1
|
DiPasquale M, Dziura M, Gbadamosi O, Castillo SR, Fahim A, Roberto J, Atkinson J, Boccalon N, Campana M, Pingali SV, Chandrasekera PC, Zolnierczuk PA, Nagao M, Kelley EG, Marquardt D. Vitamin E Acetate Causes Softening of Pulmonary Surfactant Membrane Models. Chem Res Toxicol 2025; 38:400-414. [PMID: 39970241 DOI: 10.1021/acs.chemrestox.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The popularity of electronic cigarettes and vaping products has launched the outbreak of a condition affecting the respiratory system of users, known as electronic-cigarette/vaping-associated lung injury (EVALI). The build-up of vitamin E acetate (VEA), a diluent of some illicit vaping oils, in the bronchoalveolar lavage of patients with EVALI provided circumstantial evidence as a target for investigation. In this work, we provide a fundamental characterization of the interaction of VEA with lung cells and pulmonary surfactant (PS) models to explore the mechanisms by which vaping-related lung injuries may be present. We first confirm the localization and uptake of VEA in pulmonary epithelial cells. Further, as PS is vitally responsible for the biophysical functions of the lungs, we explore the effect of added VEA on three increasingly complex models of PS: dipalmitoylphosphatidylcholine (DPPC), a lipid-only synthetic PS, and the biologically derived extract Curosurf. Using high-resolution techniques of small-angle X-ray scattering, small-angle neutron scattering, neutron spin-echo spectroscopy, and neutron reflectometry, we compare the molecular-scale behaviors of these membranes to the bulk viscoelastic properties of surfactant monolayer films as studied by Langmuir monolayer techniques. While VEA does not obviously alter the structure or organization of PS membranes, a consistent softening of membrane systems─regardless of compositional complexity─provides a biophysical explanation for the respiratory distress associated with EVALI and yields a new perspective on the behavior of the PS system.
Collapse
Affiliation(s)
- Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Maksymilian Dziura
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Omotayo Gbadamosi
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Stuart R Castillo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Ambreen Fahim
- Canadian Centre for Alternatives to Animal Methods, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Justin Roberto
- Canadian Centre for Alternatives to Animal Methods, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Jeffrey Atkinson
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Natalie Boccalon
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Mario Campana
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - Sai Venkatesh Pingali
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - P Charukeshi Chandrasekera
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
- Canadian Centre for Alternatives to Animal Methods, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Piotr A Zolnierczuk
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Michihiro Nagao
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland 20899, United States
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Elizabeth G Kelley
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland 20899, United States
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
- Department of Physics, University of Windsor, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
2
|
Abstract
Pulmonary surfactant is a critical component of lung function in healthy individuals. It functions in part by lowering surface tension in the alveoli, thereby allowing for breathing with minimal effort. The prevailing thinking is that low surface tension is attained by a compression-driven squeeze-out of unsaturated phospholipids during exhalation, forming a film enriched in saturated phospholipids that achieves surface tensions close to zero. A thorough review of past and recent literature suggests that the compression-driven squeeze-out mechanism may be erroneous. Here, we posit that a surfactant film enriched in saturated lipids is formed shortly after birth by an adsorption-driven sorting process and that its composition does not change during normal breathing. We provide biophysical evidence for the rapid formation of an enriched film at high surfactant concentrations, facilitated by adsorption structures containing hydrophobic surfactant proteins. We examine biophysical evidence for and against the compression-driven squeeze-out mechanism and propose a new model for surfactant function. The proposed model is tested against existing physiological and pathophysiological evidence in neonatal and adult lungs, leading to ideas for biophysical research, that should be addressed to establish the physiological relevance of this new perspective on the function of the mighty thin film that surfactant provides.
Collapse
Affiliation(s)
- Fred Possmayer
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
- Department of Obstetrics/Gynaecology, Western University, London, Ontario N6A 3K7, Canada
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manon, Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States
| | - Ruud A W Veldhuizen
- Department of Physiology & Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Department of Medicine, Western University, London, Ontario N6A 3K7, Canada
- Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
3
|
Liekkinen J, Olżyńska A, Cwiklik L, Bernardino de la Serna J, Vattulainen I, Javanainen M. Surfactant Proteins SP-B and SP-C in Pulmonary Surfactant Monolayers: Physical Properties Controlled by Specific Protein-Lipid Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4338-4350. [PMID: 36917773 PMCID: PMC10061932 DOI: 10.1021/acs.langmuir.2c03349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The lining of the alveoli is covered by pulmonary surfactant, a complex mixture of surface-active lipids and proteins that enables efficient gas exchange between inhaled air and the circulation. Despite decades of advancements in the study of the pulmonary surfactant, the molecular scale behavior of the surfactant and the inherent role of the number of different lipids and proteins in surfactant behavior are not fully understood. The most important proteins in this complex system are the surfactant proteins SP-B and SP-C. Given this, in this work we performed nonequilibrium all-atom molecular dynamics simulations to study the interplay of SP-B and SP-C with multicomponent lipid monolayers mimicking the pulmonary surfactant in composition. The simulations were complemented by z-scan fluorescence correlation spectroscopy and atomic force microscopy measurements. Our state-of-the-art simulation model reproduces experimental pressure-area isotherms and lateral diffusion coefficients. In agreement with previous research, the inclusion of either SP-B and SP-C increases surface pressure, and our simulations provide a molecular scale explanation for this effect: The proteins display preferential lipid interactions with phosphatidylglycerol, they reside predominantly in the lipid acyl chain region, and they partition into the liquid expanded phase or even induce it in an otherwise packed monolayer. The latter effect is also visible in our atomic force microscopy images. The research done contributes to a better understanding of the roles of specific lipids and proteins in surfactant function, thus helping to develop better synthetic products for surfactant replacement therapy used in the treatment of many fatal lung-related injuries and diseases.
Collapse
Affiliation(s)
- Juho Liekkinen
- Department
of Physics, University of Helsinki, FI-00560 Helsinki, Finland
| | - Agnieszka Olżyńska
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of
Sciences, CZ-18223 Prague, Czech Republic
| | - Lukasz Cwiklik
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of
Sciences, CZ-18223 Prague, Czech Republic
| | - Jorge Bernardino de la Serna
- National
Heart and Lung Institute, Imperial College
London, Sir Alexander Fleming Building, London SW7 2AZ, U.K.
- NIHR
Imperial Biomedical Research Centre, London SW7 2AZ, U.K.
| | - Ilpo Vattulainen
- Department
of Physics, University of Helsinki, FI-00560 Helsinki, Finland
| | - Matti Javanainen
- Institute
of Biotechnology, University of Helsinki, FI-00790 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-16100 Prague 6, Czech Republic
| |
Collapse
|
4
|
Korolainen H, Lolicato F, Enkavi G, Pérez-Gil J, Kulig W, Vattulainen I. Dimerization of the pulmonary surfactant protein C in a membrane environment. PLoS One 2022; 17:e0267155. [PMID: 35476695 PMCID: PMC9045638 DOI: 10.1371/journal.pone.0267155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/01/2022] [Indexed: 11/26/2022] Open
Abstract
Surfactant protein C (SP-C) has several functions in pulmonary surfactant. These include the transfer of lipids between different membrane structures, a role in surfactant recycling and homeostasis, and involvement in modulation of the innate defense system. Despite these important functions, the structures of functional SP-C complexes have remained unclear. SP-C is known to exist as a primarily α-helical structure with an apparently unstructured N-terminal region, yet there is recent evidence that the functions of SP-C could be associated with the formation of SP-C dimers and higher oligomers. In this work, we used molecular dynamics simulations, two-dimensional umbrella sampling, and well-tempered metadynamics to study the details of SP-C dimerization. The results suggest that SP-C dimerizes in pulmonary surfactant membranes, forming dimers of different topologies. The simulations identified a dimerization motif region V21xxxVxxxGxxxM33 that is much larger than the putative A30xxxG34 motif that is commonly assumed to control the dimerization of some α-helical transmembrane domains. The results provide a stronger basis for elucidating how SP-C functions in concert with other surfactant proteins.
Collapse
Affiliation(s)
- Hanna Korolainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Fabio Lolicato
- Department of Physics, University of Helsinki, Helsinki, Finland
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Giray Enkavi
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Jesús Pérez-Gil
- Faculty of Biology, Department of Biochemistry and Molecular Biology, Research Institute “Hospital 12 de Octubre (imas12)”, Complutense University, Madrid, Spain
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, Helsinki, Finland
- * E-mail: (WK); (IV)
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
- * E-mail: (WK); (IV)
| |
Collapse
|
5
|
A recipe for a good clinical pulmonary surfactant. Biomed J 2022; 45:615-628. [PMID: 35272060 PMCID: PMC9486245 DOI: 10.1016/j.bj.2022.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
The lives of thousands premature babies have been saved along the last thirty years thanks to the establishment and consolidation of pulmonary surfactant replacement therapies (SRT). It took some time to close the gap between the identification of the biophysical and molecular causes of the high mortality associated with respiratory distress syndrome in very premature babies and the development of a proper therapy. Closing the gap required the elucidation of some key questions defining the structure–function relationships in surfactant as well as the particular role of the different molecular components assembled into the surfactant system. On the other hand, the application of SRT as part of treatments targeting other devastating respiratory pathologies, in babies and adults, is depending on further extensive research still required before enough amounts of good humanized clinical surfactants will be available. This review summarizes our current concepts on the compositional and structural determinants defining pulmonary surfactant activity, the principles behind the development of efficient natural animal-derived or recombinant or synthetic therapeutic surfactants, as well as a the most promising lines of research that are already opening new perspectives in the application of tailored surfactant therapies to treat important yet unresolved respiratory pathologies.
Collapse
|
6
|
Daear W, Sule K, Lai P, Prenner EJ. Biophysical analysis of gelatin and PLGA nanoparticle interactions with complex biomimetic lung surfactant models. RSC Adv 2022; 12:27918-27932. [PMID: 36320247 PMCID: PMC9523518 DOI: 10.1039/d2ra02859j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
Biocompatible materials are increasingly used for pulmonary drug delivery, and it is essential to understand their potential impact on the respiratory system, notably their effect on lung surfactant, a monolayer of lipids and proteins, responsible for preventing alveolar collapse during breathing cycles. We have developed a complex mimic of lung surfactant composed of eight lipids mixed in ratios reported for native lung surfactant. A synthetic peptide based on surfactant protein B was added to better mimic the biological system. This model was used to evaluate the impact of biocompatible gelatin and poly(lactic-co-glycolic acid) nanoparticles. Surface pressure–area isotherms were used to assess lipid packing, film compressibility and stability, whereas the lateral organization was visualized by Brewster angle microscopy. Nanoparticles increased film fluidity and altered the monolayer collapse pressure. Bright protruding clusters formed in their presence indicate a significant impact on the lateral organization of the surfactant film. Altogether, this work indicates that biocompatible materials considered to be safe for drug delivery still need to be assessed for their potential detrimental impact before use in therapeutic applications Biodegradable nanoparticles drastically alters lateral organization of lung surfactant lipid- peptide model system.![]()
Collapse
Affiliation(s)
- W. Daear
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - K. Sule
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - P. Lai
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - E. J. Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
7
|
Compositional, structural and functional properties of discrete coexisting complexes within bronchoalveolar pulmonary surfactant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1864:183808. [PMID: 34687755 DOI: 10.1016/j.bbamem.2021.183808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022]
Abstract
Lung surfactant (LS) stabilizes the respiratory surface by forming a film at the alveolar air-liquid interface that reduces surface tension and minimizes the work of breathing. Typically, this surface-active agent has been isolated from animal lungs both for research and biomedical applications. However, these materials are constituted by complex membranous architectures including surface-active and inactive lipid/protein assemblies. In this work, we describe the composition, structure and surface activity of discrete membranous entities that are part of a LS preparation isolated from bronchoalveolar lavages of porcine lungs. Seven different fractions could be resolved from whole surfactant subjected to sucrose density gradient centrifugation. Detailed compositional characterization revealed differences in protein and cholesterol content but no distinct saturated:unsaturated phosphatidylcholine ratios. Moreover, no significant differences were detected regarding apparent hydration at the headgroup region of membranes, as reported by the probe Laurdan, and lipid chain mobility analysed by electron spin resonance (ESR) in spite of the variety of membranous assemblies observed by transmission electron microscopy. In addition, six of the seven separated LS subfractions formed similar, essentially disordered-like, interfacial films and performed efficient surface activity, under physiologically relevant conditions. Altogether, our work show that a LS isolated from porcine lungs is comprised by a heterogenous population of membranous assemblies lacking freshly secreted unused LS complexes sustaining highly dehydrated and ordered membranous assemblies as previously reported. We propose that surfactant subfractions may illustrate intermediates in sequential structural steps within the structural transformations occurring along the respiratory compression-expansion cycles.
Collapse
|
8
|
Bertsch P, Bergfreund J, Windhab EJ, Fischer P. Physiological fluid interfaces: Functional microenvironments, drug delivery targets, and first line of defense. Acta Biomater 2021; 130:32-53. [PMID: 34077806 DOI: 10.1016/j.actbio.2021.05.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Fluid interfaces, i.e. the boundary layer of two liquids or a liquid and a gas, play a vital role in physiological processes as diverse as visual perception, oral health and taste, lipid metabolism, and pulmonary breathing. These fluid interfaces exhibit a complex composition, structure, and rheology tailored to their individual physiological functions. Advances in interfacial thin film techniques have facilitated the analysis of such complex interfaces under physiologically relevant conditions. This allowed new insights on the origin of their physiological functionality, how deviations may cause disease, and has revealed new therapy strategies. Furthermore, the interactions of physiological fluid interfaces with exogenous substances is crucial for understanding certain disorders and exploiting drug delivery routes to or across fluid interfaces. Here, we provide an overview on fluid interfaces with physiological relevance, namely tear films, interfacial aspects of saliva, lipid droplet digestion and storage in the cell, and the functioning of lung surfactant. We elucidate their structure-function relationship, discuss diseases associated with interfacial composition, and describe therapies and drug delivery approaches targeted at fluid interfaces. STATEMENT OF SIGNIFICANCE: Fluid interfaces are inherent to all living organisms and play a vital role in various physiological processes. Examples are the eye tear film, saliva, lipid digestion & storage in cells, and pulmonary breathing. These fluid interfaces exhibit complex interfacial compositions and structures to meet their specific physiological function. We provide an overview on physiological fluid interfaces with a focus on interfacial phenomena. We elucidate their structure-function relationship, discuss diseases associated with interfacial composition, and describe novel therapies and drug delivery approaches targeted at fluid interfaces. This sets the scene for ocular, oral, or pulmonary surface engineering and drug delivery approaches.
Collapse
|
9
|
Structural hallmarks of lung surfactant: Lipid-protein interactions, membrane structure and future challenges. Arch Biochem Biophys 2021; 703:108850. [PMID: 33753033 DOI: 10.1016/j.abb.2021.108850] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/20/2021] [Accepted: 03/16/2021] [Indexed: 11/23/2022]
Abstract
Lung surfactant (LS) is an outstanding example of how a highly regulated and dynamic membrane-based system has evolved to sustain a wealth of structural reorganizations in order to accomplish its biophysical function, as it coats and stabilizes the respiratory air-liquid interface in the mammalian lung. The present review dissects the complexity of the structure-function relationships in LS through an updated description of the lipid-protein interactions and the membrane structures that sustain its synthesis, secretion, interfacial performance and recycling. We also revise the current models and the biophysical techniques employed to study the membranous architecture of LS. It is important to consider that the structure and functional properties of LS are often studied in bulk or under static conditions, in spite that surfactant function is strongly connected with a highly dynamic behaviour, sustained by very polymorphic structures and lipid-lipid, lipid-protein and protein-protein interactions that reorganize in precise spatio-temporal coordinates. We have tried to underline the evidences available of the existence of such structural dynamism in LS. A last important aspect is that the synthesis and assembly of LS is a strongly regulated intracellular process to ensure the establishment of the proper interactions driving LS surface activity, while protecting the integrity of other cell membranes. The use of simplified lipid models or partial natural materials purified from animal tissues could be too simplistic to understand the true molecular mechanisms defining surfactant function in vivo. In this line, we will bring into the attention of the reader the methodological challenges and the questions still open to understand the structure-function relationships of LS at its full biological relevance.
Collapse
|
10
|
Oseliero Filho PL, Gerbelli BB, Fornasier F, Chaves Filho AB, Yoshinaga MY, Miyamoto S, Mortara L, Lacerda CD, Cuccovia IM, Pimentel AS, Oliveira CLP. Structure and Thermotropic Behavior of Bovine- and Porcine-Derived Exogenous Lung Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14514-14529. [PMID: 33210931 DOI: 10.1021/acs.langmuir.0c02224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two commercial exogenous pulmonary surfactants, Curosurf and Survanta, are investigated. Their thermotropic behavior and associated structural changes for the samples in bulk are characterized and described. For Survanta, the obtained results of differential scanning calorimetry showed a thermogram with three peaks on heating and only a single peak on cooling. Curosurf on the other hand, presents calorimetric thermograms with only one peak in both the heating and cooling scans. This distinct thermotropic behavior between the two pulmonary surfactants, a consequence of their particular compositions, is associated with structural changes that were evaluated by simultaneous small- and wide-angle X-ray scattering experiments with in situ temperature variation. Interestingly, for temperatures below ∼35 °C for Curosurf and ∼53 °C for Survanta, the scattering data indicated the coexistence of two lamellar phases with different carbon chain organizations. For temperatures above these limits, the coexistence of phases disappears, giving rise to a fluid phase in both pulmonary surfactants, with multilamelar vesicles for Curosurf and unilamellar vesicles for Survanta. This process is quasi-reversible under cooling, and advanced data analysis for the scattering data indicated differences in the structural and elastic properties of the pulmonary surfactants. The detailed and systematic investigation shown in this work expands on the knowledge of the structure and thermodynamic behavior of Curosurf and Survanta, being relevant from both physiological and biophysical perspectives and also providing a basis for further studies on other types of pulmonary surfactants.
Collapse
Affiliation(s)
| | - Barbara Bianca Gerbelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210-580, Brazil
| | - Franccesca Fornasier
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ 22453-900, Brazil
| | - Adriano B Chaves Filho
- Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, Butantã, São Paulo, SP 05508-000, Brazil
| | - Marcos Yukio Yoshinaga
- Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, Butantã, São Paulo, SP 05508-000, Brazil
| | - Sayuri Miyamoto
- Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, Butantã, São Paulo, SP 05508-000, Brazil
| | - Laura Mortara
- Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, Butantã, São Paulo, SP 05508-000, Brazil
| | - Caroline Dutra Lacerda
- Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, Butantã, São Paulo, SP 05508-000, Brazil
| | - Iolanda Midea Cuccovia
- Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, Butantã, São Paulo, SP 05508-000, Brazil
| | - André Silva Pimentel
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ 22453-900, Brazil
| | | |
Collapse
|
11
|
Martinez-Calle M, Prieto M, Olmeda B, Fedorov A, Loura LM, Pérez-Gil J. Pulmonary surfactant protein SP-B nanorings induce the multilamellar organization of surfactant complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183216. [DOI: 10.1016/j.bbamem.2020.183216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/17/2020] [Accepted: 02/02/2020] [Indexed: 11/25/2022]
|
12
|
Nanocarrier Lipid Composition Modulates the Impact of Pulmonary Surfactant Protein B (SP-B) on Cellular Delivery of siRNA. Pharmaceutics 2019; 11:pharmaceutics11090431. [PMID: 31450805 PMCID: PMC6781292 DOI: 10.3390/pharmaceutics11090431] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
Two decades since the discovery of the RNA interference (RNAi) pathway, we are now witnessing the approval of the first RNAi-based treatments with small interfering RNA (siRNA) drugs. Nevertheless, the widespread use of siRNA is limited by various extra- and intracellular barriers, requiring its encapsulation in a suitable (nanosized) delivery system. On the intracellular level, the endosomal membrane is a major barrier following endocytosis of siRNA-loaded nanoparticles in target cells and innovative materials to promote cytosolic siRNA delivery are highly sought after. We previously identified the endogenous lung surfactant protein B (SP-B) as siRNA delivery enhancer when reconstituted in (proteo) lipid-coated nanogels. It is known that the surface-active function of SP-B in the lung is influenced by the lipid composition of the lung surfactant. Here, we investigated the role of the lipid component on the siRNA delivery-promoting activity of SP-B proteolipid-coated nanogels in more detail. Our results clearly indicate that SP-B prefers fluid membranes with cholesterol not exceeding physiological levels. In addition, SP-B retains its activity in the presence of different classes of anionic lipids. In contrast, comparable fractions of SP-B did not promote the siRNA delivery potential of DOTAP:DOPE cationic liposomes. Finally, we demonstrate that the beneficial effect of lung surfactant on siRNA delivery is not limited to lung-related cell types, providing broader therapeutic opportunities in other tissues as well.
Collapse
|
13
|
Roldan N, Pérez-Gil J, Morrow MR, García-Álvarez B. Divide & Conquer: Surfactant Protein SP-C and Cholesterol Modulate Phase Segregation in Lung Surfactant. Biophys J 2017; 113:847-859. [PMID: 28834721 PMCID: PMC5567427 DOI: 10.1016/j.bpj.2017.06.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/15/2017] [Accepted: 06/26/2017] [Indexed: 02/04/2023] Open
Abstract
Lung surfactant (LS) is an essential system supporting the respiratory function. Cholesterol can be deleterious for LS function, a condition that is reversed by the presence of the lipopeptide SP-C. In this work, the structure of LS-mimicking membranes has been analyzed under the combined effect of SP-C and cholesterol by deuterium NMR and phosphorus NMR and by electron spin resonance. Our results show that SP-C induces phase segregation at 37°C, resulting in an ordered phase with spectral features resembling an interdigitated state enriched in dipalmitoylphosphatidylcholine, a liquid-crystalline bilayer phase, and an extremely mobile phase consistent with small vesicles or micelles. In the presence of cholesterol, POPC and POPG motion seem to be more hindered by SP-C than dipalmitoylphosphatidylcholine. The use of deuterated cholesterol did not show signs of specific interactions that could be attributed to SP-C or to the other hydrophobic surfactant protein SP-B. Palmitoylation of SP-C had an indirect effect on the extent of protein-lipid perturbations by stabilizing SP-C structure, and seemed to be important to maximize differences among the lipids participating in each phase. These results shed some light on how SP-C-induced lipid perturbations can alter membrane structure to sustain LS functionality at the air-liquid interface.
Collapse
Affiliation(s)
- Nuria Roldan
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain; Healthcare Research Institute of Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jesús Pérez-Gil
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain; Healthcare Research Institute of Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Michael R Morrow
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Begoña García-Álvarez
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain; Healthcare Research Institute of Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain.
| |
Collapse
|
14
|
Baoukina S, Tieleman DP. Computer simulations of lung surfactant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2431-2440. [PMID: 26922885 DOI: 10.1016/j.bbamem.2016.02.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/21/2016] [Accepted: 02/23/2016] [Indexed: 01/26/2023]
Abstract
Lung surfactant lines the gas-exchange interface in the lungs and reduces the surface tension, which is necessary for breathing. Lung surfactant consists mainly of lipids with a small amount of proteins and forms a monolayer at the air-water interface connected to bilayer reservoirs. Lung surfactant function involves transfer of material between the monolayer and bilayers during the breathing cycle. Lipids and proteins are organized laterally in the monolayer; selected species are possibly preferentially transferred to bilayers. The complex 3D structure of lung surfactant and the exact roles of lipid organization and proteins remain important goals for research. We review recent simulation studies on the properties of lipid monolayers, monolayers with phase coexistence, monolayer-bilayer transformations, lipid-protein interactions, and effects of nanoparticles on lung surfactant. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Svetlana Baoukina
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
15
|
Roldan N, Goormaghtigh E, Pérez-Gil J, Garcia-Alvarez B. Palmitoylation as a key factor to modulate SP-C–lipid interactions in lung surfactant membrane multilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:184-91. [DOI: 10.1016/j.bbamem.2014.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/16/2014] [Accepted: 10/01/2014] [Indexed: 11/24/2022]
|
16
|
Galatola R, Cruz A, Gómara MJ, Prat J, Alsina MA, Haro I, Pujol M. Surface behavior of peptides from E1 GBV-C protein: Interaction with anionic model membranes and importance in HIV-1 FP inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:392-407. [PMID: 25450346 DOI: 10.1016/j.bbamem.2014.10.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 11/25/2022]
Abstract
The interaction between a peptide sequence from GB virus C E1 protein (E1P8) and its structural analogs (E1P8-12), (E1P8-13), and (E1P8-21) with anionic lipid membranes (POPG vesicles and POPG, DPPG or DPPC/DPPG (2:1) monolayers) and their association with HIV-1 fusion peptide (HIV-1 FP) inhibition at the membrane level were studied using biophysical methods. All peptides showed surface activity but leakage experiments in vesicles as well as insertion kinetics in monolayers and lipid/peptide miscibility indicated a low level of interaction: neither E1P8 nor its analogs induced the release of vesicular content and the exclusion pressure values (πe) were clearly lower than the biological membrane pressure (24-30 mN m(-1)) and the HIV-1 FP (35 mN m(-1)). Miscibility was elucidated in terms of the additivity rule and excess free energy of mixing (GE). E1P8, E1P8-12 and E1P8-21 (but not E1P8-13) induced expansion of the POPG monolayer. The mixing process is not thermodynamically favored as the positive GE values indicate. To determine how E1 peptides interfere in the action of HIV-1 FP at the membrane level, mixed monolayers of HIV-1 FP/E1 peptides (2:1) and POPG were obtained. E1P8 and its derivative E1P8-21 showed the greatest HIV-1 FP inhibition. The LC-LE phase lipid behavior was morphologically examined via fluorescence microscopy (FM) and atomic force microscopy (AFM). Images revealed that the E1 peptides modify HIV-1 FP-lipid interaction. This fact may be attributed to a peptide/peptide interaction as indicated by AFM results. Finally, hemolysis assay demonstrated that E1 peptides inhibit HIV-1 FP activity.
Collapse
Affiliation(s)
- R Galatola
- Unit of Synthesis and Biomedical Application of Peptides, Department of Biomedical Chemistry, IQAC-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - A Cruz
- Dept. de Bioquímica y Biología Molecular I, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | - M J Gómara
- Unit of Synthesis and Biomedical Application of Peptides, Department of Biomedical Chemistry, IQAC-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - J Prat
- Physical Chemistry Department, Faculty of Pharmacy, University of Barcelona, CSIC-Associated Unit: Peptides and Proteins: Physicochemical Studies, IN2UB Av. Joan XXIII s/n, 08028 Barcelona, Spain; Unit of Synthesis and Biomedical Application of Peptides, Department of Biomedical Chemistry, IQAC-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - M A Alsina
- Physical Chemistry Department, Faculty of Pharmacy, University of Barcelona, CSIC-Associated Unit: Peptides and Proteins: Physicochemical Studies, IN2UB Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - I Haro
- Unit of Synthesis and Biomedical Application of Peptides, Department of Biomedical Chemistry, IQAC-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - M Pujol
- Physical Chemistry Department, Faculty of Pharmacy, University of Barcelona, CSIC-Associated Unit: Peptides and Proteins: Physicochemical Studies, IN2UB Av. Joan XXIII s/n, 08028 Barcelona, Spain.
| |
Collapse
|
17
|
A cyclic GB virus C derived peptide with anti-HIV-1 activity targets the fusion peptide of HIV-1. Eur J Med Chem 2014; 86:589-604. [DOI: 10.1016/j.ejmech.2014.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/03/2014] [Accepted: 09/06/2014] [Indexed: 12/23/2022]
|
18
|
Dilli G, Unsal H, Uslu B, Aydogan N. Restoration of the interfacial properties of lung surfactant with a newly designed hydrocarbon/fluorocarbon lipid. Colloids Surf B Biointerfaces 2014; 122:566-575. [DOI: 10.1016/j.colsurfb.2014.07.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 11/30/2022]
|
19
|
Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem Phys Lipids 2014; 185:153-75. [PMID: 25260665 DOI: 10.1016/j.chemphyslip.2014.09.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/06/2014] [Accepted: 09/11/2014] [Indexed: 12/30/2022]
Abstract
The respiratory surface in the mammalian lung is stabilized by pulmonary surfactant, a membrane-based system composed of multiple lipids and specific proteins, the primary function of which is to minimize the surface tension at the alveolar air-liquid interface, optimizing the mechanics of breathing and avoiding alveolar collapse, especially at the end of expiration. The goal of the present review is to summarize current knowledge regarding the structure, lipid-protein interactions and mechanical features of surfactant membranes and films and how these properties correlate with surfactant biological function inside the lungs. Surfactant mechanical properties can be severely compromised by different agents, which lead to surfactant inhibition and ultimately contributes to the development of pulmonary disorders and pathologies in newborns, children and adults. A detailed comprehension of the unique mechanical and rheological properties of surfactant layers is crucial for the diagnostics and treatment of lung diseases, either by analyzing the contribution of surfactant impairment to the pathophysiology or by improving the formulations in surfactant replacement therapies. Finally, a short review is also included on the most relevant experimental techniques currently employed to evaluate lung surfactant mechanics, rheology, and inhibition and reactivation processes.
Collapse
|
20
|
Bernardino de la Serna J, Vargas R, Picardi V, Cruz A, Arranz R, Valpuesta JM, Mateu L, Pérez-Gil J. Segregated ordered lipid phases and protein-promoted membrane cohesivity are required for pulmonary surfactant films to stabilize and protect the respiratory surface. Faraday Discuss 2013; 161:535-48; discussion 563-89. [PMID: 23805757 DOI: 10.1039/c2fd20096a] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pulmonary surfactant is a lipid-protein complex essential to stabilize alveoli, by forming surface active films able to reach and sustain very low surface tensions (< 2 mN m(-1)) during the film compression that occurs at end-expiration. The particular lipid composition of surfactant, including a high proportion of dipalmitoylphosphatidylcholine (DPPC), induces segregation of fluid ordered and disordered phases in surfactant membranes and films at physiological temperatures. The segregation of DPPC-enriched ordered phase has been related with the ability of surfactant films to produce very low tensions, while the presence in surfactant of two specific hydrophobic polypeptides, SP-B and SP-C, is absolutely required to facilitate surfactant dynamics, including film formation and re-spreading during expansion at inspiration. In the present study, we have used X-ray scattering to analyze the structure of (1) whole native surfactant membranes purified from porcine lungs, (2) membranes reconstituted from the organic extract of surfactant containing the full lipid complement and the physiological proportion of SP-B and SP-C, and (3) membranes reconstituted from the lipid fraction of surfactant depleted of proteins. Small angle X-ray scattering data from whole surfactant or from membranes reconstituted from surfactant organic extract indicated the co-existence of two lamellar phases with different thicknesses. Such phase coexistence disappeared upon heating of the samples at temperatures above physiological values. When assessed in a captive bubble surfactometer, which mimics interfacial compression-expansion dynamics, the ability of surfactant films to produce very low tensions is only maintained at temperatures permitting the coexistence of the two lamellar phases. On the other hand, membranes reconstituted in the absence of proteins produced diffractograms indicative of the existence of a single dominant lamellar phase at all temperatures. These data suggest that SP-B and SP-C establish membrane-membrane interactions coupling the stacks of different segregated phases. The low compressibility of surfactant films that leads to the maximal pressures (minimal tensions) is supported on one hand by the highly packed solid-like character of segregated DPPC-enriched domains and, on the other hand, by a high cohesivity of multilayered structures promoted by hydrophoblic surfactant proteins, in particular SP-B, at the more dynamic disordered membrane regions, in which SP-B selectively partitions. Cryo-electron microscopy has shown that SP-B induces formation of tight membrane-membrane contacts, a finding that supports our inference concerning the role of these surfactant proteins.
Collapse
|
21
|
Adaptations to hibernation in lung surfactant composition of 13-lined ground squirrels influence surfactant lipid phase segregation properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1707-14. [PMID: 23506681 DOI: 10.1016/j.bbamem.2013.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/12/2013] [Accepted: 03/04/2013] [Indexed: 01/25/2023]
Abstract
Pulmonary surfactant lines the entire alveolar surface, serving primarily to reduce the surface tension at the air-liquid interface. Surfactant films adsorb as a monolayer interspersed with multilayers with surfactant lipids segregating into different phases or domains. Temperature variation, which influences lipid physical properties, affects both the lipid phase segregation and the surface activity of surfactants. In hibernating animals, such as 13-lined ground squirrels, which vary their body temperature, surfactant must be functional over a wide range of temperatures. We hypothesised that surfactant from the 13-lined ground squirrel, Ictidomys tridecemlineatus, would undergo appropriate lipid structural re-arrangements at air-water interfaces to generate phase separation, sufficient to attain the low surface tensions required to remain stable at both low and high body temperatures. Here, we examined pressure-area isotherms at 10, 25 and 37°C and found that surfactant films from both hibernating and summer-active squirrels reached their highest surface pressure on the Wilhelmy-Langmuir balance at 10°C. Epifluorescence microscopy demonstrated that films of hibernating squirrel surfactant display different lipid micro-domain organisation characteristics than surfactant from summer-active squirrels. These differences were also reflected at the nanoscale as determined by atomic force microscopy. Such re-arrangement of lipid domains in the relatively more fluid surfactant films of hibernating squirrels may contribute to overcoming collapse pressures and support low surface tension during the normal breathing cycle at low body temperatures.
Collapse
|
22
|
Campelo F, Cruz A, Pérez-Gil J, Vázquez L, Hernández-Machado A. Phase-field model for the morphology of monolayer lipid domains. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2012; 35:49. [PMID: 22714836 DOI: 10.1140/epje/i2012-12049-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 11/08/2011] [Accepted: 06/01/2012] [Indexed: 06/01/2023]
Abstract
Phase-separated domains exist in multicomponent lipid monolayers and bilayers. We present here a phase-field model that takes into account the competition between lipid dipole-dipole interactions and line tension to define the domain morphology. A dynamic equation for the phase-field is solved numerically showing stationary non-circular shapes like starfish shapes. This phase-field model could be applied to study the dynamic properties of complex problems like phase segregation in pulmonary surfactant membranes and films.
Collapse
Affiliation(s)
- F Campelo
- Department of Cell and Developmental Biology, Center for Genomic Regulation (CRG) and UPF, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
23
|
Casals C, Cañadas O. Role of lipid ordered/disordered phase coexistence in pulmonary surfactant function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2550-62. [PMID: 22659676 DOI: 10.1016/j.bbamem.2012.05.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/03/2012] [Accepted: 05/22/2012] [Indexed: 12/27/2022]
Abstract
The respiratory epithelium has evolved to produce a complicated network of extracellular membranes that are essential for breathing and, ultimately, survival. Surfactant membranes form a stable monolayer at the air-liquid interface with bilayer structures attached to it. By reducing the surface tension at the air-liquid interface, surfactant stabilizes the lung against collapse and facilitates inflation. The special composition of surfactant membranes results in the coexistence of two distinct micrometer-sized ordered/disordered phases maintained up to physiological temperatures. Phase coexistence might facilitate monolayer folding to form three-dimensional structures during exhalation and hence allow the film to attain minimal surface tension. These folded structures may act as a membrane reserve and attenuate the increase in membrane tension during inspiration. The present review summarizes what is known of ordered/disordered lipid phase coexistence in lung surfactant, paying attention to the possible role played by domain boundaries in the monolayer-to-multilayer transition, and the correlations of biophysical inactivation of pulmonary surfactant with alterations in phase coexistence.
Collapse
Affiliation(s)
- Cristina Casals
- Departamento de Bioquimica y Biologia Molecular, Universidad Complutense de Madrid, Madrid, Spain.
| | | |
Collapse
|
24
|
Dhar P, Eck E, Israelachvili JN, Lee DW, Min Y, Ramachandran A, Waring AJ, Zasadzinski JA. Lipid-protein interactions alter line tensions and domain size distributions in lung surfactant monolayers. Biophys J 2012; 102:56-65. [PMID: 22225798 PMCID: PMC3250676 DOI: 10.1016/j.bpj.2011.11.4007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/01/2011] [Accepted: 11/07/2011] [Indexed: 01/15/2023] Open
Abstract
The size distribution of domains in phase-separated lung surfactant monolayers influences monolayer viscoelasticity and compressibility which, in turn, influence monolayer collapse and set the compression at which the minimum surface tension is reached. The surfactant-specific protein SP-B decreases the mean domain size and polydispersity as shown by fluorescence microscopy. From the images, the line tension and dipole density difference are determined by comparing the measured size distributions with a theory derived by minimizing the free energy associated with the domain energy and mixing entropy. We find that SP-B increases the line tension, dipole density difference, and the compressibility modulus at surface pressures up to the squeeze-out pressure. The increase in line tension due to SP-B indicates the protein avoids domain boundaries due to its solubility in the more fluid regions of the film.
Collapse
Affiliation(s)
- Prajnaparamita Dhar
- Department of Chemical Engineering, University of Kansas, Lawrence, Kansas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Jiao X, Keating E, Tadayyon S, Possmayer F, Zuo YY, Veldhuizen RA. Atomic force microscopy analysis of rat pulmonary surfactant films. Biophys Chem 2011; 158:119-25. [DOI: 10.1016/j.bpc.2011.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/03/2011] [Accepted: 06/04/2011] [Indexed: 01/14/2023]
|
26
|
Molecular dynamics simulation of phase transitions in model lung surfactant monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2450-65. [DOI: 10.1016/j.bbamem.2011.06.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 01/13/2023]
|
27
|
Lung surfactant protein SP-B promotes formation of bilayer reservoirs from monolayer and lipid transfer between the interface and subphase. Biophys J 2011; 100:1678-87. [PMID: 21463581 DOI: 10.1016/j.bpj.2011.02.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/10/2011] [Accepted: 02/14/2011] [Indexed: 12/13/2022] Open
Abstract
We investigated the possible role of SP-B proteins in the function of lung surfactant. To this end, lipid monolayers at the air/water interface, bilayers in water, and transformations between them in the presence of SP-B were simulated. The proteins attached bilayers to monolayers, providing close proximity of the reservoirs with the interface. In the attached aggregates, SP-B mediated establishment of the lipid-lined connection similar to the hemifusion stalk. Via this connection, a lipid flow was initiated between the monolayer at the interface and the bilayer in water in a surface-tension-dependent manner. On interface expansion, the flow of lipids to the monolayer restored the surface tension to the equilibrium spreading value. SP-B induced formation of bilayer folds from the monolayer at positive surface tensions below the equilibrium. In the absence of proteins, lipid monolayers were stable at these conditions. Fold nucleation was initiated by SP-B from the liquid-expanded monolayer phase by local bending, and the proteins lined the curved perimeter of the growing fold. No effect on the liquid-condensed phase was observed. Covalently linked dimers resulted in faster kinetics for monolayer folding. The simulation results are in line with existing hypotheses on SP-B activity in lung surfactant and explain its molecular mechanism.
Collapse
|
28
|
Keating E, Waring AJ, Walther FJ, Possmayer F, Veldhuizen RAW, Petersen NO. A ToF-SIMS study of the lateral organization of lipids and proteins in pulmonary surfactant systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:614-21. [PMID: 21110942 DOI: 10.1016/j.bbamem.2010.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/27/2010] [Accepted: 11/12/2010] [Indexed: 01/11/2023]
Abstract
Pulmonary surfactant is a complex lipid-protein mixture whose main function is to reduce the surface tension at the air-liquid interface of alveoli to minimize the work of breathing. The exact mechanism by which surfactant monolayers and multilayers are formed and how they lower surface tension to very low values during lateral compression remains uncertain. We used time-of-flight secondary ion mass spectrometry to study the lateral organization of lipids and peptide in surfactant preparations ranging in complexity. We show that we can successfully determine the location of phospholipids, cholesterol and a peptide in surfactant Langmuir-Blodgett films and we can determine the effect of cholesterol and peptide addition. A thorough understanding of the lateral organization of PS interfacial films will aid in our understanding of the role of each component as well as different lipid-lipid and lipid-protein interactions. This may further our understanding of pulmonary surfactant function.
Collapse
|
29
|
Duncan SL, Larson RG. Folding of lipid monolayers containing lung surfactant proteins SP-B1–25 and SP-C studied via coarse-grained molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1632-50. [DOI: 10.1016/j.bbamem.2010.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 04/05/2010] [Accepted: 04/08/2010] [Indexed: 12/31/2022]
|
30
|
Santo KP, Kovalenko A, Stepanova M. Self-Consistent Field Modeling of Three-Dimensional Morphologies of Branched Lipid Surfactant at Air-Water Interface. MACROMOL THEOR SIMUL 2010. [DOI: 10.1002/mats.200900076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
31
|
Saleem M, Galla HJ. Surface view of the lateral organization of lipids and proteins in lung surfactant model systems-a ToF-SIMS approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:730-40. [PMID: 19879237 DOI: 10.1016/j.bbamem.2009.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/12/2009] [Accepted: 10/14/2009] [Indexed: 02/02/2023]
Abstract
The lateral organization of domain structures is an extremely significant aspect of biomembrane research. Chemical imaging by mass spectrometry with its recent advancement in sensitivity and lateral resolution has become a highly promising tool in biological research. In this review, we focus briefly on the instrumentation, working principle and important concepts related to time-of-flight secondary ion mass spectrometry followed by an overview of lipid/protein fragmentation patterns and chemical mapping. The key issues addressed are the applications of time-of-flight secondary ion mass spectrometry in biological membrane research. Additionally, we briefly review our recent investigations based on time-of-flight secondary ion mass spectrometry to unravel the lateral distribution of lipids and surfactant proteins in lung surfactant model systems as an example that highlights the importance of fluidity and ionic conditions on lipid phase behavior and lipid-protein interactions.
Collapse
Affiliation(s)
- Mohammed Saleem
- Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| | | |
Collapse
|
32
|
Saleem M, Meyer MC, Breitenstein D, Galla HJ. Calcium ions as "miscibility switch": colocalization of surfactant protein B with anionic lipids under absolute calcium free conditions. Biophys J 2009; 97:500-8. [PMID: 19619464 DOI: 10.1016/j.bpj.2009.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 05/07/2009] [Accepted: 05/08/2009] [Indexed: 11/28/2022] Open
Abstract
One of the main determinants of lung surfactant function is the complex interplay between its protein and lipid components. The lipid specificity of surfactant protein B (SP-B), however, and the protein's ability to selectively squeeze out lipids, has remained contradictory. In this work we present, for the first time to our knowledge, by means of time-of-flight secondary ion mass spectrometry chemical imaging, a direct evidence for colocalization of SP-B as well as its model peptide KL(4) with negatively charged dipalmitoylphosphatidylglycerol under absolute calcium free conditions. Our results prove that protein/lipid localization depends on the miscibility of all surfactant components, which itself is influenced by subphase ionic conditions. In contrast to our earlier studies reporting SP-B/KL(4) colocalization with zwitterionic dipalmitoylphosphatidylcholine, in the presence of even the smallest traces of calcium, we finally evidence an apparent reversal of protein/lipid mixing behavior upon calcium removal with ethylene diamine tetraacetic acid. In addition, scanning force microscopy measurements reveal that by depleting the subphase from calcium ions the protrusion formation ability of SP-B or KL(4) is not hampered. However, in the case of KL(4), distinct differences in protrusion morphology and height are visible. Our results support the idea that calcium ions act as a "miscibility switch" in surfactant model systems and probably are one of the major factors steering lipid/protein mixing behavior as well as influencing the protein's protrusion formation ability.
Collapse
Affiliation(s)
- Mohammed Saleem
- Institute of Biochemistry, University of Münster, Münster, Germany
| | | | | | | |
Collapse
|
33
|
Influence of surfactant protein C on the interfacial behavior of phosphatidylethanolamine monolayers. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:369-79. [DOI: 10.1007/s00249-008-0380-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 10/02/2008] [Accepted: 10/12/2008] [Indexed: 10/21/2022]
|
34
|
Pérez-Gil J. Structure of pulmonary surfactant membranes and films: the role of proteins and lipid-protein interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1676-95. [PMID: 18515069 DOI: 10.1016/j.bbamem.2008.05.003] [Citation(s) in RCA: 348] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 04/07/2008] [Accepted: 05/06/2008] [Indexed: 01/13/2023]
Abstract
The pulmonary surfactant system constitutes an excellent example of how dynamic membrane polymorphism governs some biological functions through specific lipid-lipid, lipid-protein and protein-protein interactions assembled in highly differentiated cells. Lipid-protein surfactant complexes are assembled in alveolar pneumocytes in the form of tightly packed membranes, which are stored in specialized organelles called lamellar bodies (LB). Upon secretion of LBs, surfactant develops a membrane-based network that covers rapidly and efficiently the whole respiratory surface. This membrane-based surface layer is organized in a way that permits efficient gas exchange while optimizing the encounter of many different molecules and cells at the epithelial surface, in a cross-talk essential to keep the whole organism safe from potential pathogenic invaders. The present review summarizes what is known about the structure of the different forms of surfactant, with special emphasis on current models of the molecular organization of surfactant membrane components. The architecture and the behaviour shown by surfactant structures in vivo are interpreted, to some extent, from the interactions and the properties exhibited by different surfactant models as they have been studied in vitro, particularly addressing the possible role played by surfactant proteins. However, the limitations in structural complexity and biophysical performance of surfactant preparations reconstituted in vitro will be highlighted in particular, to allow for a proper evaluation of the significance of the experimental model systems used so far to study structure-function relationships in surfactant, and to define future challenges in the design and production of more efficient clinical surfactants.
Collapse
Affiliation(s)
- Jesús Pérez-Gil
- Departamento Bioquímica, Facultad de Biología, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
35
|
Plasencia I, Baumgart F, Andreu D, Marsh D, Pérez-Gil J. Effect of acylation on the interaction of the N-Terminal segment of pulmonary surfactant protein SP-C with phospholipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1274-82. [DOI: 10.1016/j.bbamem.2008.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 01/22/2008] [Accepted: 02/07/2008] [Indexed: 02/02/2023]
|
36
|
Wang G, Taneva S, Keough KM, Floros J. Differential effects of human SP-A1 and SP-A2 variants on phospholipid monolayers containing surfactant protein B. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2060-9. [PMID: 17678872 PMCID: PMC2964661 DOI: 10.1016/j.bbamem.2007.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 06/25/2007] [Accepted: 06/27/2007] [Indexed: 11/22/2022]
Abstract
Surfactant protein A (SP-A), the most abundant protein in the lung alveolar surface, has multiple activities, including surfactant-related functions. SP-A is required for the formation of tubular myelin and the lung surface film. The human SP-A locus consists of two functional SP-A genes, SP-A1 and SP-A2, with a number of alleles characterized for each gene. We have found that the human in vitro expressed variants, SP-A1 (6A(2)) and SP-A2 (1A(0)), and the coexpressed SP-A1/SP-A2 (6A(2)/1A(0)) protein have a differential influence on the organization of phospholipid monolayers containing surfactant protein B (SP-B). Lipid films containing SP-B and SP-A2 (1A(0)) showed surface features similar to those observed in lipid films with SP-B and native human SP-A. Fluorescence images revealed the presence of characteristic fluorescent probe-excluding clusters coexisting with the traditional lipid liquid-expanded and liquid-condensed phase. Images of the films containing SP-B and SP-A1 (6A(2)) showed different distribution of the proteins. The morphology of lipid films containing SP-B and the coexpressed SP-A1/SP-A2 (6A(2)/1A(0)) combined features of the individual films containing the SP-A1 or SP-A2 variant. The results indicate that human SP-A1 and SP-A2 variants exhibit differential effects on characteristics of phospholipid monolayers containing SP-B. This may differentially impact surface film activity.
Collapse
Affiliation(s)
- Guirong Wang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Svetla Taneva
- Department of Biochemistry Mermorial University of Newfoundland, St. John's, NF A1B 3X9, Canada
| | - Kevin M.W. Keough
- Department of Biochemistry Mermorial University of Newfoundland, St. John's, NF A1B 3X9, Canada
- Department of Pediatrics, Mermorial University of Newfoundland, St. John's, NF A1B 3X9, Canada
| | - Joanna Floros
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
37
|
Blanco O, Pérez-Gil J. Biochemical and pharmacological differences between preparations of exogenous natural surfactant used to treat Respiratory Distress Syndrome: role of the different components in an efficient pulmonary surfactant. Eur J Pharmacol 2007; 568:1-15. [PMID: 17543939 DOI: 10.1016/j.ejphar.2007.04.035] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 04/10/2007] [Accepted: 04/17/2007] [Indexed: 12/01/2022]
Abstract
The pharmaceutical application of exogenous natural pulmonary surfactant preparations has shown its efficiency in the therapeutical treatment of infants with Respiratory Distress Syndrome. At the same time, the use of these preparations in patients with Acute Respiratory Distress Syndrome, although not still an effective therapy, shows promising results. The analysis of composition, structure and surface activity of some of the different natural surfactant preparations available today for clinical use reveals important differences, a fact that opens horizons in the optimization of new effective formulations in the treatment of the Acute Respiratory Distress Syndrome. The purpose of this review is to carry out an updating of the current models interpreting the role of the main components of pulmonary surfactant as a reference to evaluate the biochemical composition of the preparations of exogenous natural pulmonary surfactant currently in use and their apparent pharmacological effect.
Collapse
Affiliation(s)
- Odalys Blanco
- Chemical-Pharmacology-Toxicology Group, Direction of Health and Animal Production, National Center of Agropecuary Sanity, Havana, Cuba
| | | |
Collapse
|
38
|
Nag K, Fritzen-Garcia M, Devraj R, Panda AK. Interfacial organizations of gel phospholipid and cholesterol in bovine lung surfactant films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:4421-31. [PMID: 17341098 DOI: 10.1021/la062513a] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Pulmonary surfactants stabilize the lung by way of reducing surface tension at the air-lung interface of the alveolus. 31P NMR, thin-layer chromatography, and electrospray ionization mass spectroscopy of bovine lipid extract surfactant (BLES) confirmed dipalmitoylphosphatidylcholine (DPPC) to be the major phospholipid species, with significant amounts of palmitoyl-oleoylphosphatidylcholine, palmitoyl-myristoylphosphatidylcholine, and palmitoyl-oleoylphosphatidylglycerol. BLES and DPPC spread at the air-water interface were studied through surface pressure area, fluorescence, and Brewster angle microscopy measurements. Langmuir-Blodgett films of monomolecular films, deposited on mica, were characterized by atomic force microscopy. BLES films displayed shape, size, and vertical height profiles distinct from those of DPPC alone. Calcium ions in the subphase altered BLES film domain structure. The addition of cholesterol (4 mol %) resulted in the destabilization of compressed BLES films at higher surface pressures (>40 mN m-1) and the formation of multilayered structures, apparently consisting of stacked monolayers. The studies suggested potential roles for individual surfactant lipid components in supramolecular arrangements, which could be the contributing factors in pulmonary surfactant to attain low surface tension at the air-water interface.
Collapse
Affiliation(s)
- Kaushik Nag
- Department of Biochemistry, Memorial University of Newfoundland, St. Johns, Newfoundland - A1B 3X9, Canada
| | | | | | | |
Collapse
|
39
|
Cruz A, Pérez-Gil J. Langmuir films to determine lateral surface pressure on lipid segregation. Methods Mol Biol 2007; 400:439-457. [PMID: 17951751 DOI: 10.1007/978-1-59745-519-0_29] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Interfacial monolayers used as membrane models have become a practical technique to obtain detailed information about lateral processes taking place in the membrane. These monolayers are particularly useful to study the interactions and parameters governing lateral distribution of lipid and protein species and the association of different molecules with membrane surfaces. In the last few years, these classical models have been complemented by a whole collection of new techniques that are able to provide spatial information on the structure of the interfacial phospholipid-based films at both microscopic and nanoscopic scales. In the present chapter, some detailed protocols are described on how to prepare phospholipid Langmuir films, obtain structural information from their compression isotherms, and study their structure either in situ at the interface or on transfer onto solid supports by applying different microscopy techniques. The use of exogenous fluorescent probes and the extraction of qualitative and quantitative information from epifluorescence microscopy images are particularly addressed.
Collapse
Affiliation(s)
- Antonio Cruz
- Departamento de Bioquimica, Facultad de Biologia, Universidad de Complutense, Madrid, Spain
| | | |
Collapse
|
40
|
Breitenstein D, Batenburg JJ, Hagenhoff B, Galla HJ. Lipid specificity of surfactant protein B studied by time-of-flight secondary ion mass spectrometry. Biophys J 2006; 91:1347-56. [PMID: 16632503 PMCID: PMC1518634 DOI: 10.1529/biophysj.105.073247] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the key functions of mammalian pulmonary surfactant is the reduction of surface tension to minimal values. To fulfill this function it is expected to become enriched in dipalmitoylphosphatidylcholine either on its way from the alveolar type II pneumocytes to the air/water interface of the lung or within the surface film during compression and expansion of the alveoli during the breathing cycle. One protein that may play a major role in this enrichment process is the surfactant protein B. The aim of this study was to identify the lipidic interaction partner of this protein. Time-of-flight secondary ion mass spectrometry was used to analyze the lateral distribution of the components in two SP-B-containing model systems. Either native or partly isotopically labeled lipids were analyzed. The results of both setups give strong indications that, at least under the specific conditions of the chosen model systems (e.g., concerning pH and lipid composition), the lipid interacting with surfactant protein B is not phosphatidylglycerol as generally accepted, but dipalmitoylphosphatidylcholine instead.
Collapse
|
41
|
Serrano AG, Pérez-Gil J. Protein-lipid interactions and surface activity in the pulmonary surfactant system. Chem Phys Lipids 2006; 141:105-18. [PMID: 16600200 DOI: 10.1016/j.chemphyslip.2006.02.017] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 02/20/2006] [Indexed: 11/30/2022]
Abstract
Pulmonary surfactant is a lipid-protein complex, synthesized and secreted by the respiratory epithelium of lungs to the alveolar spaces, whose main function is to reduce the surface tension at the air-liquid interface to minimize the work of breathing. The activity of surfactant at the alveoli involves three main processes: (i) transfer of surface active molecules from the aqueous hypophase into the interface, (ii) surface tension reduction to values close to 0 mN/m during compression at expiration and (iii) re-extension of the surface active film upon expansion at inspiration. Phospholipids are the main surface active components of pulmonary surfactant, but the dynamic behaviour of phospholipids along the breathing cycle requires the necessary participation of some specific surfactant associated proteins. The present review summarizes the current knowledge on the structure, disposition and lipid-protein interactions of the hydrophobic surfactant proteins SP-B and SP-C, the two main actors participating in the surface properties of pulmonary surfactant. Some of the methodologies currently used to evaluate the surface activity of the proteins in lipid-protein surfactant preparations are also revised. Working models for the potential molecular mechanism of SP-B and SP-C are finally discussed. SP-B might act in surfactant as a sort of amphipathic tag, directing the lipid-protein complexes to insert and re-insert very efficiently into the air-liquid interface along successive breathing cycles. SP-C could be essential to maintain association of lipid-protein complexes with the interface at the highest compressed states, at the end of exhalation. The understanding of the mechanisms of action of these proteins is critical to approach the design and development of new clinical surfactant preparations for therapeutical applications.
Collapse
Affiliation(s)
- Alicia G Serrano
- Departamento de Bioquímica y Biología Molecular I, Facultad de Biología, Universidad Complutense, Jose Antonio Novais 2, Madrid, Spain
| | | |
Collapse
|
42
|
Parmigiani S, Solari E, Bevilacqua G. Current concepts on the pulmonary surfactant in infants. J Matern Fetal Neonatal Med 2006; 18:369-80. [PMID: 16390802 DOI: 10.1080/14767050500244552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Surfactant has been a main topic of neonatology in the last 20 years. Many studies have been conducted since the discovery of its role in the pathogenesis of respiratory distress syndrome and the knowledge on its composition and metabolism has become complex. In this article we review the current concepts of its metabolism, ways of acting, properties of its proteins and activities other than the ability of reducing surface tension within the lung as a basis to understand the development of disease in case of its deficiency.
Collapse
Affiliation(s)
- S Parmigiani
- Department of Gynecologic, Obstetric and Neonatologic Sciences, Section of Child Health and Neonatology, University of Parma, Parma, Italy.
| | | | | |
Collapse
|
43
|
Wüstneck R, Perez-Gil J, Wüstneck N, Cruz A, Fainerman VB, Pison U. Interfacial properties of pulmonary surfactant layers. Adv Colloid Interface Sci 2005; 117:33-58. [PMID: 16120435 DOI: 10.1016/j.cis.2005.05.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 02/16/2005] [Accepted: 05/20/2005] [Indexed: 11/25/2022]
Abstract
The composition of the pulmonary surfactant and the border conditions of normal human breathing are relevant to characterize the interfacial behavior of pulmonary layers. Based on experimental data methods are reviewed to investigate interfacial properties of artificial pulmonary layers and to explain the behavior and interfacial structures of the main components during compression and expansion of the layers observed by epifluorescence and scanning force microscopy. Terms like over-compression, collapse, and formation of the surfactant reservoir are discussed. Consequences for the viscoelastic surface rheological behavior of such layers are elucidated by surface pressure relaxation and harmonic oscillation experiments. Based on a generalized Volmer isotherm the interfacial phase transition is discussed for the hydrophobic surfactant proteins, SP-B and SP-C, as well as for the mixtures of dipalmitoylphosphatidylcholine (DPPC) with these proteins. The behavior of the layers depends on both the oligomerisation state and the secondary structure of the hydrophobic surfactant proteins, which are controlled by the preparation of the proteins. An example for the surface properties of bronchoalveolar porcine lung washings of uninjured, injured, and Curosurf treated lavage is discussed in the light of surface behavior. An outlook summarizes the present knowledge and the main future development in this field of surface science.
Collapse
Affiliation(s)
- R Wüstneck
- Charité, Campus Virchow-Klinikum, Universitätsmedizin Berlin, Klinik für Anästhesiologie und operative Intensivmedizin, Spandauer Damm 130, 14050 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Serrano AG, Ryan M, Weaver TE, Pérez-Gil J. Critical structure-function determinants within the N-terminal region of pulmonary surfactant protein SP-B. Biophys J 2005; 90:238-49. [PMID: 16214863 PMCID: PMC1367022 DOI: 10.1529/biophysj.105.073403] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Surfactant protein SP-B is absolutely required for the surface activity of pulmonary surfactant and postnatal lung function. The results of a previous study indicated that the N-terminal segment of SP-B, comprising residues 1-9, is specifically required for surface activity, and suggested that prolines 2, 4, and 6 as well as tryptophan 9, may constitute essential structural motifs for protein function. In this work, we assessed the role of these two motifs in promoting the formation and maintenance of surface-active films. Three synthetic peptides were synthesized including a peptide corresponding to the N-terminal 37 amino acids of native SP-B and two variants in which prolines 2, 4, 6, or tryptophan 9 were substituted by alanines. All three synthetic peptides were surface-active, as expected from their amphipathic structure. The peptides were also able to insert into dipalmitoylphosphatidylcholine/palmitoyloleoylphosphatidylglycerol (7:3 w/w ratio) monolayers preformed at pressures >30 mN/m, indicating that they perturb and insert into membranes. Substitution of alanine for tryptophan at position 9 significantly decreased both the rate of adsorption/insertion of the peptide into the interface and reinsertion of surface-active material excluded from the film during successive compression-expansion cycles. Substitution of alanines for prolines at positions 2, 4, and 6 did not produce substantial changes in the rate of adsorption/insertion; however, reinsertion of surface-active material into the expanding interface film was not as effective as in the presence of the nativelike peptide. These results suggest that W9 is critical for optimal interface affinity, whereas prolines may promote a conformation that facilitates rapid insertion of the peptide into phospholipid monolayers compressed to the highest pressures during compression-expansion cycling.
Collapse
Affiliation(s)
- Alicia G Serrano
- Departamento de Bioquímica y Biología Molecular I, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
45
|
Plasencia I, Keough KMW, Perez-Gil J. Interaction of the N-terminal segment of pulmonary surfactant protein SP-C with interfacial phospholipid films. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1713:118-28. [PMID: 16002041 DOI: 10.1016/j.bbamem.2005.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 06/10/2005] [Accepted: 06/10/2005] [Indexed: 11/24/2022]
Abstract
Pulmonary surfactant protein SP-C is a 35-residue polypeptide composed of a hydrophobic transmembrane alpha-helix and a polycationic, palmitoylated-cysteine containing N-terminal segment. This segment is likely the only structural motif the protein projects out of the bilayer in which SP-C is inserted and is therefore a candidate motif to participate in interactions with other bilayers or monolayers. In the present work, we have detected intrinsic ability of a peptide based on the sequence of the N-terminal segment of SP-C to interact and insert spontaneously into preformed zwitterionic or anionic phospholipid monolayers. The peptide expands the pi-A compression isotherms of interfacial phospholipid/peptide films, and perturbs the lipid packing of phospholipid films during compression-driven liquid-expanded to liquid-condensed lateral transitions, as observed by epifluorescence microscopy. These results demonstrate that the sequence of the SP-C N-terminal region has intrinsic ability to interact with, insert into, and perturb the structure of zwitterionic and anionic phospholipid films, even in the absence of the palmitic chains attached to this segment in the native protein. This effect has been related with the ability of SP-C to facilitate reinsertion of surface active lipid molecules into the lung interface during respiratory compression-expansion cycling.
Collapse
Affiliation(s)
- Ines Plasencia
- Departamento de Bioquímica, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | |
Collapse
|
46
|
Biswas N, Shanmukh S, Waring AJ, Walther F, Wang Z, Chang Y, Notter RH, Dluhy RA. Structure and properties of phospholipid–peptide monolayers containing monomeric SP-B1–25. Biophys Chem 2005; 113:223-32. [PMID: 15620507 DOI: 10.1016/j.bpc.2004.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 09/15/2004] [Accepted: 09/15/2004] [Indexed: 11/26/2022]
Abstract
Epifluorescence microscopy was used to study the structure and phase behavior of phospholipid films containing a human-sequence monomeric SP-B(1-25) synthetic peptide (mSP-B(1-25)). Measurements were done directly at the air-water (A/W) interface on films in a Langmuir-Whilhelmy balance coupled to a fluorescence microscope and real-time detection system to yield an approximate optical resolution of 1 mum. Fluorescence was achieved by laser excitation of 2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoyl)-1-hexadecanoyl-sn-glycero-3-PC (BODIPY-PC, concentration </=1 mol%). The presence of mSP-B(1-25) in films of 4:1 (mol/mol) 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) (DOPG) had a substantial effect on lipid morphology and phase behavior that depended on both surface pressure and peptide concentration (10, 5, and 1 wt.%). The mSP-B(1-25) peptide tended to fluidize phospholipid monolayers based on expanded molecular areas and reduced collapse pressures. In addition, epifluorescence measurements revealed the formation of solid-phase domains apparent as three-armed counterclockwise spirals separated from regions of fluid liquid-expanded phase domains in compressed phospholipid-peptide films. The appearance of these separated solid-phase domains resembled pure L-DPPC rather than the ensemble-type solid domains found in films of DPPC/DOPG alone and were most apparent when 10 wt.% mSP-B(1-25) was present. In contrast, films containing lower, more physiological mSP-B(1-25) contents of 5 and 1 wt.% exhibited a prominent intermediate 'dendritic' phase that increased in extent as surface pressure was raised. This phase was characterized by branching structures that formed a lattice-like mesh network with fluorescence intensities between a dye-depleted solid domain and a dye-enriched liquid phase. These results indicate that mSP-B(1-25) at near-physiological levels produces morphological changes in phospholipid monolayers analogous to those observed for native SP-B(1-79).
Collapse
Affiliation(s)
- Nilanjana Biswas
- Department of Chemistry, University of Georgia, Athens, GA 30602-2556, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Xia XF, Wang F, Yang M, Sui SF. Trichosanthin’s interfacial interactions with phospholipids: a monolayer study. Colloids Surf B Biointerfaces 2004; 39:105-12. [PMID: 15556338 DOI: 10.1016/j.colsurfb.2003.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Lipid monolayer at the air/water interface, as half a membrane, was used here to investigate the interaction between trichosanthin (TCS), a ribosome inactivating protein, and phospholipid membrane. First, the protein adsorption experiments showed that the negatively charged DPPG caused obvious enrichment of TCS beneath the monolayer, indicating electrostatic attraction between TCS and the negatively charged phospholipid. Second, when TCS was incorporated into the phospholipid monolayer, it could not be completely squeezed out until the monolayer collapsed. The results were demonstrated to be irrelative with the phospholipid headgroup, suggesting a strong hydrophobic force between TCS and phospholipid hydrocarbon chain was involved in the interaction. Third, the protein/membrane interaction was further studied with fluorescence microscope. The results showed that TCS could penetrate into both the condensed and the fluid phase of the DPPG monolayer under low pH condition and eventually resulted in a homogeneous phospholipid phase. The breakage of ordered packing of phospholipid by TCS may be responsible for this homogenizing effect.
Collapse
Affiliation(s)
- Xiao-Feng Xia
- Department of Biological Sciences and Biotechnology, State-Key Laboratory of Biomembrane, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
48
|
Cruz A, Vázquez L, Vélez M, Pérez-Gil J. Effect of pulmonary surfactant protein SP-B on the micro- and nanostructure of phospholipid films. Biophys J 2004; 86:308-20. [PMID: 14695272 PMCID: PMC1303794 DOI: 10.1016/s0006-3495(04)74106-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Monolayers of dipalmitoylphosphatidylcholine (DPPC) and DPPC/dipalmitoylphosphatidylglycerol (DPPG) (7:3, w/w) in the absence or in the presence of 2, 5, 10, or 20 weight percent of porcine surfactant protein SP-B were spread at the air-liquid interface of a surface balance, compressed up to surface pressures in the liquid-expanded/liquid-condensed (LE-LC) plateau of the isotherm, transferred onto mica supports, and analyzed by scanning force microscopy. In the absence of protein, the films showed micrometer-sized condensed domains with morphology and size that were analogous to those observed in situ at the air-liquid interface by epifluorescence microscopy. Scanning force microscopy permits examination of the coexisting phases at a higher resolution than previously achieved with fluorescent microscopy. Both LE and LC regions of DPPC films were heterogeneous in nature. LC microdomains contained numerous expanded-like islands whereas regions apparently liquid-expanded were covered by a condensed-like framework of interconnected nanodomains. Presence of increasing amounts of pulmonary surfactant protein SP-B affected the distribution of the LE and LC regions of DPPC and DPPC/DPPG films both at the microscopic and the nanoscopic level. The condensed microdomains became more numerous but their size decreased, resulting in an overall reduction of the amount of total LC phase in both DPPC and DPPC/DPPG films. At the nanoscopic level, SP-B also caused a marked reduction of the size of the condensed-like nanodomains in the LE phase and an increase in the length of the LE/LC interface. SP-B promotes a fine nanoscopic framework of lipid and lipid-protein nanodomains that is associated with a substantial mechanical resistance to film deformation and rupture as observed during film transference and manipulation. The effect of SP-B on the nanoscopic structure of the lipid films was greater in DPPC/DPPG than in pure DPPC films, indicating additional contributions of electrostatic lipid-protein interactions. The alterations of the nanoscopic structures of phospholipid films by SP-B provide the structural framework for the protein simultaneously sustaining structural stability as well as dynamical flexibility in surfactant films at the extreme conditions imposed by the respiratory mechanics. SP-B also formed segregated two-dimensional clusters that were associated with the boundaries between LC microdomains and the LE regions of DPPC and DPPC/DPPG films. The presence of these clusters at protein-to-lipid proportions above 2% by weight suggests that the concentration of SP-B in the surfactant lipid-protein complexes may be close to the solubility limit of the protein in the lipid films.
Collapse
Affiliation(s)
- Antonio Cruz
- Departamento de Bioquímica, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
49
|
Bernardino de la Serna J, Perez-Gil J, Simonsen AC, Bagatolli LA. Cholesterol rules: direct observation of the coexistence of two fluid phases in native pulmonary surfactant membranes at physiological temperatures. J Biol Chem 2004; 279:40715-22. [PMID: 15231828 DOI: 10.1074/jbc.m404648200] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pulmonary surfactant, the lipid-protein material that stabilizes the respiratory surface of the lungs, contains approximately equimolar amounts of saturated and unsaturated phospholipid species and significant proportions of cholesterol. Such lipid composition suggests that the membranes taking part in the surfactant structures could be organized heterogeneously in the form of inplane domains, originating from particular distributions of specific proteins and lipids. Here we report novel results concerning the lateral organization of bilayer membranes made of native pulmonary surfactant where the coexistence of two distinct micrometer sized fluid phases (fluid ordered and fluid disordered-like phases) is observed at physiological temperatures by using fluorescence microscopy and atomic force microscopy. Additional experiments using fluorescent-labeled proteins SP-B and SP-C show that at physiological temperatures these hydrophobic proteins are located exclusively in the fluid disordered-like phase. Most interestingly, the microscopic coexistence of fluid phases is maintained up to 37.5 degrees C, where most fluid ordered phases melt. This observation suggests that the particular composition of this material is naturally designed to be at the "edge" of a lateral structure transition under physiological conditions, likely providing particular structural and dynamic properties for its mechanical function. The observed lateral structure in native pulmonary surfactant membranes is dramatically affected by the extraction of cholesterol, an effect not observed upon extraction of the surfactant proteins. Furthermore, the spreading properties of the native surfactant material at the air-liquid interface were also greatly affected by cholesterol extraction, suggesting a connection between the observed lateral structure and a physiologically relevant function of the material. We suggest that the particular lipid composition of surfactant could be finely tuned to provide, under physiological conditions, a structural scaffold for surfactant proteins to act at appropriate local densities and lipid composition.
Collapse
|
50
|
Panda AK, Nag K, Harbottle RR, Rodriguez-Capote K, Veldhuizen RAW, Petersen NO, Possmayer F. Effect of Acute Lung Injury on Structure and Function of Pulmonary Surfactant Films. Am J Respir Cell Mol Biol 2004; 30:641-50. [PMID: 14630614 DOI: 10.1165/rcmb.2003-0279oc] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The structural and functional alterations in pulmonary surfactant that occur during acute lung injury were studied using rat lung surfactant large aggregates (LA) isolated from normal nonventilated lungs (N), and from standard ventilated (V) and injuriously ventilated (IV) excised lungs. N lungs inflated significantly better than IV lungs, with V lungs intermediate. Although IV LA phosphatidylcholine levels were unchanged, cholesterol and protein were elevated. V LA exhibited PC/cholesterol and PC/protein ratios intermediate between N and IV. In contrast to total cholesterol and protein levels, these ratios were not significantly different from IV LA. N and V LA, but not IV LA, adsorbed rapidly and were able to generate surface pressures (pi) near 70 mN/m during surface area reduction at 37 degrees C on a captive bubble tensiometer. Langmuir-Wilhelmy surface balance studies at 23 degrees C showed N LA films consistently attained pi approaching 70 mN/m during ten compression-expansion cycles. IV films were less effective and failed to achieve high pi consistently after the sixth cycle. V films were intermediate. Epifluorescence studies revealed compression of adsorbed N LA films formed well-defined liquid-condensed (LC) domains, but fewer, smaller domains were observed with IV films and, to a lesser extent, V films. Atomic force microscopy on Langmuir-Blodgett N films transferred at pi = 30 mN/m showed high, well-defined LC domains. IV films showed thinner, intermediate height, possibly fluid domains, which contain large numbers of small higher domains with heights corresponding to LC domains. V films were intermediate. We conclude that acute lung injury induced by hyperventilation, and to a lesser extent standard ventilation, of excised lungs alters surfactant surface activity and the ability of natural surfactant to form surface structures at the air-water interface.
Collapse
Affiliation(s)
- Amiya K Panda
- Department of Chemistry, Behala College, Kolkata, India
| | | | | | | | | | | | | |
Collapse
|