1
|
Mierzejewski K, Kurzyńska A, Golubska M, Całka J, Gałęcka I, Szabelski M, Paukszto Ł, Andronowska A, Bogacka I. New insights into the potential effects of PET microplastics on organisms via extracellular vesicle-mediated communication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166967. [PMID: 37699490 DOI: 10.1016/j.scitotenv.2023.166967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Plastics have become an integral part of our daily lives. In the environment, plastics break down into small pieces (<5 mm) that are referred to as microplastics. Microplastics are ubiquitous and widespread in the environment, and all living organisms are exposed to their effects. The present study provides new insights into the potential effects of polyethylene terephthalate (PET) microplastics on organisms via extracellular vesicle (EV)-mediated communication. The study demonstrated that serum-derived EVs are able to transport plastic particles. In addition, PET microplastics alter the content of miRNA in EVs. The identified differentially regulated miRNAs may target genes associated with lifestyle diseases, such as cardiovascular or metabolic diseases, and carcinogenesis. This work expands our understanding of PET microplastics' effects on organisms via EV-mediated communication and identifies directions for further research and strategies.
Collapse
Affiliation(s)
- Karol Mierzejewski
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Aleksandra Kurzyńska
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Monika Golubska
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Jarosław Całka
- Department of Clinical Physiology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Ismena Gałęcka
- Department of Clinical Physiology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Mariusz Szabelski
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Poland.
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Poland.
| | - Aneta Andronowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Poland.
| | - Iwona Bogacka
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, Poland.
| |
Collapse
|
2
|
Bhattacharya A, Bhowmik S, Singh AK, Kodgire P, Das AK, Mukherjee TK. Direct Evidence of Intrinsic Blue Fluorescence from Oligomeric Interfaces of Human Serum Albumin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10606-10615. [PMID: 28930631 DOI: 10.1021/acs.langmuir.7b02463] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The molecular origin behind the concentration-dependent intrinsic blue fluorescence of human serum albumin (HSA) is not known yet. This unusual blue fluorescence is believed to be a characteristic feature of amyloid-like fibrils of protein/peptide and originates due to the delocalization of peptide bond electrons through the extended hydrogen bond networks of cross-β-sheet structure. Herein, by combining the results of spectroscopy, size exclusion chromatography, native gel electrophoresis, and confocal microscopy, we have shown that the intrinsic blue fluorescence of HSA exclusively originates from oligomeric interfaces devoid of any amyloid-like fibrillar structure. Our study suggests that this low energy fluorescence band is not due to any particular residue/sequence, but rather it is a common feature of self-assembled peptide bonds. The present findings of intrinsic blue fluorescence from oligomeric interfaces pave the way for future applications of this unique visual phenomenon for early stage detection of various protein aggregation related human diseases.
Collapse
Affiliation(s)
- Arpan Bhattacharya
- Discipline of Chemistry, Indian Institute of Technology Indore , Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Soumitra Bhowmik
- Discipline of Chemistry, Indian Institute of Technology Indore , Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Amit K Singh
- Centre of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore , Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Prashant Kodgire
- Centre of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore , Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Apurba K Das
- Discipline of Chemistry, Indian Institute of Technology Indore , Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Tushar Kanti Mukherjee
- Discipline of Chemistry, Indian Institute of Technology Indore , Khandwa Road, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
3
|
Orita T, Tomita M, Harada M, Kato K. Binding activity of avidin to the biotin within mesoporous silica materials for bioanalytical applications. Anal Biochem 2012; 425:1-9. [DOI: 10.1016/j.ab.2012.02.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 02/26/2012] [Accepted: 02/27/2012] [Indexed: 11/25/2022]
|
4
|
Dwevedi A, Dubey VK, Jagannadham MV, Kayastha AM. Insights into pH-induced conformational transition of β-galactosidase from Pisum sativum leading to its multimerization. Appl Biochem Biotechnol 2010; 162:2294-312. [PMID: 20549573 DOI: 10.1007/s12010-010-9003-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
Abstract
Although β-galactosidases are physiologically a very important enzyme and have may therapeutics applications, very little is known about the stability and the folding aspects of the enzyme. We have used β-galactosidase from Pisum sativum (PsBGAL) as model system to investigate stability, folding, and function relationship of β-galactosidases. PsBGAL is a vacuolar protein which has a tendency to multimerize at acidic pH with protein concentration ≥100 μg mL⁻¹ and dissociates into its subunits above neutral pH. It exhibits maximum activity as well as stability under acidic conditions. Further, it has different conformational orientations and core secondary structures at different pH. Substantial predominance of β-content and interfacial interactions through Trp residues play crucial role in pH-dependent multimerization of enzyme. Equilibrium unfolding of PsBGAL at acidic pH follows four-state model when monitored by changes in the secondary structure with two intermediates: one resembling to molten globule-like state while unfolding seen from activity and tertiary structure of PsBGAL fits to two-state model. Unfolding of PsBGAL at higher pH always follows two-state model. Furthermore, unfolding of PsBGAL reveals that it has at least two domains: α/β barrel containing catalytic site and the other is rich in β-content responsible for enzyme multimerization.
Collapse
Affiliation(s)
- Alka Dwevedi
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | | | | | | |
Collapse
|
5
|
Quasi-static self-quenching of Trp-X and X-Trp dipeptides in water: ultrafast fluorescence decay. J Phys Chem B 2009; 113:12084-9. [PMID: 19708715 DOI: 10.1021/jp903078x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Time-resolved fluorescence decay profiles of N-acetyl-l-tryptophanamide (NATA) and tryptophan (Trp) dipeptides of the form Trp-X and X-Trp, where X is another aminoacyl residue, have been investigated using an ultraviolet upconversion spectrophoto fluorometer with time resolution better than 350 fs, together with a time-correlated single photon counting apparatus on the 100 ps to 20 ns time scale. We analyzed the set of fluorescence decay profiles at multiple wavelengths using the global analysis technique. Nanosecond fluorescence transients for Trp dipeptides all show multiexponential decay, while NATA exhibits a monoexponential decay near 3 ns independent of pH. In the first 100 ps, a time constant for the water "bulk relaxation" around Trp, NATA and Trp dipeptides are seen near 1-2 ps, with an associated preexponential amplitude that is positive or negative, depending on emission wavelength, as expected for a population conserving spectral shift. The initial brightness (sub-picosecond) we measure for all these dipeptides is less than that of NATA, implying even faster (<200 fs) intramolecular (quasi-) static quenching occurs within them. A new, third, ultrafast decay, bearing an exponential time constant of 20-30 ps with positive amplitude, has been found in many of these dipeptides. We believe it verifies our previous predictions of dipeptide QSSQ ("quasi-static self-quenching")-the loss of quantum yield to sub-100-ps decay process (Chen, R. F.; et al. Biochemistry 1991, 30, 5184). Most important, this term is found in proteins as well (Xu, J.; et al. J. Am. Chem. Soc. 2006, 128, 1214; Biophys. J. 2008, 94, 546; 2009, 96, 46a), suggesting an ultrafast quenching mechanism must be common to both.
Collapse
|
6
|
De Almeida RFM, Loura LMS, Prieto M, Watts A, Fedorov A, Barrantes FJ. Structure and dynamics of the γM4 transmembrane domain of the acetylcholine receptor in lipid bilayers: insights into receptor assembly and function. Mol Membr Biol 2009; 23:305-15. [PMID: 16923724 DOI: 10.1080/09687860600703613] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A 28-mer peptide (gammaM4) corresponding to the fourth transmembrane segment of the nicotinic acetylcholine receptor (AChR) gamma-subunit, with a single tryptophan residue (Trp6), was reconstituted into lipid bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), loaded with either high or low amounts of cholesterol, i.e., in the conjugated liquid-ordered and liquid-disordered phases, respectively, at room temperature. By making use of the Trp intrinsic fluorescence, both steady-state and time-resolved fluorescence techniques were employed, namely, red-edge excitation shift effect, decay-associated spectra (DAS), and time-resolved anisotropy. The results obtained here, together with previous studies on the same reconstituted peptide, indicate that: (i) Trp6 is strongly anchored in the bilayer with a defined transverse location; (ii) the modifications in the measured DAS are related to the complex result of a self-quenching process on the decay parameters; (iii) the wobbling movement of the indole moiety of Trp6 is fast but severely restricted in amplitude; and, (iv) in the liquid-ordered phase, the bilayer properties and the tilt angle of the peptide enhance peptide-peptide interactions, with the formation of peptide rich patches and possibly some anti-parallel helix-helix aggregates, showing different dynamics from that of the peptide in the liquid-disordered phase where the peptide is randomly distributed.
Collapse
Affiliation(s)
- Rodrigo F M De Almeida
- Centro de Química e Bioquímica, Faculdade de Ciências de Lisboa, Campo Grande, Lisboa, Portugal.
| | | | | | | | | | | |
Collapse
|
7
|
Ruan KH, Cervantes V, Wu J. Ligand-specific conformation determines agonist activation and antagonist blockade in purified human thromboxane A2 receptor. Biochemistry 2009; 48:3157-65. [PMID: 19170518 DOI: 10.1021/bi801443g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The binding of an agonist to a G protein-coupled receptor (GPCR) causes its coupling to different G proteins, which mediate signaling. However, the binding of an antagonist to the same site of the GPCR could not induce coupling. To understand the molecular mechanism involved, the structural flexibility of the purified human thromboxane A2 receptor (TP) was characterized by spectroscopic approaches, while bound to an agonist or antagonist. Circular dichroism not only revealed that the purified TP adopted more than 50% helical conformation in solution but also showed that the antagonist, SQ29,548, could induce more of a beta-sheet structure in the TP than that of the agonist, U46619. Also, fluorescence studies showed that the antagonist induced the intrinsic Trp fluorescence signal change more than the agonist. Furthermore, three of the nine tryptophan residues involved in the different ligand-based structural changes were demonstrated by NMR spectroscopy. Low pH-induced changes in the receptor conformation and molecular interaction field dramatically increased the agonist binding but did not significantly affect the antagonist binding. Different conformational changes were also observed in the TP reconstituted into phosphatidylcholine/phosphatidylserine/phosphatydylethanolamine-formed liposomes. These studies are the first to show a possible mechanism of the ligand-specific conformation-dependent agonist activation and antagonist blockage in the GPCR.
Collapse
Affiliation(s)
- Ke-He Ruan
- The Center for Experimental Therapeutics and Pharmacoinformatics, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 521 Science & Research Building 2, University of Houston, Houston, Texas 77004-5037, USA.
| | | | | |
Collapse
|
8
|
Mano M, Henriques A, Paiva A, Prieto M, Gavilanes F, Simões S, de Lima MCP. Interaction of S413-PV cell penetrating peptide with model membranes: relevance to peptide translocation across biological membranes. J Pept Sci 2007; 13:301-13. [PMID: 17437249 DOI: 10.1002/psc.842] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cell penetrating peptides (CPPs) have been successfully used to mediate the intracellular delivery of a wide variety of molecules of pharmacological interest both in vitro and in vivo, although the mechanisms by which the cellular uptake occurs remain unclear and controversial. Following our previous work demonstrating that the cellular uptake of the S4(13)-PV CPP occurs mainly through an endocytosis-independent mechanism, we performed a detailed biophysical characterization of the interaction of this peptide with model membranes. We demonstrate that the interactions of the S4(13)-PV peptide with membranes are essentially of electrostatic nature. As a consequence of its interaction with negatively charged model membranes, the S4(13)-PV peptide becomes buried into the lipid bilayer, which occurs concomitantly with significant peptide conformational changes that are consistent with the formation of a helical structure. Comparative studies using two related peptides demonstrate that the conformational changes and the extent of cell penetration are dependent on the peptide sequence, indicating that the helical structure acquired by the S4(13)-PV peptide is relevant for its nonendocytic uptake. Overall, our data suggest that the cellular uptake of the S4(13)-PV CPP is a consequence of its direct translocation through cell membranes, following conformational changes induced by peptide-membrane interactions.
Collapse
Affiliation(s)
- Miguel Mano
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The structural features of the hyperthermophilic endo-beta-1,3-glucanase from Pyrococcus furiosus were studied using circular dichroism, steady-state and time-resolved fluorescence spectroscopy and anisotropy. Upon heat and chemical treatment the folded and denatured states of the protein were characterized by distinguishable spectral profiles that identified a number of conformational states. The fluorescence methods showed that the spectral differences arose from changes in the local environment around specific tryptophan residues in the native, partially folded, partially unfolded and completely unfolded state. A structural resemblance was observed between the native protein and the structurally perturbed state which resulted after heat treatment at 110 degrees C. The enzyme underwent disruption of the native secondary and tertiary structure only after incubation at biologically extremely high temperatures (i.e. 150 degrees C), whilst in the presence of 8 m of guanidine hydrochloride the protein was partially unfolded.
Collapse
Affiliation(s)
- Sotirios Koutsopoulos
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, the Netherlands.
| | | | | |
Collapse
|
10
|
|
11
|
Sun H, Yin D, Coffeen LA, Shea MA, Squier TC. Mutation of Tyr138 disrupts the structural coupling between the opposing domains in vertebrate calmodulin. Biochemistry 2001; 40:9605-17. [PMID: 11583160 DOI: 10.1021/bi0104266] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have used circular dichroism and frequency-domain fluorescence spectroscopy to determine how the site-specific substitution of Tyr138 with either Phe138 or Gln138 affects the structural coupling between the opposing domains of calmodulin (CaM). A double mutant was constructed involving conservative substitution of Tyr99 --> Trp99 and Leu69 --> Cys69 to assess the structural coupling between the opposing domains, as previously described [Sun, H., Yin, D., and Squier, T. C. (1999) Biochemistry 38, 12266-12279]. Trp99 acts as a fluorescence resonance energy transfer (FRET) donor in distance measurements to probe the conformation of the central helix. Cys69 provides a reactive group for the covalent attachment of 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS), which functions as a FRET acceptor and permits the measurement of the rotational dynamics of the amino-terminal domain. These CaM mutants demonstrate normal calcium-dependent gel-mobility shifts and changes in their near-UV CD spectra, have similar secondary structures to wild-type CaM following calcium activation, and retain the ability to fully activate the plasma membrane Ca-ATPase. The global folds, therefore, of both the carboxyl- and amino-terminal domains in these CaM mutants are similar to that of wild-type CaM. However, in comparison to wild-type CaM, the substitution of Tyr138 with either Phe138 or Gln138 results in (i) alterations in the average spatial separation and increases in the conformational heterogeneity between the opposing globular domains and (ii) the independent rotational dynamics of the amino-terminal domain. These results indicate that alterations in either the hydrogen bond between Tyr138 and Glu82 or contact interactions between aromatic amino acid side chains have the potential to initiate the structural collapse of CaM normally associated with target protein binding and activation.
Collapse
Affiliation(s)
- H Sun
- Department of Molecular Biosciences, University of Kansas, Lawrence 66045-2106, USA
| | | | | | | | | |
Collapse
|
12
|
Contreras LM, de Almeida RF, Villalaín J, Fedorov A, Prieto M. Interaction of alpha-melanocyte stimulating hormone with binary phospholipid membranes: structural changes and relevance of phase behavior. Biophys J 2001; 80:2273-83. [PMID: 11325729 PMCID: PMC1301418 DOI: 10.1016/s0006-3495(01)76199-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction of alpha-melanocyte stimulating hormone (alpha-MSH) with negatively charged binary membrane systems composed of either 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)], (DMPC/DMPG) or DMPC/1,2-dimyristoyl-sn-glycero-3-phosphate (DMPC/DMPA), both at a 3:1 ratio, was studied using complementary techniques (differential scanning calorimetry, infrared and ultraviolet absorption spectroscopy, and steady-state and time-resolved fluorescence). The peptide structure in buffer, at medium to high concentrations, is a mixture of aggregated beta-strands and random coil, and upon increasing the temperature the random coil configuration becomes predominant. At low concentrations (micromolar) there are essentially no aggregates. When in interaction with the lipidic systems this transition is prevented and the peptide is stabilized in a specific conformation different from the one in solution. The incorporation of alpha-MSH into phosphatidic acid-containing systems produced a significant alteration of the calorimetric data. Lateral heterogeneity can be induced by the peptide in the DMPA-containing mixture, at variance with the one of DMPG. In addition, the lipid/water partition coefficient for the peptide in the presence of DMPC/DMPA is greater in the gel phase as compared to the fluid phase. From the high values of limiting anisotropies it can be concluded that the peptide presents a very reduced rotational dynamics when in interaction with the lipids, pointing out to a strong interaction. Overall, these results show that the structure and stability of alpha-MSH in a negatively charged membrane environment are substantially different from those of the peptide in solution, being stabilized in a specific conformation that could be important to eliciting its biological activity.
Collapse
Affiliation(s)
- L M Contreras
- Centro de Biología Molecular y Celular, Universidad Miguel Hernández, E-03206 Elche-Alicante, Spain
| | | | | | | | | |
Collapse
|
13
|
Malicka J, Groth M, Karolczak J, Czaplewski C, Liwo A, Wiczk W. Influence of solvents and leucine configuration at position 5 on tryptophan fluorescence in cyclic enkephalin analogues. Biopolymers 2001; 58:447-57. [PMID: 11180057 DOI: 10.1002/1097-0282(20010405)58:4<447::aid-bip1020>3.0.co;2-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The fluorescence decay of tryptophan is a sensitive indicator of its local environment within a peptide or protein. In this study we carried out fluorescence measurements of the tryptophan residue of cyclic enkephalin analogues of a general formula X-c[D-Dab(2)-Gly(3)-Trp(4)-Y(5)] where X = Cbz or H and Y = D- or L-Leu, in four solvents [water, methanol, acetonitrile, and dimethyl sulfoxide (DMSO)]. An analysis of the tryptophan fluorescence decays using a discrete-exponential model indicates that tryptophan fluorescence decay can be described by a double exponential function in all solvents studied. Lifetime distribution analysis yields a bimodal distribution in protic solvents (water and methanol), whereas an asymmetric, unimodal distribution in an aprotic solvent (DMSO) and uni- or bimodal distributions in acetonitrile solution, depending on leucine configuration. The data are interpreted in terms of the rotamer model, in which the modality and the relative proportions of the lifetime components are related to the population distribution of tryptophan chi(1) rotamers about the C(alpha)--C(beta) bond. The chirality of the Leu(5) residue and solvent properties affect the local environment of the tryptophan residue and therefore influence the distribution of side-chain rotamers. These results are consistent with the results of theoretical conformational calculations.
Collapse
Affiliation(s)
- J Malicka
- University of Gdańsk, Faculty of Chemistry, Sobieskiego 18, 80-952 Gdańsk, Poland
| | | | | | | | | | | |
Collapse
|
14
|
Rzeska A, Malicka J, Stachowiak K, Szymańska A, Łankiewicz L, Wiczk W. Photophysics of phenylalanine analogues. J Photochem Photobiol A Chem 2001. [DOI: 10.1016/s1010-6030(01)00394-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Rzeska A, Stachowiak K, Malicka J, Łankiewicz L, Wiczk W. Photophysics of phenylalanine analogues. J Photochem Photobiol A Chem 2000. [DOI: 10.1016/s1010-6030(00)00229-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Besley NA, Hirst JD. Theoretical Studies toward Quantitative Protein Circular Dichroism Calculations. J Am Chem Soc 1999. [DOI: 10.1021/ja990627l] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicholas A. Besley
- Contribution from the Department of Molecular Biology, TPC-6, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Jonathan D. Hirst
- Contribution from the Department of Molecular Biology, TPC-6, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
17
|
Abstract
The fluorescence decay of tryptophan is a sensitive indicator of its local environment within a peptide or protein. We describe the use of frequency domain fluorescence spectroscopy to determine the conformational and environmental changes associated with the interaction of single tryptophan amphipathic peptides with a phospholipid surface. The five 18-residue peptides studied are based on a class A amphipathic peptide known to associate with lipid bilayers. The peptides contain a single tryptophan located at positions 2, 3, 7, 12, or 14 in the sequence. In aqueous solution, the peptides are unstructured and a triple-exponential function is required to fit the decay data. Association of the peptides with small unilamellar vesicles composed of egg phosphatidylcholine reduces the complexity of the fluorescence decays to a double exponential function, with a reduced dependence of the preexponential amplitude on peptide sequence. The data are interpreted in terms of a rotamer model in which the modality and relative proportions of the lifetime components are related to the population distribution of tryptophan chi1 rotamers about the Calpha-Cbeta bond. Peptide secondary structure and the disposition of the tryptophan residue relative to the lipid and aqueous phases in the peptide-lipid complex affect the local environment of tryptophan and influence the distribution of side-chain rotamers. The results show that measurement of the temporal decay of tryptophan emission provides a useful adjunct to other biophysical techniques for investigating peptide-lipid and protein-membrane interactions.
Collapse
Affiliation(s)
- A H Clayton
- The Russell Grimwade School of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | | |
Collapse
|
18
|
Applequist J, Bode KA. Solvent Effects on Ultraviolet Absorption and Circular Dichroic Spectra of Helical Polypeptides and Globular Proteins. Calculations Based on a Lattice-Filled Cavity Model. J Phys Chem B 1999. [DOI: 10.1021/jp984233c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jon Applequist
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Kimberly A. Bode
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
19
|
Bode KA, Applequist J. Globular Protein Ultraviolet Circular Dichroic Spectra. Calculation from Crystal Structures via the Dipole Interaction Model. J Am Chem Soc 1998. [DOI: 10.1021/ja982509o] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kimberly A. Bode
- Contribution from the Department of Biochemistry and Biophysics, Iowa State University, Ames, Iowa 50011
| | - Jon Applequist
- Contribution from the Department of Biochemistry and Biophysics, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
20
|
Merrill AR, Steer BA, Prentice GA, Weller MJ, Szabo AG. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association. Biochemistry 1997; 36:6874-84. [PMID: 9188682 DOI: 10.1021/bi970222i] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In vitro, the channel-forming domain of colicin E1 requires activation by acidic pH (<4.5) or detergents. The activation of this domain to its insertion-competent state results in an increased ability of the protein to dock onto and to form channels in artificial membranes. Fluorescence methods were used to characterize the conformational changes occurring in a channel-forming peptide of colicin E1 in solution with pH. The 178-residue thermolytic fragment of colicin E1 contains three Trp residues, W-424, W-460, and W-495. In order to study the structural and dynamic requirements for activation of the C-terminal domain of colicin E1, single-Trp-containing peptides were prepared by site-directed mutagenesis. All of the mutant peptides displayed in vitro channel activity and cellular cytotoxicity similar to the those of wild-type peptide. Two Trp residues, W-413 and W-424, exhibited pH-sensitive fluorescence parameters. Upon acidification (pH 6.0 --> 3.5), the fluorescence quantum yield of W-413 and W-424 increased 50% and 80%, respectively, indicating a significant change in the local environment of the peptide segment containing these two Trp residues. The fluorescence decay of W-413 and W-424 was best fit by three fluorescence decay components, two of which were sensitive to pH. However, only small changes in spectral shape and position were observed for W-424 fluorescence, whereas there were larger changes in these fluorescence parameters for W-413. The quantum yields for the Trp residues in the seven other single-Trp mutant peptides and the wild-type peptide were distinct but only slightly affected by changes in pH. Time-resolved fluorescence measurements showed that W-460, -484, and -495 each had two fluorescence decay components with similar decay times, with one component dominating the fluorescence decay behavior. Furthermore, the individual fluorescence decay times for all the single-Trp peptides, except for W-413 and W-424, were insensitive to pH changes. At pH 3.5, the fluorescence of the wild-type peptide was fit by three decay time components, with the two longer decay times being quite different from the fluorescence decay times of the single-Trp mutant proteins (W-424, -460, and -495, the naturally occurring Trp residues). In contrast, at pH 6.0, the wild-type peptide showed double-exponential decay kinetics. Time-resolved fluorescence anisotropy decay measurements of the three single-Trp mutant proteins, containing a naturally occurring Trp residue, suggest that local segmental motion of the peptide as reported by each of the three tryptophans is highly restricted and largely insensitive to changes in pH. On the other hand, the anisotropy decay profiles of the wild-type protein were consistent with energy transfer occurring between Trp residues, likely between W-460 and W-495. These steady-state and time-resolved fluorescence results show that W-413 and W-424 report conformational changes which may be associated with the insertion-competent state and reside on the protein segment(s) which form the pH-activated trigger of the channel peptide.
Collapse
Affiliation(s)
- A R Merrill
- Guelph-Waterloo Centre for Graduate Work in Chemistry, Department of Chemistry and Biochemistry, University of Guelph, Ontario, Canada.
| | | | | | | | | |
Collapse
|
21
|
Dahms TE, Szabo AG. Conformational heterogeneity in crystalline proteins: time-resolved fluorescence studies. Methods Enzymol 1997; 278:202-21. [PMID: 9170315 DOI: 10.1016/s0076-6879(97)78012-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- T E Dahms
- Department of Biochemistry, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
22
|
Ross JB, Szabo AG, Hogue CW. Enhancement of protein spectra with tryptophan analogs: fluorescence spectroscopy of protein-protein and protein-nucleic acid interactions. Methods Enzymol 1997; 278:151-90. [PMID: 9170313 DOI: 10.1016/s0076-6879(97)78010-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- J B Ross
- Department of Biochemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
23
|
Neyroz P, Menna C, Polverini E, Masotti L. Intrinsic fluorescence properties and structural analysis of p13(suc1) from Schizosaccharomyces pombe. J Biol Chem 1996; 271:27249-58. [PMID: 8910298 DOI: 10.1074/jbc.271.44.27249] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
p13(suc1) acts in the fission yeast cell division cycle as a component of p34(cdc2). In the present work, structural information contained in the intrinsic fluorescence of p13(suc1) has been extracted by steady-state and time-resolved fluorescence techniques. In its native form, the steady-state emission spectrum of p13(suc1) is centered at 336 nm. Upon denaturation by guanidine HCl (4.0 M), the emission spectrum is shifted to 355-360 nm and the fluorescence intensity decreases 70%. The same changes are not obtained with p13(suc1) at 56 degrees C or after incubation at 100 degrees C, and the protein appears to be substantially temperature-stable. The fluorescence decay of p13(suc1) is best described by three discrete lifetimes of 0.6 ns (tau1), 2.9 ns (tau2), and 6.1 ns (tau3), with amplitudes that are dependent on the native or unfolded state of the protein. Under native conditions, the two predominant decay-associated spectra, DAS-tau2 (lambdamax = 332 nm) and DAS-tau3 (lambdamax = 340 nm), derive from two different excitation DAS. Moreover distinct quenching mechanisms and collisional accessibilities (kq(tau2)>>kq(tau3)) are resolved for each lifetime. An interpretation in terms of specific tryptophan residue (or protein conformer)-lifetime assignments is presented. The decay of the fluorescence anisotropy of native p13(suc1) is best described by a double exponential decay. The longer correlation time recovered (9 ns </= phi2 </= 15ns) can be associated with the rotational motion of the protein as a whole and a Stokes radius of 21.2 A has been calculated for p13(suc1). Anisotropy measurements obtained as a function of temperature indicate that, in solution, the protein exists exclusively as a prolate monomer. In 1 mM zinc, changes of the anisotropy decay parameters are compatible with subunits oligomerization.
Collapse
Affiliation(s)
- P Neyroz
- Dipartimento di Biochimica "G. Moruzzi," Sezione di Biochimica Farmaceutica, Università di Bologna, 40127 Bologna, Italy.
| | | | | | | |
Collapse
|
24
|
Abstract
Time-resolved fluorescence spectroscopy is used to monitor molecular interactions and motions that occur in the picosecond-nanosecond time range, and is especially useful in the analysis of biomolecular structure and dynamics. Recent advances in the application of time-resolved fluorescence spectroscopy to biological systems have led to a better understanding of the origin of nonexponential fluorescence decay in proteins, the use of tryptophan analogs as unique spectroscopic probes of protein-protein interactions, the detailed characterization of protein-folding processes and intermediates, and the development of new approaches to the study of DNA-protein interactions.
Collapse
Affiliation(s)
- D P Millar
- Scripps Research Institute, Department of Molecular Biology, La Jolla, CA 92037, USA.
| |
Collapse
|