1
|
Maleš P, Brkljača Z, Domazet Jurašin D, Bakarić D. New spirit of an old technique: Characterization of lipid phase transitions via UV/Vis spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121013. [PMID: 35176647 DOI: 10.1016/j.saa.2022.121013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
One of the advantages of investigating lipid phase transitions by thermoanalytical techniques such as DSC is manifested in the proportionality of the signal strength on a DSC curve, attributed to a particular thermotropic event, and its cooperativity degree. Accordingly, the pretransition of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) is less noticeable than its main phase transition; as a matter of fact, when DSC measurements are performed at low heating rate, such low-cooperativity phase transition could go (almost) unnoticed. The aim of this work is to present temperature-dependent UV/Vis spectroscopy, based on a temperature-dependent change in DPPC suspension turbidity, as a technique applicable for determination of lipid phase transition temperatures. Multivariate analyzes of the acquired UV/Vis spectra show that phase transitions of the low-cooperativity degree, such as pretransitions, can be identified with the same certainty as transitions of a high-cooperativity degree.
Collapse
Affiliation(s)
- Petra Maleš
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Zlatko Brkljača
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Darija Domazet Jurašin
- Division for Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia.
| |
Collapse
|
2
|
Bibissidis N, Betlem K, Cordoyiannis G, Bonhorst FPV, Goole J, Raval J, Daniel M, Góźdź W, Iglič A, Losada-Pérez P. Correlation between adhesion strength and phase behaviour in solid-supported lipid membranes. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Mamusa M, Salvatore A, Berti D. Structural Modifications of DPPC Bilayers upon Inclusion of an Antibacterial Cationic Bolaamphiphile. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8952-8961. [PMID: 29976066 DOI: 10.1021/acs.langmuir.8b01689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The emergence of antibiotic-resistant bacterial strains has fostered fundamental research to develop alternative antimicrobial strategies. Among the several systems proposed so far, the association complexes (nanoplexes) formed by transcription factor decoys (TFDs), i.e., short oligonucleotides targeting a crucial bacterial transcription factor, and a bolaform cationic amphiphile, 10,10'-(dodecane-1,12-diyl)-bis-(9-amino-1,2,3,4-tetrahydroacridinium) chloride (12-bis-THA), have demonstrated their potential in vitro and in vivo. The application of these nanoplexes is hampered by a scarce colloidal stability, which can be addressed by including the bolaamphiphile in a liposomal carrier, which is then associated to the TFD. The present study reports an investigation on the effects of 12-bis-THA on the structure of synthetic lipid bilayers to assess the morphology of the mixed assemblies, gain insight into the location of the host within the bilayer, and determine the loading capacity of the carrier. Our results demonstrate that 12-bis-THA promptly inserts within 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) bilayers, bending its C-12 spacer chain to adopt a conelike shape and shifting the gel-liquid crystalline transition of the chains to lower temperatures. The host liposomal structure is retained for a bolaamphiphile concentration of up to 3.2% mol to DPPC, whereas higher concentrations lead to the destabilization by means of a detergency-like mechanism, with the simultaneous existence of different lamellar-based structures, such as liposomes, bicelles, and rafts, in which DPPC and 12-bis-THA could be present in different molar ratios. Overall, these results shed light on the interaction of the bolaamphiphile with a lipid bilayer and provide valuable insight to better formulate the antimicrobial amphiphile in liposomal carriers to circumvent the colloidal instability of nanoplexes.
Collapse
Affiliation(s)
- M Mamusa
- CSGI and Department of Chemistry "Ugo Schiff" , University of Florence , Sesto Fiorentino (FI) 50019 , Italy
| | - A Salvatore
- CSGI and Department of Chemistry "Ugo Schiff" , University of Florence , Sesto Fiorentino (FI) 50019 , Italy
| | - D Berti
- CSGI and Department of Chemistry "Ugo Schiff" , University of Florence , Sesto Fiorentino (FI) 50019 , Italy
| |
Collapse
|
4
|
Takahashi H, Miyagi A, Redondo-Morata L, Scheuring S. Temperature-Controlled High-Speed AFM: Real-Time Observation of Ripple Phase Transitions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:6106-6113. [PMID: 27647753 DOI: 10.1002/smll.201601549] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/27/2016] [Indexed: 05/24/2023]
Abstract
With nanometer lateral and Angstrom vertical resolution, atomic force microscopy (AFM) has contributed unique data improving the understanding of lipid bilayers. Lipid bilayers are found in several different temperature-dependent states, termed phases; the main phases are solid and fluid phases. The transition temperature between solid and fluid phases is lipid composition specific. Under certain conditions some lipid bilayers adopt a so-called ripple phase, a structure where solid and fluid phase domains alternate with constant periodicity. Because of its narrow regime of existence and heterogeneity ripple phase and its transition dynamics remain poorly understood. Here, a temperature control device to high-speed atomic force microscopy (HS-AFM) to observe dynamics of phase transition from ripple phase to fluid phase reversibly in real time is developed and integrated. Based on HS-AFM imaging, the phase transition processes from ripple phase to fluid phase and from ripple phase to metastable ripple phase to fluid phase could be reversibly, phenomenologically, and quantitatively studied. The results here show phase transition hysteresis in fast cooling and heating processes, while both melting and condensation occur at 24.15 °C in quasi-steady state situation. A second metastable ripple phase with larger periodicity is formed at the ripple phase to fluid phase transition when the buffer contains Ca2+ . The presented temperature-controlled HS-AFM is a new unique experimental system to observe dynamics of temperature-sensitive processes at the nanoscopic level.
Collapse
Affiliation(s)
- Hirohide Takahashi
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, 163 avenue de Luminy, 13009, Marseille, France
| | - Atsushi Miyagi
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, 163 avenue de Luminy, 13009, Marseille, France
| | - Lorena Redondo-Morata
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, 163 avenue de Luminy, 13009, Marseille, France
| | - Simon Scheuring
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, 163 avenue de Luminy, 13009, Marseille, France
| |
Collapse
|
5
|
Membrane re-arrangements and rippled phase stabilisation by the cell penetrating peptide penetratin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2584-2591. [DOI: 10.1016/j.bbamem.2016.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/17/2016] [Accepted: 07/25/2016] [Indexed: 11/21/2022]
|
6
|
Dmitriev AA, Surovtsev NV. Temperature-Dependent Hydrocarbon Chain Disorder in Phosphatidylcholine Bilayers Studied by Raman Spectroscopy. J Phys Chem B 2015; 119:15613-22. [DOI: 10.1021/acs.jpcb.5b07502] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. A. Dmitriev
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | | |
Collapse
|
7
|
Jacoby G, Cohen K, Barkan K, Talmon Y, Peer D, Beck R. Metastability in lipid based particles exhibits temporally deterministic and controllable behavior. Sci Rep 2015; 5:9481. [PMID: 25820650 PMCID: PMC4377625 DOI: 10.1038/srep09481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/27/2015] [Indexed: 01/06/2023] Open
Abstract
The metastable-to-stable phase-transition is commonly observed in many fields of science, as an uncontrolled independent process, highly sensitive to microscopic fluctuations. In particular, self-assembled lipid suspensions exhibit phase-transitions, where the underlying driving mechanisms and dynamics are not well understood. Here we describe a study of the phase-transition dynamics of lipid-based particles, consisting of mixtures of dilauroylphosphatidylethanolamine (DLPE) and dilauroylphosphatidylglycerol (DLPG), exhibiting a metastable liquid crystalline-to-stable crystalline phase transition upon cooling from 60°C to 37°C. Surprisingly, unlike classically described metastable-to-stable phase transitions, the manner in which recrystallization is delayed by tens of hours is robust, predetermined and controllable. Our results show that the delay time can be manipulated by changing lipid stoichiometry, changing solvent salinity, adding an ionophore, or performing consecutive phase-transitions. Moreover, the delay time distribution indicates a deterministic nature. We suggest that the non-stochastic physical mechanism responsible for the delayed recrystallization involves several rate-affecting processes, resulting in a controllable, non-independent metastability. A qualitative model is proposed to describe the structural reorganization during the phase transition.
Collapse
Affiliation(s)
- Guy Jacoby
- The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Keren Cohen
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Department of Materials Sciences and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Kobi Barkan
- The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Dan Peer
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Department of Materials Sciences and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roy Beck
- The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
8
|
Three dimensional (temperature–tension–composition) phase map of mixed DOPC–DPPC vesicles: Two solid phases and a fluid phase coexist on three intersecting planes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2788-97. [DOI: 10.1016/j.bbamem.2014.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/23/2014] [Accepted: 07/16/2014] [Indexed: 02/02/2023]
|
9
|
Berényi S, Mihály J, Wacha A, Tőke O, Bóta A. A mechanistic view of lipid membrane disrupting effect of PAMAM dendrimers. Colloids Surf B Biointerfaces 2014; 118:164-71. [DOI: 10.1016/j.colsurfb.2014.03.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 11/26/2022]
|
10
|
Hermans E, Vermant J. Interfacial shear rheology of DPPC under physiologically relevant conditions. SOFT MATTER 2014; 10:175-186. [PMID: 24651838 DOI: 10.1039/c3sm52091a] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Lipids, and phosphatidylcholines in particular, are major components in cell membranes and in human lung surfactant. Their ability to encapsulate or form stable layers suggests a significant role of the interfacial rheological properties. In the present work we focus on the surface rheological properties of dipalmitoylphosphatidylcholine (DPPC). Literature results are confusing and even contradictory; viscosity values have been reported differ by several orders of magnitude. Moreover, even both purely viscous and gel-like behaviours have been described. Assessing the literature critically, a limited experimental window has been explored correctly, which however does not yet include conditions relevant for the physiological state of DPPC in vivo. A complete temperature and surface pressure analysis of the interfacial shear rheology of DPPC is performed, showing that the monolayer behaves as a viscoelastic liquid with a domain structure. At low frequencies and for a thermally structured monolayer, the interaction of the molecules within the domains can be probed. The low frequency limit of the complex viscosity is measured over a wide range of temperatures and surface pressures. The effects of temperature and surface pressure on the low frequency viscosity can be analysed in terms of the effects of free molecular area. However, at higher frequencies or following a preshear at high shear rates, elasticity becomes important; most probably elasticity due to defects at the edge of the domains in the layer is probed. Preshearing refines the structure and induces more defects. As a result, disagreeing interfacial rheology results in various publications might be due to different pre-treatments of the interface. The obtained dataset and scaling laws enable us to describe the surface viscosity, and its dependence under physiological conditions of DPPC. The implications on functioning of lung surfactants and lung surfactant replacements will be discussed.
Collapse
Affiliation(s)
- Eline Hermans
- Department of Chemical Engineering, KU Leuven, University of Leuven, Willem de Croylaan 46, Heverlee, Belgium.
| | | |
Collapse
|
11
|
Dehsorkhi A, Castelletto V, Hamley IW, Seitsonen J, Ruokolainen J. Interaction between a cationic surfactant-like peptide and lipid vesicles and its relationship to antimicrobial activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14246-53. [PMID: 24156610 PMCID: PMC3836358 DOI: 10.1021/la403447u] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/22/2013] [Indexed: 05/21/2023]
Abstract
We investigate the properties of an antimicrobial surfactant-like peptide (Ala)6(Arg), A6R, containing a cationic headgroup. The interaction of this peptide with zwitterionic (DPPC) lipid vesicles is investigated using a range of microscopic, X-ray scattering, spectroscopic, and calorimetric methods. The β-sheet structure adopted by A6R is disrupted in the presence of DPPC. A strong effect on the small-angle X-ray scattering profile is observed: the Bragg peaks from the DPPC bilayers in the vesicle walls are eliminated in the presence of A6R and only bilayer form factor peaks are observed. All of these observations point to the interaction of A6R with DPPC bilayers. These studies provide insight into interactions between a model cationic peptide and vesicles, relevant to understanding the action of antimicrobial peptides on lipid membranes. Notably, peptide A6R exhibits antimicrobial activity without membrane lysis.
Collapse
Affiliation(s)
- Ashkan Dehsorkhi
- School of Chemistry, Pharmacy and Food Biosciences, University of Reading , Whiteknights, Reading, RG6 6AD, United Kingdom
| | | | | | | | | |
Collapse
|
12
|
Berényi S, Mihály J, Kristyán S, Naszályi Nagy L, Telegdi J, Bóta A. Thermotropic and structural effects of poly(malic acid) on fully hydrated multilamellar DPPC–water systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:661-9. [DOI: 10.1016/j.bbamem.2012.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 11/30/2022]
|
13
|
Goto M, Wilk A, Kataoka K, Chodankar S, Tamai N, Fukui M, Kohlbrecher J, Ito HO, Matsuki H. Study on the subgel-phase formation using an asymmetric phospholipid bilayer membrane by high-pressure fluorometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:12191-12198. [PMID: 22823885 DOI: 10.1021/la3020173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The myristoylpalmitoylphosphatidylcholine (MPPC) bilayer membrane shows a complicated temperature-pressure phase diagram. The large portion of the lamellar gel (L(β)'), ripple gel (P(β)'), and pressure-induced gel (L(β)I) phases exist as metastable phases due to the extremely stable subgel (L(c)) phase. The stable L(c) phase enables us to examine the properties of the L(c) phase. The phases of the MPPC bilayers under atmospheric and high pressures were studied by small-angle neutron scattering (SANS) and fluorescence spectroscopy using a polarity-sensitive fluorescent probe Prodan. The SANS measurements clearly demonstrated the existence of the metastable L(β)I phase with the smallest lamellar repeat distance. From a second-derivative analysis of the fluorescence data, the line shape for the L(c) phase under high pressure was characterized by a broad peak with a minimum of ca. 460 nm. The line shapes and the minimum intensity wavelength (λ″(min)) values changed with pressure, indicating that the L(c) phase has highly pressure-sensible structure. The λ″(min) values of the L(c) phase spectra were split into ca. 430 and 500 nm in the L(β)I phase region, which corresponds to the formation of a interdigitated subgel L(c) (L(c)I) phase. Moreover, the phase transitions related to the L(c) phase were reversible transitions under high pressure. Taking into account the fluorescence behavior of Prodan for the L(c) phase, we concluded that the structure of the L(c) phase is highly probably a staggered structure, which can transform into the L(c)I phase easily.
Collapse
Affiliation(s)
- Masaki Goto
- Department of Life System, Institute of Technology and Science, The University of Tokushima, Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wiącek AE. Influence of dipalmitoylphosphatidylcholine (or dioleoylphosphatidylcholine) and phospholipase A2 enzyme on the properties of emulsions. J Colloid Interface Sci 2012; 373:75-83. [DOI: 10.1016/j.jcis.2011.09.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
|
15
|
Correlation between the ripple phase and stripe domains in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2849-58. [DOI: 10.1016/j.bbamem.2011.08.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/12/2011] [Accepted: 08/16/2011] [Indexed: 12/19/2022]
|
16
|
Wu FG, Jia Q, Wu RG, Yu ZW. Regional cooperativity in the phase transitions of dipalmitoylphosphatidylcholine bilayers: the lipid tail triggers the isothermal crystallization process. J Phys Chem B 2011; 115:8559-68. [PMID: 21634795 DOI: 10.1021/jp200733y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have a long-standing interest to explore the answer of the question: Which part of the amphiphilic molecule triggers the phase transition of the self-assembled aggregates consisting of these amphiphiles? This is an important issue regarding the phase transition kinetics of amphiphiles. To this end, we studied the phase transition behaviors of dipalmitoylphosphatidylcholine (DPPC) by differential scanning calorimetry, synchrotron X-ray scattering, Fourier transform infrared spectroscopy, and image analysis. We found that different parts (head, interface, and tail) of DPPC molecules all exhibit nonsynchronous changes during the sub-, pre-, and main transitions. Particular efforts have been devoted to studying the isothermal subgel (L(c')) formation process. It was found that only the lipid interface and tail regions change, and only when the rearrangement of the lipid hydrocarbon chain packing reaches a certain extent can the interfacial C═O groups be induced to undergo vibrational environment changes. The result means that the hydrocarbon tail is the part that triggers the gel (L(β')) to L(c') phase transition. The present work deepens our understanding on the phase transition mechanisms of DPPC and may shed light on those of other phospholipids and other types of amphiphiles.
Collapse
Affiliation(s)
- Fu-Gen Wu
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, P R China
| | | | | | | |
Collapse
|
17
|
Gallová J, Uhríková D, Kučerka N, Doktorovová S, Funari SS, Teixeira J, Balgavý P. The effects of cholesterol and β-sitosterol on the structure of saturated diacylphosphatidylcholine bilayers. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 40:153-63. [DOI: 10.1007/s00249-010-0635-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 11/24/2022]
|
18
|
Kinoshita M, Ito K, Kato S. Kinetics for the subgel phase formation in DPPC/DOPC mixed bilayers. Chem Phys Lipids 2010; 163:712-9. [DOI: 10.1016/j.chemphyslip.2010.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/11/2010] [Accepted: 06/18/2010] [Indexed: 10/19/2022]
|
19
|
Yao H, Hatta I, Koynova R, Tenchov B. Time-resolved x-ray diffraction and calorimetric studies at low scan rates: II. On the fine structure of the phase transitions in hydrated dipalmitoylphosphatidylethanolamine. Biophys J 2010; 61:683-93. [PMID: 19431820 DOI: 10.1016/s0006-3495(92)81873-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The phase transitions of dipalmitoylphosphatidylethanolamine (DPPE) in excess water have been examined by low-angle time-resolved x-ray diffraction and calorimetry at low scan rates. The lamellar subgel/lamellar liquid-crystalline (L(c) --> L(alpha)), lamellar gel/lamellar liquid-crystalline (L(beta) --> L(alpha)), and lamellar liquid-crystalline/lamellar gel (L(alpha) --> L(beta)) phase transitions proceed via coexistence of the initial and final phases with no detectable intermediates at scan rates 0.1 and 0.5 degrees C/min. At constant temperature within the region of the L(beta) --> L(alpha) transition the ratio of the two coexisting phases was found to be stable for over 30 min. The state of stable phase coexistence was preceded by a 150-s relaxation taking place at constant temperature after termination of the heating scan in the transition region. While no intermediate structures were present in the coexistence region, a well reproducible multipeak pattern, with at least four prominent heat capacity peaks separated in temperature by 0.4-0.5 degrees C, has been observed in the cooling transition (L(alpha) --> L(beta)) by calorimetry. The multipeak pattern became distinct with an increase of incubation time in the liquid-crystalline phase. It was also clearly resolved in the x-ray diffraction intensity versus temperature plots recorded at slow cooling rates. These data suggest that the equilibrium state of the L(alpha) phase of hydrated DPPE is represented by a mixture of domains that differ in thermal behavior, but cannot be distinguished structurally by x-ray scattering.
Collapse
Affiliation(s)
- H Yao
- Department of Applied Physics, School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan
| | | | | | | |
Collapse
|
20
|
Yao H, Matuoka S, Tenchov B, Hatta I. Metastable ripple phase of fully hydrated dipalmitoylphosphatidylcholine as studied by small angle x-ray scattering. Biophys J 2010; 59:252-5. [PMID: 19431787 DOI: 10.1016/s0006-3495(91)82216-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Fully hydrated dipalmitoylphosphatidylcholine (DPPC) undergoes liquid crystalline to metastable P(beta), phase transition in cooling. A small angle x-ray scattering study has been performed for obtaining further evidence about the structure of this phase. From a high-resolution observation of x-ray diffraction profiles, a distinct multipeak pattern has become obvious. Among them the (01) reflection in the secondary ripple structure is identified clearly. There are peaks assigned straightforwardly to (10) and (20) reflections in the primary ripple structure and peaks assigned to (10) and (20) reflections in the secondary ripple structure. Therefore the multipeak pattern is due to superposition of the reflections cause by the primary and secondary ripple structures. The lattice parameters are estimated as follows: for the primary ripple structure a = 7.09 nm, b = 13.64 nm, and gamma = 95 degrees , and for the secondary ripple structure a = 8.2 nm, b = 26.6 nm, and gamma = 90 degrees . The lattice parameters thus obtained for the secondary ripple structure are not conclusive, however. The hydrocarbon chains in the primary ripple structure have been reported as being tilted against the bilayer plane and, on the other hand, the hydrocarbon chains in the secondary ripple structure are likely to be perpendicular to the bilayer plane. This fact seems to be related to a sequential mechanism of phase transitions. On heating from the L(beta), phase where the hydrocarbon chains are tilted the primary ripple structure having tilted hydrocarbon chains takes place and on cooling from the L(alpha) phase where the hydrocarbon chains are not tilted the secondary ripple structure with untilted chains tends to be stabilized. It appears that the truly metastable ripple phase is expressed by the second ripple structure although in the course of the actual cooling transition both the secondary and primary ripple structures form and coexist.
Collapse
Affiliation(s)
- H Yao
- Department of Applied Physics, Nagoya University, Nagoya 464-01, Japan
| | | | | | | |
Collapse
|
21
|
Páli T, Bartucci R, Horváth LI, Marsh D. Kinetics and dynamics of annealing during sub-gel phase formation in phospholipid bilayers: A saturation transfer electron spin resonance study. Biophys J 2010; 64:1781-8. [PMID: 19431899 DOI: 10.1016/s0006-3495(93)81549-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The saturation transfer electron spin resonance (STESR) spectra of spin-labeled phosphatidylcholine have been used to follow the kinetics of conversion from the gel phase to the sub-gel phase in aqueous bilayers of dipalmitoyl phosphatidylcholine. This is a simple, well-defined model system for lipid domain formation in membranes. The integrated intensity of the STESR spectrum from the chain-labeled lipid first increases and then decreases with time of incubation in the gel phase at 0 degrees C. The first, more rapid phase of the kinetics is attributed to the conversion of germ nuclei to growth nuclei of the sub-gel phase. The increase in STESR intensity corresponds to the reduction in chain mobility of spin labels located in the gel phase at the boundaries of the growth nuclei and correlates with the increase in the diagnostic STESR line height ratios over this time range. The second, slower phase of the kinetics is attributed to growth of the domains of the sub-gel phase. The decrease in STESR intensity over this time regime corresponds to exclusion of the spin-labeled lipids from the tightly packed sub-gel phase and correlates quantitatively with calibrations of the spin label concentration dependence of the STESR intensity in the gel phase. The kinetics of formation of the sub-gel phase are consistent with the classical model for domain formation and growth. At 0 degrees C, the half-time for conversion of germ nuclei to growth nuclei is approximately 7.7 h and domain growth of the sub-gel phase is characterized by a rate constant of 0.025 h(-1). The temperature dependence of the STESR spectra from samples annealed at 0 degrees C suggests that the subtransition takes place via dissolution of sub-gel phase domains, possibly accompanied by domain fission.
Collapse
Affiliation(s)
- T Páli
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Spektroskopie, WD-3400 Göttingen, Germany
| | | | | | | |
Collapse
|
22
|
Rappolt M, Rapp G. Simultaneous small- and wide-angle X-ray diffraction during the main transition of dimyristoylphosphatidylethanolamine. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bbpc.19961000710] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Abstract
Highly aligned, substrate supported membranes have made it possible for physical techniques to extract unambiguous structural information previously not accessible from commonly available membrane dispersions, or so-called powder samples. This review will highlight some of the major breakthroughs in model membrane research that have taken place as a result of substrate supported samples.
Collapse
|
24
|
Inhomogeneities in sodium decylsulfate doped 1,2-dipalmitoylphosphatidylcholine bilayer. J Colloid Interface Sci 2010; 343:401-7. [DOI: 10.1016/j.jcis.2009.11.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 11/17/2022]
|
25
|
Chain asymmetry alters thermotropic and barotropic properties of phospholipid bilayer membranes. Chem Phys Lipids 2009; 161:65-76. [DOI: 10.1016/j.chemphyslip.2009.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 06/26/2009] [Accepted: 07/06/2009] [Indexed: 11/21/2022]
|
26
|
Schmid F. Toy amphiphiles on the computer: What can we learn from generic models? Macromol Rapid Commun 2009; 30:741-51. [DOI: 10.1002/marc.200800750] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 01/20/2009] [Indexed: 11/08/2022]
|
27
|
Shearman GC, Ugazio S, Soubiran L, Hubbard J, Ces O, Seddon JM, Templer RH. The lyotropic phase behaviour of ester quaternary surfactants. J Colloid Interface Sci 2009; 331:463-9. [DOI: 10.1016/j.jcis.2008.11.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 11/20/2008] [Accepted: 11/22/2008] [Indexed: 10/21/2022]
|
28
|
Structural and calorimetrical studies of the effect of different aminoglycosides on DPPC liposomes. Colloids Surf B Biointerfaces 2009; 69:116-21. [DOI: 10.1016/j.colsurfb.2008.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 11/22/2022]
|
29
|
Wiacek AE, Holysz L, Chibowski E. Effect of temperature on n-tetradecane emulsion in the presence of phospholipid DPPC and enzyme lipase or phospholipase A2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:7413-7420. [PMID: 18564865 DOI: 10.1021/la800794x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Zeta potentials and effective diameters of n-tetradecane emulsions in 1 M ethanol were investigated in the presence of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) (1 mg/100 mL), Candida cylindracea lipase (CCL), and phospholipase PLA2 (1 mg/100 mL) at 20, 37, and 45 degrees C. The enzyme was added at the beginning of mechanical emulsion homogenization or 1 min before the end of stirring for 10 min at 10,000 rpm. It was found that DPPC decreases the negative zeta potentials at all three temperatures. The decrease was largest at 20 degrees C and smallest at 45 degrees C. The influence of the enzymes on the zeta potentials depended on the enzyme kind, time of its injection, and temperature. More negative values of the zeta potentials relative to n-C14H30/DPPC droplets were obtained if the lipase was present. Generally, the effective diameters correlate with the zeta potentials, i.e., lower zeta potential corresponds with bigger effective diameter. Possible reasons for the observed changes of the measured parameters are discussed.
Collapse
Affiliation(s)
- Agnieszka Ewa Wiacek
- Department of Physical Chemistry, Interfacial Phenomena, Faculty of Chemistry, Maria Curie Sklodowska University, 20-031 Lublin, Poland
| | | | | |
Collapse
|
30
|
Wachtel E, Bach D, Miller IR, Borochov N. Interaction of dipalmitoyl phosphatidylserine with ethanol: induction of an ordered gel phase at room temperature. Chem Phys Lipids 2007; 147:14-21. [PMID: 17412317 DOI: 10.1016/j.chemphyslip.2007.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/25/2007] [Accepted: 03/01/2007] [Indexed: 11/24/2022]
Abstract
Using differential scanning calorimetry and small and wide-angle X-ray diffraction, we show that, unlike the saturated phosphatidylcholines, for which ethanol induces chain interdigitation in the gel state, and unlike natural phosphatidylserine in which the gel state is almost unaffected by the addition of ethanol, dipalmitoyl phosphatidylserine (DPPS) assumes an ordered structure after incubation at room temperature in the presence of as little as 5% (v/v) ethanol. In the liquid crystalline state, a progressive decrease in the interbilayer spacing is observed as a function of ethanol concentration, similar to what is found for natural phosphatidylserine (PS) and 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS). The 0.37 molar fraction of cholesterol in the DPPS dispersion in the presence of 10% (v/v) ethanol, does not prevent the formation of the ordered gel.
Collapse
Affiliation(s)
- E Wachtel
- Chemical Research Infrastructure Unit, Faculty of Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | | | | | |
Collapse
|
31
|
Lenz O, Schmid F. Structure of symmetric and asymmetric "ripple" phases in lipid bilayers. PHYSICAL REVIEW LETTERS 2007; 98:058104. [PMID: 17358906 DOI: 10.1103/physrevlett.98.058104] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Indexed: 05/14/2023]
Abstract
We reproduce the symmetric and asymmetric "rippled" P(beta') states of lipid membranes by Monte Carlo simulations of a coarse-grained molecular model for lipid-solvent mixtures. The structure and properties compare favorably with experiments. The asymmetric ripple state is characterized by a periodic array of fully interdigitated "defect" lines. The symmetric ripple state maintains a bilayer structure, but is otherwise structurally similar. The main force driving the formation of both ripple states is the propensity of lipid molecules with large head groups to exhibit splay.
Collapse
Affiliation(s)
- Olaf Lenz
- Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany
| | | |
Collapse
|
32
|
Dahbi L, Arbel-Haddad M, Lesieur P, Bourgaux C, Ollivon M. A long ripple phase in DLPC–decylglucoside mixture evidenced by synchrotron SAXS coupled to DSC. Chem Phys Lipids 2006; 139:43-53. [PMID: 16303121 DOI: 10.1016/j.chemphyslip.2005.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 09/16/2005] [Accepted: 10/04/2005] [Indexed: 11/23/2022]
Abstract
For the first time, the secondary ripple phase in a system containing dilauroyl phosphatidylcholine (DLPC) is observed by small-angle X-ray diffraction (SAXS). The SAXS profile exhibits many well-resolved peaks. The fast formation of this phase upon cooling from the liquid crystalline lamellar phase L(alpha) is induced by addition of C10G with molar ratio 0.17< or = R = [C10G]/[DLPC]< or = 0.49. For R < 0.17, the primary P(beta') ripple phase is observed. In contrast to the P(beta') phase, which shows a sawtooth shape, the secondary ripple structure is thought to be symmetric. The ripple length (190 angstroms) and the bilayer spacing (74 angstroms) are larger than in the primary ripple phase. Lattice parameters of the new long ripple phase, which are quite insensitive to temperature, vary slightly linearly with R. In this study, structural and thermodynamic changes within the samples were followed as a function of temperature by time-resolved X-ray diffraction coupled to DSC.
Collapse
Affiliation(s)
- Louisa Dahbi
- LURE, Université Paris-Sud, Bâtiment 209D, 91405 Orsay Cedex, France
| | | | | | | | | |
Collapse
|
33
|
Pedersen TB, Kaasgaard T, Jensen MØ, Frokjaer S, Mouritsen OG, Jørgensen K. Phase behavior and nanoscale structure of phospholipid membranes incorporated with acylated C14-peptides. Biophys J 2005; 89:2494-503. [PMID: 16100273 PMCID: PMC1366748 DOI: 10.1529/biophysj.105.060756] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Accepted: 07/05/2005] [Indexed: 11/18/2022] Open
Abstract
The thermotropic phase behavior and lateral structure of dipalmitoylphosphatidylcholine (DPPC) lipid bilayers containing an acylated peptide has been characterized by differential scanning calorimetry (DSC) on vesicles and atomic force microscopy (AFM) on mica-supported bilayers. The acylated peptide, which is a synthetic decapeptide N-terminally linked to a C14 acyl chain (C14-peptide), is incorporated into DPPC bilayers in amounts ranging from 0-20 mol %. The calorimetric scans of the two-component system demonstrate a distinct influence of the C14-peptide on the lipid bilayer thermodynamics. This is manifested as a concentration-dependent downshift of both the main phase transition and the pretransition. In addition, the main phase transition peak is significantly broadened, indicating phase coexistence. In the AFM imaging scans we found that the C14-peptide, when added to supported gel phase DPPC bilayers, inserts preferentially into preexisting defect regions and has a noticeable influence on the organization of the surrounding lipids. The presence of the C14-peptide gives rise to a laterally heterogeneous bilayer structure with coexisting lipid domains characterized by a 10 A height difference. The AFM images also show that the appearance of the ripple phase of the DPPC lipid bilayers is unaffected by the C14-peptide. The experimental results are supported by molecular dynamics simulations, which show that the C14-peptide has a disordering effect on the lipid acyl chains and causes a lateral expansion of the lipid bilayer. These effects are most pronounced for gel-like bilayer structures and support the observed downshift in the phase-transition temperature. Moreover, the molecular dynamics data indicate a tendency of a tryptophan residue in the peptide sequence to position itself in the bilayer headgroup region.
Collapse
Affiliation(s)
- Tina B Pedersen
- Department of Pharmaceutics, The Danish University of Pharmaceutical Sciences, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | | | |
Collapse
|
34
|
Metso AJ, Zhao H, Tuunainen I, Kinnunen PKJ. Observation of the main phase transition of dinervonoylphosphocholine giant liposomes by fluorescence microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1713:83-91. [PMID: 15979562 DOI: 10.1016/j.bbamem.2005.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 04/22/2005] [Accepted: 04/22/2005] [Indexed: 11/20/2022]
Abstract
The phase heterogeneity of giant unilamellar dinervonoylphosphocholine (DNPC) vesicles in the course of the main phase transition was investigated by confocal fluorescence microscopy observing the fluorescence from the membrane incorporated lipid analog, 1-palmitoyl-2-(N-4-nitrobenz-2-oxa-1,3-diazol)aminocaproyl-sn-glycero-3-phosphocholine (NBDPC). These data were supplemented by differential scanning calorimetry (DSC) of DNPC large unilamellar vesicles (LUV, diameter approximately 0.1 and 0.2 microm) and multilamellar vesicles (MLV). The present data collected upon cooling reveal a lack of micron-scale gel and fluid phase coexistence in DNPC GUVs above the temperature of 20.5 degrees C, this temperature corresponding closely to the heat capacity maxima (T(em)) of DNPC MLVs and LUVs (T(em) approximately 21 degrees C), measured upon DSC cooling scans. This is in keeping with the model for phospholipid main transition inferred from our previous fluorescence spectroscopy data for DMPC, DPPC, and DNPC LUVs. More specifically, the current experiments provide further support for the phospholipid main transition involving a first-order process, with the characteristic two-phase coexistence converting into an intermediate phase in the proximity of T(em). This at least macroscopically homogenous intermediate phase would then transform into the liquid crystalline state by a second-order process, with further increase in acyl chain trans-->gauche isomerization.
Collapse
Affiliation(s)
- Antti J Metso
- Helsinki Biophysics and Biomembrane Group, Institute of Biomedicine, University of Helsinki, Finland
| | | | | | | |
Collapse
|
35
|
Andresen TL, Jørgensen K. Synthesis and membrane behavior of a new class of unnatural phospholipid analogs useful as phospholipase A2 degradable liposomal drug carriers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1669:1-7. [PMID: 15842993 DOI: 10.1016/j.bbamem.2005.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 02/07/2005] [Accepted: 02/24/2005] [Indexed: 01/02/2023]
Abstract
A new and unnatural type of lipid analogs with the phosphocholine and phosphoglycerol head groups linked to the C-2 position of the glycerol moiety have been synthesized and the thermodynamic lipid membrane behavior has been investigated using differential scanning calorimetry. From the heat capacity measurements, it was observed that the pre-transition was abolished most likely due to the central position of the head groups providing better packing properties in the low temperature ordered gel phase. Activity measurements of secretory phospholipase A2 (PLA2) on unilamellar liposomal membranes revealed that the unnatural phospholipids are excellent substrates for PLA2 catalyzed hydrolysis. This was manifested as a minimum in the PLA2 lag time in the main phase transition temperature regime and a high degree of lipid hydrolysis over a broad temperature range. The obtained results provide new information about the interplay between the molecular structure of phospholipids and the lipid membrane packing constrains that govern the pre-transition. In addition, the PLA2 activity measurements are useful for obtaining deeper insight into the molecular details of the catalytic site of PLA2. The combined results also suggest new approaches to rationally design liposomal drug carries that can undergo a triggered activation in diseased tissue by overexpressed PLA2.
Collapse
Affiliation(s)
- Thomas L Andresen
- Department of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | |
Collapse
|
36
|
Abstract
In this study we introduce a mesoscopic lipid-water-alcohol model. Dissipative particle dynamics (DPD) simulations have been used to investigate the induced interdigitation of bilayers consisting of double-tail lipids by adding alcohol molecules to the bilayer. Our simulations nicely reproduce the experimental phase diagrams. We find that alcohol can induce an interdigitated structure where the common bilayer structure changes into monolayer in which the alcohol molecules screen the hydrophobic tails from the water phase. At low concentrations of alcohol the membrane has domains of the interdigitated phase that are in coexistence with the common membrane phase. We compute the effect of the chain length of the alcohol on the phase behavior of the membrane and show that the stability of the interdigitated phase depends on the length of the alcohol. We show that we can reproduce the experimental hydrophobic thickness of the bilayer for various combinations of lipids and alcohols. We use our model to clarify some of the experimental questions related to the structure of the interdigitated phase and put forward a simple model that explains the alcohol chain length dependence of the stability of this interdigitated phase.
Collapse
Affiliation(s)
- Marieke Kranenburg
- Department of Chemical Engineering, University of Amsterdam, Amsterdam 1018WV, The Netherlands
| | | | | |
Collapse
|
37
|
Leidy C, Mouritsen OG, Jørgensen K, Peters GH. Evolution of a rippled membrane during phospholipase A2 hydrolysis studied by time-resolved AFM. Biophys J 2005; 87:408-18. [PMID: 15240475 PMCID: PMC1304362 DOI: 10.1529/biophysj.103.036103] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sensitivity of phospholipase A(2) (PLA(2)) for lipid membrane curvature is explored by monitoring, through time-resolved atomic force microscopy, the hydrolysis of supported double bilayers in the ripple phase. The ripple phase presents a corrugated morphology. PLA(2) is shown to have higher activity toward the ripple phase compared to the gel phase in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes, indicating its preference for this highly curved membrane morphology. Hydrolysis of the stable and metastable ripple structures is monitored for equimolar DMPC/1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)-supported double bilayers. As shown by high-performance liquid chromatography results, DSPC is resistant to hydrolysis at this temperature, resulting in a more gradual hydrolysis of the surface that leads to a change in membrane morphology without loss of membrane integrity. This is reflected in an increase in ripple spacing, followed by a sudden flattening of the lipid membrane during hydrolysis. Hydrolysis of the ripple phase results in anisotropic holes running parallel to the ripples, suggesting that the ripple phase has strip regions of higher sensitivity to enzymatic attack. Bulk high-performance liquid chromatography measurements indicate that PLA(2) preferentially hydrolyzes DMPC in the DMPC/DSPC ripples. We suggest that this leads to the formation of a flat gel-phase lipid membrane due to enrichment in DSPC. The results point to the ability of PLA(2) for inducing a compositional phase transition in multicomponent membranes through preferential hydrolysis while preserving membrane integrity.
Collapse
Affiliation(s)
- Chad Leidy
- MEMPHYS-Center for Biomembrane Physics, and Department of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | | | | | | |
Collapse
|
38
|
Giocondi MC, Le Grimellec C. Temperature dependence of the surface topography in dimyristoylphosphatidylcholine/distearoylphosphatidylcholine multibilayers. Biophys J 2004; 86:2218-30. [PMID: 15041661 PMCID: PMC1304072 DOI: 10.1016/s0006-3495(04)74280-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Simple lipid binary systems are intensively used to understand the formation of domains in biological membranes. The size of individual domains present in the gel/fluid coexistence region of single supported bilayers, determined by atomic force microscopy (AFM), generally exceeds by two to three orders of magnitude that estimated from multibilayers membranes by indirect spectroscopic methods. In this article, the topography of equimolar dimyristoylphosphatidylcholine/distearoylphosphatidylcholine (DMPC/DSPC) multibilayers, made of two superimposed bilayers supported on mica surface, was studied by AFM in a temperature range from room temperature to 45 degrees C. In the gel/fluid phase coexistence region the size of domains, between approximately 100 nm and a few micrometers, was of the same order for the first bilayer facing the mica and the top bilayer facing the buffer. The gel to fluid phase separation temperature of the first bilayer, however, could be increased by up to 8 degrees C, most likely as a function of the buffer layer thickness that separated it from the mica. Topography of the top bilayer revealed the presence of lipids in ripple phase up to 38-40 degrees C. Above this temperature, a pattern characteristic of the coexistence of fluid and gel domains was observed. These data show that difference in the size of lipid domains given by AFM and spectroscopy can hardly be attributed to the use of multibilayers models in spectroscopy experiments. They also provide a direct evidence for metastable ripple phase transformation into a gel/fluid phase separated structure upon heating.
Collapse
Affiliation(s)
- Marie-Cécile Giocondi
- Centre de Biochimie Structurale, CNRS UMR 5048-University Montpellier I, INSERM UMR 554, 34090 Montpellier Cedex, France
| | | |
Collapse
|
39
|
Metso AJ, Mattila JP, Kinnunen PKJ. Characterization of the main transition of dinervonoylphosphocholine liposomes by fluorescence spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1663:222-31. [PMID: 15157624 DOI: 10.1016/j.bbamem.2004.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 03/11/2004] [Accepted: 03/24/2004] [Indexed: 11/27/2022]
Abstract
The structural dynamics of the main phase transition of large unilamellar dinervonoylphosphocholine (DNPC) vesicles was investigated by steady state and time-resolved fluorescence spectroscopy of the membrane incorporated fluorescent lipid analog, 1-palmitoyl-2[10-(pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (PPDPC). These data were supplemented by differential scanning calorimetry (DSC) and fluorescence anisotropy measured for 1-palmitoyl-2-(3-(diphenylhexatrienyl) propanoyl)-sn-glycero-3-phosphocholine (DPHPC). The collected data displayed several discontinuities in the course of the main transition and the pretransition. The discontinuities seen in the fluorescence properties may require modification of the existing models for phospholipid main transition as a first order process. From our previous study on dipalmitoylphosphocholine (DPPC), we concluded the transition to involve a first-order process resulting in the formation of an intermediate phase, which then converts into the liquid crystalline state by a second order process. Changes in the physical properties of the DNPC matrix influencing probe behavior were similar to those reported previously for PPDPC in DPPC. In gel state DNPC [(T-T(m))<-10] the high values for excimer/monomer emission ratio (I(e)/I(m)) suggest enrichment of the probe in clusters. In this temperature range, excimer fluorescence for PPDPC (mole fraction X(PPDPC)=0.02) is described by two formation times up to (T-T(m)) approximately -10, with a gradual disappearance of the fractional intensity (I(R1)) of the shorter formation time (tau(R1)) with increasing temperature up to (T-T(m)) approximately -10. This would be consistent with the initiation of the bilayer melting at the PPDPC clusters and the subsequent dispersion of the one population of PPDPC domains. A pronounced decrement in I(e) starts at (T-T(m))=-10, continuing until T(m) is reached. No decrease was observed in fluorescence quantum yield in contrast to our previous study on DPPC/PPDPC large unilamellar vesicles (LUVs) [J. Phys. Chem., B 107 (2003) 1251], suggesting that a lack of proper hydrophobic mismatch may prevent the formation of the previously reported PPDPC superlattice. With further increase in temperature and starting at (T-T(m)) approximately -1, I(e), tau(R2), and excimer decay times (tau(D)) reach plateaus while increment in trans-->gauche isomerization continues. This behavior is in keeping with an intermediate phase existing in the temperature range -1<(T-T(m))<4 and transforming into the liquid disordered phase as a second order process, the latter being completed when (T-T(m))-->4 and corresponding to approximately 50% of the total transition enthalpy.
Collapse
Affiliation(s)
- Antti J Metso
- Helsinki Biophysics and Biomembrane Group, Institute of Biomedicine/Biochemistry, University of Helsinki, Biomedicum, Haartmanninkatu 8, PO Box 63, FIN-00014, Helsinki, Finland
| | | | | |
Collapse
|
40
|
Wang SL, Epand RM. Factors determining pressure perturbation calorimetry measurements: evidence for the formation of metastable states at lipid phase transitions. Chem Phys Lipids 2004; 129:21-30. [PMID: 14998724 DOI: 10.1016/j.chemphyslip.2003.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Revised: 09/22/2003] [Accepted: 09/23/2003] [Indexed: 11/30/2022]
Abstract
The factors that influence the application of pressure perturbation calorimetry in studying the volume change of the phase transition of lipids are discussed. These factors include a correction for the temperature-shift induced by perturbation, the kinetic irreversibility of the phase transition and the magnitude of the pressure perturbation. We take into account the fact that the dependence of the phase transition temperature on pressure will affect the temperature-shift induced by pressure. As a result, there is a discrepancy between the compression part of the cycle and the expansion. In addition, sequential cycles lead to a gradual loss in magnitude of the heat effect upon pressure perturbation. We suggest that these phenomena can be explained by the formation of a metastable glass-like state that converts to a stable phase at temperatures removed from the region of the phase transition.
Collapse
Affiliation(s)
- Shun-Li Wang
- Department of Biochemistry, McMaster University Health Sciences Centre, Hamilton, Ont., Canada L8N 3Z5
| | | |
Collapse
|
41
|
Csiszár A, Klumpp E, Bóta A, Szegedi K. Effect of 2,4-dichlorophenol on DPPC/water liposomes studied by X-ray and freeze-fracture electron microscopy. Chem Phys Lipids 2003; 126:155-66. [PMID: 14623451 DOI: 10.1016/j.chemphyslip.2003.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The effect of 2,4-dichlorophenol (DCP) was studied on the fully hydrated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)--water liposomes. The structure and the thermotropic phase behaviour of the liposomes was examined in the presence of DCP (DCP/DPPC molar ratio, varied from 2x10(-2) up to 1) using small- and wide-angle X-ray scattering (SAXS, WAXS) and freeze-fracture electron microscopy. The structural behaviour of the DPPC/DCP/water system was strongly dependent on the concentration of the DCP. In the pretransition range the DCP molecules (at 2x10(-2) DCP/DPPC molar ratio) induced the interdigitated phase beside the parent (gel and rippled gel) phases, locally which can be form at higher DCP concentration. When the DCP/DPPC molar ratio was increased the pretransition disappeared and the main transition was shifted to lower temperatures. In the molar ratio range from 2x10(-1) up to 5x10(-1), a coexistence of different phases was observed in the wide temperature range from 20 up to 40 degrees C. With a further increase of the DCP/DPPC molar ratio (6x10(-1) to 1) only the interdigitated gel phase occurred below 25 degrees C. A schematic phase diagram of DPPC/DCP/water system was constructed to summarise the results.
Collapse
Affiliation(s)
- Agnes Csiszár
- Institute of Agrosphere, Research Centre Julich, D-52428 Julich, Germany
| | | | | | | |
Collapse
|
42
|
Kaasgaard T, Leidy C, Crowe JH, Mouritsen OG, Jørgensen K. Temperature-controlled structure and kinetics of ripple phases in one- and two-component supported lipid bilayers. Biophys J 2003; 85:350-60. [PMID: 12829489 PMCID: PMC1303090 DOI: 10.1016/s0006-3495(03)74479-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Temperature-controlled atomic force microscopy (AFM) has been used to visualize and study the structure and kinetics of ripple phases in one-component dipalmitoylphosphatidylcholine (DPPC) and two-component dimyristoylphosphatidylcholine-distearoylphosphatidylcholine (DMPC-DSPC) lipid bilayers. The lipid bilayers are mica-supported double bilayers in which ripple-phase formation occurs in the top bilayer. In one-component DPPC lipid bilayers, the stable and metastable ripple phases were observed. In addition, a third ripple structure with approximately twice the wavelength of the metastable ripples was seen. From height profiles of the AFM images, estimates of the amplitudes of the different ripple phases are reported. To elucidate the processes of ripple formation and disappearance, a ripple-phase DPPC lipid bilayer was taken through the pretransition in the cooling and the heating direction and the disappearance and formation of ripples was visualized. It was found that both the disappearance and formation of ripples take place virtually one ripple at a time, thereby demonstrating the highly anisotropic nature of the ripple phase. Furthermore, when a two-component DMPC-DSPC mixture was heated from the ripple phase and into the ripple-phase/fluid-phase coexistence temperature region, the AFM images revealed that several dynamic properties of the ripple phase are important for the melting behavior of the lipid mixture. Onset of melting is observed at grain boundaries between different ripple types and different ripple orientations, and the longer-wavelength metastable ripple phase melts before the shorter-wavelength stable ripple phase. Moreover, it was observed that the ripple phase favors domain growth along the ripple direction and is responsible for creating straight-edged domains with 60 degrees and 120 degrees angles, as reported previously.
Collapse
Affiliation(s)
- Thomas Kaasgaard
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | |
Collapse
|
43
|
Matuoka S, Akiyama M, Yamada H, Tsuchihashi K, Gasa S. Phase behavior in multilamellar vesicles of DPPC containing ganglioside GM3 with a C18:1 sphingoid base and a 24:0 acyl chain (GM3(18,24)) observed by X-ray diffraction. Chem Phys Lipids 2003; 123:19-29. [PMID: 12637162 DOI: 10.1016/s0009-3084(02)00128-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structures and phase behavior of multilamellar vesicles of 1,2-dipalmitoyl-L-phosphatidylcholine (DPPC) containing various amount of ganglioside GM3 with a C18:1 sphingoid base and a 24:0 acyl chain (GM3(18,24)) were investigated by small-angle X-ray diffraction. Below 3.5 mol% GM3 content, the phase behavior was similar to that of pure DPPC except for a slight increase of lamellar repeat distance in the L(beta'), the P(beta') and the L(alpha) phases and a decrease of the pretransition temperature. In the range of 4-12 mol% GM3 content, another phase which has larger repeat distances coexisted with the phase observed below 3.5 mol% GM3 content. This has been interpreted that the phase separation into GM3-poor phase (denoted as A-phase) and GM3-rich phase (denoted as B-phase) took place. Above 13 mol% GM3 content, the B-phase became dominant. This phase separation may be related to the formation of GM3-enriched microdomains that had been observed on the cell surfaces which express large amounts of GM3, such as murine B16 melanoma (J. Biol. Chem. 260 (1985) 13328).
Collapse
Affiliation(s)
- Sinzi Matuoka
- Department of Physics, School of Medicine, Sapporo Medical University, S 1 W 17, Chuo-ku, Sapporo, Hokkaido 060-8556, Japan.
| | | | | | | | | |
Collapse
|
44
|
Metso AJ, Jutila A, Mattila JP, Holopainen JM, Kinnunen PKJ. Nature of the Main Transition of Dipalmitoylphosphocholine Bilayers Inferred from Fluorescence Spectroscopy. J Phys Chem B 2003. [DOI: 10.1021/jp0145098] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Antti J. Metso
- Helsinki Biophysics & Biomembrane Group, Institute of Biomedicine, University of Helsinki, Helsinki, Finland, and MemphysCenter for Biomembrane Physics
| | - Arimatti Jutila
- Helsinki Biophysics & Biomembrane Group, Institute of Biomedicine, University of Helsinki, Helsinki, Finland, and MemphysCenter for Biomembrane Physics
| | - Juha-Pekka Mattila
- Helsinki Biophysics & Biomembrane Group, Institute of Biomedicine, University of Helsinki, Helsinki, Finland, and MemphysCenter for Biomembrane Physics
| | - Juha M. Holopainen
- Helsinki Biophysics & Biomembrane Group, Institute of Biomedicine, University of Helsinki, Helsinki, Finland, and MemphysCenter for Biomembrane Physics
| | - Paavo K. J. Kinnunen
- Helsinki Biophysics & Biomembrane Group, Institute of Biomedicine, University of Helsinki, Helsinki, Finland, and MemphysCenter for Biomembrane Physics
| |
Collapse
|
45
|
Leidy C, Kaasgaard T, Crowe JH, Mouritsen OG, Jørgensen K. Ripples and the formation of anisotropic lipid domains: imaging two-component supported double bilayers by atomic force microscopy. Biophys J 2002; 83:2625-33. [PMID: 12414696 PMCID: PMC1302348 DOI: 10.1016/s0006-3495(02)75273-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Direct visualization of the fluid-phase/ordered-phase domain structure in mica-supported bilayers composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-distearoyl-sn-glycero-3-phosphocholine mixtures is performed with atomic force microscopy. The system studied is a double bilayer supported on a mica surface in which the top bilayer (which is not in direct contact with the mica) is visualized as a function of temperature. Because the top bilayer is not as restricted by the interactions with the surface as single supported bilayers, its behavior is more similar to a free-standing bilayer. Intriguing straight-edged anisotropic fluid-phase domains were observed in the fluid-phase/ordered-phase coexistence temperature range, which resemble the fluid-phase/ordered-phase domain patterns observed in giant unilamellar vesicles composed of such phospholipid mixtures. With the high resolution provided by atomic force microscopy, we investigated the origin of these anisotropic lipid domain patterns, and found that ripple phase formation is directly responsible for the anisotropic nature of these domains. The nucleation and growth of fluid-phase domains are found to be directed by the presence of ripples. In particular, the fluid-phase domains elongate parallel to the ripples. The results show that ripple phase formation may have implications for domain formation in biological systems.
Collapse
Affiliation(s)
- Chad Leidy
- Section of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
46
|
Exerowa D. Chain-melting phase transition and short-range molecular interactions in phospholipid foam bilayers. Adv Colloid Interface Sci 2002; 96:75-100. [PMID: 11908797 DOI: 10.1016/s0001-8686(01)00076-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Occurrence of two-dimensional chain melting phase transition in foam bilayers was established for the first time. Microscopic horizontal foam bilayers [Newton black films (NBF)] were investigated by the microinterferometric method of Scheludko-Exerowa. The foam bilayers were formed from water-ethanol solutions of dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) and egg phosphatidylcholine (Egg PC) and samples of amniotic fluid (AF) at different temperatures. The influence of temperature on the foam bilayer thickness h(w) and on the critical concentration Cc for formation of foam bilayer was studied. It was shown that in the range of the main phase transition the temperature dependence of h(w) and C(c) changed specifically in the case of DMPC and DPPC foam bilayers. The thickness of the foam bilayers increased with decreasing temperature in the range of the main phase transition due to the melting of hydrocarbon tails of phospholipid molecules. These changes took place at the temperatures of the bulk chain-melting phase transitions, as determined by differential scanning calorimetry (DSC) for both aqueous, and water/ethanol DMPC, DPPC, and DPPC dispersions. An effect of the 'disperse medium' on h(w) was found for foam bilayers from DPPC. The results that foam bilayers could have different thickness at different temperatures disproved the current concept that NBF acquired constant thickness at concentrations higher than C(el,cr). The data for Cc were analysed on the basis of the hole-nucleation theory of bilayer stability of Kashchiev and Exerowa. This theory considered the amphiphile bilayer as a two-dimensional ordered system with short-range molecular interactions between the first neighbour molecules (as in a crystal). The short-range molecular interactions were presented by the parameter binding energy Q of an amphiphile molecule in the bilayer. The binding energy Q of two neighbouring phospholipids was calculated for the gel (30-60 kT) and liquid crystalline state (16-18 kT) of the bilayers from DMPC, DPPC, Egg PC, AF. Concentration/temperature phase diagram of DPPC foam bilayers that defined regions of gaseous (ruptured), gel and liquid crystalline foam bilayers were drawn. The values of Q obtained for various samples were very close and vary from 5.3 x 10(-20) to 9.4 x 10(-20) (approx. 13-22 kT) which indicated that in all cases the foam bilayers were in liquid-crystalline state. This is an important result since the parameter studied-threshold concentration (threshold dilution) is crucial for a very successful assessment of the risk for respiratory distress syndrome (RDS) in newborns and could be employed in medicine for assessment of other respiratory disturbances. It is to be expected that foam bilayers from phospholipids could be used as a model for investigation of short-range forces in biological structures, of interaction between membranes, etc.
Collapse
Affiliation(s)
- Dotchi Exerowa
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, Sofia.
| |
Collapse
|
47
|
Tenchov B, Koynova R, Rapp G. New ordered metastable phases between the gel and subgel phases in hydrated phospholipids. Biophys J 2001; 80:1873-90. [PMID: 11259300 PMCID: PMC1301376 DOI: 10.1016/s0006-3495(01)76157-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Formation of low-temperature ordered gel phases in several fully hydrated phosphatidylethanolamines (PEs) and phosphatidylcholines (PCs) with saturated chains as well as in dipalmitoylphosphatidylglycerol (DPPG) was observed by synchrotron x-ray diffraction, microcalorimetry, and densitometry. The diffraction patterns recorded during slow cooling show that the gel-phase chain reflection cooperatively splits into two reflections, signaling a transformation of the usual gel phase into a more ordered phase, with an orthorhombic chain packing (the Y-transition). This transition is associated with a small decrease (2-4 microl/g) or inflection of the partial specific volume. It is fully reversible with the temperature and displays in heating direction as a small (0.1-0.7 kcal/mol) endothermic event. We recorded a Y-transition in distearoyl PE, dipalmitoyl PE (DPPE), mono and dimethylated DPPE, distearoyl PC, dipalmitoyl PC, diC(15)PC, and DPPG. No such transition exists in dimyristoyl PE and dilauroyl PE where the gel L(beta) phase transforms directly into subgel L(c) phase, as well as in the unsaturated dielaidoyl PE. The PE and PC low-temperature phases denoted L(R1) and SGII, respectively, have different hydrocarbon chain packing. The SGII phase is with tilted chains, arranged in an orthorhombic lattice of two-nearest-neighbor type. Except for the PCs, it was also registered in ionized DPPG. In the L(R1) phase, the chains are perpendicular to the bilayer plane and arranged in an orthorhombic lattice of four-nearest-neighbor type. It was observed in PEs and in protonated DPPG. The L(R1) and SGII phases are metastable phases, which may only be formed by cooling the respective gel L(beta) and L(beta') phases, and not by heating the subgel L(c) phase. Whenever present, they appear to represent an indispensable intermediate step in the formation of the latter phase.
Collapse
Affiliation(s)
- B Tenchov
- Institute of Biophysics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | | | | |
Collapse
|
48
|
Jørgensen K, Klinger A, Biltonen RL. Nonequilibrium Lipid Domain Growth in the Gel−Fluid Two-Phase Region of a DC16PC−DC22PC Lipid Mixture Investigated by Monte Carlo Computer Simulation, FT-IR, and Fluorescence Spectroscopy. J Phys Chem B 2000. [DOI: 10.1021/jp001801r] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kent Jørgensen
- Department of Chemistry, Building 207, Technical University of Denmark, DK-2800, Lyngby, Denmark; Department of Pharmaceutics, The Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; Department of Biochemistry and the Graduate Program in Biophysics, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908; and Department of Pharmacology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908
| | - Alex Klinger
- Department of Chemistry, Building 207, Technical University of Denmark, DK-2800, Lyngby, Denmark; Department of Pharmaceutics, The Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; Department of Biochemistry and the Graduate Program in Biophysics, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908; and Department of Pharmacology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908
| | - Rodney L. Biltonen
- Department of Chemistry, Building 207, Technical University of Denmark, DK-2800, Lyngby, Denmark; Department of Pharmaceutics, The Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; Department of Biochemistry and the Graduate Program in Biophysics, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908; and Department of Pharmacology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908
| |
Collapse
|
49
|
Kharakoz DP, Shlyapnikova EA. Thermodynamics and Kinetics of the Early Steps of Solid-State Nucleation in the Fluid Lipid Bilayer. J Phys Chem B 2000. [DOI: 10.1021/jp001299a] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dmitri P. Kharakoz
- Institute of Theoretical and Experimental Biophysics, RAS, 142292 Pushchino, Moscow, Russia
| | - Elena A. Shlyapnikova
- Institute of Theoretical and Experimental Biophysics, RAS, 142292 Pushchino, Moscow, Russia
| |
Collapse
|
50
|
Katsaras J, Tristram-Nagle S, Liu Y, Headrick RL, Fontes E, Mason PC, Nagle JF. Clarification of the ripple phase of lecithin bilayers using fully hydrated, aligned samples. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 2000; 61:5668-77. [PMID: 11031625 DOI: 10.1103/physreve.61.5668] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/1999] [Indexed: 11/07/2022]
Abstract
Aligned samples of lipid bilayers have been fully hydrated from water vapor in a different type of x-ray chamber. Our use of aligned samples resolves issues concerning the ripple phase that were ambiguous from previous powder studies. In particular, our x-ray diffraction data conclusively demonstrate that, on cooling from the L alpha to the P beta' phase, both chiral and racemic samples of dipalmitoyl phosphatidylcholine (DPPC) exhibit phase coexistence of long and short ripples with a ripple wavelength ratio lambda L/lambda S approximately 1.8. Moreover, the long ripple always forms an orthorhombic unit cell (gamma L = 90 degrees), strongly supporting the possibility that these ripples are symmetric. In contrast, gamma S for short ripples was consistently different from 90 degrees, implying asymmetric ripples. We continue to find no evidence that chirality affects the structure of rippled bilayers. The relative thermodynamic stability of the two types of ripples was investigated and a qualitative free energy diagram is given in which the long ripple phase is metastable. Finally, we suggest a kinetic mechanism, involving loss of water, that promotes formation of the metastable long ripple phase for special thermal protocols.
Collapse
Affiliation(s)
- J Katsaras
- National Research Council, Chalk River Laboratories, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|