1
|
Singh AK, Wadsworth PA, Tapia CM, Aceto G, Ali SR, Chen H, D'Ascenzo M, Zhou J, Laezza F. Mapping of the FGF14:Nav1.6 complex interface reveals FLPK as a functionally active peptide modulating excitability. Physiol Rep 2020; 8:e14505. [PMID: 32671946 PMCID: PMC7363588 DOI: 10.14814/phy2.14505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
The voltage-gated sodium (Nav) channel complex is comprised of pore-forming α subunits (Nav1.1-1.9) and accessory regulatory proteins such as the intracellular fibroblast growth factor 14 (FGF14). The cytosolic Nav1.6 C-terminal tail binds directly to FGF14 and this interaction modifies Nav1.6-mediated currents with effects on intrinsic excitability in the brain. Previous studies have identified the FGF14V160 residue within the FGF14 core domain as a hotspot for the FGF14:Nav1.6 complex formation. Here, we used three short amino acid peptides around FGF14V160 to probe for the FGF14 interaction with the Nav1.6 C-terminal tail and to evaluate the activity of the peptide on Nav1.6-mediated currents. In silico docking predicts FLPK to bind to FGF14V160 with the expectation of interfering with the FGF14:Nav1.6 complex formation, a phenotype that was confirmed by the split-luciferase assay (LCA) and surface plasmon resonance (SPR), respectively. Whole-cell patch-clamp electrophysiology studies demonstrate that FLPK is able to prevent previously reported FGF14-dependent phenotypes of Nav1.6 currents, but that its activity requires the FGF14 N-terminal tail, a domain that has been shown to contribute to Nav1.6 inactivation independently from the FGF14 core domain. In medium spiny neurons in the nucleus accumbens, where both FGF14 and Nav1.6 are abundantly expressed, FLPK significantly increased firing frequency by a mechanism consistent with the ability of the tetrapeptide to interfere with Nav1.6 inactivation and potentiate persistent Na+ currents. Taken together, these results indicate that FLPK might serve as a probe for characterizing molecular determinants of neuronal excitability and a peptide scaffold to develop allosteric modulators of Nav channels.
Collapse
Affiliation(s)
- Aditya K. Singh
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
| | - Paul A. Wadsworth
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
- M.D.‐Ph.D. Combined Degree ProgramUniversità Cattolica del Sacro CuoreRomeItaly
- Biochemistry and Molecular Biology Graduate ProgramUniversità Cattolica del Sacro CuoreRomeItaly
| | - Cynthia M. Tapia
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
- NIEHS Environmental Toxicology Training ProgramUniversità Cattolica del Sacro CuoreRomeItaly
| | - Giuseppe Aceto
- Institute of Human PhysiologyUniversità Cattolica del Sacro CuoreRomeItaly
- Department of NeuroscienceUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Universitario A. GemelliIRCCSRomeItaly
| | - Syed R. Ali
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
| | - Haiying Chen
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
| | - Marcello D'Ascenzo
- Institute of Human PhysiologyUniversità Cattolica del Sacro CuoreRomeItaly
- Department of NeuroscienceUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Universitario A. GemelliIRCCSRomeItaly
| | - Jia Zhou
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
- Center for Addiction ResearchUniversity of Texas Medical BranchGalvestonTXUSA
| | - Fernanda Laezza
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
- Center for Addiction ResearchUniversity of Texas Medical BranchGalvestonTXUSA
- Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTXUSA
| |
Collapse
|
2
|
Velarde G, Ait-Aissa S, Gillet C, Rogerieux F, Lambre C, Vindimian E, Porcher JM. Use of the caco-2 model in the screening of polluting substance toxicity. Toxicol In Vitro 2012; 13:719-22. [PMID: 20654540 DOI: 10.1016/s0887-2333(99)00055-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The aim of this work was to investigate the oral toxicity of representative chemicals chosen from each class of the list of 132 substances present in industrial effluents after the EEC Directive 76-464. Owing to its characterization as a model of the intestinal epithelium, the CaCo-2 cell line model was chosen. Cytotoxicity was assayed using the tetrazolium blue (MTT) test. For most of the substances, a linear correlation was observed between the octanol/water partition coefficient (log Kw) and the median inhibition concentration (IC(50)). This relationship between lipophilicity and toxicity is the hallmark of a narcotic mechanism of action. However, diethylamine appeared more toxic than the correlation would predict. Other amines were then tested (tert-butylamine, n-butylamine and benzylamine). All of these did not fit into the baseline correlation. The IC(50) were corrected by taking into account only the non-ionized, lipid insoluble, concentration at pH7.3. The amines still did not fit into the correlation, reinforcing the idea of a non-narcotic mechanism. The toxicity of a large number of substances can thus be predicted from their physico-chemical properties only when the substances exert a direct and non-specific effect. The amines appeared more toxic than substances with the same partition coefficient, showing that knowledge of the only lipophilicity is too restrictive to predict toxicity.
Collapse
Affiliation(s)
- G Velarde
- Laboratoire de Biochimie et Toxicologie in vitro, Institut National de l'Environnement Industriel et des Risques (INERIS), F-60550 Verneuil-en-Halatte, France
| | | | | | | | | | | | | |
Collapse
|
3
|
Cruz JS, Silva DF, Ribeiro LA, Araújo IGA, Magalhães N, Medeiros A, Freitas C, Araujo IC, Oliveira FA. Resurgent Na+ current: a new avenue to neuronal excitability control. Life Sci 2011; 89:564-9. [PMID: 21683085 DOI: 10.1016/j.lfs.2011.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 05/04/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
Integrative and firing properties are important characteristics of neuronal circuits and these responses are determined in large part by the repertoire of ion channels they express, which can vary considerably between cell types. Recently, a new mode of operation of voltage dependent sodium channels has been described that generates a so-called resurgent Na+ current. Accumulating evidence suggests resurgent Na current participates in the generation of sub-threshold inward Na+ current causing membrane depolarization which provides the necessary drive to fire high-frequency action potentials. Recent studies indicate that resurgent Na+ current could be a more widespread feature than previously thought.
Collapse
Affiliation(s)
- Jader S Cruz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Effects of phenylpropanolamine (PPA) on in vitro human erythrocyte membranes and molecular models. Biochem Biophys Res Commun 2011; 406:320-5. [DOI: 10.1016/j.bbrc.2011.01.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 11/17/2022]
|
5
|
Fraceto LF, Oyama S, Nakaie CR, Spisni A, de Paula E, Pertinhez TA. Interaction of local anesthetics with a peptide encompassing the IV/S4–S5 linker of the Na+ channel. Biophys Chem 2006; 123:29-39. [PMID: 16687202 DOI: 10.1016/j.bpc.2006.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 03/17/2006] [Accepted: 03/19/2006] [Indexed: 11/16/2022]
Abstract
The peptide pIV/S4-S5 encompasses the cytoplasmic linker between helices S4-S5 in domain IV of the voltage-gated Na+ channel, residues 1644-1664. The interaction of two local anesthetics (LA), lidocaine and benzocaine, with pIV/S4-S5 has been studied by DOSY, heteronuclear NMR 1H-15N-HSQC spectroscopy and computational methods. DOSY indicates that benzocaine, a neutral ester, exhibits stronger interaction with pIV/S4-S5 than lidocaine, a charged amine-amide. Weighted average chemical shifts, Deltadelta(1H-15N), show that benzocaine affects residues L1653, M1655 and S1656 while lidocaine slightly perturbs residues I1646, L1649 and A1659, L1660, near the N- and C-terminus, respectively. Computational methods confirmed the stability of the benzocaine binding and the existence of two binding sites for lidocaine. Even considering that the approach of studying the peptide in the presence of a co-solvent (TFE/H2O, 30%/70% v/v) has an inherently limited implication, our data strongly support the existence of multiple LA binding sites in the IV/S4-S5 linker, as suggested in the literature. In addition, we consider that LA can bind to the S4-S5 linker with diverse binding modes and strength since this linker is part of the receptor for the "inactivation gate particle". Conditions for devising new functional studies, aiming to better understand Na+ channel functionality as well as the various facets of LA pharmacological activity are proposed in this work.
Collapse
Affiliation(s)
- Leonardo F Fraceto
- Center of Molecular and Structural Biology, LNLS, Campinas, Brazil; Department of Biochemistry, Institute of Biology, State University of Campinas, Campinas, Brazil
| | | | | | | | | | | |
Collapse
|
6
|
Mohammadi B, Jurkat-Rott K, Alekov A, Dengler R, Bufler J, Lehmann-Horn F. Preferred mexiletine block of human sodium channels with IVS4 mutations and its pH-dependence. Pharmacogenet Genomics 2005; 15:235-44. [PMID: 15864116 DOI: 10.1097/01213011-200504000-00007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effects of extracellular pH (6.2, 7.4 and 8.2) and 0.1 mM mexiletine, a channel blocker of the lidocaine type, are studied on two mutations of the fourth voltage sensor of the Nav1.4 sodium channel, R1448H/C. The fast inactivated channel state to which mexiletine preferentially binds is destabilized by the mutations. By contrast to the expected low response of R1448H/C carriers, mexiletine is particularly effective in preventing exercise-induced stiffness and paralysis from which these patients suffer. Our measurements performed in the whole-cell mode on stably transfected HEK cells show for the first time that the mutations strikingly accelerate closed-state inactivation and, as steady-state fast inactivation is shifted to more negative potentials, stabilize the fast inactivated channel state in the potential range around the resting potential. At pH 7.4 and 8.2, the phasic mexiletine block is larger for R1448C (55%) and R1448H (47%) than for wild-type channels (31%) due to slowed recovery from block (tau is approximately 520 ms for R1448C versus 270 ms for wild-type at pH 7.4) although the recovery from inactivation is slightly faster for the mutants (tau is approximately 1.9 ms for R1448C versus 3.8 ms for wild-type at pH 7.4). At pH 6.2, recovery from block is relatively fast (tau is approximately 35 ms for R1448H/C and 14 ms for wild-type) and thus shows no use-dependence. We conclude that enhanced closed-state inactivation expands the concept of a mutation-induced uncoupling of channel inactivation from activation to a new potential range and that the higher mexiletine efficacy in R1448H/C carriers compared to other myotonic patients offers a pharmacogenetic strategy for mutation-specific treatment.
Collapse
Affiliation(s)
- Bahram Mohammadi
- Department of Neurology, Medical School Hannover, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Grieco TM, Malhotra JD, Chen C, Isom LL, Raman IM. Open-channel block by the cytoplasmic tail of sodium channel beta4 as a mechanism for resurgent sodium current. Neuron 2005; 45:233-44. [PMID: 15664175 DOI: 10.1016/j.neuron.2004.12.035] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 11/22/2004] [Accepted: 12/02/2004] [Indexed: 11/20/2022]
Abstract
Voltage-gated sodium channels with "resurgent" kinetics are specialized for high-frequency firing. The alpha subunits interact with a blocking protein that binds open channels upon depolarization and unbinds upon repolarization, producing resurgent sodium current. By limiting classical inactivation, the cycle of block and unblock shortens refractory periods. To characterize the blocker in Purkinje neurons, we briefly exposed inside-out patches to substrate-specific proteases. Trypsin and chymotrypsin each removed resurgent current, consistent with established roles for positively charged and hydrophobic/aromatic groups in blocking sodium channels. In Purkinje cells, the only known sodium channel-associated subunit that has a cytoplasmic sequence with several positive charges and clustered hydrophobic/aromatic residues is beta4 (KKLITFILKKTREK; beta4(154-167)). After enzymatic removal of block, beta4(154-167) fully reconstituted resurgent current, whereas scrambled or point-mutated peptides were ineffective. In CA3 pyramidal neurons, which lack beta4 and endogenous block, beta4(154-167) generated resurgent current. Thus, beta4 may be the endogenous open-channel blocker responsible for resurgent kinetics.
Collapse
Affiliation(s)
- Tina M Grieco
- Institute for Neuroscience, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
8
|
Pugsley MK, Yu EJ, Goldin AL. Potent and use-dependent block of cardiac sodium channels by U-50,488H, a benzeneacetamide kappa opioid receptor agonist. Exp Clin Cardiol 2001; 6:61-71. [PMID: 20428265 PMCID: PMC2859007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
OBJECTIVES To determine whether the kappa opioid receptor agonist U-50,488H, a benzacetamide derivative of the cyclo-hexane-1,2-diamine analgesics, may be a useful molecular probe to define the structural requirements of this class of drugs for cardiac sodium channel blockade. ANIMALS AND METHODS The electrophysiological effects of U-50,488H were compared with those of lidocaine, a clinically used class Ib antiarrhythmic agent, in rat heart sodium currents expressed in Xenopus laevis oocytes by using two-electrode voltage clamp. RESULTS Both U-50,488H and lidocaine produced a concentration-dependent tonic block of sodium current, but U-50,488H was approximately fourfold more potent than lidocaine. Both drugs produced a hyperpolarizing shift in the voltage dependence of sodium channel inactivation and both delayed recovery from inactivation. Both drugs exhibited use-dependent block, but U-50,488H showed a 1.8-fold increase in potency compared with lidocaine at a high frequency of stimulation (30 Hz). CONCLUSIONS The more potent tonic and use-dependent block of cardiac sodium channels by U-50,488H suggests that structural features of this molecule may provide it with a greater ability to block the channel. An understanding of these structural features may provide information needed in the development of novel arylacetamide-based antiarrhythmic drugs and insight into possible mechanisms describing channel block, resulting in a highly efficacious antiarrhythmic action in the heart.
Collapse
Affiliation(s)
- Michael K Pugsley
- Correspondence and reprints: Dr Michael K Pugsley, Department of Pharmacology & Toxicology, XOMA (US) LLC, Berkeley, CA 94710, USA. Telephone 510-644-1170, fax 510-704-8024, e-mail
| | | | | |
Collapse
|
9
|
French RJ, Zamponi GW, Sierralta IE. Molecular and kinetic determinants of local anaesthetic action on sodium channels. Toxicol Lett 1998; 100-101:247-54. [PMID: 10049150 DOI: 10.1016/s0378-4274(98)00192-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(1) Local anaesthetics (LA) rely for their clinical actions on state-dependent inhibition of voltage-dependent sodium channels. (2) Single, batrachoxin-modified sodium channels in planar lipid bilayers allow direct observation of drug-channel interactions. Two modes of inhibition of single-channel current are observed: fast block of the open channels and prolongation of a long-lived closed state, some of whose properties resemble those of the inactivated state of unmodified channels. (3) Analogues of different parts of the LA molecule separately mimic each blocking mode: amines--fast block, and water-soluble aromatics--closed state prolongation. (4) Interaction between a mu-conotoxin derivative and diethylammonium indicate an intrapore site of fast, open-state block. (5) Site-directed mutagenesis studies suggest that hydrophobic residues in transmembrane segment 6 of repeat domain 4 of sodium channels are critical for both LA binding and stabilization of the inactivated state.
Collapse
Affiliation(s)
- R J French
- Department of Physiology and Biophysics, The University of Calgary, Alberta, Canada.
| | | | | |
Collapse
|
10
|
Zamponi GW, Duff HJ, French RJ, Sheldon RS. Biochemical and biophysical studies of the interaction of class I antiarrhythmic drugs with the cardiac sodium channel. Drug Dev Res 1994. [DOI: 10.1002/ddr.430330310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Zamponi GW, French RJ. Transcainide causes two modes of open-channel block with different voltage sensitivities in batrachotoxin-activated sodium channels. Biophys J 1994; 67:1028-39. [PMID: 7811913 PMCID: PMC1225455 DOI: 10.1016/s0006-3495(94)80568-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Transcainide, a complex derivative of lidocaine, blocks the open state of BTX-activated sodium channels from bovine heart and rat skeletal muscle in two distinct ways. When applied to either side of the membrane, transcainide caused discrete blocking events a few hundred milliseconds in duration (slow block), and a concomitant reduction in apparent single-channel amplitude, presumably because of rapid block beyond the temporal resolution of our recordings (fast block). We quantitatively analyzed block from the cytoplasmic side. Both modes of block occurred via binding of the drug to the open channel, approximately followed 1:1 stoichiometry, and were similar for both channel subtypes. For slow block, the blocking rate increased, and the unblocking rate decreased with depolarization, yielding an overall enhancement of block at positive potentials, and suggesting a blocking site at an apparent electrical distance about 45% of the way from the cytoplasmic end of the channel (z delta approximately 0.45). In contrast, the fast blocking mode was only slightly enhanced by depolarization (z delta approximately 0.15). Phenomenologically, the bulky and complex transcainide molecule combines the almost voltage-insensitive blocking action of phenylhydrazine (Zamponi and French, 1994a (companion paper)) with a slow open-channel blocking action that shows a voltage dependence typical of simpler amines. Only the slower blocking mode was sensitive to the removal of external sodium ions, suggesting that the two types of block occur at distinct sites. Dose-response relations were also consistent with independent binding of transcainide to two separate sites on the channel.
Collapse
Affiliation(s)
- G W Zamponi
- Department of Medical Physiology, University of Calgary, Alberta, Canada
| | | |
Collapse
|