1
|
Sato D, Shannon TR, Bers DM. Sarcoplasmic Reticulum Structure and Functional Properties that Promote Long-Lasting Calcium Sparks. Biophys J 2016; 110:382-390. [PMID: 26789761 DOI: 10.1016/j.bpj.2015.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 11/18/2022] Open
Abstract
Calcium (Ca) sparks are the fundamental sarcoplasmic reticulum (SR) Ca release events in cardiac myocytes, and they have a typical duration of 20-40 ms. However, when a fraction of ryanodine receptors (RyRs) are blocked by tetracaine or ruthenium red, Ca sparks lasting hundreds of milliseconds have been observed experimentally. The fundamental mechanism underlying these extremely prolonged Ca sparks is not understood. In this study, we use a physiologically detailed mathematical model of subcellular Ca cycling to examine how Ca spark duration is influenced by the number of functional RyRs in a junctional cluster (which is reduced by tetracaine or ruthenium red) and other SR Ca handling properties. One RyR cluster contains a few to several hundred RyRs, and we use a four-state Markov RyR gating model. Each RyR opens stochastically and is regulated by cytosolic and luminal Ca. We varied the number of functional RyRs in the single cluster, diffusion within the SR network, diffusion between network and junctional SR, cytosolic Ca diffusion, SERCA uptake activity, and RyR open probability. For long-lasting Ca release events, opening events within the cluster must occur continuously because the typical open time of the RyR is only a few milliseconds. We found the following: 1) if the number of RyRs is too small, it is difficult to maintain consecutive openings and stochastic attrition terminates the release; 2) if the number of RyRs is too large, the depletion of Ca from the junctional SR terminates the release; and 3) very long release events require relatively small-sized RyR clusters (reducing flux as seen experimentally with tetracaine) and sufficiently rapid intra-SR Ca diffusion, such that local junctional intra-SR [Ca] can be maintained by intra-SR diffusion and overall SR Ca reuptake.
Collapse
Affiliation(s)
- Daisuke Sato
- Department of Pharmacology, University of California, Davis, Davis, California.
| | - Thomas R Shannon
- Molecular Biophysics and Physiology, Rush University, Chicago, Illinois
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Davis, California
| |
Collapse
|
2
|
Wu T, Zhang T, Chen Y, Tang M. Research advances on potential neurotoxicity of quantum dots. J Appl Toxicol 2015; 36:345-51. [DOI: 10.1002/jat.3229] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing China
| | - Yilu Chen
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; Nanjing China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing China
| |
Collapse
|
3
|
PANDAY SUNIL, PARDASANI KAMALRAJ. FINITE ELEMENT MODEL TO STUDY THE MECHANICS OF CALCIUM REGULATION IN OOCYTE. J MECH MED BIOL 2014. [DOI: 10.1142/s0219519414500225] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
At various stages of fertilization specific spatial and temporal patterns of Ca 2+ are required for oocyte maturation. It is crucial to understand the mechanics of Ca 2+ regulation in cytosol of oocytes, in order to have better understanding of fertilization process. In this paper, a finite element model of cytosolic calcium regulation in oocyte has been developed for a two-dimensional unsteady state case. The model incorporates the important biophysical processes like diffusion, reaction, leak from endoplasmic recticulum (ER), efflux from cytosol to ER via sarco-ER calcium adenosine triphosphate (SERCA) pumps, buffers and sodium calcium exchanger. Appropriate boundary conditions have been framed. The effect of source, buffer, sodium calcium exchanger, etc. on spatial and temporal patterns of calcium in oocyte have been studied with the help of numerical results.
Collapse
Affiliation(s)
- SUNIL PANDAY
- Department of Mathematics, Maulana Azad National Institute of Technology, Bhopal 462051, India
| | - KAMAL RAJ PARDASANI
- Department of Mathematics, Maulana Azad National Institute of Technology, Bhopal 462051, India
| |
Collapse
|
4
|
Sato D, Despa S, Bers DM. Can the sodium-calcium exchanger initiate or suppress calcium sparks in cardiac myocytes? Biophys J 2012; 102:L31-3. [PMID: 22768959 DOI: 10.1016/j.bpj.2012.03.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/02/2012] [Accepted: 03/22/2012] [Indexed: 11/28/2022] Open
Abstract
Positive feedback of Calcium (Ca)-induced Ca release is the mechanism of Ca spark formation in cardiac myocytes. To initiate this process, a certain amount of Ca in the cleft space is necessary. When the membrane potential becomes higher during excitation-contraction coupling, Ca can enter through both Ca current (I(CaL)) and sodium-calcium exchanger (NCX) and may activate ryanodine receptors to initiate a Ca spark. On the other hand, at the resting membrane potential (V(m) ~-80 mV), NCX removes Ca from the cell (forward mode). If Ca released from the sarcoplasmic reticulum is quickly removed via forward mode NCX before Ca-induced Ca release starts, the Ca release becomes nonspark Ca leak. This would also be influenced by the cleft/noncleft distribution of NCX, which is unknown. Using a physiologically detailed mathematical model of subcellular Ca cycling, we analyze how NCX strength and distribution alter Ca spark formation. During excitation-contraction coupling, most Ca sparks are induced by I(CaL) with very few due to NCX current. At the resting membrane potential if most NCX is localized to the cleft, spontaneous Ca sparks are significantly reduced.
Collapse
|
5
|
Koivumäki JT, Korhonen T, Tavi P. Impact of sarcoplasmic reticulum calcium release on calcium dynamics and action potential morphology in human atrial myocytes: a computational study. PLoS Comput Biol 2011; 7:e1001067. [PMID: 21298076 PMCID: PMC3029229 DOI: 10.1371/journal.pcbi.1001067] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 12/21/2010] [Indexed: 02/02/2023] Open
Abstract
Electrophysiological studies of the human heart face the fundamental challenge that experimental data can be acquired only from patients with underlying heart disease. Regarding human atria, there exist sizable gaps in the understanding of the functional role of cellular Ca²+ dynamics, which differ crucially from that of ventricular cells, in the modulation of excitation-contraction coupling. Accordingly, the objective of this study was to develop a mathematical model of the human atrial myocyte that, in addition to the sarcolemmal (SL) ion currents, accounts for the heterogeneity of intracellular Ca²+ dynamics emerging from a structurally detailed sarcoplasmic reticulum (SR). Based on the simulation results, our model convincingly reproduces the principal characteristics of Ca²+ dynamics: 1) the biphasic increment during the upstroke of the Ca²+ transient resulting from the delay between the peripheral and central SR Ca²+ release, and 2) the relative contribution of SL Ca²+ current and SR Ca²+ release to the Ca²+ transient. In line with experimental findings, the model also replicates the strong impact of intracellular Ca²+ dynamics on the shape of the action potential. The simulation results suggest that the peripheral SR Ca²+ release sites define the interface between Ca²+ and AP, whereas the central release sites are important for the fire-diffuse-fire propagation of Ca²+ diffusion. Furthermore, our analysis predicts that the modulation of the action potential duration due to increasing heart rate is largely mediated by changes in the intracellular Na+ concentration. Finally, the results indicate that the SR Ca²+ release is a strong modulator of AP duration and, consequently, myocyte refractoriness/excitability. We conclude that the developed model is robust and reproduces many fundamental aspects of the tight coupling between SL ion currents and intracellular Ca²+ signaling. Thus, the model provides a useful framework for future studies of excitation-contraction coupling in human atrial myocytes.
Collapse
Affiliation(s)
- Jussi T. Koivumäki
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Topi Korhonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Tavi
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Neco P, Rose B, Huynh N, Zhang R, Bridge JHB, Philipson KD, Goldhaber JI. Sodium-calcium exchange is essential for effective triggering of calcium release in mouse heart. Biophys J 2010; 99:755-64. [PMID: 20682252 DOI: 10.1016/j.bpj.2010.04.071] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 03/26/2010] [Accepted: 04/30/2010] [Indexed: 11/30/2022] Open
Abstract
In cardiac myocytes, excitation-contraction coupling depends upon sarcoplasmic reticular Ca2+ release triggered by Ca2+ influx through L-type Ca2+ channels. Although Na+-Ca2+ exchange (NCX) is essential for Ca2+ extrusion, its participation in the trigger process of excitation-contraction coupling is controversial. To investigate the role of NCX in triggering, we examined Ca2+ sparks in ventricular cardiomyocytes isolated from wild-type (WT) and cardiac-specific NCX knockout (KO) mice. Myocytes from young NCX KO mice are known to exhibit normal resting cytosolic Ca2+ and normal Ca2+ transients despite reduced L-type Ca2+ current. We loaded myocytes with fluo-3 to image Ca2+ sparks using confocal microscopy in line-scan mode. The frequency of spontaneous Ca2+ sparks was reduced in KO myocytes compared with WT. However, spark amplitude and width were increased in KO mice. Permeabilizing the myocytes with saponin eliminated differences between spontaneous sparks in WT and KO mice. These results suggest that sarcolemmal processes are responsible for the reduced spark frequency and increased spark width and amplitude in KO mice. When myocytes were loaded with 1 mM fluo-3 and 3 mM EGTA via the patch pipette to buffer diadic cleft Ca2+, the number of sparks triggered by action potentials was reduced by 60% in KO cells compared to WT cells, despite similar SR Ca2+ content in both cell types. When EGTA was omitted from the pipette solution, the number of sparks triggered in KO and WT myocytes was similar. Although the number of sparks was restored in KO cells, Ca2+ release was asynchronous. These results suggest that high subsarcolemmal Ca2+ is required to ensure synchronous triggering with short spark latency in the absence of NCX. In WT mice, high subsarcolemmal Ca2+ is not required for synchronous triggering, because NCX is capable of priming the diadic cleft with sufficient Ca2+ for normal triggering, even when subsarcolemmal Ca(2+) is lowered by EGTA. Thus, reducing subsarcolemmal Ca2+ with EGTA in NCX KO mice reveals the dependence of Ca2+ release on NCX.
Collapse
Affiliation(s)
- Patricia Neco
- Departments of Medicine (Cardiology) and Physiology and the Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Model of excitation-contraction coupling of rat neonatal ventricular myocytes. Biophys J 2009; 96:1189-209. [PMID: 19186154 DOI: 10.1016/j.bpj.2008.10.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 10/27/2008] [Indexed: 11/22/2022] Open
Abstract
The neonatal rat ventricular myocyte culture is one of the most popular experimental cardiac cell models. To our knowledge, the excitation-contraction coupling (ECC) of these cells, i.e., the process linking the electrical activity to the cytosolic Ca2+ transient and contraction, has not been previously analyzed, nor has it been presented as a complete system in detail. Neonatal cardiomyocytes are in the postnatal developmental stage, and therefore, the features of their ECC differ vastly from those of adult ventricular myocytes. We present the first complete analysis of ECC in these cells by characterizing experimentally the action potential and calcium signaling and developing the first mathematical model of ECC in neonatal cardiomyocytes that we know of. We show that in comparison to adult cardiomyocytes, neonatal cardiomyocytes have long action potentials, heterogeneous cytosolic Ca2+ signals, weaker sarcoplasmic reticulum Ca2+ handling, and stronger sarcolemmal Ca2+ handling, with a significant contribution by the Na+/Ca2+ exchanger. The developed model reproduces faithfully the ECC of rat neonatal cardiomyocytes with a novel description of spatial cytosolic [Ca2+] signals. Simulations also demonstrate how an increase in the cell size (hypertrophy) affects the ECC in neonatal cardiomyocytes. This model of ECC in developing cardiomyocytes provides a platform for developing future models of cardiomyocytes at different developmental stages.
Collapse
|
8
|
Mechanisms of unmodified CdSe quantum dot-induced elevation of cytoplasmic calcium levels in primary cultures of rat hippocampal neurons. Biomaterials 2008; 29:4383-91. [DOI: 10.1016/j.biomaterials.2008.08.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 08/04/2008] [Indexed: 11/18/2022]
|
9
|
Feng XH, Chen JX, Liu Y, Ji YH. Electrophysiological characterization of BmK I, an α-like scorpion toxin, on rNav1.5 expressed in HEK293t cells. Toxicol In Vitro 2008; 22:1582-7. [DOI: 10.1016/j.tiv.2008.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 06/01/2008] [Accepted: 06/23/2008] [Indexed: 11/30/2022]
|
10
|
The role of the Na+/Ca2+ exchangers in Ca2+ dynamics in ventricular myocytes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 96:377-98. [DOI: 10.1016/j.pbiomolbio.2007.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Arakelyan KP, Sahakyan YA, Hayrapetyan LR, Khudaverdyan DN, Ingelman-Sundberg M, Mkrtchian S, Ter-Markosyan AS. Calcium-regulating peptide hormones and blood electrolytic balance in chronic heart failure. ACTA ACUST UNITED AC 2007; 142:95-100. [PMID: 17368822 DOI: 10.1016/j.regpep.2007.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 02/01/2007] [Accepted: 02/02/2007] [Indexed: 11/24/2022]
Abstract
Calcium-regulating system is important for the functional activity of myocardium. However, little is known about the role of this system in the pathogenesis of cardiovascular diseases. Blood samples from the patients with chronic heart failure (CHF) caused by ischaemic disease (coronary artery disease) (NYHA class I-IV) were used to analyze the levels of calcium, inorganic phosphate, sodium, potassium, parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP). The heart beat rate and arterial blood pressure were chosen as additional tests for the functional status of cardiovascular system. The alteration of electrolytes homeostasis was found dependent on the severity of the pathology being maximally expressed in the NYHA class IV patients. Similar tendency was demonstrated for circulating PTH and PTHrP with the highest blood concentrations observed in patients of the NYHA class III and IV. The extent of these changes was found more pronounced in the female patients. It is suggested that the calcium-regulating hormonal system is involved in the pathogenesis of the ischaemic heart disease; however the sharp increase of PTH and PTHrP at the severe stages of pathology may play a compensatory role in maintaining the heart function.
Collapse
Affiliation(s)
- Karen P Arakelyan
- Department of Physiology, Yerevan State Medical University, 375025 Yerevan, Armenia
| | | | | | | | | | | | | |
Collapse
|
12
|
Török TL. Electrogenic Na+/Ca2+-exchange of nerve and muscle cells. Prog Neurobiol 2007; 82:287-347. [PMID: 17673353 DOI: 10.1016/j.pneurobio.2007.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 04/12/2007] [Accepted: 06/12/2007] [Indexed: 12/19/2022]
Abstract
The plasma membrane Na(+)/Ca(2+)-exchanger is a bi-directional electrogenic (3Na(+):1Ca(2+)) and voltage-sensitive ion transport mechanism, which is mainly responsible for Ca(2+)-extrusion. The Na(+)-gradient, required for normal mode operation, is created by the Na(+)-pump, which is also electrogenic (3Na(+):2K(+)) and voltage-sensitive. The Na(+)/Ca(2+)-exchanger operational modes are very similar to those of the Na(+)-pump, except that the uncoupled flux (Na(+)-influx or -efflux?) is missing. The reversal potential of the exchanger is around -40 mV; therefore, during the upstroke of the AP it is probably transiently activated, leading to Ca(2+)-influx. The Na(+)/Ca(2+)-exchange is regulated by transported and non-transported external and internal cations, and shows ATP(i)-, pH- and temperature-dependence. The main problem in determining the role of Na(+)/Ca(2+)-exchange in excitation-secretion/contraction coupling is the lack of specific (mode-selective) blockers. During recent years, evidence has been accumulated for co-localisation of the Na(+)-pump, and the Na(+)/Ca(2+)-exchanger and their possible functional interaction in the "restricted" or "fuzzy space." In cardiac failure, the Na(+)-pump is down-regulated, while the exchanger is up-regulated. If the exchanger is working in normal mode (Ca(2+)-extrusion) during most of the cardiac cycle, upregulation of the exchanger may result in SR Ca(2+)-store depletion and further impairment in contractility. If so, a normal mode selective Na(+)/Ca(2+)-exchange inhibitor would be useful therapy for decompensation, and unlike CGs would not increase internal Na(+). In peripheral sympathetic nerves, pre-synaptic alpha(2)-receptors may regulate not only the VSCCs but possibly the reverse Na(+)/Ca(2+)-exchange as well.
Collapse
Affiliation(s)
- Tamás L Török
- Department of Pharmacodynamics, Semmelweis University, P.O. Box 370, VIII. Nagyvárad-tér 4, H-1445 Budapest, Hungary.
| |
Collapse
|
13
|
Faber GM, Silva J, Livshitz L, Rudy Y. Kinetic properties of the cardiac L-type Ca2+ channel and its role in myocyte electrophysiology: a theoretical investigation. Biophys J 2006; 92:1522-43. [PMID: 17158566 PMCID: PMC1796810 DOI: 10.1529/biophysj.106.088807] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The L-type Ca(2+) channel (Ca(V)1.2) plays an important role in action potential (AP) generation, morphology, and duration (APD) and is the primary source of triggering Ca(2+) for the initiation of Ca(2+)-induced Ca(2+)-release in cardiac myocytes. In this article we present: 1), a detailed kinetic model of Ca(V)1.2, which is incorporated into a model of the ventricular mycoyte where it interacts with a kinetic model of the ryanodine receptor in a restricted subcellular space; 2), evaluation of the contribution of voltage-dependent inactivation (VDI) and Ca(2+)-dependent inactivation (CDI) to total inactivation of Ca(V)1.2; and 3), description of dynamic Ca(V)1.2 and ryanodine receptor channel-state occupancy during the AP. Results are: 1), the Ca(V)1.2 model reproduces experimental single-channel and macroscopic-current data; 2), the model reproduces rate dependence of APD, [Na(+)](i), and the Ca(2+)-transient (CaT), and restitution of APD and CaT during premature stimuli; 3), CDI of Ca(V)1.2 is sensitive to Ca(2+) that enters the subspace through the channel and from SR release. The relative contributions of these Ca(2+) sources to total CDI during the AP vary with time after depolarization, switching from early SR dominance to late Ca(V)1.2 dominance. 4), The relative contribution of CDI to total inactivation of Ca(V)1.2 is greater at negative potentials, when VDI is weak; and 5), loss of VDI due to the Ca(V)1.2 mutation G406R (linked to the Timothy syndrome) results in APD prolongation and increased CaT.
Collapse
Affiliation(s)
- Gregory M Faber
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
14
|
Schaub MC, Hefti MA, Zaugg M. Integration of calcium with the signaling network in cardiac myocytes. J Mol Cell Cardiol 2006; 41:183-214. [PMID: 16765984 DOI: 10.1016/j.yjmcc.2006.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 03/07/2006] [Accepted: 04/04/2006] [Indexed: 12/23/2022]
Abstract
Calcium has evolved as global intracellular messenger for signal transduction in the millisecond time range by reversibly binding to calcium-sensing proteins. In the cardiomyocyte, ion pumps, ion exchangers and channels keep the cytoplasmic calcium level at rest around approximately 100 nM which is more than 10,000-fold lower than outside the cell. Intracellularly, calcium is mainly stored in the sarcoplasmic reticulum, which comprises the bulk of calcium available for the heartbeat. Regulation of cardiac function including contractility and energy production relies on a three-tiered control system, (i) immediate and fast feedback in response to mechanical load on a beat-to-beat basis (Frank-Starling relation), (ii) more sustained regulation involving transmitters and hormones as primary messengers, and (iii) long-term adaptation by changes in the gene expression profile. Calcium signaling over largely different time scales requires its integration with the protein kinase signaling network which is governed by G-protein-coupled receptors, growth factor and cytokine receptors at the surface membrane. Short-term regulation is dominated by the beta-adrenergic system, while long-term regulation with phenotypic remodeling depends on sustained signaling by growth factors, cytokines and calcium. Mechanisms and new developments in intracellular calcium handling and its interrelation with the MAPK signaling pathways are discussed in detail.
Collapse
Affiliation(s)
- Marcus C Schaub
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland.
| | | | | |
Collapse
|
15
|
Pan CY, Huang CH, Lee CH. Calcium elevation elicited by reverse mode Na+/Ca2+ exchange activity is facilitated by intracellular calcium stores in bovine chromaffin cells. Biochem Biophys Res Commun 2006; 342:589-95. [PMID: 16487925 DOI: 10.1016/j.bbrc.2006.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2006] [Accepted: 02/02/2006] [Indexed: 11/21/2022]
Abstract
The Na(+)/Ca(2+) exchanger (NCX) in plasma membranes either moves Ca(2+) out of (forward mode) or into (reverse mode) cells depending on the electrochemical gradient of these ions across the membrane. In this report, we characterize the sources responsible for the elevation in [Ca(2+)](i) elicited by reverse mode NCX activity. The elevation in [Ca(2+)](i) elicited by reverse mode NCX activity was significantly diminished by thapsigargin. KB-R7943 could only partially suppress the [Ca(2+)](i) change. Measurement of the [Ca(2+)](i) concurrent with reverse mode NCX current by perforated whole-cell patch showed that elevation in [Ca(2+)](i), but not the current, was inhibited by thapsigargin. The change in [Ca(2+)](i) response elicited by nicotinic acetylcholine receptor agonist was inhibited by thapsigargin. These suggest the importance of intracellular Ca(2+) stores in facilitating the [Ca(2+)](i) elevation elicited by reverse mode NCX activity under physiological condition.
Collapse
Affiliation(s)
- Chien-Yuan Pan
- Institute of Zoology, National Taiwan University, Taipei, Taiwan.
| | | | | |
Collapse
|
16
|
Nikolaeva MA, Mukherjee B, Stys PK. Na+-dependent sources of intra-axonal Ca2+ release in rat optic nerve during in vitro chemical ischemia. J Neurosci 2006; 25:9960-7. [PMID: 16251444 PMCID: PMC6725557 DOI: 10.1523/jneurosci.2003-05.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The contribution of intracellular stores to axonal Ca2+ overload during chemical ischemia in vitro was examined by confocal microscopy. Ca2+ accumulation was measured by fluo-4 dextran (low-affinity dye, KD approximately 4 microM) or by Oregon Green 488 BAPTA-1 dextran (highaffinity dye, KD approximately 450 nM). Axonal Na+ was measured using CoroNa Green. Ischemia in CSF containing 2 mM Ca2+ caused an approximately 3.5-fold increase in fluo-4 emission after 30 min, indicating a large axonal Ca2+ rise well into the micromolar range. Axonal Na+ accumulation was enhanced by veratridine and reduced, but not abolished, by TTX. Ischemia in Ca2+-free (plus BAPTA) perfusate resulted in a smaller but consistent Ca2+ increase monitored by Oregon Green 488 BAPTA-1, indicating release from intracellular sources. This release was eliminated in large part when Na+ influx was reduced by replacement with N-methyl-D-glucamine (NMDG+; even in depolarizing high K+ perfusate), Li+, or by the application of TTX and significantly increased by veratridine. Intracellular release also was reduced significantly by neomycin or 1-(6-[(17beta-methoxyestra-1,3,5 [10]-trien-17-yl) amino] hexyl)-1H-pyrrole-2,5-dione (U73122 [GenBank]) (phospholipase C inhibitors), heparin [inositol trisphosphate (IP3) receptor blocker], or 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP37157; mitochondrial Na+/Ca2+ exchange inhibitor) as well as ryanodine. Combining CGP37157 with U73122 [GenBank] or heparin decreased the response more than either agent alone and significantly improved electrophysiological recovery. Our conclusion is that intra-axonal Ca2+ release during ischemia in rat optic nerve is mainly dependent on Na+ influx. This Na+ accumulation stimulates three distinct intra-axonal sources of Ca2+: (1) the mitochondrial Na+/Ca2+ exchanger driven in the Na+ import/Ca2+ export mode, (2) positive modulation of ryanodine receptors, and (3) promotion of IP3 generation by phospholipase C.
Collapse
Affiliation(s)
- Maria A Nikolaeva
- Division of Neuroscience, Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario, K1Y 4K9, Canada
| | | | | |
Collapse
|
17
|
Tanaka H, Kawanishi T, Shigenobu K. [Rapid-scanning confocal microscopy on cardiomyocytes]. Nihon Yakurigaku Zasshi 2005; 126:287-94. [PMID: 16327211 DOI: 10.1254/fpj.126.287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
18
|
Sun HY, Zhou ZN, Ji YH. The role of voltage-gated Na+ channels in excitation–contraction coupling of rat heart determined by BmK I, an α-like scorpion neurotoxin. Toxicol In Vitro 2005; 19:183-90. [PMID: 15649631 DOI: 10.1016/j.tiv.2004.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2003] [Accepted: 07/07/2004] [Indexed: 11/30/2022]
Abstract
A mechanism underlying the increase in rat heart contractility modulated by BmK I, an alpha-like scorpion neurotoxin, was investigated using whole-cell patch-clamp and fluorescence digital imaging techniques. Results showed that (a) L-type Ca2+ current could not be modified by 500 nM BmK I; (b) The inactivation process of Na+ current was significantly delayed with no change of its amplitude; (c) The overall intracellular Na+ and Ca2+ concentration could be augmented in the presence of BmK I; (p<0.05); (d) The increase of free intracellular Ca2+ concentration induced by BmK I was inhibited completely by 5 mM NiCl2 (p<0.05), an inhibitor of Na+-Ca2+ exchanger; (e) The spontaneous Ca2+ release induced by 10 mM caffeine from sarcoplasmic reticulum could not be modulated by 500 nM BmK I in the absence of external Ca2+. These results indicate that cardiac voltage-gated Na+ channels are also targets of BmK I. Na+ accumulation through Na+ channels can trigger sarcoplasmic reticulum Ca2+ release in rat cardiac myocytes via reverse-mode Na+-Ca2+ exchanger. Furthermore, Ca2+ release from sarcoplasmic reticulum induced by BmK I most likely involves a Ca2+-induced release mechanism.
Collapse
Affiliation(s)
- Hai-Ying Sun
- The Key Laboratory of Neurobiology, Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, PR China
| | | | | |
Collapse
|
19
|
Haverinen J, Vornanen M. Temperature acclimation modifies Na+ current in fish cardiac myocytes. ACTA ACUST UNITED AC 2004; 207:2823-33. [PMID: 15235011 DOI: 10.1242/jeb.01103] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study was designed to test the hypothesis that temperature acclimation modifies sarcolemmal Na+ current (INa) of the fish cardiac myocytes differently depending on the animal's lifestyle in the cold. Two eurythermal fish species with different physiological strategies for surviving in the cold, a cold-dormant crucian carp (Carassius carassius L.) and a cold-active rainbow trout (Oncorhynchus mykiss), were used in acclimation experiments. The INa of carp and trout were also compared with INa of a cold stenothermal burbot (Lota lota). In accordance with the hypothesis, cold-acclimation decreased the density of INa in crucian carp and increased it in rainbow trout, suggesting depression of impulse conduction in cold-acclimated carp and positive compensation of impulse propagation in cold-acclimated trout. The steady-state activation curve of trout INa was shifted by 6 mV to more negative voltages by cold acclimation, which probably lowers the stimulus threshold for action potentials and further improves cardiac excitability in the cold. In burbot myocytes, the INa density was high and the position of the steady-state activation curve on the voltage axis was even more negative than in trout or carp myocytes, suggesting that the burbot INa is adapted to maintain high excitability and conductivity in the cold. The INa of the burbot heart differed from those of carp and trout in causing four times larger charge influx per excitation, which suggests that INa may also have a significant role in cardiac excitation-contraction coupling of the burbot heart. In summary, INa of fish cardiac myocytes shows thermal plasticity that is different in several respects in cold-dormant and cold-active species and thus has a physiologically meaningful role in supporting the variable life styles and habitat conditions of each species.
Collapse
Affiliation(s)
- Jaakko Haverinen
- University of Joensuu, Department of Biology, PO Box 111, 80101 Joensuu, Finland
| | | |
Collapse
|
20
|
Spencer CI, Sham JSK. Effects of Na+/Ca2+ exchange induced by SR Ca2+ release on action potentials and afterdepolarizations in guinea pig ventricular myocytes. Am J Physiol Heart Circ Physiol 2003; 285:H2552-62. [PMID: 12933341 DOI: 10.1152/ajpheart.00274.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In cardiac cells, evoked Ca2+ releases or spontaneous Ca2+ waves activate the inward Na+/Ca2+ exchange current (INaCa), which may modulate membrane excitability and arrhythmogenesis. In this study, we examined changes in membrane potential due to INaCa elicited by sarcoplasmic reticulum (SR) Ca2+ release in guinea pig ventricular myocytes using whole cell current clamp, fluorescence, and confocal microscopy. Inhibition of INaCa by Na+-free, Li+-containing Tyrode solution reversibly abbreviated the action potential duration at 90% repolarization (APD90) by 50% and caused SR Ca2+ overload. APD90 was similarly abbreviated in myocytes exposed to the Na+/Ca2+ exchange inhibitor KB-R7943 (5 microM) or after inhibition of SR Ca2+ release with ryanodine (20 microM). In the absence of extracellular Na+, spontaneous SR Ca2+ releases caused minimal changes in resting membrane potential. After the myocytes were returned to Na+-containing solution, the potentiated intracellular Ca2+ concentration ([Ca2+]i) transients dramatically prolonged APD90 and [Ca2+]i oscillations caused delayed and early afterdepolarizations (DADs and EADs). Laser-flash photolysis of caged Ca2+ mimicked the effects of spontaneous [Ca2+]i oscillations, confirming that APD prolongation, DADs, and EADs could be ascribed to intracellular Ca2+ release. These results suggest that Na+/Ca2+ exchange is a major physiological determinant of APD and that INaCa activation by spontaneous SR Ca2+ release/oscillations, depending on the timing, can account for both DADs and EADs during SR Ca2+ overload.
Collapse
Affiliation(s)
- C Ian Spencer
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA
| | | |
Collapse
|
21
|
Cropper JRD, Erac I, Loiselle DS. Restoration of osmotically inhibited twitch force in rat cardiac trabeculae: role of Na+-H+ exchange. Clin Exp Pharmacol Physiol 2003; 30:178-84. [PMID: 12603348 DOI: 10.1046/j.1440-1681.2003.03805.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. When rat cardiac muscle is subjected to an increase of osmolality, its peak twitch force is immediately inhibited. Subsequently, over a period of several minutes, twitch force undergoes restoration, the extent of which is determined by the osmolality. The aim of the present study was to determine the factors that contribute to this restorative phenomenon. 2. Trabeculae were isolated from the right ventricles of rat hearts and mounted in an organ bath at 37 degrees C. The osmolality of the bathing solution was increased by 100 mOsmol (to 400 mOsmol) by the addition of various proportions of NaCl and sucrose while recording twitch force production. The role of Na+-H+ exchange in restoring twitch force was examined by use of the specific inhibitor cariporide (HOE 642). The role of Na+-Ca2+ exchange was examined by reducing [Ca2+]o (from 2 mmol/L to 0.5 mmol/L) or by substituting LiCl for NaCl. 3. Cariporide (25 micro mol/L) completely abolished twitch force restoration, thereby implicating a central role for the Na+-H+ exchanger. At constant [Na+]o, the extent of restoration was [Ca2+]o dependent, suggesting an independent contribution by the Na+-Ca2+ exchanger. This suggestion was supported by the finding that Li+, which substitutes for Na+ on the Na+-H+ exchanger, but not on the Na+-Ca2+ exchanger, also reduced the extent of restoration of hyperosmotically inhibited twitch force. 4. We conclude that the immediate inhibition of peak twitch force of rat cardiac muscle by hyperosmotic solutions reflects, in part, elevation of [H+]i, subsequent to reduction of cell volume. Hyperosmotic activation of Na+-H+ exchange then progressively relieves the inhibitory effect of protons on force development. The accompanying increase in [Na+]i in turn enhances Ca2+ influx on the Na+-Ca2+ exchanger, with the result that twitch force undergoes further restoration.
Collapse
Affiliation(s)
- J R D Cropper
- Department of Physiology, Faculty of Medical and Health Sciences and Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
22
|
Sah R, Ramirez RJ, Oudit GY, Gidrewicz D, Trivieri MG, Zobel C, Backx PH. Regulation of cardiac excitation-contraction coupling by action potential repolarization: role of the transient outward potassium current (I(to)). J Physiol 2003; 546:5-18. [PMID: 12509475 PMCID: PMC2342473 DOI: 10.1113/jphysiol.2002.026468] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The cardiac action potential (AP) is critical for initiating and coordinating myocyte contraction. In particular, the early repolarization period of the AP (phase 1) strongly influences the time course and magnitude of the whole-cell intracellular Ca(2+) transient by modulating trans-sarcolemmal Ca(2+) influx through L-type Ca(2+) channels (I(Ca,L)) and Na-Ca exchangers (I(Ca,NCX)). The transient outward potassium current (I(to)) has kinetic properties that make it especially effective in modulating the trajectory of phase 1 repolarization and thereby cardiac excitation-contraction coupling (ECC). The magnitude of I(to) varies greatly during cardiac development, between different regions of the heart, and is invariably reduced as a result of heart disease, leading to corresponding variations in ECC. In this article, we review evidence supporting a modulatory role of I(to) in ECC through its influence on I(Ca,L), and possibly I(Ca,NCX). We also discuss differential effects of I(to) on ECC between different species, between different regions of the heart and in heart disease.
Collapse
Affiliation(s)
- Rajan Sah
- Department of Physiology, University of Toronto, Heart & Stroke/Richard Lewar Centre, Room 68, Fitzgerald Building, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Scriven DRL, Klimek A, Lee KL, Moore EDW. The molecular architecture of calcium microdomains in rat cardiomyocytes. Ann N Y Acad Sci 2002; 976:488-99. [PMID: 12502603 DOI: 10.1111/j.1749-6632.2002.tb04783.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have used standard indirect immunofluorescence techniques in combination with wide-field microscopy and image deconvolution to assess the distribution of proteins implicated in excitation-contraction coupling and Ca(2+) homeostasis in adult rat cardiomyocytes. We begin by discussing our earlier results and summarizing what is known about the molecular architecture of this species to provide a rationale for the work presented here. The previous results showed that the dyads contain Ca(2+) channels and ryanodine receptors, but few Na(+) channels or Na(+)/Ca(2+) exchangers. The latter proteins were not colocalized elsewhere on the membrane, and we have now found that they appear to be minimally associated with caveolin-3. None of the molecules examined are distributed uniformly in the membranes in which they are located but are organized into discrete clusters attached to the underlying cytoskeleton, an arrangement that, at the level of light microscopy, does not appear to be affected by the enzymatic dissociation used to study single cells. Analysis of how the clusters are organized and distributed throughout the volume of the cell suggests that there may be differences in excitation-contraction coupling between the cell surface and the interior.
Collapse
Affiliation(s)
- David R L Scriven
- Department of Physiology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3 Canada
| | | | | | | |
Collapse
|