Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Japan
| | | |
Collapse
|
31
|
Takamoto K, Kamal JKA, Chance MR. Biochemical implications of a three-dimensional model of monomeric actin bound to magnesium-chelated ATP. Structure 2007; 15:39-51. [PMID: 17223531 DOI: 10.1016/j.str.2006.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 11/06/2006] [Accepted: 11/18/2006] [Indexed: 11/19/2022]
Abstract
Actin structure is of intense interest in biology due to its importance in cell function and motility mediated by the spatial and temporal regulation of actin monomer-filament interconversions in a wide range of developmental and disease states. Despite this interest, the structure of many functionally important actin forms has eluded high-resolution analysis. Due to the propensity of actin monomers to assemble into filaments structural analysis of Mg-bound actin monomers has proven difficult, whereas high-resolution structures of actin with a diverse array of ligands that preclude polymerization have been quite successful. In this work, we provide a high-resolution structural model of the Mg-ATP-actin monomer using a combination of computational methods and experimental footprinting data that we have previously published. The key conclusion of this study is that the structure of the nucleotide binding cleft defined by subdomains 2 and 4 is essentially closed, with specific contacts between two subdomains predicted by the data.
Collapse
Affiliation(s)
- Keiji Takamoto
- Case Center for Proteomics, Case Western Reserve University, 10090 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
32
|
Oda T, Namba K, Maéda Y. Position and orientation of phalloidin in F-actin determined by X-ray fiber diffraction analysis. Biophys J 2005; 88:2727-36. [PMID: 15653738 PMCID: PMC1305368 DOI: 10.1529/biophysj.104.047753] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Knowledge of the phalloidin binding position in F-actin and the relevant understanding of the mechanism of F-actin stabilization would help to define the structural characteristics of the F-actin filament. To determine the position of bound phalloidin experimentally, x-ray fiber diffraction data were obtained from well-oriented sols of F-actin and the phalloidin-F-actin complex. The differences in the layer-line intensity distributions, which were clearly observed even at low resolution (8 A), produced well-resolved peaks corresponding to interphalloidin vectors in the cylindrically averaged difference-Patterson map, from which the radial binding position was determined to be approximately 10 A from the filament axis. Then, the azimuthal and axial positions were determined by single isomorphous replacement phasing and a cross-Patterson map in radial projection to be approximately 84 degrees and 0.5 A relative to the actin mass center. The refined position was close to the position found by prior researchers. The position of rhodamine attached to phalloidin in the rhodamine-phalloidin-F-actin complex was also determined, in which the conjugated Leu(OH)(7) residue was found to face the outside of the filament. The position and orientation of the bound phalloidin so determined explain the increase in the interactions between long-pitch strands of F-actin and would also account for the inhibition of phosphate release, which might also contribute to the F-actin stabilization. The method of analysis developed in this study is applicable for the determination of binding positions of other drugs, such as jasplakinolide and dolastatin 11.
Collapse
Affiliation(s)
- Toshiro Oda
- Max Planck Institute for Medical Research, Department of Biophysics, Heidelberg, Germany.
| | | | | |
Collapse
|
33
|
Abstract
The atomic model of F-actin was refined against fiber diffraction data using long-range normal modes as adjustable parameters to account for the collective long-range filamentous deformations. To determine the effect of long-range deformations on the refinement, each of the four domains of G-actin was treated as a rigid body. It was found that among all modes, the bending modes make the most significant contributions to the improvement of the refinement. Inclusion of only 7-9 bending modes as adjustable parameters yielded a lowest R-factor of 6.3%. These results demonstrate that employing normal modes as refinement parameters has the advantage of using a small number of adjustable parameters to achieve a good fitting efficiency. Such a refinement procedure may therefore prevent the refinement from overfitting the structural model. More importantly, the results of this study demonstrate that, for any fiber diffraction data, a substantial amount of refinement error is due to long-range deformations, especially the bending, of the filaments. The effects of these intrinsic deformations cannot be easily compensated for by adjusting local structural parameters, and must be properly accounted for in the refinement to achieve improved fit of refined models with experimental diffraction data.
Collapse
Affiliation(s)
- Yinghao Wu
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | |
Collapse
|
34
|
Abstract
Here we report the results of applying substructure synthesis method to the simulation of F-actin filaments of several microns in length. The elastic deformational modes of long F-actin filaments were generated from the vibrational modes of the 13-subunit repeat of F-actin using a hierarchical synthesis scheme. The computationally synthesized deformational modes, in the very low-frequency regime, are in good agreement with theoretical solutions for long homogeneous elastic rods, which confirmed the usefulness of substructure synthesis method. Other low-frequency modes carry rich local deformational features that are unique to F-actins. All these modes thus provide a theoretical basis set for a description of spontaneously occurring thermal deformations, such as undulations, of the filaments. The results demonstrate that substructure synthesis method, as a method for computational modal analysis, is capable of scaling up the microscopic dynamic information, obtained from atomistic simulations, to a wide range of macroscopic length scale. Moreover, the combination of substructure synthesis method and hierarchical synthesis scheme provides an effective way in dealing with complex systems of periodic repeats that are abundant in cells.
Collapse
Affiliation(s)
- Dengming Ming
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | |
Collapse
|
35
|
Benedetti CE, Kobarg J, Pertinhez TA, Gatti RM, de Souza ON, Spisni A, Meneghini R. Plasmodium falciparum histidine-rich protein II binds to actin, phosphatidylinositol 4,5-bisphosphate and erythrocyte ghosts in a pH-dependent manner and undergoes coil-to-helix transitions in anionic micelles. Mol Biochem Parasitol 2003; 128:157-66. [PMID: 12742582 DOI: 10.1016/s0166-6851(03)00057-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The recombinant histidine-rich protein II (HRPII) from Plasmodium falciparum was shown to bind actin and phosphatidylinositol 4,5-bisphosphate (PIP(2)) in vitro in a pH-dependent manner, very similar to hisactophilin, an actin-binding protein from ameba. Binding of HRPII to actin and PIP(2) occurred at pH 6.0 and 6.5, but not above pH 7.0. Circular dichroism (CD) spectroscopy confirmed that HRPII interacts with actin at pH below 7.0, as judged by the changes induced in the secondary structure of the HRPII/actin mixture. Further CD analysis demonstrated that HRPII adopts a predominantly alpha-helical conformation with anionic micelles of PIP(2) and SDS, but not with neutral micelles of phosphatidylcholine (PC), a feature that is common to many actin-binding proteins involved in cytoskeleton remodeling. Similarly to hisactophilin, a GFP-HRPII fusion protein shuttled from the cytoplasm to the nucleus of HeLa cells as the cellular pH was lowered from 8.0 to 6.0. HeLa cells transfected with the HRPII gene showed increased levels of histidine-rich proteins (HRPs) in the soluble cell fraction at pH 8.0. At pH 6.0, however, HRPs were detected mainly in the insoluble cell fraction. Interestingly, we found that HRPII binds to human erythrocyte membranes at pH 6.0 and 6.5 but not at pH above 7.0. Our results point to remarkable similarities between HRPII, hisactophilin, and actin-binding proteins. Possible roles of the HRPII during Plasmodium infection are discussed in the light of these findings.
Collapse
Affiliation(s)
- Celso Eduardo Benedetti
- Centro de Biologia Molecular Estrutural (CEBIME), Laboratório Nacional de Luz Sincrotron (LNLS), CP6192, Campinas, SP CEP 13084-971, Brazil.
| | | | | | | | | | | | | |
Collapse
|
36
|
Oda T, Crane ZD, Dicus CW, Sufi BA, Bates RB. Dolastatin 11 connects two long-pitch strands in F-actin to stabilize microfilaments. J Mol Biol 2003; 328:319-24. [PMID: 12691743 DOI: 10.1016/s0022-2836(03)00306-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dolastatin 11, a drug isolated from the Indian Ocean sea hare Dolabella auricularia, arrests cytokinesis in vivo and increases the amount of F-actin to stabilize F-actin in vitro, like phalloidin and jasplakinolide. However, according to the previous biochemical study, the binding of dolastatin 11 to F-actin does not compete with that of phalloidin, suggesting that the binding sites are different. To understand the mechanism of F-actin stabilization by dolastatin 11, we determined the position of bound dolastatin 11 in F-actin using the X-ray fiber diffraction from oriented filament sols. Our analysis shows that the position of dolastatin 11 is clearly different from that of phalloidin. However, these bound drugs are present in the gap between the two long-pitch F-actin strands in a similar way. The result suggests that the connection between the two long-pitch F-actin strands might be a key for the control of F-actin stabilization.
Collapse
Affiliation(s)
- Toshiro Oda
- Department of Biophysics, Max Planck Institute for Medical Research, Jahnstr 29, Heidelberg, D-69120, Germany.
| | | | | | | | | |
Collapse
|
37
|
Ming D, Kong Y, Wu Y, Ma J. Substructure synthesis method for simulating large molecular complexes. Proc Natl Acad Sci U S A 2003; 100:104-9. [PMID: 12518058 PMCID: PMC140894 DOI: 10.1073/pnas.232588999] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This paper reports a computational method for describing the conformational flexibility of very large biomolecular complexes using a reduced number of degrees of freedom. It is called the substructure synthesis method, and the basic concept is to treat the motions of a given structure as a collection of those of an assemblage of substructures. The choice of substructures is arbitrary and sometimes quite natural, such as domains, subunits, or even large segments of biomolecular complexes. To start, a group of low-frequency substructure modes is determined, for instance by normal mode analysis, to represent the motions of the substructure. Next, a desired number of substructures are joined together by a set of constraints to enforce geometric compatibility at the interface of adjacent substructures, and the modes for the assembled structure can then be synthesized from the substructure modes by applying the Rayleigh-Ritz principle. Such a procedure is computationally much more desirable than solving the full eigenvalue problem for the whole assembled structure. Furthermore, to show the applicability to biomolecular complexes, the method is used to study F-actin, a large filamentous molecular complex involved in many cellular functions. The results demonstrate that the method is capable of studying the motions of very large molecular complexes that are otherwise completely beyond the reach of any conventional methods.
Collapse
Affiliation(s)
- Dengming Ming
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
38
|
Blondin L, Sapountzi V, Maciver SK, Lagarrigue E, Benyamin Y, Roustan C. A structural basis for the pH-dependence of cofilin. F-actin interactions. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4194-201. [PMID: 12199697 DOI: 10.1046/j.1432-1033.2002.03101.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A marked pH-dependent interaction with F-actin is an important property of typical members of the actin depolymerizing factor (ADF)/cofilin family of abundant actin-binding proteins. ADF/cofilins tend to bind to F-actin with a ratio of 1 : 1 at pH values around 6.5, and to G-actin at pH 8.0. We have investigated the mechanism for the pH-sensitivity. We found no evidence for pH-dependent changes in the structure of cofilin itself, nor for the interaction of cofilin with G-actin. None of the actin-derived, cofilin-binding peptides that we had previously identified [Renoult, C., Ternent, D., Maciver, S.K., Fattoum, A., Astier, C., Benyamin, Y. & Roustan, C. (1999) J. Biol. Chem. 274, 28893-28899] bound cofilin in a pH-sensitive manner. However, we have detected a conformational change in region 75-105 in the actin subdomain 1 by the use of a peptide-directed antibody. A pH-dependent conformational change has also been detected spectroscopically in a similar peptide (84-103) on binding to cofilin. These results are consistent with a model in which pH-dependent motion of subdomain 1 relative to subdomain 2 (through region 75-105) of actin reveals a second cofilin binding site on actin (centered around region 112-125) that allows ADF/cofilin association with the actin filament. This motion requires salt in addition to low pH.
Collapse
Affiliation(s)
- Laurence Blondin
- Laboratoire de motilité cellulaire, Université de Montpellier, 2 Place E. Bataillon CC107, 34095 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|