1
|
Amadei A, Aschi M. Stationary and Time-Dependent Carbon Monoxide Stretching Mode Features in Carboxy Myoglobin: A Theoretical-Computational Reappraisal. J Phys Chem B 2021; 125:13624-13634. [PMID: 34904432 DOI: 10.1021/acs.jpcb.1c05815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The stationary and time-dependent infrared spectrum (IR) of the CO stretching mode (νCO) in carboxymyoglobin (MbCO), a longstanding problem of biophysical chemistry, has been modeled through a theoretical-computational method specifically designed for simulating quantum observables in complex atomic-molecular systems and based on a combined application of long time scale molecular dynamics simulations and quantum-chemical calculations. This study is basically focused on two aspects: (i) the origin of the stationary IR substates (termed as A0, A1, and A3) and (ii) the modeling and the interpretation of the νCO energy relaxation. The results, strengthened by a more than satisfactory agreement with the experimental data, concisely indicate that (i) the conformational His64-FeCO relevant substates, i.e., characterized by the formation-disruption of the H-bond between the above moieties, are the main responsible of the presence of two distinct and well separated (A0 and A1/A3) spectroscopic regions; (ii) the characteristic bimodal shape of the A1/A3 spectral region, according to our model, is the result of the fluctuation of the electric field pattern as provided by the protein-solvent framework perturbing the bound His64-CO-Heme complex; and (iii) the electric field pattern, in conjunction with the relatively high density of MbCO vibrational states, is also the main determinant of the νCO energy relaxation, characterizing its kinetic efficiency.
Collapse
Affiliation(s)
- Andrea Amadei
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", via della Ricerca Scientifica 1, 00 133 Roma, Italia
| | - Massimiliano Aschi
- Dipartimento di Scienze Fisiche e Chimiche, Università de l'Aquila, via Vetoio (Coppito 1), 67 010 l'Aquila, Italia
| |
Collapse
|
2
|
Manz C, Kobitski AY, Samanta A, Nienhaus K, Jäschke A, Nienhaus GU. Exploring the energy landscape of a SAM-I riboswitch. J Biol Phys 2021; 47:371-386. [PMID: 34698957 PMCID: PMC8603990 DOI: 10.1007/s10867-021-09584-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022] Open
Abstract
SAM-I riboswitches regulate gene expression through transcription termination upon binding a S-adenosyl-L-methionine (SAM) ligand. In previous work, we characterized the conformational energy landscape of the full-length Bacillus subtilis yitJ SAM-I riboswitch as a function of Mg2+ and SAM ligand concentrations. Here, we have extended this work with measurements on a structurally similar ligand, S-adenosyl-l-homocysteine (SAH), which has, however, a much lower binding affinity. Using single-molecule Förster resonance energy transfer (smFRET) microscopy and hidden Markov modeling (HMM) analysis, we identified major conformations and determined their fractional populations and dynamics. At high Mg2+ concentration, FRET analysis yielded four distinct conformations, which we assigned to two terminator and two antiterminator states. In the same solvent, but with SAM added at saturating concentrations, four states persisted, although their populations, lifetimes and interconversion dynamics changed. In the presence of SAH instead of SAM, HMM revealed again four well-populated states and, in addition, a weakly populated ‘hub’ state that appears to mediate conformational transitions between three of the other states. Our data show pronounced and specific effects of the SAM and SAH ligands on the RNA conformational energy landscape. Interestingly, both SAM and SAH shifted the fractional populations toward terminator folds, but only gradually, so the effect cannot explain the switching action. Instead, we propose that the noticeably accelerated dynamics of interconversion between terminator and antiterminator states upon SAM binding may be essential for control of transcription.
Collapse
Affiliation(s)
- Christoph Manz
- Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131, Karlsruhe, Germany
| | - Andrei Yu Kobitski
- Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131, Karlsruhe, Germany
| | - Ayan Samanta
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany.,Department of Chemistry, Uppsala University, Box 538, 751 21, Uppsala, Sweden
| | - Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131, Karlsruhe, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131, Karlsruhe, Germany. .,Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany. .,Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany. .,Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green St, Urbana, IL, 61801, USA.
| |
Collapse
|
3
|
Freindorf M, Kraka E. Critical assessment of the FeC and CO bond strength in carboxymyoglobin: a QM/MM local vibrational mode study. J Mol Model 2020; 26:281. [DOI: 10.1007/s00894-020-04519-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
|
4
|
Dynamical properties of myoglobin in an ultraviscous water-glycerol solvent investigated with elastic neutron scattering and FTIR spectroscopy. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Gorokhov VV, Knox PP, Korvatovskiy BN, Seifullina NK, Goryachev SN, Paschenko VZ. Temperature Dependence of Tryptophan Fluorescence Lifetime in Aqueous Glycerol and Trehalose Solutions. BIOCHEMISTRY (MOSCOW) 2018; 82:1269-1275. [PMID: 29223153 DOI: 10.1134/s0006297917110049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The temperature dependences of tryptophan fluorescence decay kinetics in aqueous glycerol and 1 M trehalose solutions were examined. The fluorescence decay kinetics were recorded in the spectral region of 292.5-417.5 nm with nanosecond time resolution. The kinetics curves were approximated by the sum of three exponential terms, and the spectral distribution (DAS) of these components was determined. An antisymbatic course of fluorescence decay times of two (fast and medium) components in the temperature range from -60 to +10°C was observed. The third (slow) component showed only slight temperature dependence. The antisymbatic behavior of fluorescence lifetimes of the fast and medium components was explained on the assumption that some of the excited tryptophan molecules are transferred from a short-wavelength B-form with short fluorescence lifetime to a long-wavelength R-form with an intermediate fluorescence lifetime. This transfer occurred in the indicated temperature range.
Collapse
Affiliation(s)
- V V Gorokhov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | | | | | |
Collapse
|
6
|
Benabbas A, Sun Y, Poulos TL, Champion PM. Ultrafast CO Kinetics in Heme Proteins: Adiabatic Ligand Binding and Heavy Atom Tunneling. J Am Chem Soc 2017; 139:15738-15747. [PMID: 28984134 DOI: 10.1021/jacs.7b07507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ultrafast kinetics of CO rebinding to carbon monoxide oxidation activator protein (ChCooA) are measured over a wide temperature range and compared with the kinetics of CO binding in other heme systems such as myoglobin (Mb) and hemoglobin (Hb). The Arrhenius prefactor for CO binding to ChCooA and protoheme (∼1011 s-1) is similar to what is found for spin-allowed NO binding to heme proteins and is several orders of magnitude larger than the prefactor of Mb and Hb (∼109 s-1). This indicates that the CO binding reaction is adiabatic, in contrast to the commonly held view that it is nonadiabatic due to spin-forbidden (ΔS = 2) selection rules. Under the adiabatic condition, entropic factors, rather than spin-selection rules, are the source of the reduced Arrhenius prefactors associated with CO binding in Mb and Hb. The kinetic response of ChCooA-CO is nonexponential at all temperatures, including 298 K, and is described quantitatively using a distribution of enthalpic rebinding barriers associated with heterogeneity in the heme doming conformation. Above the solvent glass transition (Tg ∼ 180 K), the rebinding progress slows as temperature increases, and this is ascribed to an evolution of the distribution toward increased heme doming and larger enthalpic barriers. Between Tg and ∼60 K, the nonexponential rebinding slows down as the temperature is lowered and the survival fraction follows the predictions expected for a quenched barrier distribution. Below ∼60 K the rebinding kinetics do not follow these predictions unless quantum mechanical tunneling along the heme doming coordinate is also included as an active channel for CO binding.
Collapse
Affiliation(s)
- Abdelkrim Benabbas
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University , Boston, Massachusetts 02115, United States
| | - Yuhan Sun
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University , Boston, Massachusetts 02115, United States
| | - Thomas L Poulos
- Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California , Irvine, California 92697, United States
| | - Paul M Champion
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University , Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Nienhaus K, Hahn V, Hüpfel M, Nienhaus GU. Substrate Binding Primes Human Tryptophan 2,3-Dioxygenase for Ligand Binding. J Phys Chem B 2017; 121:7412-7420. [PMID: 28715185 DOI: 10.1021/acs.jpcb.7b03463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human heme enzyme tryptophan 2,3-dioxygenase (hTDO) catalyzes the insertion of dioxygen into its cognate substrate, l-tryptophan (l-Trp). Its active site structure is highly dynamic, and the mechanism of enzyme-substrate-ligand complex formation and the ensuing enzymatic reaction is not yet understood. Here we have studied complex formation in hTDO by using time-resolved optical and infrared spectroscopy with carbon monoxide (CO) as a ligand. We have observed that both substrate-free and substrate-bound hTDO coexist in two discrete conformations with greatly different ligand binding rates. In the fast rebinding hTDO conformation, there is facile ligand access to the heme iron, but it is greatly hindered in the slowly rebinding conformation. Spectroscopic evidence implicates active site solvation as playing a crucial role for the observed kinetic differences. Substrate binding shifts the conformational equilibrium markedly toward the fast species and thus primes the active site for subsequent ligand binding, ensuring that formation of the ternary complex occurs predominantly by first binding l-Trp and then the ligand. Consequently, the efficiency of catalysis is enhanced because O2 binding prior to substrate binding, resulting in nonproductive oxidation of the heme iron, is greatly suppressed.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Vincent Hahn
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Manuel Hüpfel
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany.,Institute of Nanotechnology (INT) and Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT) , 76344 Eggenstein-Leopoldshafen, Germany.,Department of Physics, University of Illinois at Urbana-Champaign , 1110 W. Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Nienhaus K, Nickel E, Nienhaus GU. Substrate binding in human indoleamine 2,3-dioxygenase 1: A spectroscopic analysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:453-463. [DOI: 10.1016/j.bbapap.2017.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/22/2017] [Accepted: 02/07/2017] [Indexed: 11/27/2022]
|
9
|
Soloviov M, Meuwly M. Reproducing kernel potential energy surfaces in biomolecular simulations: Nitric oxide binding to myoglobin. J Chem Phys 2016; 143:105103. [PMID: 26374062 DOI: 10.1063/1.4929527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multidimensional potential energy surfaces based on reproducing kernel-interpolation are employed to explore the energetics and dynamics of free and bound nitric oxide in myoglobin (Mb). Combining a force field description for the majority of degrees of freedom and the higher-accuracy representation for the NO ligand and the Fe out-of-plane motion allows for a simulation approach akin to a mixed quantum mechanics/molecular mechanics treatment. However, the kernel-representation can be evaluated at conventional force-field speed. With the explicit inclusion of the Fe-out-of-plane (Fe-oop) coordinate, the dynamics and structural equilibrium after photodissociation of the ligand are correctly described compared to experiment. Experimentally, the Fe-oop coordinate plays an important role for the ligand dynamics. This is also found here where the isomerization dynamics between the Fe-ON and Fe-NO state is significantly affected whether or not this co-ordinate is explicitly included. Although the Fe-ON conformation is metastable when considering only the bound (2)A state, it may disappear once the (4)A state is included. This explains the absence of the Fe-ON state in previous experimental investigations of MbNO.
Collapse
Affiliation(s)
- Maksym Soloviov
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
10
|
Kim J, Kim KH, Oang KY, Lee JH, Hong K, Cho H, Huse N, Schoenlein RW, Kim TK, Ihee H. Tracking reaction dynamics in solution by pump–probe X-ray absorption spectroscopy and X-ray liquidography (solution scattering). Chem Commun (Camb) 2016; 52:3734-49. [DOI: 10.1039/c5cc08949b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TRXL and TRXAS are powerful techniques for real-time probing of structural and electronic dynamics of photoinduced reactions in solution phase.
Collapse
|
11
|
Sharma S, Kumar A, Kundu S, Bandyopadhyay P. Molecular dynamics simulations indicate that tyrosineB10 limits motions of distal histidine to regulate CO binding in soybean leghemoglobin. Proteins 2015; 83:1836-48. [PMID: 26211916 DOI: 10.1002/prot.24867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 07/01/2015] [Accepted: 07/21/2015] [Indexed: 11/09/2022]
Abstract
Myoglobin (Mb) uses strong electrostatic interaction in its distal heme pocket to regulate ligand binding. The mechanism of regulation of ligand binding in soybean leghemoglobin a (Lba) has been enigmatic and more so due to the absence of gaseous ligand bound atomic resolution three-dimensional structure of the plant globin. While the 20-fold higher oxygen affinity of Lba compared with Mb is required for its dual physiological function, the mechanism by which this high affinity is achieved is only emerging. Extensive mutational analysis combined with kinetic and CO-FT-IR spectroscopic investigation led to the hypothesis that Lba depended on weakened electrostatic interaction between distal HisE7 and bound ligand achieved by invoking B10Tyr, which itself hydrogen bonds with HisE7 thus restricting it in a single conformation detrimental to Mb-like strong electrostatic interaction. Such theory has been re-assessed here using CO-Lba in silico model and molecular dynamics simulation. The investigation supports the presence of at least two major conformations of HisE7 in Lba brought about by imidazole ring flip, one of which makes hydrogen bonds effectively with B10Tyr affecting the former's ability to stabilize bound ligand, while the other does not. However, HisE7 in Lba has limited conformational freedom unlike high frequency of imidazole ring flips observed in Mb and in TyrB10Leu mutant of Lba. Thus, it appears that TyrB10 limits the conformational freedom of distal His in Lba, tuning down ligand dissociation rate constant by reducing the strength of hydrogen bonding to bound ligand, which the freedom of distal His of Mb allows.
Collapse
Affiliation(s)
- Smriti Sharma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amit Kumar
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Pradipta Bandyopadhyay
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
12
|
Oang KY, Kim JG, Yang C, Kim TW, Kim Y, Kim K, Kim J, Ihee H. Conformational Substates of Myoglobin Intermediate Resolved by Picosecond X-ray Solution Scattering. J Phys Chem Lett 2014; 5:804-808. [PMID: 24761190 PMCID: PMC3985870 DOI: 10.1021/jz4027425] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/11/2014] [Indexed: 05/04/2023]
Abstract
Conformational substates of proteins are generally considered to play important roles in regulating protein functions, but an understanding of how they influence the structural dynamics and functions of the proteins has been elusive. Here, we investigate the structural dynamics of sperm whale myoglobin associated with the conformational substates using picosecond X-ray solution scattering. By applying kinetic analysis considering all of the plausible candidate models, we establish a kinetic model for the entire cycle of the protein transition in a wide time range from 100 ps to 10 ms. Four structurally distinct intermediates are formed during the cycle, and most importantly, the transition from the first intermediate to the second one (B → C) occurs biphasically. We attribute the biphasic kinetics to the involvement of two conformational substates of the first intermediate, which are generated by the interplay between the distal histidine and the photodissociated CO.
Collapse
Affiliation(s)
- Key Young Oang
- Center for Nanomaterials
and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
- Department
of Chemistry, Graduate School of Nanoscience
& Technology (WCU), Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 305-701, Korea
| | - Jong Goo Kim
- Center for Nanomaterials
and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
- Department
of Chemistry, Graduate School of Nanoscience
& Technology (WCU), Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 305-701, Korea
| | - Cheolhee Yang
- Center for Nanomaterials
and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
- Department
of Chemistry, Graduate School of Nanoscience
& Technology (WCU), Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 305-701, Korea
| | - Tae Wu Kim
- Center for Nanomaterials
and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
- Department
of Chemistry, Graduate School of Nanoscience
& Technology (WCU), Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 305-701, Korea
| | - Youngmin Kim
- Center for Nanomaterials
and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
- Department
of Chemistry, Graduate School of Nanoscience
& Technology (WCU), Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 305-701, Korea
| | - Kyung
Hwan Kim
- Center for Nanomaterials
and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
- Department
of Chemistry, Graduate School of Nanoscience
& Technology (WCU), Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 305-701, Korea
| | - Jeongho Kim
- Department
of Chemistry, Inha University, Incheon 402-751, Korea
| | - Hyotcherl Ihee
- Center for Nanomaterials
and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
- Department
of Chemistry, Graduate School of Nanoscience
& Technology (WCU), Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 305-701, Korea
- E-mail:
| |
Collapse
|
13
|
Choi JH, Kwak KW, Cho M. Computational infrared and two-dimensional infrared photon echo spectroscopy of both wild-type and double mutant myoglobin-CO proteins. J Phys Chem B 2013; 117:15462-78. [PMID: 23869523 DOI: 10.1021/jp405210s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The CO stretching mode of both wild-type and double mutant ( T67R / S92D ) MbCO (carbonmonoxymyoglobin) proteins is an ideal infrared (IR) probe for studying the local electrostatic environment inside the myoglobin heme pocket. Recently, to elucidate the conformational switching dynamics between two distinguishable states, extensive IR absorption, IR pump-probe, and two-dimensional (2D) IR spectroscopic studies for various mutant MbCO's have been performed by the Fayer group. They showed that the 2D IR spectroscopy of the double mutant, which has a peroxidase enzyme activity, reveals a rapid chemical exchange between two distinct states, whereas that of the wild-type does not. Despite the fact that a few simulation studies on these systems were already performed and reported, such complicated experimental results have not been fully reproduced nor described in terms of conformational state-to-state transition processes. Here, we first develop a distributed vibrational solvatochromic charge model for describing the CO stretch frequency shift reflecting local electric potential changes. Then, by carrying out molecular dynamic simulations of the two MbCO's and examining their CO frequency trajectories, it becomes possible to identify a proper reaction coordinate consisting of His64 imidazole ring rotation and its distance to the CO ligand. From the 2D surfaces of the resulting potential of mean forces, the spectroscopically distinguished A1 and A3 states of the wild-type as well as two more substates of the double mutant are identified and their vibrational frequencies and distributions are separately examined. Our simulated IR absorption and 2D IR spectra of the two MbCO's are directly compared with the previous experimental results reported by the Fayer group. The chemical exchange rate constants extracted from the two-state kinetic analyses of the simulated 2D IR spectra are in excellent agreement with the experimental values. On the basis of the quantitative agreement between the simulated spectra and experimental ones, we further examine the conformational differences in the heme pockets of the two proteins and show that the double mutation, T67R / S92D , suppresses the A1 population, restricts the imidazole ring rotation, and increases hydrogen-bond strength between the imidazole Nε-H and the oxygen atom of the CO ligand. It is believed that such delicate change of distal His64 imidazole ring dynamics induced by the double mutation may be responsible for its enhanced peroxidase catalytic activity as compared to the wild-type myoglobin.
Collapse
Affiliation(s)
- Jun-Ho Choi
- Department of Chemistry, Korea University , Seoul 136-713, Korea
| | | | | |
Collapse
|
14
|
Nienhaus K, Olson JS, Nienhaus GU. An engineered heme-copper center in myoglobin: CO migration and binding. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1824-31. [PMID: 23459127 DOI: 10.1016/j.bbapap.2013.02.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 11/19/2022]
Abstract
We have investigated CO migration and binding in CuBMb, a copper-binding myoglobin double mutant (L29H-F43H), by using Fourier transform infrared spectroscopy and flash photolysis over a wide temperature range. This mutant was originally engineered with the aim to mimic the catalytic site of heme-copper oxidases. Comparison of the wild-type protein Mb and CuBMb shows that the copper ion in the distal pocket gives rise to significant effects on ligand binding to the heme iron. In Mb and copper-free CuBMb, primary and secondary ligand docking sites are accessible upon photodissociation. In copper-bound CuBMb, ligands do not migrate to secondary docking sites but rather coordinate to the copper ion. Ligands entering the heme pocket from the outside normally would not be captured efficiently by the tight distal pocket housing the two additional large imidazole rings. Binding at the Cu ion, however, ensures efficient trapping in CuBMb. The Cu ion also restricts the motions of the His64 side chain, which is the entry/exit door for ligand movement into the active site, and this restriction results in enhanced geminate and slow bimolecular CO rebinding. These results support current mechanistic views of ligand binding in hemoglobins and the role of the CuB in the active of heme-copper oxidases. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | |
Collapse
|
15
|
Nienhaus K, Lutz S, Meuwly M, Nienhaus GU. Reaction-pathway selection in the structural dynamics of a heme protein. Chemistry 2013; 19:3558-62. [PMID: 23401035 DOI: 10.1002/chem.201203558] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/28/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | | | | | | |
Collapse
|
16
|
Nienhaus K, Nienhaus GU. A spectroscopic study of structural heterogeneity and carbon monoxide binding in neuroglobin. J Biol Phys 2013; 31:417-32. [PMID: 23345908 DOI: 10.1007/s10867-005-0173-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Neuroglobin (Ngb) is a small globular protein that binds diatomic ligands like oxygen, carbon monoxide (CO) and nitric oxide at a heme prosthetic group. We have performed FTIR spectroscopy in the infrared stretching bands of CO and flash photolysis with monitoring in the electronic heme absorption bands to investigate structural heterogeneity at the active site of Ngb and its effects on CO binding and migration at cryogenic temperatures. Four CO stretching bands were identified; they correspond to discrete conformations that differ in structural details and CO binding properties. Based on a comparison of bound-state and photoproduct IR spectra of the wild-type protein, Ngb distal pocket mutants and myoglobin, we have provided structural interpretations of the conformations associated with the different CO bands. We have also studied ligand migration to the primary docking site, B. Rebinding from this site is governed by very low enthalpy barriers (∼1 kJ/mol), indicating an extremely reactive heme iron. Moreover, we have observed ligand migration to a secondary docking site, C, from which CO rebinding involves higher enthalpy barriers.
Collapse
Affiliation(s)
- Karin Nienhaus
- Department of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | |
Collapse
|
17
|
Thielges MC, Fayer MD. Protein dynamics studied with ultrafast two-dimensional infrared vibrational echo spectroscopy. Acc Chem Res 2012; 45:1866-74. [PMID: 22433178 DOI: 10.1021/ar200275k] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteins, enzymes, and other biological molecules undergo structural dynamics as an intrinsic part of their biological functions. While many biological processes occur on the millisecond, second, and even longer time scales, the fundamental structural dynamics that eventually give rise to such processes occur on much faster time scales. Many decades ago, chemical kineticists focused on the inverse of the reaction rate constant as the important time scale for a chemical reaction. However, through transition state theory and a vast amount of experimental evidence, we now know that the key events in a chemical reaction can involve structural fluctuations that take a system of reactants to its transition state, the crossing of a barrier, and the eventual relaxation to product states. Such dynamics occur on very fast time scales. Today researchers would like to investigate the fast structural fluctuations of biological molecules to gain an understanding of how biological processes proceed from simple structural changes in biomolecules to the final, complex biological function. The study of the fast structural dynamics of biological molecules requires experiments that operate on the appropriate time scales, and in this Account, we discuss the application of ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy to the study of protein dynamics. The 2D IR vibrational echo experiment is akin to 2D NMR, but it operates on time scales many orders of magnitude faster. In the experiments, a particular vibrational oscillator serves as a vibrational dynamics probe. As the structure of the protein evolves in time, the structural changes are manifested as time-dependent changes in the frequency of the vibrational dynamics probe. The 2D IR vibrational echo experiments can track the vibrational frequency evolution, which we then relate to the time evolution of the protein structure. In particular, we measured protein substate interconversion for mutants of myoglobin using 2D IR chemical exchange spectroscopy and observed well-defined substate interconversion on a sub-100 ps time scale. In another study, we investigated the influence of binding five different substrates to the enzyme cytochrome P450(cam). The various substrates affect the enzyme dynamics differently, and the observed dynamics are correlated with the enzyme's selectivity of hydroxylation of the substrates and with the substrate binding affinity.
Collapse
Affiliation(s)
- Megan C. Thielges
- Department of Chemistry Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department of Chemistry Stanford University, Stanford, California 94305, United States
| |
Collapse
|
18
|
Cazade PA, Meuwly M. Oxygen migration pathways in NO-bound truncated hemoglobin. Chemphyschem 2012; 13:4276-86. [PMID: 23161831 DOI: 10.1002/cphc.201200608] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/28/2012] [Indexed: 11/10/2022]
Abstract
Atomistic simulations of dioxygen (O(2)) dynamics and migration in nitric oxide-bound truncated Hemoglobin N (trHbN) of Mycobacterium tuberculosis are reported. From more than 100 ns of simulations the connectivity network involving the metastable states for localization of the O(2) ligand is built and analyzed. It is found that channel I is the primary entrance point for O(2) whereas channel II is predominantly an exit path although access to the protein active site is also possible. For O(2) a new site compared to nitric oxide, from which reaction with the heme group can occur, was found. As this site is close to the heme iron, it could play an important role in the dioxygenation mechanism as O(2) can remain there for hundreds of picoseconds after which it can eventually leave the protein, while NO is localized in Xe2. The present study supports recent experimental work which proposed that O(2) docks in alternative pockets than Xe close to the reactive site. Similar to other proteins, a phenylalanine residue (Phe62) plays the role of a gate along the access route in channel I. The most highly connected site is the Xe3 pocket which is a "hub" and free energy barriers between the different metastable states are ≈1.5 kcal mol(-1) which allows facile O(2) migration within the protein.
Collapse
Affiliation(s)
- Pierre-André Cazade
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056, Basel, Switzerland
| | | |
Collapse
|
19
|
Nienhaus K, Zosel F, Nienhaus GU. Ligand binding to heme proteins: a comparison of cytochrome c variants with globins. J Phys Chem B 2012; 116:12180-8. [PMID: 22978708 DOI: 10.1021/jp306775n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have studied the binding of carbon monoxide (CO) in mutants of Cyt c having its methionine at position 80 replaced by alanine, aspartate, and arginine, so that the sixth coordination is available for ligand binding. We have employed Fourier transform infrared (FTIR) photolysis difference spectroscopy to examine interactions of the heme-bound and photolyzed CO (and also nitric oxide, NO) in the small heme pocket created by the mutations. By using FTIR temperature derivative spectroscopy (TDS) and nanosecond flash photolysis, the enthalpy barrier distributions for CO rebinding were determined. In flash photolysis experiments, the majority of ligands rebind to the heme iron on picosecond time scales so that only the high-barrier tail of the distributions is visible on the nanosecond scale. By continuous wave excitation prior to TDS characterization of the barriers, however, each Cyt c molecule is photoexcited multiple times and complete photodissociation can be achieved, which likely arises from a rotation of the CO within the heme pocket so that the oxygen faces the heme iron. Apparently, reorientation prior to rebinding constitutes an additional and significant contribution to the rebinding barrier. Our experiments reveal that the compact, rigid structure of Cyt c offers no alternative binding sites for photodissociated ligands in the protein matrix. A comparison of ligand binding in these Cyt c mutants and hemoglobins underscores the importance of internal ligand docking sites and ligand migration routes for conveying a ligand binding function to heme proteins.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe, Germany
| | | | | |
Collapse
|
20
|
Plattner N, Meuwly M. Quantifying the importance of protein conformation on ligand migration in myoglobin. Biophys J 2012; 102:333-41. [PMID: 22339870 DOI: 10.1016/j.bpj.2011.10.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 10/24/2011] [Accepted: 10/26/2011] [Indexed: 10/14/2022] Open
Abstract
Myoglobin (Mb) is a model system for ligand binding and migration. The energy barriers (ΔG) for ligand migration in Mb have been studied in the past by experiment and theory and significant differences between different approaches were found. From experiment, it is known that Mb can assume a large number of conformational substates. In this work, these substates are investigated as a possible source of the differences in migration barriers. We show that the initial structure significantly affects the calculated ΔG for a particular transition and that fluctuations in barrier heights δΔG are of similar magnitude as the free energy barriers themselves. The sensitivity of ΔG to the initial structure is compared to other sources of errors. Different protein structures can affect the calculated ΔG by up to 4 kcal/mol, whereas differences between simple point charge models and more elaborate multipolar charge models for the CO-ligand are smaller by a factor of two. Analysis of the structural changes underlying the large effect of the conformational substate reveals the importance of coupling between protein and ligand motion for migration.
Collapse
Affiliation(s)
- Nuria Plattner
- Chemistry Department, Brown University, Providence, Rhode Island, USA
| | | |
Collapse
|
21
|
Structure-based model of allostery predicts coupling between distant sites. Proc Natl Acad Sci U S A 2012; 109:4875-80. [PMID: 22403063 DOI: 10.1073/pnas.1116274109] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Allostery is a phenomenon that couples effector ligand binding at an allosteric site to a structural and/or dynamic change at a distant regulated site. To study an allosteric transition, we vary the size of the allosteric site and its interactions to construct a series of energy landscapes with pronounced minima corresponding to both the effector bound and unbound crystal structures. We use molecular dynamics to sample these landscapes. The degree of perturbation by the effector, modeled by the size of the allosteric site, provides an order parameter for allostery that allows us to determine how microscopic motions give rise to commonly discussed macroscopic mechanisms: (i) induced fit, (ii) population shift, and (iii) entropy driven. These mechanisms involve decreasing structural differences between the effector bound and unbound populations. A metric (ligand-induced cooperativity) can measure how cooperatively a given regulated site responds to effector binding and therefore what kind of allosteric mechanism is involved. We apply the model to three proteins with experimentally characterized transitions: (i) calmodulin-GFP Ca(2+) sensor protein, (ii) maltose binding protein, and (iii) CSL transcription factor. Remarkably, the model is able to reproduce allosteric motion and predict coupling in a manner consistent with experiment.
Collapse
|
22
|
Nienhaus K, Nickel E, Lu C, Yeh SR, Nienhaus GU. Ligand migration in human indoleamine-2,3 dioxygenase. IUBMB Life 2011; 63:153-9. [PMID: 21445845 DOI: 10.1002/iub.431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Human indoleamine 2,3-dioxygenase (hIDO), a monomeric heme enzyme, catalyzes the oxidative degradation of L-tryptophan (L-Trp) and other indoleamine derivatives. Its activity follows typical Michaelis-Menten behavior only for L-Trp concentrations up to 50 μM; a further increase in the concentration of L-Trp causes a decrease in the activity. This substrate inhibition of hIDO is a result of the binding of a second L-Trp molecule in an inhibitory substrate binding site of the enzyme. The molecular details of the reaction and the inhibition are not yet known. In the following, we summarize the present knowledge about this heme enzyme.
Collapse
Affiliation(s)
- Karin Nienhaus
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe, Germany.
| | | | | | | | | |
Collapse
|
23
|
Mañez PA, Lu C, Boechi L, Martí MA, Shepherd M, Wilson JL, Poole RK, Luque FJ, Yeh SR, Estrin DA. Role of the distal hydrogen-bonding network in regulating oxygen affinity in the truncated hemoglobin III from Campylobacter jejuni. Biochemistry 2011; 50:3946-56. [PMID: 21476539 PMCID: PMC4535342 DOI: 10.1021/bi101137n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxygen affinity in heme-containing proteins is determined by a number of factors, such as the nature and conformation of the distal residues that stabilize the heme bound-oxygen via hydrogen-bonding interactions. The truncated hemoglobin III from Campylobacter jejuni (Ctb) contains three potential hydrogen-bond donors in the distal site: TyrB10, TrpG8, and HisE7. Previous studies suggested that Ctb exhibits an extremely slow oxygen dissociation rate due to an interlaced hydrogen-bonding network involving the three distal residues. Here we have studied the structural and kinetic properties of the G8(WF) mutant of Ctb and employed state-of-the-art computer simulation methods to investigate the properties of the O(2) adduct of the G8(WF) mutant, with respect to those of the wild-type protein and the previously studied E7(HL) and/or B10(YF) mutants. Our data indicate that the unique oxygen binding properties of Ctb are determined by the interplay of hydrogen-bonding interactions between the heme-bound ligand and the surrounding TyrB10, TrpG8, and HisE7 residues.
Collapse
Affiliation(s)
- Pau Arroyo Mañez
- Departamento de Química Inorgánica, Analítica, y Química Fisica, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Buenos Aires, Argentina
| | - Changyuan Lu
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Leonardo Boechi
- Departamento de Química Inorgánica, Analítica, y Química Fisica, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Buenos Aires, Argentina
| | - Marcelo A. Martí
- Departamento de Química Inorgánica, Analítica, y Química Fisica, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Buenos Aires, Argentina
| | - Mark Shepherd
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Jayne Louise Wilson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - F. Javier Luque
- Department de Fisicoquimica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Darío A. Estrin
- Departamento de Química Inorgánica, Analítica, y Química Fisica, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
24
|
Chung JK, Thielges MC, Bowman SEJ, Bren KL, Fayer MD. Temperature dependent equilibrium native to unfolded protein dynamics and properties observed with IR absorption and 2D IR vibrational echo experiments. J Am Chem Soc 2011; 133:6681-91. [PMID: 21469666 PMCID: PMC3088310 DOI: 10.1021/ja111009s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dynamic and structural properties of carbonmonoxy (CO)-coordinated cytochrome c(552) from Hydrogenobacter thermophilus (Ht-M61A) at different temperatures under thermal equilibrium conditions were studied with infrared absorption spectroscopy and ultrafast two-dimensional infrared (2D IR) vibrational echo experiments using the heme-bound CO as the vibrational probe. Depending on the temperature, the stretching mode of CO shows two distinct bands corresponding to the native and unfolded proteins. As the temperature is increased from low temperature, a new absorption band for the unfolded protein grows in and the native band decreases in amplitude. Both the temperature-dependent circular dichroism and the IR absorption area ratio R(A)(T), defined as the ratio of the area under the unfolded band to the sum of the areas of the native and unfolded bands, suggest a two-state transition from the native to the unfolded protein. However, it is found that the absorption spectrum of the unfolded protein increases its inhomogeneous line width and the center frequency shifts as the temperature is increased. The changes in line width and center frequency demonstrate that the unfolding does not follow simple two-state behavior. The temperature-dependent 2D IR vibrational echo experiments show that the fast dynamics of the native protein are virtually temperature independent. In contrast, the fast dynamics of the unfolded protein are slower than those of the native protein, and the unfolded protein fast dynamics and at least a portion of the slower dynamics of the unfolded protein change significantly, becoming faster as the temperature is raised. The temperature dependence of the absorption spectrum and the changes in dynamics measured with the 2D IR experiments confirm that the unfolded ensemble of conformers continuously changes its nature as unfolding proceeds, in contrast to the native state, which displays a temperature-independent distribution of structures.
Collapse
Affiliation(s)
- Jean K. Chung
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Megan C. Thielges
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Sarah E. J. Bowman
- Department of Chemistry, University of Rochester, Rochester, New York 14627
| | - Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester, New York 14627
| | - M. D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305
| |
Collapse
|
25
|
Lutz S, Meuwly M. Structural characterization of spectroscopic substates in carbonmonoxy neuroglobin. Faraday Discuss 2011; 150:375-90; discussion 391-418. [DOI: 10.1039/c0fd00003e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Bagchi S, Nebgen BT, Loring RF, Fayer MD. Dynamics of a myoglobin mutant enzyme: 2D IR vibrational echo experiments and simulations. J Am Chem Soc 2010; 132:18367-76. [PMID: 21142083 PMCID: PMC3033732 DOI: 10.1021/ja108491t] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Myoglobin (Mb) double mutant T67R/S92D displays peroxidase enzymatic activity in contrast to the wild type protein. The CO adduct of T67R/S92D shows two CO absorption bands corresponding to the A(1) and A(3) substates. The equilibrium protein dynamics for the two distinct substates of the Mb double mutant are investigated by using two-dimensional infrared (2D IR) vibrational echo spectroscopy and molecular dynamics (MD) simulations. The time-dependent changes in the 2D IR vibrational echo line shapes for both of the substates are analyzed using the center line slope (CLS) method to obtain the frequency-frequency correlation function (FFCF). The results for the double mutant are compared to those from the wild type Mb. The experimentally determined FFCF is compared to the FFCF obtained from molecular dynamics simulations, thereby testing the capacity of a force field to determine the amplitudes and time scales of protein structural fluctuations on fast time scales. The results provide insights into the nature of the energy landscape around the free energy minimum of the folded protein structure.
Collapse
Affiliation(s)
- Sayan Bagchi
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
27
|
Anselmi M, Di Nola A, Amadei A. The effects of the L29F mutation on the ligand migration kinetics in crystallized myoglobin as revealed by molecular dynamics simulations. Proteins 2010; 79:867-79. [DOI: 10.1002/prot.22924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 10/13/2010] [Indexed: 11/09/2022]
|
28
|
Thompson MK, Davis MF, de Serrano V, Nicoletti FP, Howes BD, Smulevich G, Franzen S. Internal binding of halogenated phenols in dehaloperoxidase-hemoglobin inhibits peroxidase function. Biophys J 2010; 99:1586-95. [PMID: 20816071 DOI: 10.1016/j.bpj.2010.05.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 05/11/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022] Open
Abstract
Dehaloperoxidase (DHP) from the annelid Amphitrite ornata is a catalytically active hemoglobin-peroxidase that possesses a unique internal binding cavity in the distal pocket above the heme. The previously published crystal structure of DHP shows 4-iodophenol bound internally. This led to the proposal that the internal binding site is the active site for phenol oxidation. However, the native substrate for DHP is 2,4,6-tribromophenol, and all attempts to bind 2,4,6-tribromophenol in the internal site under physiological conditions have failed. Herein, we show that the binding of 4-halophenols in the internal pocket inhibits enzymatic function. Furthermore, we demonstrate that DHP has a unique two-site competitive binding mechanism in which the internal and external binding sites communicate through two conformations of the distal histidine of the enzyme, resulting in nonclassical competitive inhibition. The same distal histidine conformations involved in DHP function regulate oxygen binding and release during transport and storage by hemoglobins and myoglobins. This work provides further support for the hypothesis that DHP possesses an external binding site for substrate oxidation, as is typical for the peroxidase family of enzymes.
Collapse
Affiliation(s)
- Matthew K Thompson
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Bagchi S, Thorpe DG, Thorpe IF, Voth GA, Fayer MD. Conformational switching between protein substates studied with 2D IR vibrational echo spectroscopy and molecular dynamics simulations. J Phys Chem B 2010; 114:17187-93. [PMID: 21128650 DOI: 10.1021/jp109203b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Myoglobin is an important protein for the study of structure and dynamics. Three conformational substates have been identified for the carbonmonoxy form of myoglobin (MbCO). These are manifested as distinct peaks in the IR absorption spectrum of the CO stretching mode. Ultrafast 2D IR vibrational echo chemical exchange experiments are used to observed switching between two of these substates, A(1) and A(3), on a time scale of <100 ps for two mutants of wild-type Mb. The two mutants are a single mutation of Mb, L29I, and a double mutation, T67R/S92D. Molecular dynamics (MD) simulations are used to model the structural differences between the substates of the two MbCO mutants. The MD simulations are also employed to examine the substate switching in the two mutants as a test of the ability of MD simulations to predict protein dynamics correctly for a system in which there is a well-defined transition over a significant potential barrier between two substates. For one mutant, L29I, the simulations show that translation of the His64 backbone may differentiate the two substates. The simulations accurately reproduce the experimentally observed interconversion time for the L29I mutant. However, MD simulations exploring the same His64 backbone coordinate fail to display substate interconversion for the other mutant, T67R/S92D, thus pointing to the likely complexity of the underlying protein interactions. We anticipate that understanding conformational dynamics in MbCO via ultrafast 2D IR vibrational echo chemical exchange experiments can help to elucidate fast conformational switching processes in other proteins.
Collapse
Affiliation(s)
- Sayan Bagchi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | | | | | | | | |
Collapse
|
30
|
Nienhaus K, Dominici P, Astegno A, Abbruzzetti S, Viappiani C, Nienhaus GU. Ligand migration and binding in nonsymbiotic hemoglobins of Arabidopsis thaliana. Biochemistry 2010; 49:7448-58. [PMID: 20666470 DOI: 10.1021/bi100768g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have studied carbon monoxide (CO) migration and binding in the nonsymbiotic hemoglobins AHb1 and AHb2 of Arabidopsis thaliana using Fourier transform infrared (FTIR) spectroscopy combined with temperature derivative spectroscopy (TDS) at cryogenic temperatures. Both proteins have similar amino acid sequences but display pronounced differences in ligand binding properties, at both physiological and cryogenic temperatures. Near neutral pH, the distal HisE7 side chain is close to the heme-bound ligand in the majority of AHb1-CO molecules, as indicated by a low CO stretching frequency at 1921 cm(-1). In this fraction, two CO docking sites can be populated, the primary site B and the secondary site C. When the pH is lowered, a high-frequency stretching band at approximately 1964 cm(-1) grows at the expense of the low-frequency band, indicating that HisE7 protonates and, concomitantly, moves away from the bound ligand. Geminate rebinding barriers are markedly different for the two conformations, and docking site C is not accessible in the low-pH conformation. Rebinding of NO ligands was observed only from site B of AHb1, regardless of conformation. In AHb2, the HisE7 side chain is removed from the bound ligand; rebinding barriers are low, and CO molecules can populate only primary docking site B. These results are interpreted in terms of differences in the active site structures and physiological functions.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Nienhaus K, Nienhaus GU. Ligand dynamics in heme proteins observed by Fourier transform infrared-temperature derivative spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:1030-41. [PMID: 20656073 DOI: 10.1016/j.bbapap.2010.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 11/29/2022]
Abstract
Fourier transform infrared (FTIR) spectroscopy is a powerful tool for the investigation of protein-ligand interactions in heme proteins. Nitric oxide and carbon monoxide are attractive physiologically relevant ligands because their bond stretching vibrations give rise to strong mid-infrared absorption bands that can be measured with exquisite sensitivity and precision using photolysis difference spectroscopy at cryogenic temperatures. These stretching bands are fine-tuned by electrostatic interactions with the environment and, therefore, ligands can be utilized as local probes of structure and dynamics. Bound to the heme iron, the ligand stretching bands are susceptible to changes in the iron-ligand bond and the electric field at the active site. Upon photolysis, the vibrational bands display changes due to ligand relocation to docking sites within the protein, rotational motions of the ligand in these sites and protein conformational changes. Photolysis difference spectra taken over a wide temperature range (3-300K) using specific temperature protocols for sample photodissociation can provide detailed insights into both protein and ligand dynamics. Moreover, temperature-derivative spectroscopy (TDS) has proven to be a particularly powerful technique to study protein-ligand interactions. The FTIR-TDS technique has been extensively applied to studies of carbon monoxide binding to heme proteins, whereas measurements with nitric oxide are still scarce. Here we describe infrared cryo-spectroscopy and present a variety of applications to the study of protein-ligand interactions in heme proteins. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Karin Nienhaus
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics and Center for Functional Nanostructures, Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe, Germany
| | | |
Collapse
|
32
|
Benabbas A, Ye X, Kubo M, Zhang Z, Maes EM, Montfort WR, Champion PM. Ultrafast dynamics of diatomic ligand binding to nitrophorin 4. J Am Chem Soc 2010; 132:2811-20. [PMID: 20121274 DOI: 10.1021/ja910005b] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nitrophorin 4 (NP4) is a heme protein that stores and delivers nitric oxide (NO) through pH-sensitive conformational change. This protein uses the ferric state of a highly ruffled heme to bind NO tightly at low pH and release it at high pH. In this work, the rebinding kinetics of NO and CO to NP4 are investigated as a function of iron oxidation state and the acidity of the environment. The geminate recombination process of NO to ferrous NP4 at both pH 5 and pH 7 is dominated by a single approximately 7 ps kinetic phase that we attribute to the rebinding of NO directly from the distal pocket. The lack of pH dependence explains in part why NP4 cannot use the ferrous state to fulfill its function. The kinetic response of ferric NP4NO shows two distinct phases. The relative geminate amplitude of the slower phase increases dramatically as the pH is raised from 5 to 8. We assign the fast phase of NO rebinding to a conformation of the ferric protein with a closed hydrophobic pocket. The slow phase is assigned to the protein in an open conformation with a more hydrophilic heme pocket environment. Analysis of the ultrafast kinetics finds the equilibrium off-rate of NO to be proportional to the open state population as well as the pH-dependent amplitude of escape from the open pocket. When both factors are considered, the off-rate increases by more than an order of magnitude as the pH changes from 5 to 8. The recombination of CO to ferrous NP4 is observed to have a large nonexponential geminate amplitude with rebinding time scales of approximately 10(-11)-10(-9) s at pH 5 and approximately 10(-10)-10(-8) s at pH 7. The nonexponential CO rebinding kinetics at both pH 5 and pH 7 are accounted for using a simple model that has proven effective for understanding CO binding in a variety of other heme systems (Ye, X.; et al. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 14682).
Collapse
Affiliation(s)
- Abdelkrim Benabbas
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Devereux M, Plattner N, Meuwly M. Application of multipolar charge models and molecular dynamics simulations to study stark shifts in inhomogeneous electric fields. J Phys Chem A 2010; 113:13199-209. [PMID: 19681623 DOI: 10.1021/jp903954t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atomic multipole moments are used to investigate vibrational frequency shifts of CO and H(2) in uniform and inhomogeneous electric fields using ab initio calculations and Molecular Dynamics (MD) simulations. The importance of using atomic multipole moments that can accurately represent both molecular electrostatics and the vibrational response of the molecule to changes in the local electric field is highlighted. The vibrational response of CO to applied uniform and inhomogeneous electric fields is examined using Density Functional Theory calculations for a range of test fields, and the results are used to assess the performance of different atomic multipole models. In uniform fields, the calculated Stark tuning rates of Deltamu = 0.52 cm(-1)/(MV/cm) (DFT), Deltamu = 0.55 cm(-1)/(MV/cm) (fluctuating three-point charge model), and Deltamu = 0.64 cm(-1)/(MV/cm) (Multipole model up to octupole), compare favorably with the experimentally measured value of 0.67 cm(-1)/(MV/cm). For H(2), which has no permanent dipole moment, CCSD(T) calculations demonstrate the importance of bond-weakening effects in force fields in response to the applied inhomogeneous electric field. Finally, CO in hexagonal ice is considered as a test system to highlight the performance of selected multipolar models in MD simulations. The approach discussed here can be applied to calibrate a range of multipolar charge models for diatomic probes, with applications to interpret Stark spectroscopy measurements in protein active sites.
Collapse
Affiliation(s)
- Michael Devereux
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
34
|
Lutz S, Nienhaus K, Nienhaus GU, Meuwly M. Ligand Migration between Internal Docking Sites in Photodissociated Carbonmonoxy Neuroglobin. J Phys Chem B 2009; 113:15334-43. [DOI: 10.1021/jp905673p] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stephan Lutz
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland; Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany; and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801
| | - Karin Nienhaus
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland; Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany; and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801
| | - G. Ulrich Nienhaus
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland; Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany; and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland; Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany; and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801
| |
Collapse
|
35
|
Devereux M, Meuwly M. Structural assignment of spectra by characterization of conformational substates in bound MbCO. Biophys J 2009; 96:4363-75. [PMID: 19486661 DOI: 10.1016/j.bpj.2009.01.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 12/18/2008] [Accepted: 01/21/2009] [Indexed: 11/18/2022] Open
Abstract
Residue motions of the distal heme pocket and bound CO ligand of carbonmonoxy Myoglobin are studied using a combination of molecular dynamics simulations and quantum chemical methods. Using mixed quantum mechanics/molecular mechanics calculations together with sampling from molecular dynamics simulations (QM/MM(MD)), the experimentally observed spectroscopic A(0) and A(1) substates of the bound CO ligand are assigned to the open and closed conformation of His(64) and the His(epsilon)(64) tautomer, respectively. Several previously proposed origins of the A(3) substate, including rotamers of the doubly protonated His(64)H(+) side chain, His(64)H(+) inside the distal pocket, and cooperative motions with Arg(45), are investigated with QM/MM(MD). However, the signatures of the calculated infrared spectra do not agree with the experimentally observed ones. For additional insight on this, extensive molecular dynamics simulations are used together with improved electrostatics for the bound ligand. A CO fluctuating charge model is developed to describe the ab initio dipole and quadrupole moments of the bound ligand. CO absorption spectra are then obtained directly from the dynamics simulations. Finally, the electrostatics of the heme pocket is examined in detail in an attempt to determine the structural origins of the observed spectroscopic A-states from MD simulations. However, contrary to related simulations for unbound CO in myoglobin, the shifts and splittings for carbonmonoxy Myoglobin are generally small and difficult to relate to structural change. This suggests that coupling of the CO motion to other degrees of freedom, such as the Fe-CO stretching and bending, is important to correctly describe the dynamics of bound CO in myoglobin.
Collapse
Affiliation(s)
- Michael Devereux
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | |
Collapse
|
36
|
Guo L, Park J, Lee T, Chowdhury P, Lim M, Gai F. Probing the role of hydration in the unfolding transitions of carbonmonoxy myoglobin and apomyoglobin. J Phys Chem B 2009; 113:6158-63. [PMID: 19348439 DOI: 10.1021/jp900009x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We show that the equilibrium unfolding transition of horse carbonmonoxy myoglobin monitored by the stretching vibration of the CO ligand, a local environmental probe, is very sharp and, thus, quite different from those measured by global conformational reporters. In addition, the denatured protein exhibits an A(0)-like CO band. We hypothesize that this sharp transition reports penetration of water into the heme pocket of the protein. Parallel experiments on horse apomyoglobin, wherein an environment-sensitive fluorescent probe, nile red, was used, also reveals a similar putative hydration event. Given the importance of dehydration in protein folding and also the recent debate over the interpretation of probe-dependent unfolding transitions, these results have strong implications on the mechanism of protein folding.
Collapse
Affiliation(s)
- Lin Guo
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
37
|
Fayer M. Dynamics of Liquids, Molecules, and Proteins Measured with Ultrafast 2D IR Vibrational Echo Chemical Exchange Spectroscopy. Annu Rev Phys Chem 2009; 60:21-38. [PMID: 18851709 DOI: 10.1146/annurev-physchem-073108-112712] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M.D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305;
| |
Collapse
|
38
|
Nienhaus K, Nickel E, Davis MF, Franzen S, Nienhaus GU. Determinants of Substrate Internalization in the Distal Pocket of Dehaloperoxidase Hemoglobin of Amphitrite ornata. Biochemistry 2008; 47:12985-94. [DOI: 10.1021/bi801564r] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karin Nienhaus
- Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801
| | - Elena Nickel
- Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801
| | - Michael F. Davis
- Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801
| | - Stefan Franzen
- Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801
| | - G. Ulrich Nienhaus
- Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801
| |
Collapse
|
39
|
Abstract
Folded proteins can exist in multiple conformational substates. Each substate reflects a local minimum on the free-energy landscape with a distinct structure. By using ultrafast 2D-IR vibrational echo chemical-exchange spectroscopy, conformational switching between two well defined substates of a myoglobin mutant is observed on the approximately 50-ps time scale. The conformational dynamics are directly measured through the growth of cross peaks in the 2D-IR spectra of CO bound to the heme active site. The conformational switching involves motion of the distal histidine/E helix that changes the location of the imidazole side group of the histidine. The exchange between substates changes the frequency of the CO, which is detected by the time dependence of the 2D-IR vibrational echo spectrum. These results demonstrate that interconversion between protein conformational substates can occur on very fast time scales. The implications for larger structural changes that occur on much longer time scales are discussed.
Collapse
|
40
|
Influence of distal residue B10 on CO dynamics in myoglobin and neuroglobin. J Biol Phys 2008; 33:357-70. [PMID: 19669524 DOI: 10.1007/s10867-008-9059-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Accepted: 02/08/2008] [Indexed: 10/22/2022] Open
Abstract
For many years, myoglobin has served as a paradigm for structure-function studies in proteins. Ligand binding and migration within myoglobin has been studied in great detail by crystallography and spectroscopy, showing that gaseous ligands such as O(2), CO, and NO not only bind to the heme iron but may also reside transiently in three internal ligand docking sites, the primary docking site B and secondary sites C and D. These sites affect ligand association and dissociation in specific ways. Neuroglobin is another vertebrate heme protein that also binds small ligands. Ligand migration pathways in neuroglobin have not yet been elucidated. Here, we have used Fourier transform infrared temperature derivative spectroscopy at cryogenic temperatures to compare the influence of the side chain volume of amino acid residue B10 on ligand migration to and rebinding from docking sites in myoglobin and neuroglobin.
Collapse
|
41
|
The role of higher CO-multipole moments in understanding the dynamics of photodissociated carbonmonoxide in myoglobin. Biophys J 2008; 94:2505-15. [PMID: 18178640 DOI: 10.1529/biophysj.107.120519] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The influence of electrostatic multipole moments up to hexadecapole on the dynamics of photodissociated carbon monoxide (CO) in myoglobin is investigated. The CO electrostatic potential is expressed as an expansion into atomic multipole moments of increasing order up to octopole which are obtained from a distributed multipole analysis. Three models with increasingly accurate molecular multipoles (accurate quadrupole, octopole, and hexadecapole moments, respectively) are developed and used in molecular dynamics simulations. All models with a fluctuating quadrupole moment correctly describe the location of the B-state whereas the sign of the octopole moment differentiates between the Fe...CO and Fe...OC orientation. For the infrared spectrum of photodissociated CO, considerable differences between the three electrostatic models are found. The most detailed electrostatic model correctly reproduces the splitting, shift, and width of the CO spectrum in the B-state. From an analysis of the trajectories, the spectroscopic B(1) and B(2) states are assigned to the Fe...CO and Fe...OC substates, respectively.
Collapse
|
42
|
Nienhaus K, Nienhaus GU. Ligand dynamics in heme proteins observed by Fourier transform infrared spectroscopy at cryogenic temperatures. Methods Enzymol 2008; 437:347-78. [PMID: 18433637 DOI: 10.1016/s0076-6879(07)37018-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fourier transform infrared spectroscopy is a powerful tool for the investigation of protein-ligand interactions in heme proteins. From the variety of ligands that bind to the heme iron, nitric oxide and carbon monoxide are particularly attractive, as their bond-stretching vibrations give rise to strong mid-infrared absorption bands that can be measured with exquisite sensitivity and precision using photolysis difference spectroscopy at cryogenic temperatures. These stretching bands are fine-tuned by electrostatic interactions with the environment and, therefore, the ligands can be utilized as local probes of structure and dynamics. Bound to the heme iron, the ligand-stretching bands are susceptible to changes in the iron-ligand bond and the electric field at the active site. Upon photolysis, the vibrational bands reveal changes due to ligand relocation to docking sites within the protein, rotational motions of the ligand in these sites, and protein conformational changes. Photolysis difference spectra taken over a wide temperature range (3-300 K) using specific temperature protocols for sample photodissociation thus can provide detailed insights into both protein and ligand dynamics. Moreover, temperature-derivative spectroscopy has proven to be a particularly powerful technique to study protein-ligand interactions. This technique has been extensively applied to studies of carbon monoxide binding to heme proteins, whereas measurements with nitric oxide are still scarce. This chapter describes infrared cryospectroscopy techniques and presents examples that demonstrate their applicability to nitric oxide binding to heme proteins.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Biophysics, University of Ulm, Ulm, Germany
| | | |
Collapse
|
43
|
Bredenbeck J, Helbing J, Kolano C, Hamm P. Ultrafast 2D–IR Spectroscopy of Transient Species. Chemphyschem 2007; 8:1747-56. [PMID: 17615613 DOI: 10.1002/cphc.200700148] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multidimensional spectroscopic experiments offer fascinating insights into molecular structure and dynamics in the field of NMR spectroscopy. With the introduction of ultrafast two-dimensional infrared spectroscopy (2D-IR), multidimensional concepts have entered the optical domain, measuring couplings and correlations between molecular vibrations with femtosecond time resolution. In the transient 2D-IR (T2D-IR) experiments described in this minireview we exploit the high time resolution of 2D-IR to study transient species during fast nonequilibrium processes in real time. Information on molecular structure and dynamics is obtained that is not available from one-dimensional spectroscopy. We discuss examples from chemistry, physics and biophysics.
Collapse
Affiliation(s)
- Jens Bredenbeck
- Physikalisch-Chemisches Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | | | | | | |
Collapse
|
44
|
Lubchenko V, Wolynes PG, Frauenfelder H. Mosaic energy landscapes of liquids and the control of protein conformational dynamics by glass-forming solvents. J Phys Chem B 2007; 109:7488-99. [PMID: 16851860 DOI: 10.1021/jp045205z] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using recent advances in the Random First-Order Transition (RFOT) Theory of glass-forming liquids, we explain how the molecular motions of a glass-forming solvent distort the protein's boundary and slave some of the protein's conformational motions. Both the length and time scales of the solvent imposed constraints are provided by the RFOT theory. Comparison of the protein relaxation rate to that of the solvent provides an explicit lower bound on the size of the conformational space explored by the protein relaxation. Experimental measurements of slaving of myoglobin motions indicate that a major fraction of functionally important motions have significant entropic barriers.
Collapse
Affiliation(s)
- Vassiliy Lubchenko
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093-0371, USA.
| | | | | |
Collapse
|
45
|
Finkelstein IJ, Goj A, McClain BL, Massari AM, Merchant KA, Loring RF, Fayer MD. Ultrafast dynamics of myoglobin without the distal histidine: stimulated vibrational echo experiments and molecular dynamics simulations. J Phys Chem B 2007; 109:16959-66. [PMID: 16853158 DOI: 10.1021/jp0517201] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ultrafast protein dynamics of the CO adduct of a myoglobin mutant with the polar distal histidine replaced by a nonpolar valine (H64V) have been investigated by spectrally resolved infrared stimulated vibrational echo experiments and molecular dynamics (MD) simulations. In aqueous solution at room temperature, the vibrational dephasing rate of CO in the mutant is reduced by approximately 50% relative to the native protein. This finding confirms that the dephasing of the CO vibration in the native protein is sensitive to the interaction between the ligand and the distal histidine. The stimulated vibrational echo observable is calculated from MD simulations of H64V within a model in which vibrational dephasing is driven by electrostatic forces. In agreement with experiment, calculated vibrational echoes show slower dephasing for the mutant than for the native protein. However, vibrational echoes calculated for H64V do not show the quantitative agreement with measurements demonstrated previously for the native protein.
Collapse
Affiliation(s)
- Ilya J Finkelstein
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Deng P, Nienhaus K, Palladino P, Olson JS, Blouin G, Moens L, Dewilde S, Geuens E, Nienhaus GU. Transient ligand docking sites in Cerebratulus lacteus mini-hemoglobin. Gene 2007; 398:208-23. [PMID: 17531406 PMCID: PMC1986801 DOI: 10.1016/j.gene.2007.01.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 01/27/2007] [Accepted: 01/30/2007] [Indexed: 11/22/2022]
Abstract
The monomeric hemoglobin of the nemertean worm Cerebratulus lacteus functions as an oxygen storage protein to maintain neural activity under hypoxic conditions. It shares a large, apolar matrix tunnel with other small hemoglobins, which has been implicated as a potential ligand migration pathway. Here we explore ligand migration and binding within the distal heme pocket, to which the tunnel provides access to ligands from the outside. FTIR/TDS experiments performed at cryogenic temperatures reveal the presence of three transient ligand docking sites within the distal pocket, the primary docking site B on top of pyrrole C and secondary sites C and D. Site C is assigned to a cavity adjacent to the distal portion of the heme pocket, surrounded by the B and E helices. It has an opening to the apolar tunnel and is expected to be on the pathway for ligand entry and exit, whereas site D, circumscribed by TyrB10, GlnE7, and the CD corner, most likely is located on a side pathway of ligand migration. Flash photolysis experiments at ambient temperatures indicate that the rate-limiting step for ligand binding to CerHb is migration through the apolar channel to site C. Movement from C to B and iron-ligand bond formation involve low energy barriers and thus are very rapid processes in the wt protein.
Collapse
Affiliation(s)
- Pengchi Deng
- Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Finkelstein IJ, Ishikawa H, Kim S, Massari AM, Fayer MD. Substrate binding and protein conformational dynamics measured by 2D-IR vibrational echo spectroscopy. Proc Natl Acad Sci U S A 2007; 104:2637-42. [PMID: 17296942 PMCID: PMC1815234 DOI: 10.1073/pnas.0610027104] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Indexed: 11/18/2022] Open
Abstract
Enzyme structural dynamics play a pivotal role in substrate binding and biological function, but the influence of substrate binding on enzyme dynamics has not been examined on fast time scales. In this work, picosecond dynamics of horseradish peroxidase (HRP) isoenzyme C in the free form and when ligated to a variety of small organic molecule substrates is studied by using 2D-IR vibrational echo spectroscopy. Carbon monoxide bound at the heme active site of HRP serves as a spectroscopic marker that is sensitive to the structural dynamics of the protein. In the free form, HRP assumes two distinct spectroscopic conformations that undergo fluctuations on a tens-of-picoseconds time scale. After substrate binding, HRP is locked into a single conformation that exhibits reduced amplitudes and slower time-scale structural dynamics. The decrease in carbon monoxide frequency fluctuations is attributed to reduced dynamic freedom of the distal histidine and the distal arginine, which are key residues in modulating substrate binding affinity. It is suggested that dynamic quenching caused by substrate binding can cause the protein to be locked into a conformation suitable for downstream steps in the enzymatic cycle of HRP.
Collapse
Affiliation(s)
| | - Haruto Ishikawa
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Seongheun Kim
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Aaron M. Massari
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - M. D. Fayer
- Department of Chemistry, Stanford University, Stanford, CA 94305
| |
Collapse
|
48
|
Bredenbeck J, Helbing J, Nienhaus K, Nienhaus GU, Hamm P. Protein ligand migration mapped by nonequilibrium 2D-IR exchange spectroscopy. Proc Natl Acad Sci U S A 2007; 104:14243-8. [PMID: 17261808 PMCID: PMC1964829 DOI: 10.1073/pnas.0607758104] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
2D-IR exchange spectroscopy has been introduced recently to map chemical exchange networks in equilibrium with subpicosecond time resolution. Here, we demonstrate the generalization of 2D-IR exchange spectroscopy to nonequilibrium systems and its application to map light-triggered migration of ligands between different sites in a protein. Within picoseconds after a photodissociating laser pulse, carbon monoxide ligands relocate from their binding site A at the heme prosthetic group of myoglobin to a primary docking site B in the distal heme pocket. Multiple CO stretching bands are observed for the CO ligand in sites A and B, indicating that several distinct conformational substates of the myoglobin:ligand complex coexist in solution. Exchange cross-peaks between the bands associated with substates of heme-bound CO and photodissociated CO in the primary docking site reveal the substate connectivity at physiological temperature.
Collapse
Affiliation(s)
- Jens Bredenbeck
- Physikalisch-Chemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
49
|
Meuwly M. On the Influence of the Local Environment on the CO Stretching Frequencies in Native Myoglobin: Assignment of the B-States in MbCO. Chemphyschem 2006; 7:2061-3. [PMID: 16955519 DOI: 10.1002/cphc.200600304] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Markus Meuwly
- Department of Chemistry, University of Basel Klingelbergstrasse 80, 4056 Basel, Switzerland.
| |
Collapse
|
50
|
Massari AM, Finkelstein IJ, Fayer MD. Dynamics of proteins encapsulated in silica sol-gel glasses studied with IR vibrational echo spectroscopy. J Am Chem Soc 2006; 128:3990-7. [PMID: 16551107 PMCID: PMC2532503 DOI: 10.1021/ja058745y] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spectrally resolved infrared stimulated vibrational echo spectroscopy is used to measure the fast dynamics of heme-bound CO in carbonmonoxy-myoglobin (MbCO) and -hemoglobin (HbCO) embedded in silica sol-gel glasses. On the time scale of approximately 100 fs to several picoseconds, the vibrational dephasing of the heme-bound CO is measurably slower for both MbCO and HbCO relative to that of aqueous protein solutions. The fast structural dynamics of MbCO, as sensed by the heme-bound CO, are influenced more by the sol-gel environment than those of HbCO. Longer time scale structural dynamics (tens of picoseconds), as measured by the extent of spectral diffusion, are the same for both proteins encapsulated in sol-gel glasses compared to that in aqueous solutions. A comparison of the sol-gel experimental results to viscosity-dependent vibrational echo data taken on various mixtures of water and fructose shows that the sol-gel-encapsulated MbCO exhibits dynamics that are the equivalent of the protein in a solution that is nearly 20 times more viscous than bulk water. In contrast, the HbCO dephasing in the sol-gel reflects only a 2-fold increase in viscosity. Attempts to alter the encapsulating pore size by varying the molar ratio of silane precursor to water (R value) used to prepare the sol-gel glasses were found to have no effect on the fast or steady-state spectroscopic results. The vibrational echo data are discussed in the context of solvent confinement and protein-pore wall interactions to provide insights into the influence of a confined environment on the fast structural dynamics experienced by a biomolecule.
Collapse
|