1
|
Paul S, Ghanti R, Sardar PS, Majhi A. Synthesis of a novel coumarin derivative and its binding interaction with serum albumins. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02505-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
2
|
Paul S, Sepay N, Sarkar S, Roy P, Dasgupta S, Saha Sardar P, Majhi A. Interaction of serum albumins with fluorescent ligand 4-azido coumarin: spectroscopic analysis and molecular docking studies. NEW J CHEM 2017. [DOI: 10.1039/c7nj02335a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The investigation of the binding of 4-AC to biomolecular systems using photophysical techniques and molecular docking studies.
Collapse
Affiliation(s)
- Sandip Paul
- Department of Chemistry
- Presidency University
- Kolkata 700 073
- India
| | - Nasim Sepay
- Department of Chemistry
- Presidency University
- Kolkata 700 073
- India
| | - Shrabana Sarkar
- Department of Chemistry
- Presidency University
- Kolkata 700 073
- India
| | - Pritam Roy
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur
- India
| | - Swagata Dasgupta
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur
- India
| | - Pinki Saha Sardar
- The Department of Chemistry
- The Bhawanipur Education Society College
- Kolkata 700020
- India
| | - Anjoy Majhi
- Department of Chemistry
- Presidency University
- Kolkata 700 073
- India
| |
Collapse
|
3
|
Sousa FL, Parente DJ, Hessman JA, Chazelle A, Teichmann SA, Swint-Kruse L. Data on publications, structural analyses, and queries used to build and utilize the AlloRep database. Data Brief 2016; 8:948-57. [PMID: 27508249 PMCID: PMC4961497 DOI: 10.1016/j.dib.2016.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/22/2016] [Accepted: 07/04/2016] [Indexed: 01/08/2023] Open
Abstract
The AlloRep database (www.AlloRep.org) (Sousa et al., 2016) [1] compiles extensive sequence, mutagenesis, and structural information for the LacI/GalR family of transcription regulators. Sequence alignments are presented for >3000 proteins in 45 paralog subfamilies and as a subsampled alignment of the whole family. Phenotypic and biochemical data on almost 6000 mutants have been compiled from an exhaustive search of the literature; citations for these data are included herein. These data include information about oligomerization state, stability, DNA binding and allosteric regulation. Protein structural data for 65 proteins are presented as easily-accessible, residue-contact networks. Finally, this article includes example queries to enable the use of the AlloRep database. See the related article, “AlloRep: a repository of sequence, structural and mutagenesis data for the LacI/GalR transcription regulators” (Sousa et al., 2016) [1].
Collapse
Affiliation(s)
- Filipa L Sousa
- Institute of Molecular Evolution, Heinrich-Heine Universität Düsseldorf, Universitätstrasse 1, 40225 Düsseldorf, Germany
| | - Daniel J Parente
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jacob A Hessman
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Allen Chazelle
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sarah A Teichmann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Liskin Swint-Kruse
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Mukherjee M, Saha Sardar P, Ghorai SK, Samanta SK, Roy AS, Dasgupta S, Ghosh S. A comparative study of interaction of tetracycline with several proteins using time resolved anisotropy, phosphorescence, docking and FRET. PLoS One 2013; 8:e60940. [PMID: 23593355 PMCID: PMC3623961 DOI: 10.1371/journal.pone.0060940] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/04/2013] [Indexed: 11/18/2022] Open
Abstract
A comparative study of the interaction of an antibiotic Tetracycline hydrochloride (TC) with two albumins, Human serum albumin (HSA) and Bovine serum albumin (BSA) along with Escherichia Coli Alkaline Phosphatase (AP) has been presented exploiting the enhanced emission and anisotropy of the bound drug. The association constant at 298 K is found to be two orders of magnitude lower in BSA/HSA compared to that in AP with number of binding site being one in each case. Fluorescence resonance energy transfer (FRET) and molecular docking studies have been employed for the systems containing HSA and BSA to find out the particular tryptophan (Trp) residue and the other residues in the proteins involved in the binding process. Rotational correlation time (θc) of the bound TC obtained from time resolved anisotropy of TC in all the protein-TC complexes has been compared to understand the binding mechanism. Low temperature (77 K) phosphorescence (LTP) spectra of Trp residues in the free proteins (HSA/BSA) and in the complexes of HSA/BSA have been used to specify the role of Trp residues in FRET and in the binding process. The results have been compared with those obtained for the complex of AP with TC. The photophysical behaviour (viz., emission maximum, quantum yield, lifetime and θc) of TC in various protic and aprotic polar solvents has been determined to address the nature of the microenvironment of TC in the protein-drug complexes.
Collapse
Affiliation(s)
| | | | | | | | - Atanu Singha Roy
- Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| | - Sanjib Ghosh
- Department of Chemistry, Presidency University, Kolkata, India
- * E-mail:
| |
Collapse
|
5
|
Mukherjee M, Sardar PS, Ghorai SK, Samanta SK, Roy AS, Dasgupta S, Ghosh S. Interaction of multitryptophan protein with drug: an insight into the binding mechanism and the binding domain by time resolved emission, anisotropy, phosphorescence and docking. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 115:93-104. [PMID: 22884693 DOI: 10.1016/j.jphotobiol.2012.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/08/2012] [Indexed: 11/17/2022]
Abstract
The interaction of antibiotic Tetracycline hydrochloride (TC) with Alkaline Phosphatase (AP) from Escherichia coli, an important target enzyme in medicinal chemistry, having tryptophan (Trp) residues at 109, 220 and 268 has been studied using the steady state and time resolved emission of the protein and the enhanced emission of the bound drug. The association constant at 298 K (≈10(6) [M](-1)) and the number of binding site (=1) were estimated using the quenched Trp emission of AP, the enhanced emission and the anisotropy of the bound drug. The values of ΔH(0) and ΔS(0) are indicative of electrostatic and H-bonding interaction. The low temperature phosphorescence of free AP and the protein- drug complex and molecular docking comprehensively prove the specific involvement of partially exposed Trp 220 in the binding process without affecting Trp 109 and Trp 268. The Förster energy transfer (ET) efficiency and the rate constant from the Trp residue to TC=0.51 and ≈10(8) s(-1) respectively. Arg 199, Glu 219, Trp 220, Lys 223, Ala 231, Arg 232 and Tyr 234 residues are involved in the binding process. The motional restriction of TC imposed by nearby residues is reflected in the observed life time and the rotational correlation time of bound TC.
Collapse
Affiliation(s)
- Manini Mukherjee
- Department of Chemistry, Presidency University, Kolkata 700 073, India
| | | | | | | | | | | | | |
Collapse
|
6
|
Sardar PS, Samanta S, Maity SS, Dasgupta S, Ghosh S. Energy Transfer Photophysics from Serum Albumins to Sequestered 3-Hydroxy-2-Naphthoic Acid, an Excited State Intramolecular Proton-Transfer Probe. J Phys Chem B 2008; 112:3451-61. [DOI: 10.1021/jp074598+] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Sardar PS, Maity SS, Das L, Ghosh S. Luminescence studies of perturbation of tryptophan residues of tubulin in the complexes of tubulin with colchicine and colchicine analogues. Biochemistry 2007; 46:14544-56. [PMID: 18041823 DOI: 10.1021/bi701412k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tubulin, a heterodimeric (alphabeta) protein, the main constituent of microtubules, binds efficiently with colchicine (consisting of a trimethoxybenzene ring, a seven-member ring and methoxy tropone moiety) and its analogues, viz., demecolcine and AC [2-methoxy-5-(2',3',4'-trimethoxyphenyl)tropone]. Tubulin contains eight tryptophan (Trp) residues at A21, A346, A388, A407, B21, B103, B346, and B407 in the two subunits. The role of these eight Trp residues in this interaction and also their perturbation due to binding have been explored via time-resolved fluorescence at room temperature and low-temperature (77 K) phosphorescence in a suitable cryosolvent. Both the time-resolved fluorescence data and 77 K phosphorescence spectra indicate that the emitting residues move toward a more hydrophobic and less polar environment after complex formation. The environment of emitting Trps in the complex also becomes slightly more heterogeneous. Our analysis using the experimental results, the calculation of the accessible surface area (ASA) of all the Trps in the wild type and tubulin-colchicine complex [Ravelli, R. B. G., et al. (2004) Nature 428, 198-202], the distance of the Trp residues from the different moieties of the colchicine molecule, the knowledge of the nature of the immediate residues (<5 A) present near each Trp residue, and the calculation of the intramolecular Trp-Trp energy transfer efficiencies indicate that Trp A346, Trp A407, Trp B21, and Trp B407 are the major contributors to the emission in the free protein, while Trp B21 and Trp B103 are mainly responsible for the emission of the complexes. A comparative account of the photophysical aspects of the drug molecules bound to protein in aqueous buffer and in buffer containing 40% ethylene glycol has been presented. The quantum yield and average lifetime of fluorescence in tubulin and its complexes with colchicine are used to predict the possible donors and the energy transfer (ET) efficiency in the ET process from Trps to colchicine in the complex. This study is a unique attempt to identify the Trp residues contributing to the emission in the free protein and in a complex of a multi-Trp protein with a drug molecule without performing the mutation of the protein.
Collapse
|
8
|
Sardar PS, Maity SS, Ghosh S, Chatterjee J, Maiti TK, Dasgupta S. Characterization of the Tryptophan Residues of Human Placental Ribonuclease Inhibitor and Its Complex with Bovine Pancreatic Ribonuclease A by Steady-State and Time-Resolved Emission Spectroscopy. J Phys Chem B 2006; 110:21349-56. [PMID: 17048964 DOI: 10.1021/jp064832g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human placental ribonuclease inhibitor (hRI) containing six tryptophan (Trp) residues located at positions 19, 261, 263, 318, 375, and 438 and its complex with RNase A have been studied using steady-state and time-resolved fluorescence (298 K) as well as low-temperature phosphorescence (77 K). Two Trp residues in wild-type hRI and also in the protein-protein complex with RNase A are resolved optically. The accessible surface area values of Trp residues in the wild-type hRI and its complex and consideration of inter-Trp energy transfer in the wild-type hRI reveal that one of the Trp residues is Trp19, which is located in a hydrophobic buried region. The other Trp residue is tentatively assigned as Trp375 based on experimental results on wild-type hRI and its complex. This residue in the wild-type hRI is more or less solvent exposed. Both the Trp residues are perturbed slightly on complex formation. Trp19 moves slightly toward a more hydrophobic region, and the environment of Trp375 becomes less solvent exposed. The complex formation also results in a more heterogeneous environment for both the optically resolved Trp residues.
Collapse
|
9
|
Zhan H, Swint-Kruse L, Matthews KS. Extrinsic interactions dominate helical propensity in coupled binding and folding of the lactose repressor protein hinge helix. Biochemistry 2006; 45:5896-906. [PMID: 16669632 PMCID: PMC2701349 DOI: 10.1021/bi052619p] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A significant number of eukaryotic regulatory proteins are predicted to have disordered regions. Many of these proteins bind DNA, which may serve as a template for protein folding. Similar behavior is seen in the prokaryotic LacI/GalR family of proteins that couple hinge-helix folding with DNA binding. These hinge regions form short alpha-helices when bound to DNA but appear to be disordered in other states. An intriguing question is whether and to what degree intrinsic helix propensity contributes to the function of these proteins. In addition to its interaction with operator DNA, the LacI hinge helix interacts with the hinge helix of the homodimer partner as well as to the surface of the inducer-binding domain. To explore the hierarchy of these interactions, we made a series of substitutions in the LacI hinge helix at position 52, the only site in the helix that does not interact with DNA and/or the inducer-binding domain. The substitutions at V52 have significant effects on operator binding affinity and specificity, and several substitutions also impair functional communication with the inducer-binding domain. Results suggest that helical propensity of amino acids in the hinge region alone does not dominate function; helix-helix packing interactions appear to also contribute. Further, the data demonstrate that variation in operator sequence can overcome side chain effects on hinge-helix folding and/or hinge-hinge interactions. Thus, this system provides a direct example whereby an extrinsic interaction (DNA binding) guides internal events that influence folding and functionality.
Collapse
Affiliation(s)
- Hongli Zhan
- Department of Biochemistry and Cell Biology, MS 140, Rice University, Houston, TX 77005
- Department of Biochemistry and Molecular Biology, MS 3030, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, MS 3030, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Kathleen Shive Matthews
- Department of Biochemistry and Cell Biology, MS 140, Rice University, Houston, TX 77005
- W. M. Keck Center for Computational Biology, MS 140, Rice University, Houston, TX 77005
- To whom correspondence should be addressed. Telephone: 713−348−4871; Fax: 713−348−6149;
| |
Collapse
|
10
|
Wilson CJ, Das P, Clementi C, Matthews KS, Wittung-Stafshede P. The experimental folding landscape of monomeric lactose repressor, a large two-domain protein, involves two kinetic intermediates. Proc Natl Acad Sci U S A 2005; 102:14563-8. [PMID: 16203983 PMCID: PMC1253568 DOI: 10.1073/pnas.0505808102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To probe the experimental folding behavior of a large protein with complex topology, we created a monomeric variant of the lactose repressor protein (MLAc), a well characterized tetrameric protein that regulates transcription of the lac operon. Purified MLAc is folded, fully functional, and binds the inducer isopropyl beta-d-thiogalactoside with the same affinity as wild-type LacI. Equilibrium unfolding of MLAc induced by the chemical denaturant urea is a reversible, apparent two-state process (pH 7.5, 20 degrees C). However, time-resolved experiments demonstrate that unfolding is single-exponential, whereas refolding data indicate two transient intermediates. The data reveal the initial formation of a burst-phase (tau < ms) intermediate that corresponds to approximately 50% of the total secondary-structure content. This step is followed by a rearrangement reaction that is rate-limited by an unfolding process (tau approximately 3 s; pH 7.5, 20 degrees C) and results in a second intermediate. This MLAc intermediate converts to the native structure (tau approximately 30 s; pH 7.5, 20 degrees C). Remarkably, the experimental folding-energy landscape for MLAc is in excellent agreement with theoretical predictions using a simple topology-based C(alpha)-model as presented in a companion article in this issue.
Collapse
Affiliation(s)
- Corey J Wilson
- Department of Biochemistry and Cell Biology, Keck Center for Structural Computational Biology, and Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77251, USA
| | | | | | | | | |
Collapse
|
11
|
Lewis M. The lac repressor. C R Biol 2005; 328:521-48. [PMID: 15950160 DOI: 10.1016/j.crvi.2005.04.004] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 03/26/2005] [Accepted: 04/11/2005] [Indexed: 11/18/2022]
Abstract
Few proteins have had such a strong impact on a field as the lac repressor has had in Molecular Biology. Over 40 years ago, Jacob and Monod [Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol. 3 (1961) 318] proposed a model for gene regulation, which survives essentially unchanged in contemporary textbooks. It is a cogent depiction of how a set of 'structural' genes may be coordinately transcribed in response to environmental conditions and regulates metabolic events in the cell. In bacteria, the genes required for lactose utilization are negatively regulated when a repressor molecule binds to an upstream cis activated operator. The repressor and its operator together form a genetic switch, the lac operon. The switch functions when inducer molecules alter the conformation of the repressor in a specific manner. In the presence of a particular metabolite, the repressor undergoes a conformational change that reduces its affinity for the operator. The structures of the lac repressor and its complexes with operator DNA and effector molecules have provided a physical platform for visualizing at the molecular level the different conformations the repressor and the molecular basis for the switch. The structures of lac repressor, bound to its operator and inducer, have also been invaluable for interpreting a plethora of biochemical and genetic data.
Collapse
Affiliation(s)
- Mitchell Lewis
- School of Medicine, University of Pennsylvania, 813 Stellar-Chance Building, Philadelphia, PA 19104-6059, USA
| |
Collapse
|
12
|
Engelborghs Y. The analysis of time resolved protein fluorescence in multi-tryptophan proteins. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2001; 57:2255-2270. [PMID: 11603842 DOI: 10.1016/s1386-1425(01)00485-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the last decades, considerable progress has been made in the analysis of the fluorescence decay of proteins with more than one tryptophan. The construction of single tryptophan containing proteins has shown that the lifetimes of the wild type proteins are often the linear combinations of the family lifetimes of the contributing tryptophan residues. Additivity is not followed when energy transfer takes place among tryptophan residues or when the structure of the remaining protein is altered upon the modification. Progress has also been made in the interpretation of the value of the lifetime and the linkage with the immediate environment. Probably all the irreversible processes leading to return to the ground state have been catalogued and their rate constants are documented. Also, the process of electron transfer to the peptide carbonyl is becoming more and more documented and is linked to the rotameric state of tryptophan. Reversible excited state processes are also being considered, including reversible interconversions between rotamers. Interesting information about tryptophan and its environment comes also from anisotropy measurements for proteins in the native, the denatured and the molten globule states. Alterations of protein fluorescence due to the effects of ligand binding or side chain modifications can be analyzed via the ratio of the quantum yields of the modified protein and the reference state. Using the ratio of quantum yields and the (amplitude weighted) average lifetime, three factors can be identified: (1) a change in the apparent radiative rate constant reflecting either static quenching or an intrinsic change in the radiative properties; (2) a change in dynamic quenching; and (3) a change in the balance of the populations of the microstates or local static quenching.
Collapse
Affiliation(s)
- Y Engelborghs
- Laboratory of Biomolecular Dynamics, University of Leuven, Belgium.
| |
Collapse
|
13
|
Berger MD, Lee AM, Simonette RA, Jackson BE, Roca AI, Singleton SF. Design and evaluation of a tryptophanless RecA protein with wild type activity. Biochem Biophys Res Commun 2001; 286:1195-203. [PMID: 11527427 DOI: 10.1006/bbrc.2001.5525] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The C-terminal domain of the Escherichia coli RecA protein contains two tryptophan residues whose native fluorescence emission provides an interfering background signal when other fluorophores such as 1,N(6)-ethenoadenine, 2-aminopurine and other tryptophan residues are used to probe the protein's activities. Replacement of the wild type tryptophans with nonfluorescent residues is not trivial because one tryptophan is highly conserved and the C-terminal domain functions in both DNA binding as well as interfilament protein-protein contact. We undertook the task of creating a tryptophanless RecA protein with WT RecA activity by selecting suitable amino acid replacements for Trp290 and Trp308. Mutant proteins were screened in vivo using assays of SOS induction and cell survival following UV irradiation. Based on its activity in these assays, the W290H-W308F W-less RecA was purified for in vitro characterization and functioned like WT RecA in DNA-dependent ATPase and DNA strand exchange assays. Spectrofluorometry indicates that the W290H-W308F RecA protein generates no significant emission when excited with 295-nm light. Based on its ability to function as wild type protein in vivo and in vitro, this dark RecA protein will be useful for future fluorescence experiments.
Collapse
Affiliation(s)
- M D Berger
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | | | | | | | | | | |
Collapse
|
14
|
Bombarda E, Ababou A, Vuilleumier C, Gérard D, Roques BP, Piémont E, Mély Y. Time-resolved fluorescence investigation of the human immunodeficiency virus type 1 nucleocapsid protein: influence of the binding of nucleic acids. Biophys J 1999; 76:1561-70. [PMID: 10049336 PMCID: PMC1300132 DOI: 10.1016/s0006-3495(99)77315-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Depending on the HIV-1 isolate, MN or BH10, the nucleocapsid protein, NCp7, corresponds to a 55- or 71-amino acid length product, respectively. The MN NCp7 contains a single Trp residue at position 37 in the distal zinc finger motif, and the BH10 NCp7 contains an additional Trp, at position 61 in the C-terminal chain. The time-resolved intensity decay parameters of the zinc-saturated BH10 NCp7 were determined and compared to those of single-Trp-containing derivatives. The fluorescence decay of BH10 NCp7 could be clearly represented as a linear combination (with respect to both lifetimes and fractional intensities) of the individual emitting Trp residues. This suggested the absence of interactions between the two Trp residues, a feature that was confirmed by molecular modeling and fluorescence energy transfer studies. In the presence of tRNAPhe, taken as a RNA model, the same conclusions hold true despite the large fluorescence decrease induced by the binding of tRNAPhe. Indeed, the fluorescence of Trp37 appears almost fully quenched, in keeping with a stacking of this residue with the bases of tRNAPhe. Despite the multiple binding sites in tRNAPhe, the large prevalence of ultrashort lifetimes, associated with the stacking of Trp37, suggests that this stacking constitutes a major feature in the binding process of NCp7 to nucleic acids. In contrast, Trp61 only stacked to a small extent with tRNAPhe. The behavior of this residue in the tRNAPhe-NCp7 complexes appeared to be rather heterogeneous, suggesting that it does not constitute a major determinant in the binding process. Finally, our data suggested that the binding of NCp7 proteins from the two HIV-1 strains to nonspecific nucleic acid sequences was largely similar.
Collapse
Affiliation(s)
- E Bombarda
- Laboratoire de Biophysique, URA 491 du CNRS, Faculté de Pharmacie, Université Louis Pasteur, B.P. 24, F-67401 Illkirch Cedex, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Demchenko AP, Gallay J, Vincent M, Apell HJ. Fluorescence heterogeneity of tryptophans in Na,K-ATPase: evidences for temperature-dependent energy transfer. Biophys Chem 1998; 72:265-83. [PMID: 9691270 DOI: 10.1016/s0301-4622(98)00107-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The intrinsic fluorescence emission kinetics of Na,K-ATPase, a large membrane protein containing 16 tryptophan residues, was studied by time-resolved techniques. The lifetime distributions recovered by the Maximum Entropy Method exhibit a strong dependence on the emission wavelength at temperatures between 37 degrees C and -70 degrees C. From the 'blue' edge of the fluorescence emission spectrum up to the maximum of emission, the lifetime distribution at room temperature is the result of four broad peaks which cover the time range 0.3-7 ns. With increasing emission wavelength, these peaks move to longer lifetimes and the peak at shorter times are suppressed at the red edge, while the longest component (6-7 ns) becomes dominant. With decreasing temperature, the number of lifetime components is reduced for the benefit of the long one. At cryogenic temperatures, the emission decay in the red-edge of the fluorescence spectrum consists of one major slow component (6-7 ns) and a fast one (0.5 ns) associated with a negative pre-exponential term. This is a characteristic feature of an excited-state reaction. The temperature dependence of this fast component and the fluorescence anisotropy decay at low temperature in the red-edge, indicate that this excited state reaction may be accounted for a unidirectional inter-tryptophan fluorescence energy transfer from 'blue' populations of donors to 'red' populations of acceptors. This is also illustrated by the time-resolved emission spectra. In the blue edge of the fluorescence emission spectrum, moreover, the time course of the anisotropy decay suggests the existence of homo-transfer of excitation energy involving 'blue' tryptophan residues. The steady-state anisotropy excitation spectrum in vitrified solvent agrees with this suggestion. These different energy transfer mechanisms may be used as structural probes to detect more accurately conformational changes of the protein elicited by effectors and ion binding or release.
Collapse
Affiliation(s)
- A P Demchenko
- Department of Biophysics, A.V. Palladin Institute of Biochemistry, Kiev, Ukraine
| | | | | | | |
Collapse
|
16
|
Probing the relation between protein structure and intrinsic tryptophan fluorescence using superrepressor mutants of thetrp repressor. J Fluoresc 1998. [DOI: 10.1007/bf02758230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Barry JK, Matthews KS. Ligand-induced conformational changes in lactose repressor: a fluorescence study of single tryptophan mutants. Biochemistry 1997; 36:15632-42. [PMID: 9398291 DOI: 10.1021/bi971685r] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A key element in the ability of lac repressor protein to control transcription reversibly is the capacity to assume different conformations in response to ligand binding. To investigate regions of the protein involved in these conformational changes, mutant repressor proteins containing single tryptophans were created by mutating each of the two native tryptophan residues to tyrosine and changing the residue of interest to tryptophan. Tryptophans substituted in the following locations were highly accessible to quenchers with no changes in fluorescence or quenching properties in the presence of ligands: in the N-terminal helix-turn-helix for Y7, at the junction between the N-terminus and N-subdomain for L62, in the N-subdomain of the monomer-monomer interface for residue E100 or Q117, or at the C-terminal region for K325. Tryptophan at position F226 in the C-subdomain subunit interface was only moderately exposed to quenchers and unresponsive to ligands. In contrast, the fluorescence and quenching properties of single tryptophans placed in the central region of the protein were affected by ligands. Inducer binding altered the accessibility to quencher for tryptophan at H74 or F293, but no changes were detected upon binding operator. Exposure of tryptophan at the position occupied by Y273 was affected by both inducer and operator, indicating alterations in this region by both ligands. These results suggest that, in the areas of the lac repressor probed by these substitutions, the inducer-bound form differs from the conformation of the unliganded form.
Collapse
Affiliation(s)
- J K Barry
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892, USA
| | | |
Collapse
|
18
|
Matthews KS, Nichols JC. Lactose repressor protein: functional properties and structure. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 58:127-64. [PMID: 9308365 DOI: 10.1016/s0079-6603(08)60035-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The lactose repressor protein (LacI), the prototype for genetic regulatory proteins, controls expression of lactose metabolic genes by binding to its cognate operator sequences in E. coli DNA. Inducer binding elicits a conformational change that diminishes affinity for operator sequences with no effect on nonspecific binding. The release of operator is followed by synthesis of mRNA encoding the enzymes for lactose utilization. Genetic, chemical and physical studies provided detailed insight into the function of this protein prior to the recent completion of X-ray crystallographic structures. The structural information can now be correlated with the phenotypic data for numerous mutants. These structures also provide the opportunity for physical and chemical studies on mutants designed to examine various aspects of lac repressor structure and function. In addition to providing insight into protein structure-function correlations, LacI has been utilized in a wide variety of applications both in prokaryotic gene expression and in eukaryotic gene regulation and studies of mutagenesis.
Collapse
Affiliation(s)
- K S Matthews
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251, USA
| | | |
Collapse
|
19
|
Steward LE, Collins CS, Gilmore MA, Carlson JE, Ross JBA, Chamberlin AR. In Vitro Site-Specific Incorporation of Fluorescent Probes into β-Galactosidase. J Am Chem Soc 1997. [DOI: 10.1021/ja963023f] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lance E. Steward
- Contribution from the Department of Chemistry, University of California, Irvine, California 92697, and Department of Biochemistry, Mt. Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029
| | - Cynthia S. Collins
- Contribution from the Department of Chemistry, University of California, Irvine, California 92697, and Department of Biochemistry, Mt. Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029
| | - Marcella A. Gilmore
- Contribution from the Department of Chemistry, University of California, Irvine, California 92697, and Department of Biochemistry, Mt. Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029
| | - Justin E. Carlson
- Contribution from the Department of Chemistry, University of California, Irvine, California 92697, and Department of Biochemistry, Mt. Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029
| | - J. B. Alexander Ross
- Contribution from the Department of Chemistry, University of California, Irvine, California 92697, and Department of Biochemistry, Mt. Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029
| | - A. Richard Chamberlin
- Contribution from the Department of Chemistry, University of California, Irvine, California 92697, and Department of Biochemistry, Mt. Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029
| |
Collapse
|
20
|
Ross JB, Szabo AG, Hogue CW. Enhancement of protein spectra with tryptophan analogs: fluorescence spectroscopy of protein-protein and protein-nucleic acid interactions. Methods Enzymol 1997; 278:151-90. [PMID: 9170313 DOI: 10.1016/s0076-6879(97)78010-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- J B Ross
- Department of Biochemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
21
|
Neyroz P, Menna C, Polverini E, Masotti L. Intrinsic fluorescence properties and structural analysis of p13(suc1) from Schizosaccharomyces pombe. J Biol Chem 1996; 271:27249-58. [PMID: 8910298 DOI: 10.1074/jbc.271.44.27249] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
p13(suc1) acts in the fission yeast cell division cycle as a component of p34(cdc2). In the present work, structural information contained in the intrinsic fluorescence of p13(suc1) has been extracted by steady-state and time-resolved fluorescence techniques. In its native form, the steady-state emission spectrum of p13(suc1) is centered at 336 nm. Upon denaturation by guanidine HCl (4.0 M), the emission spectrum is shifted to 355-360 nm and the fluorescence intensity decreases 70%. The same changes are not obtained with p13(suc1) at 56 degrees C or after incubation at 100 degrees C, and the protein appears to be substantially temperature-stable. The fluorescence decay of p13(suc1) is best described by three discrete lifetimes of 0.6 ns (tau1), 2.9 ns (tau2), and 6.1 ns (tau3), with amplitudes that are dependent on the native or unfolded state of the protein. Under native conditions, the two predominant decay-associated spectra, DAS-tau2 (lambdamax = 332 nm) and DAS-tau3 (lambdamax = 340 nm), derive from two different excitation DAS. Moreover distinct quenching mechanisms and collisional accessibilities (kq(tau2)>>kq(tau3)) are resolved for each lifetime. An interpretation in terms of specific tryptophan residue (or protein conformer)-lifetime assignments is presented. The decay of the fluorescence anisotropy of native p13(suc1) is best described by a double exponential decay. The longer correlation time recovered (9 ns </= phi2 </= 15ns) can be associated with the rotational motion of the protein as a whole and a Stokes radius of 21.2 A has been calculated for p13(suc1). Anisotropy measurements obtained as a function of temperature indicate that, in solution, the protein exists exclusively as a prolate monomer. In 1 mM zinc, changes of the anisotropy decay parameters are compatible with subunits oligomerization.
Collapse
Affiliation(s)
- P Neyroz
- Dipartimento di Biochimica "G. Moruzzi," Sezione di Biochimica Farmaceutica, Università di Bologna, 40127 Bologna, Italy.
| | | | | | | |
Collapse
|
22
|
Pokalsky C, Wick P, Harms E, Lytle FE, Van Etten RL. Fluorescence resolution of the intrinsic tryptophan residues of bovine protein tyrosyl phosphatase. J Biol Chem 1995; 270:3809-15. [PMID: 7876123 DOI: 10.1074/jbc.270.8.3809] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Fluorescence steady-state and lifetime measurements have been performed that permit the differentiation of the 2 intrinsic tryptophan residues in bovine low molecular weight phosphotyrosyl protein phosphatase (BPTP). Spectral information was obtained by use of two single-tryptophan mutant proteins, W39F and W49F, and the double mutant protein W39,49F. Fluorescence measurements show that Trp39 is characterized by a large blue shift, a low quantum yield, and a shorter mean lifetime compared to Trp49. Solute fluorescence quenching studies of W39F reveal that Trp49 is highly exposed to the aqueous environment. In contrast, Trp39 is situated within a hydrophobic core and is only partially accessible to quenching agents such as acrylamide, iodide ion, and cesium ion. The fluorescence contributions of Trp39 and Trp49 are additive, and their sum is equivalent to that observed for wild type BPTP. Calculated intramolecular distances between Trp39 or Trp49 and a 5-[[(acetylamino)-ethyl]amino]naphthalene-1- sulfonate group covalently bound at Cys12 or Cys17 of the respective protein mutants, place Trp49 within 10 A and Trp39 at least 20 A from the active site. The fluorescence decay of the single tryptophan mutants and, surprisingly, wild type BPTP were each adequately fitted as biexponentials. The latter is a consequence of the imprecision involved in determining actual minima in a three- and four-exponential fitting. Comparison of quenching results of wild type BPTP with those of the single tryptophan mutant proteins indicates that minor fluorescence components, easily resolved using a biexponential fitting for the mutant proteins, are unresolvable for wild type BPTP. These minor components skewed the weighted magnitudes and induced perturbations in lifetimes for the tryptophan fluorescence of wild type BPTP, which directly influenced the calculated values of Ksv and kq.
Collapse
Affiliation(s)
- C Pokalsky
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- D M Jameson
- Department of Biochemistry and Biophysics, University of Hawaii, John A. Burns School of Medicine, Honolulu 96822, USA
| | | |
Collapse
|
24
|
Affiliation(s)
- A R Holzwarth
- Max-Planck-Institut for Radiation Chemistry, Mülheim/Ruhr, Germany
| |
Collapse
|
25
|
Study ofl-tryptophan corepressor binding to mutatedE. coli tryptophan repressor proteins by optically detected triplet-state magnetic resonance. J Fluoresc 1994; 4:217-26. [DOI: 10.1007/bf01878454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/1993] [Accepted: 03/01/1994] [Indexed: 10/25/2022]
|
26
|
Kungl AJ, Visser AJ, Kauffmann HF, Breitenbach M. Time-resolved fluorescence studies of dityrosine in the outer layer of intact yeast ascospores. Biophys J 1994; 67:309-17. [PMID: 7919001 PMCID: PMC1225361 DOI: 10.1016/s0006-3495(94)80482-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The (time-resolved) fluorescence properties of dityrosine in the outermost layer of the spore wall of Saccharomyces cerevisiae were investigated. Steady-state spectra revealed an emission maximum at 404 nm and a corresponding excitation maximum at 326 nm. The relative fluorescence quantum yield decreased with increasing proton concentration. The fluorescence decay of yeast spores was found to be nonexponential and differed pronouncedly from that of unbound dityrosine in water. Analysis of the spore decay recorded at lambda ex = 323 nm and lambda em = 404 nm by an exponential series (ESM) algorithm revealed a bimodal lifetime distribution with maxima centered at tau 1C = 0.5 ns and tau 2C = 2.6 ns. The relative amplitudes of the two distributions are shown to depend on the emission wavelength, indicating contributions from spectrally different dityrosine chromophores. On quenching the spore fluorescence with acrylamide, a downward curvature of the Stern-Volmer plot was obtained. A multitude of chromophores more or less shielded from solvent in the spore wall is proposed to account for the nonlinear quenching of the total spore fluorescence. Analysis of the fluorescence anisotropy decay revealed two rotational correlation times (phi 1 = 0.9 ns and phi 2 = 30.6 ns) or a bimodal distribution of rotational correlation times (centers at 0.7 ns and 40 ns) when the data were analyzed by the maximum entropy method (MEM). We present a model that accounts for the differences between unbound (aqueous) and bound (incorporated in the spore wall) dityrosine fluorescence. The main feature of the photophysical model for yeast spores is the presence of at least two species of dityrosine chromophores differing in their chemical environments. A hypothetical photobiological role of these fluorophores in the spore wall is discussed: the protection of the spore genome from mutagenic UV light.
Collapse
Affiliation(s)
- A J Kungl
- Institut für Physikalische Chemie der Universität Wien, Austria
| | | | | | | |
Collapse
|
27
|
Prevelige PE, King J, Silva JL. Pressure denaturation of the bacteriophage P22 coat protein and its entropic stabilization in icosahedral shells. Biophys J 1994; 66:1631-41. [PMID: 8061212 PMCID: PMC1275883 DOI: 10.1016/s0006-3495(94)80955-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The pressure stability of bacteriophage P22 coat protein in both monomeric and polymeric forms under hydrostatic pressure was examined using light scattering, fluorescence emission, polarization, and lifetime methodology. The monomeric protein is very unstable toward pressure and undergoes significant structural changes at pressures as low as 0.5 kbar. These structural changes ultimately lead to denaturation of the subunit. Comparison of the protein denatured by pressure to that in guanidine hydrochloride suggests that pressure results in partial unfolding, perhaps by a domain mechanism. Fluorescence lifetime measurements indicate that at atmospheric pressure the local environments of the tryptophans are remarkably similar, suggesting they may be clustered. In contrast to the monomeric protein subunit, the protein when polymerized into procapsid shells is very stable to applied pressure and does not dissociate with pressure up to 2.5 kbar. However, under applied pressure the procapsid shells are cold-labile, suggesting they are entropically stabilized. The significance of these results in terms of virus assembly are discussed.
Collapse
Affiliation(s)
- P E Prevelige
- Boston Biomedical Research Institute, Massachusetts 02114
| | | | | |
Collapse
|
28
|
Wang RW, Bird AW, Newton DJ, Lu AY, Atkins WM. Fluorescence characterization of Trp 21 in rat glutathione S-transferase 1-1: microconformational changes induced by S-hexyl glutathione. Protein Sci 1993; 2:2085-94. [PMID: 8298458 PMCID: PMC2142333 DOI: 10.1002/pro.5560021209] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The glutathione S-transferase (GST) isoenzyme A1-1 from rat contains a single tryptophan, Trp 21, which is expected to lie within alpha-helix 1 based on comparison with the X-ray crystal structures of the pi- and mu-class enzymes. Steady-state and multifrequency phase/modulation fluorescence studies have been performed in order to characterize the fluorescence parameters of this tryptophan and to document ligand-induced conformational changes in this region of the protein. Addition of S-hexyl glutathione to GST isoenzyme A1-1 causes an increase in the steady-state fluorescence intensity, whereas addition of the substrate glutathione has no effect. Frequency-domain excited-state lifetime measurements indicate that Trp 21 exhibits three exponential decays in substrate-free GST. In the presence of S-hexyl glutathione, the data are also best described by the sum of three exponential decays, but the recovered lifetime values change. For the substrate-free protein, the short lifetime component contributes 9-16% of the total intensity at four wavelengths spanning the emission. The fractional intensity of this lifetime component is decreased to less than 3% in the presence of S-hexyl glutathione. Steady-state quenching experiments indicate that Trp 21 is insensitive to quenching by iodide, but it is readily quenched by acrylamide. Acrylamide-quenching experiments at several emission wavelengths indicate that the long-wavelength components become quenched more easily in the presence of S-hexyl glutathione. Differential fluorescence polarization measurements also have been performed, and the data describe the sum of two anisotropy decay rates. The recovered rotational correlation times for this model are 26 ns and 0.81 ns, which can be attributed to global motion of the protein dimer, and fast local motion of the tryptophan side chain. These results demonstrate that regions of GST that are not in direct contact with bound substrates are mobile and undergo microconformational rearrangement when the "H-site" is occupied.
Collapse
Affiliation(s)
- R W Wang
- Department of Animal & Exploratory Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey 07065
| | | | | | | | | |
Collapse
|
29
|
Royer CA, Mann CJ, Matthews CR. Resolution of the fluorescence equilibrium unfolding profile of trp aporepressor using single tryptophan mutants. Protein Sci 1993; 2:1844-52. [PMID: 8268795 PMCID: PMC2142281 DOI: 10.1002/pro.5560021106] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Single tryptophan mutants of the trp aporepressor, tryptophan 19-->phenylalanine (W19F) and tryptophan 99-->phenylalanine (W99F), were used in this study to resolve the individual steady-state and time-resolved fluorescence urea unfolding profiles of the two tryptophan residues in this highly intertwined, dimeric protein. The wild-type protein exhibits a large increase in fluorescence intensity and lifetime, as well as a large red shift in the steady-state fluorescence emission spectrum, upon unfolding by urea (Lane, A.N. & Jardetsky, O., 1987, Eur. J. Biochem. 164, 389-396; Gittelman, M.S. & Matthews, C.R., 1990, Biochemistry 29, 7011-7020; Fernando, T. & Royer, C.A., 1992, Biochemistry 31, 6683-6691). Unfolding of the W19F mutant demonstrated that Trp 99 undergoes a large increase in intensity and a red shift upon exposure to solvent. Lifetime studies revealed that the contribution of the dominant 0.5-ns component of this tryptophan tends toward zero with increasing urea, whereas the longer lifetime components increase in importance. This lifting of the quenching of Trp 99 may be due to disruption of the interaction between the two subunits upon denaturation, which abolishes the interaction of Trp 99 on one subunit with the amide quenching group of Asn 32 on the other subunit (Royer, C.A., 1992, Biophys. J. 63, 741-750). On the other hand, Trp 19 is quenched in response to unfolding in the W99F mutant. Exposure to solvent of Trp 19, which is buried at the hydrophobic dimer interface in the native protein, results in a large red shift of the average steady-state emission.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C A Royer
- School of Pharmacy, University of Wisconsin at Madison 53706
| | | | | |
Collapse
|
30
|
Atkins WM, Villafranca JJ. Time-resolved fluorescence studies of tryptophan mutants of Escherichia coli glutamine synthetase: conformational analysis of intermediates and transition-state complexes. Protein Sci 1993; 1:342-55. [PMID: 1363912 PMCID: PMC2142202 DOI: 10.1002/pro.5560010306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Single tryptophan-containing mutants of low adenylylation state Escherichia coli glutamine synthetase have been studied by frequency-domain fluorescence spectroscopy in the presence of various substrates and inhibitors. At pH 6.5, the Mn-bound wild-type enzyme (wild type has two tryptophans/subunit) and the mutant enzymes exhibit heterogeneous fluorescence decay kinetics; the individual tryptophans are adequately described by a triple exponential decay scheme. The recovered lifetime values are 5.9 ns, 2.6 ns, and 0.4 ns for Trp-57 and 5.8 ns, 2.3 ns, and 0.4 ns for Trp-158. These values are nearly identical to the previously reported results at pH 7.5 (Atkins, W.M., Stayton, P.S., & Villafranca, J.J., 1991, Biochemistry 30, 3406-3416). In addition, Trp-57 and Trp-158 both exhibit an ATP-induced increase in the relative fraction of the long lifetime component, whereas only Trp-57 is affected by this ligand at pH 7.5. The transition-state analogue L-methionine-(R,S)-sulfoximine (MSOX) causes a dramatic increase in the fractional intensity of the long lifetime component of Trp-158. This ligand has no effect on the W158S mutant protein and causes a small increase in the fractional intensity of the long lifetime component of the W158F mutant protein. Addition of glutamate to the ATP complex, which affords the gamma-glutamylphosphate-ADP complex, results in the presence of new lifetime components at 7, 3.2, and 0.5 ns for Trp-158, but has no effect on Trp-57. Similar results were obtained when ATP was added to the MSOX complex; Trp-57 exhibits heterogeneous fluorescence decay with lifetimes of 7, 3.5, and 0.8 ns. Decay kinetics of Trp-158 are best fit to a nearly homogeneous decay with a lifetime of 5.5 ns in the MSOX-ATP inactivated complex. These results provide a model for the sequence of structural and dynamic changes that take place at the Trp-57 loop and the central loop (Trp-158) during several intermediate stages of catalysis.
Collapse
Affiliation(s)
- W M Atkins
- Department of Chemistry, Pennsylvania State University, University Park 16802
| | | |
Collapse
|
31
|
Kim SJ, Chowdhury FN, Stryjewski W, Younathan ES, Russo PS, Barkley MD. Time-resolved fluorescence of the single tryptophan of Bacillus stearothermophilus phosphofructokinase. Biophys J 1993; 65:215-26. [PMID: 8369432 PMCID: PMC1225717 DOI: 10.1016/s0006-3495(93)81070-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The fluorescence of the single tryptophan in Bacillus stearothermophilus phosphofructokinase was characterized by steady-state and time-resolved techniques. The enzyme is a tetramer of identical subunits, which undergo a concerted allosteric transition. Time-resolved emission spectral data were fitted to discrete and distributed lifetime models. The fluorescence decay is a double exponential with lifetimes of 1.6 and 4.4 ns and relative amplitudes of 40 and 60%. The emission spectra of both components are identical with maxima at 327 nm. The quantum yield is 0.31 +/- 0.01. The shorter lifetime is independent of temperature; the longer lifetime has weak temperature dependence with activation energy of 1 kcal/mol. The fluorescence intensity and decay are the same in H2O and D2O solutions, indicating that the indole ring is not accessible to bulk aqueous solution. The fluorescence is not quenched significantly by iodide, but it is quenched by acrylamide with bimolecular rate constant of 5 x 10(8) M-1 s-1. Static and dynamic light scattering measurements show that the enzyme is a tetramer in solution with hydrodynamic radius of 40 A. Steady-state and time-resolved fluorescence anisotropies indicate that the tryptophan is immobile. The allosteric transition has little effect on the fluorescence properties. The fluorescence results are related to the x-ray structure.
Collapse
Affiliation(s)
- S J Kim
- Department of Chemistry, Louisiana State University, Baton Rouge 70803
| | | | | | | | | | | |
Collapse
|
32
|
Atkins WM, Cader BM, Hemmingsen J, Villafranca JJ. Time-resolved fluorescence and computational studies of adenylylated glutamine synthetase: analysis of intersubunit interactions. Protein Sci 1993; 2:800-13. [PMID: 8098638 PMCID: PMC2142491 DOI: 10.1002/pro.5560020510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Adenylylation of Tyr-397 of each subunit of Escherichia coli glutamine synthetase (GS) down-regulates enzymatic activity in vivo. The overall structure of the enzyme consists of 12 subunits arranged as two hexamers, face to face. Research reported in this paper addresses the question of whether the covalently attached adenylyl group interacts with neighboring amino acid residues to produce the regulatory phenomenon. Wild-type GS has two Trp residues (positions 57 and 158) and the adenylylation site lies within 7-8 A of the Trp-57 loop in the adjacent subunit of the same hexameric ring; Trp-158 is about 35 A from the site of adenylylation. Fluorescence lifetimes and quantum yields have been determined for two fluorophores with wild-type and mutant GS. One fluorophore is epsilon-AMP adenylylated GS (at Tyr-397), and the other fluorophore is the intrinsic protein residue Trp-57. These experiments were conducted in order to detect possible intersubunit interactions between adenylyl groups and the neighboring Trp-57 to search for a role for the Trp-57 loop in the regulation of GS. The fluorescence due to epsilon-AMP of two adenylylated enzymes, wild-type GS and the W158F mutant, exhibits heterogeneous decay kinetics; the data adequately fit to a double exponential decay model with recovered average lifetime values of 18.2 and 2.1 ns, respectively. The pre-exponential factors range from 0.66 to 0.73 for the long lifetime component, at five emission wavelengths. The W57L-epsilon-AMP enzyme yields longer average lifetime values of 19.5 and 2.4 ns, and the pre-exponential factors range from 0.82 to 0.85 for the long lifetime component. An additional residue in the Trp-57 loop, Lys-58, has been altered and the K58C mutant enzyme has been adenylylated with epsilon-AMP on Tyr-397. Lys-58 is near the ATP binding site and may represent a link by which the adenylyl group controls the activity of GS. The fluorescence of epsilon-AMP-adenylylated K58C mutant GS is best described by a triple exponential decay with average recovered lifetime values of 19.9, 4.6, and 0.58 ns, with the largest fraction being the median lifetime component. Relative quantum yields of epsilon-AMP-Tyr-397 were measured in order to determine if static quenching occurs from adenine-indole stacking in the wild-type GS. The relative quantum yield of the epsilon-AMP-adenylylated W57L mutant is larger than the wild-type protein by the amount predicted from the difference in lifetime values: thus, no static quenching is evident.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- W M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
33
|
Royer CA. Investigation of the structural determinants of the intrinsic fluorescence emission of the trp repressor using single tryptophan mutants. Biophys J 1992; 63:741-50. [PMID: 1420911 PMCID: PMC1262207 DOI: 10.1016/s0006-3495(92)81658-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The fluorescence decay properties of wild-type trp repressor (TR) have been characterized by carrying out a multi-emission wavelength study of the frequency response profiles. The decay is best analyzed in terms of a single exponential decay near 0.5 ns and a distribution of lifetimes centered near 3-4 ns. By comparing the recovered decay associated spectra and lifetime values with the structure of the repressor, tentative assignments of the two decay components recovered from the analysis to the two tryptophan residues, W19 and W99, of the protein have been made. These assignments consist of linking the short, red emitting component to emission from W99 and most of the longer bluer emitting lifetime distribution to emission from W19. Next, single tryptophan mutants of the repressor in which one of each of the tryptophan residues was substituted by phenylalanine were used to confirm the preliminary assignments, inasmuch as the 0.5-ns component is clearly due to emission from tryptophan 99, and much of the decay responsible for the recovered distribution emanates from tryptophan 19. The data demonstrate, however, that the decay of the wild-type protein is not completely resolvable due both to the large number of components in the wild-type emission (at least five) as well as to the fact that three of the five lifetime components are very close in value. The fluorescence decay of the wild-type decay is well described as a combination of the components found in each of the mutants. However, whereas the linear combination analysis of the 15 data sets (5 from the wild-type and each mutant) yields a good fit for the components recovered previously for the two mutants, the amplitudes of these components in the wild-type are not recovered in the expected ratios. Because of the dominance of the blue shifted emission in the wild-type protein, it is most likely that subtle structural differences in the wild-type as compared with the mutants, rather than energy transfer from tryptophan 19 to 99, are responsible for this failure of the linear combination hypothesis.
Collapse
Affiliation(s)
- C A Royer
- School of Pharmacy, University of Wisconsin-Madison 53706
| |
Collapse
|
34
|
Royer CA, Ropp T, Scarlata SF. Solution studies of the interactions between the histone core proteins and DNA using fluorescence spectroscopy. Biophys Chem 1992; 43:197-211. [PMID: 1307864 DOI: 10.1016/0301-4622(92)80034-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The equilibrium interactions between histone H2A-H2B and H3/H4 subunits with 200 base pair chicken erythrocyte DNA have been studied by monitoring the fluorescence polarization of a long-lived fluorescence probe covalently bound to the histone subunits. These studies have brought to light the formation of highly asymmetric complexes exhibiting very high histone/DNA stoichiometries as well as very high apparent affinities. The stoichiometries observed for these non-nucleosome complexes depended both upon the concentration of the histones and the concentration of the DNA 200mer. The observed stoichiometries varied approximately between 4 and 16 histone octamers/DNA 200mer and the affinities were in the nanomolar range. These results are discussed in terms of their in vitro as well as their possible in vivo significance.
Collapse
Affiliation(s)
- C A Royer
- University of Wisconsin, School of Pharmacy, Madison 53706
| | | | | |
Collapse
|
35
|
Bourguignon-Bellefroid C, Wilkin JM, Joris B, Aplin RT, Houssier C, Prendergast FG, Van Beeumen J, Ghuysen JM, Frère JM. Importance of the two tryptophan residues in the Streptomyces R61 exocellular DD-peptidase. Biochem J 1992; 282 ( Pt 2):361-7. [PMID: 1546952 PMCID: PMC1130787 DOI: 10.1042/bj2820361] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Modification of the Streptomyces R61 DD-peptidase by N-bromosuccinimide resulted in a rapid loss of enzyme activity. In consequence, the role of the enzyme's two tryptophan residues was investigated by site-directed mutagenesis. Trp271 was replaced by Leu. The modification yielded a stable enzyme whose structural and catalytic properties were similar to those of the wild-type protein. Thus the Trp271 residue, though almost invariant among the beta-lactamases of classes A and C and the low-Mr penicillin-binding proteins, did not appear to be essential for enzyme activity. Mutations of the Trp233 into Leu and Ser strongly decreased the enzymic activity, the affinity for beta-lactams and the protein stability. Surprisingly, the benzylpenicilloyl-(W233L)enzyme deacylated at least 300-fold more quickly than the corresponding acyl-enzyme formed with the wild-type protein and gave rise to benzylpenicilloate instead of phenylacetylglycine. This mutant DD-peptidase thus behaved as a weak beta-lactamase.
Collapse
|
36
|
Chabbert M, Hillen W, Hansen D, Takahashi M, Bousquet JA. Structural analysis of the operator binding domain of Tn10-encoded Tet repressor: a time-resolved fluorescence and anisotropy study. Biochemistry 1992; 31:1951-60. [PMID: 1311199 DOI: 10.1021/bi00122a008] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An engineered Tn10-encoded Tet repressor, bearing a single Trp residue at position 43, in the putative alpha-helix-turn-alpha-helix motif of the operator binding domain, was studied by time-resolved fluorescence and anisotropy. Fluorescence intensity decay data suggested the existence of two classes of Trp-43, defined by different lifetimes. Analysis of anisotropy data were consistent with a model in which each class was defined by a different lifetime, rotational correlation time, and fluorescence emission maximum. The long-lifetime class had a red-shifted spectrum, similar to that of tryptophan zwitterion in water, and a short rotational correlation time. In contrast, the spectrum of the short-lifetime class was blue-shifted 10 nm compared to that of the long-lifetime class. Its correlation time was similar to that of the protein, which showed that Trp in this class was entirely constrained. Trp in this latter class could not be quenched by iodide, whereas most of the long-lifetime class was easily accessible. Presence of disruptive agents, such as 1 M GuCl or 3 M KCl, did not alter markedly the lifetimes but increased the weight of the short-lifetime component. In the same time, the rotational correlation time of this component was dramatically reduced. Taken together, our data suggest that the long-lifetime class could correspond to the tryptophan residues exposed to solvent whereas the short-lifetime class would correspond to the tryptophan residues embedded inside the hydrophobic core holding the helix-turn-helix motif. Destabilization of hydrophobic interactions would lead to an increase in the weight of the latter class for entropic reasons. Analysis of the fluorescence parameters of Trp-43 could provide structural information on the operator binding domain of Tet repressor.
Collapse
Affiliation(s)
- M Chabbert
- CNRS UA 491, Faculté de Pharmacie de Strasbourg, Illkirch, France
| | | | | | | | | |
Collapse
|
37
|
Prendergast FG. Time-resolved fluorescence techniques: methods and applications in biology. Curr Opin Struct Biol 1991. [DOI: 10.1016/0959-440x(91)90105-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Eftink MR, Gryczynski I, Wiczk W, Laczko G, Lakowicz JR. Effects of temperature on the fluorescence intensity and anisotropy decays of staphylococcal nuclease and the less stable nuclease-conA-SG28 mutant. Biochemistry 1991; 30:8945-53. [PMID: 1892812 PMCID: PMC6897575 DOI: 10.1021/bi00101a005] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Frequency-domain fluorescence spectroscopy was used to investigate the effects of temperature on the intensity and anisotropy decays of the single tryptophan residues of Staphylococcal nuclease A and its nuclease-conA-SG28 mutant. This mutant has the beta-turn forming hexapeptide, Ser-Gly-Asn-Gly-Ser-Pro, substituted for the pentapeptide Tyr-Lys-Gly-Gln-Pro at positions 27-31. The intensity decays were analyzed in terms of a sum of exponentials and with Lorentzian distributions of decay times. The anisotropy decays were analyzed in terms of a sum of exponentials. Both the intensity and anisotropy decay parameters strongly depend on temperature near the thermal transitions of the proteins. Significant differences in the temperature stability of Staphylococcal nuclease and the mutant exist; these proteins show characteristic thermal transition temperatures (Tm) of 51 and 30 degrees C, respectively, at pH 7. The temperature dependence of the intensity decay data are shown to be consistent with a two-state unfolding model. For both proteins, the longer rotational correlation time, due to overall rotational diffusion, decreases dramatically at the transition temperature, and the amplitude of the shorter correlation time increases, indicating increased segmental motions of the single tryptophan residue. The mutant protein appears to have a slightly larger overall rotational correlation time and to show slightly more segmental motion of its Trp than is the case for the wild-type protein.
Collapse
Affiliation(s)
- M R Eftink
- Department of Chemistry, University of Mississippi, University 38677
| | | | | | | | | |
Collapse
|
39
|
Axelsen PH, Bajzer Z, Prendergast FG, Cottam PF, Ho C. Resolution of fluorescence intensity decays of the two tryptophan residues in glutamine-binding protein from Escherichia coli using single tryptophan mutants. Biophys J 1991; 60:650-9. [PMID: 1932553 PMCID: PMC1260108 DOI: 10.1016/s0006-3495(91)82094-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Time correlated single photon counting measurements of tryptophan (Trp) fluorescence intensity decay and other spectroscopic studies were performed on glutamine-binding protein (GlnBP) from Escherichia coli. Using site-specifically mutated forms of the protein in which tyrosine (Tyr) and phenylalanine (Phe) substitute for the Trp residues at positions 32 and 220, we have examined whether wild-type (Wtyp) intensity decay components may be assigned to specific Trp residues. Results indicate that: (a) two exponential intensity decay components are recovered from the Wtyp protein (6.16 ns, 0.46 ns); (b) the long decay component arises from Trp-220 and comprises greater than 90% of the total fluorescence emission; (c) the short component arises from Trp-32 and is highly quenched; (d) all four single-Trp mutants exhibit multiexponential intensity decays, yet equimolar mixtures of two single-Trp mutants yield only two decay components which are virtually indistinguishable from the Wtyp protein; (e) the recovery of additional components in protein mixtures is obscured by statistical noise inherent in the technique of photon counting; (f) various spectroscopic measurements suggest that Trp-Trp interactions occur in the Wtyp protein, but the Wtyp intensity decay may be closely approximated by a linear combination of intensity decays from single-Trp mutants; and (g) inferences derived independently from fluorescence and NMR spectroscopy which pertain to the presence of Trp-Trp interactions and the relative solvent exposure of the two Trp residues are in agreement.
Collapse
Affiliation(s)
- P H Axelsen
- Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Rochester, Minnesota 55905
| | | | | | | | | |
Collapse
|
40
|
Lee J, Wang YY, Gibson BG. Electronic excitation transfer in the complex of lumazine protein with bacterial bioluminescence intermediates. Biochemistry 1991; 30:6825-35. [PMID: 2069948 DOI: 10.1021/bi00242a004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fluorescence dynamics measurements have been made on the bioluminescence reaction intermediates using Photobacterium leiognathi, Vibrio fischeri, and Vibrio harveyi luciferases, both alone and in mixtures with Photobacterium phosphoreum lumazine protein. Each luciferase produces a "fluorescent transient" intermediate on reaction with the bioluminescence substrates, FMNH2, tetradecanal, and O2, and all have a fluorescence quantum yield about 0.3, with a predominant lifetime around 10 ns. The P. leiognathi luciferase fluorescent transient has a rotational correlation time of 79 ns at 2 degrees C, as expected for the rotational diffusion of a 77-kDa macromolecule. In the presence of lumazine protein however a faster correlation time of about 3 ns predominates. This rapid channel of anisotropy loss is attributed to energy transfer from the flavin intermediate bound on the luciferase to the lumazine ligand, reflects the presence of protein-protein complexation, and is greatest in the case of P. leiognathi, but not at all for V. fischeri. This fact is consistent with the strong influence of lumazine protein on the bioluminescence reaction of P. leiognathi, and not at all with V. fischeri. The rate of energy transfer is of order 10(9) s-1, much greater than the 10(8) s-1 fluorescence rate of the donor. Thus the bioluminescence excitation of lumazine protein could occur by a similar photophysical mechanism of interprotein energy transfer from a chemically excited fluorescent transient donor to the lumazine acceptor.
Collapse
Affiliation(s)
- J Lee
- Department of Biochemistry, University of Georgia, Athens 30602
| | | | | |
Collapse
|
41
|
Atkins WM, Stayton PS, Villafranca JJ. Time-resolved fluorescence studies of genetically engineered Escherichia coli glutamine synthetase. Effects of ATP on the tryptophan-57 loop. Biochemistry 1991; 30:3406-16. [PMID: 1672820 DOI: 10.1021/bi00228a008] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Single-tryptophan-containing mutants of low adenylation state Escherichia coli glutamine synthetase (wild type has two tryptophans at positions 57 and 158) have been constructed and studied by multifrequency phase/modulation fluorescence spectroscopy. The W57L mutant (retains tryptophan at residue 158) and the W158S mutant (retains tryptophan at residue 57) are both characterized by heterogeneous exponential decay kinetics. Global analysis indicates that for the Mn-bound form of the enzyme at pH 7.4 the fluorescence of both tryptophans is best described by a sum of three discrete expontials with recovered lifetimes of 4.77, 1.72, and 0.10 ns for Trp-57 and 5.04, 2.28, and 0.13 ns for Trp-158. The wild-type enzyme also exhibits decay kinetics described by a triple-exponential model with similar lifetime components. The individual tryptophans are distinguishable by the fractional intensities of the resolvable lifetimes. The wild-type and W158S enzymes are dominated by the 5-ns component which provides nearly 60% and 65%, respectively, of the fractional intensity at five wavelengths spanning the emission spectrum. In contrast, the W57L enzyme demonstrates a larger fraction of the 2-ns lifetime species (60%) and only 35% of the longer lifetime component. The substrate ATP induces a shift to approximately 90% of the 5-ns component for the wild-type and W158S enzymes, whereas the W57L protein is essentially unaffected by this ligand. Steady-state quenching studies with iodide indicate that addition of ATP results in a 3.0-3.5-fold decrease in the apparent Stern-Volmer quenching constants for the wild-type and W158S enzymes. Phase/modulation experiments at several iodide concentrations indicate that the median, 2 ns, lifetime component is selectively quenched compared to the 5-ns lifetime component. These results suggest a model where ATP binding results in a shift in the equilibrium distribution of microconformational states populated by Trp-57. ATP shifts this equilibrium nearly completely to the states exhibiting the long-lifetime component which, based on quenching studies, is less solvent-accessible than the conformational states associated with the other lifetime components.
Collapse
Affiliation(s)
- W M Atkins
- Department of Chemistry, Pennsylvania State University, University Park 16802
| | | | | |
Collapse
|
42
|
Berndt KW, Gryczynski I, Lakowicz JR. A 4-GHz frequency-domain fluorometer with internal microchannel plate photomultiplier cross-correlation. Anal Biochem 1991; 192:131-7. [PMID: 2048714 DOI: 10.1016/0003-2697(91)90197-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have developed and tested a multifrequency phase/modulation fluorometer based on the Hamamatsu Model R2024U gatable microchannel plate photomultiplier (MCP-PMT), using internal MCP-PMT cross-correlation. This internal mixing is accomplished by biasing and modulating the gating mesh which is located 0.2 mm behind the photocathode. Near the photocathode center, no high-frequency photocurrent modulation was achieved. Within a circular area near the photocathode edge, however, the R2024U allows accurate phase shift and demodulation measurements up to at least 4.5 GHz, the frequency limit of our PMT-modulation amplifier. By mixing immediately after the photocathode, there is no decrease in the time resolution due to transit time spread, and the MCP has to process only low-frequency signals. This means no low-level high-frequency signal voltages have to be handled in this fluorometer, and the problems of RF shielding become much less critical. Also, the effective output impedance of the PMT has been increased, resulting in a 43-dB increase in the PMT output signal power. In principle, more MCPs could be built into the PMT, allowing an improved fluorescence detection limit. We have used the method of reference fluorophores in order to compensate for pronounced PMT color effects, a wavelength-dependent modulation, and a wavelength-dependent time shift. No color correction is required in the case of time-dependent depolarization. The performance of the instrument was verified by measurements of the intensity decay of perylene, which showed a single-exponential decay, and by measurements of the decay of tryptophan in water, which showed a double-exponential decay, as expected.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K W Berndt
- University of Maryland School of Medicine, Department of Biological Chemistry, Baltimore 21201
| | | | | |
Collapse
|
43
|
|