1
|
Kundu A, Fingerhut BP, Elsaesser T. Hydration structure and dynamics of phosphoric acid and its anions-Ultrafast 2D-IR spectroscopy and ab initio molecular dynamics simulations. J Chem Phys 2024; 161:084503. [PMID: 39206833 DOI: 10.1063/5.0216640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The hydration shells of phosphate ions and phosphate groups of nucleotides and phospholipid membranes display markedly different structures and hydrogen-bond strengths. Understanding phosphate hydration requires insight into the spatial arrangements of water molecules around phosphates and in thermally activated structure fluctuations on ultrafast time scales. Femtosecond two-dimensional infrared spectroscopy of phosphate vibrations, particularly asymmetric stretching vibrations between 1000 and 1200 cm-1, and ab initio molecular dynamics (AIMD) simulations are combined to map and characterize dynamic local hydration structures and phosphate-water interactions. Phosphoric acid H3PO4 and its anions H2PO4-, HPO42-, and PO43- are studied in aqueous environments of different pH value. The hydration shells of phosphates providing OH donor groups in hydrogen bonds with the first water layer undergo ultrafast structural fluctuations, which induce a pronounced spectral diffusion of vibrational excitations on a sub-300 fs time scale. With a decreasing number of phosphate OH groups, the hydration shell becomes more ordered and rigid. The 2D-IR line shapes observed with hydrated PO43- ions display a pronounced inhomogeneous broadening, reflecting a distribution of hydration geometries without fast equilibration. The AIMD simulations allow for an in-depth characterization of the hydration geometries with different numbers of water molecules in the first hydration layer and different correlation functions of the fluctuating electric field that the water environment exerts on the vibrational phosphate oscillators.
Collapse
Affiliation(s)
- Achintya Kundu
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin 12489, Germany
| | - Benjamin P Fingerhut
- Department Chemie and Centre for NanoScience, Ludwig-Maximilians-Universität München, München 81377, Germany
| | - Thomas Elsaesser
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin 12489, Germany
| |
Collapse
|
2
|
Borghi F, Azevedo C, Johnson E, Burden JJ, Saiardi A. A mammalian model reveals inorganic polyphosphate channeling into the nucleolus and induction of a hyper-condensate state. CELL REPORTS METHODS 2024; 4:100814. [PMID: 38981472 PMCID: PMC11294840 DOI: 10.1016/j.crmeth.2024.100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
Inorganic polyphosphate (polyP) is a ubiquitous polymer that controls fundamental processes. To overcome the absence of a genetically tractable mammalian model, we developed an inducible mammalian cell line expressing Escherichia coli polyphosphate kinase 1 (EcPPK1). Inducing EcPPK1 expression prompted polyP synthesis, enabling validation of polyP analytical methods. Virtually all newly synthesized polyP accumulates within the nucleus, mainly in the nucleolus. The channeled polyP within the nucleolus results in the redistribution of its markers, leading to altered rRNA processing. Ultrastructural analysis reveals electron-dense polyP structures associated with a hyper-condensed nucleolus resulting from an exacerbation of the liquid-liquid phase separation (LLPS) phenomena controlling this membraneless organelle. The selective accumulation of polyP in the nucleoli could be interpreted as an amplification of polyP channeling to where its physiological function takes place. Indeed, quantitative analysis of several mammalian cell lines confirms that endogenous polyP accumulates within the nucleolus.
Collapse
Affiliation(s)
- Filipy Borghi
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Cristina Azevedo
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Jemima J Burden
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Adolfo Saiardi
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
3
|
Krall JB, Nichols PJ, Henen MA, Vicens Q, Vögeli B. Structure and Formation of Z-DNA and Z-RNA. Molecules 2023; 28:843. [PMID: 36677900 PMCID: PMC9867160 DOI: 10.3390/molecules28020843] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Despite structural differences between the right-handed conformations of A-RNA and B-DNA, both nucleic acids adopt very similar, left-handed Z-conformations. In contrast to their structural similarities and sequence preferences, RNA and DNA exhibit differences in their ability to adopt the Z-conformation regarding their hydration shells, the chemical modifications that promote the Z-conformation, and the structure of junctions connecting them to right-handed segments. In this review, we highlight the structural and chemical properties of both Z-DNA and Z-RNA and delve into the potential factors that contribute to both their similarities and differences. While Z-DNA has been extensively studied, there is a gap of knowledge when it comes to Z-RNA. Where such information is lacking, we try and extend the principles of Z-DNA stability and formation to Z-RNA, considering the inherent differences of the nucleic acids.
Collapse
Affiliation(s)
- Jeffrey B. Krall
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Parker J. Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Murata T, Minami K, Yamazaki T, Yoshikawa G, Ariga K. Detection of Trace Amounts of Water in Organic Solvents by DNA-Based Nanomechanical Sensors. BIOSENSORS 2022; 12:1103. [PMID: 36551070 PMCID: PMC9775023 DOI: 10.3390/bios12121103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The detection of trace amounts of water in organic solvents is of great importance in the field of chemistry and in the industry. Karl Fischer titration is known as a classic method and is widely used for detecting trace amounts of water; however, it has some limitations in terms of rapid and direct detection because of its time-consuming sample preparation and specific equipment requirements. Here, we found that a DNA-based nanomechanical sensor exhibits high sensitivity and selectivity to water vapor, leading to the detection and quantification of trace amounts of water in organic solvents as low as 12 ppm in THF, with a ppb level of LoD through their vapors. Since the present method is simple and rapid, it can be an alternative technique to the conventional Karl Fischer titration.
Collapse
Affiliation(s)
- Tomohiro Murata
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kosuke Minami
- Center for Functional Sensor & Actuator (CFSN), Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Tomohiko Yamazaki
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
| | - Genki Yoshikawa
- Center for Functional Sensor & Actuator (CFSN), Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Materials Science and Engineering, Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
5
|
Pandey S, Jonchhe S, Mishra S, Emura T, Sugiyama H, Endo M, Mao H. Zeptoliter DNA Origami Reactor to Reveal Cosolute Effects on Nanoconfined G-Quadruplexes. J Phys Chem Lett 2022; 13:8692-8698. [PMID: 36094396 PMCID: PMC10323737 DOI: 10.1021/acs.jpclett.2c02253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cellular environments such as nanoconfinement and molecular crowding can change biomolecular properties. However, in nanoconfinement, it is extremely challenging to investigate effects of crowding cosolutes on macromolecules. By using optical tweezers, here, we elucidated the effects of hexaethylene glycol (HEG) on the mechanical stability of a telomeric G-quadruplex (GQ) in a zeptoliter DNA origami reactor (zepto-reactor). When HEG molecules were introduced in the GQ-containing zepto-reactor at different positions, we found that the GQ species split into two equilibrated populations, reflecting diverse effects of the oligoethylene glycol on the GQ via either a long-range dehydration effect or direct interactions. When the number of HEG molecules was increased, the stability of the GQ unexpectedly decreased, suggesting that the direct destabilizing interaction between the GQ and HEG is dominating over the long-range stabilizing dehydration effects of the HEG in hydrophilic nanocavities. These findings indicate that a nanoconfined environment can alter regular effects of cosolutes on biomacromolecules.
Collapse
Affiliation(s)
- Shankar Pandey
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Sagun Jonchhe
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Shubham Mishra
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Tomoko Emura
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell–Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell–Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
- Organization for Research and Development of Innovative Science and Technology, Kansai University, Suita, Osaka 564-8680, Japan1
| | - Hanbin Mao
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
6
|
Biedermannová L, Černý J, Malý M, Nekardová M, Schneider B. Knowledge-based prediction of DNA hydration using hydrated dinucleotides as building blocks. Acta Crystallogr D Struct Biol 2022; 78:1032-1045. [PMID: 35916227 PMCID: PMC9344474 DOI: 10.1107/s2059798322006234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022] Open
Abstract
Water plays an important role in stabilizing the structure of DNA and mediating its interactions. Here, the hydration of DNA was analyzed in terms of dinucleotide fragments from an ensemble of 2727 nonredundant DNA chains containing 41 853 dinucleotides and 316 265 associated first-shell water molecules. The dinucleotides were classified into categories based on their 16 sequences and the previously determined structural classes known as nucleotide conformers (NtCs). The construction of hydrated dinucleotide building blocks allowed dinucleotide hydration to be calculated as the probability of water density distributions. Peaks in the water densities, known as hydration sites (HSs), uncovered the interplay between base and sugar-phosphate hydration in the context of sequence and structure. To demonstrate the predictive power of hydrated DNA building blocks, they were then used to predict hydration in an independent set of crystal and NMR structures. In ten tested crystal structures, the positions of predicted HSs and experimental waters were in good agreement (more than 40% were within 0.5 Å) and correctly reproduced the known features of DNA hydration, for example the `spine of hydration' in B-DNA. Therefore, it is proposed that hydrated building blocks can be used to predict DNA hydration in structures solved by NMR and cryo-EM, thus providing a guide to the interpretation of experimental data and computer models. The data for the hydrated building blocks and the predictions are available for browsing and visualization at the website https://watlas.datmos.org/watna/.
Collapse
Affiliation(s)
- Lada Biedermannová
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Jiří Černý
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Michal Malý
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Michaela Nekardová
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Bohdan Schneider
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
| |
Collapse
|
7
|
New damage model for simulating radiation-induced direct damage to biomolecular systems and experimental validation using pBR322 plasmid. Sci Rep 2022; 12:11345. [PMID: 35790804 PMCID: PMC9256689 DOI: 10.1038/s41598-022-15521-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022] Open
Abstract
In this work, we proposed a new damage model for estimating radiation-induced direct damage to biomolecular systems and validated its the effectiveness for pBR322 plasmids. The proposed model estimates radiation-induced damage to biomolecular systems by: (1) simulation geometry modeling using the coarse-grained (CG) technique to replace the minimum repeating units of a molecule with a single bead, (2) approximation of the threshold energy for radiation damage through CG potential calculation, (3) calculation of cumulative absorption energy for each radiation event in microscopic regions of CG models using the Monte Carlo track structure (MCTS) code, and (4) estimation of direct radiation damage to biomolecular systems by comparing CG potentials and absorption energy. The proposed model replicated measured data with an average error of approximately 14.2% in the estimation of radiation damage to pBR322 plasmids using the common MCTS code Geant4-DNA. This is similar to the results of previous simulation studies. However, in existing damage models, parameters are adjusted based on experimental data to increase the reliability of simulation results, whereas in the proposed model, they can be determined without using empirical data. Because the proposed model proposed is applicable to DNA and various biomolecular systems with minimal experimental data, it provides a new method that is convenient and effective for predicting damage in living organisms caused by radiation exposure.
Collapse
|
8
|
Vaccine-induced thrombotic thrombocytopenia: Effect of E3 gene elimination from ds-DNA adenovirus vector? Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Mardt A, Gorriz RF, Ferraro F, Ulrich P, Zahran M, Imhof P. Effect of a U:G mispair on the water around DNA. Biophys Chem 2022; 283:106779. [DOI: 10.1016/j.bpc.2022.106779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 11/27/2022]
|
10
|
Fingerhut BP. The mutual interactions of RNA, counterions and water - quantifying the electrostatics at the phosphate-water interface. Chem Commun (Camb) 2021; 57:12880-12897. [PMID: 34816825 PMCID: PMC8640580 DOI: 10.1039/d1cc05367a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022]
Abstract
The structure and dynamics of polyanionic biomolecules, like RNA, are decisively determined by their electric interactions with the water molecules and the counterions in the environment. The solvation dynamics of the biomolecules involves a subtle balance of non-covalent and many-body interactions with structural fluctuations due to thermal motion occurring in a femto- to subnanosecond time range. This complex fluctuating many particle scenario is crucial in defining the properties of biological interfaces with far reaching significance for the folding of RNA structures and for facilitating RNA-protein interactions. Given the inherent complexity, suited model systems, carefully calibrated and benchmarked by experiments, are required to quantify the relevant interactions of RNA with the aqueous environment. In this feature article we summarize our recent progress in the understanding of the electrostatics at the biological interface of double stranded RNA (dsRNA) and transfer RNA (tRNA). Dimethyl phosphate (DMP) is introduced as a viable and rigorously accessible model system allowing the interaction strength with water molecules and counterions, their relevant fluctuation timescales and the spatial reach of interactions to be established. We find strong (up to ≈90 MV cm-1) interfacial electric fields with fluctuations extending up to ≈20 THz and demonstrate how the asymmetric stretching vibration νAS(PO2)- of the polarizable phosphate group can serve as the most sensitive probe for interfacial interactions, establishing a rigorous link between simulations and experiment. The approach allows for the direct interfacial observation of interactions of biologically relevant Mg2+ counterions with phosphate groups in contact pair geometries via the rise of a new absorption band imposed by exchange repulsion interactions at short interatomic distances. The systematic extension to RNA provides microscopic insights into the changes of the hydration structure that accompany the temperature induced melting of the dsRNA double helix and quantify the ionic interactions in the folded tRNA. The results show that pairs of negatively charged phosphate groups and Mg2+ ions represent a key structural feature of RNA embedded in water. They highlight the importance of binding motifs made of contact pairs in the electrostatic stabilization of RNA structures that have a strong impact on the surface potential and enable the fine tuning of the local electrostatic properties which are expected to be relevant for mediating the interactions between biomolecules.
Collapse
|
11
|
Penkova NA, Sharapov MG, Penkov NV. Hydration Shells of DNA from the Point of View of Terahertz Time-Domain Spectroscopy. Int J Mol Sci 2021; 22:ijms222011089. [PMID: 34681747 PMCID: PMC8538832 DOI: 10.3390/ijms222011089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 11/16/2022] Open
Abstract
Hydration plays a fundamental role in DNA structure and functioning. However, the hydration shell has been studied only up to the scale of 10-20 water molecules per nucleotide. In the current work, hydration shells of DNA were studied in a solution by terahertz time-domain spectroscopy. The THz spectra of three DNA solutions (in water, 40 mm MgCl2 and 150 mM KCl) were transformed using an effective medium model to obtain dielectric permittivities of the water phase of solutions. Then, the parameters of two relaxation bands related to bound and free water molecules, as well as to intermolecular oscillations, were calculated. The hydration shells of DNA differ from undisturbed water by the presence of strongly bound water molecules, a higher number of free molecules and an increased number of hydrogen bonds. The presence of 40 mM MgCl2 in the solution almost does not alter the hydration shell parameters. At the same time, 150 mM KCl significantly attenuates all the found effects of hydration. Different effects of salts on hydration cannot be explained by the difference in ionic strength of solutions, they should be attributed to the specific action of Mg2+ and K+ ions. The obtained results significantly expand the existing knowledge about DNA hydration and demonstrate a high potential for using the THz time-domain spectroscopy method.
Collapse
Affiliation(s)
- Nadezda A. Penkova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Mars G. Sharapov
- Institute of Cell Biophysics RAS, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Nikita V. Penkov
- Institute of Cell Biophysics RAS, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
- Correspondence:
| |
Collapse
|
12
|
Wang D, Tian Y, Jiang L. Abnormal Properties of Low-Dimensional Confined Water. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100788. [PMID: 34176214 DOI: 10.1002/smll.202100788] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/25/2021] [Indexed: 06/13/2023]
Abstract
Water molecules confined to low-dimensional spaces exhibit unusual properties compared to bulk water. For example, the alternating hydrophilic and hydrophobic nanodomains on flat silicon wafer can induce the abnormal spreading of water (contact angles near 0°) which is caused by the 2D capillary effect. Hence, exploring the physicochemical properties of confined water from the nanoscale is of great value for understanding the challenges in material science and promoting the applications of nanomaterials in the fields of mass transport, nanofluidic designing, and fuel cell. The knowledge framework of confined water can also help to better understand the complex functions of the hydration layer of biomolecules, and even trace the origin of life. In this review, the physical properties, abnormal behaviors, and functions of the confined water are mainly summarized through several common low-dimensional water formats in the fields of solid/air-water interface, nanochannel confinement, and biological hydration layer. These researches indicate that the unusual behaviors of the confined water depend strongly on the confinement size and the interaction between the molecules and confining surface. These diverse properties of confined water open a new door to materials science and may play an important role in the future development of biology.
Collapse
Affiliation(s)
- Dianyu Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Ye Tian
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
13
|
Elsaesser T, Schauss J, Kundu A, Fingerhut BP. Phosphate Vibrations Probe Electric Fields in Hydrated Biomolecules: Spectroscopy, Dynamics, and Interactions. J Phys Chem B 2021; 125:3899-3908. [PMID: 33834783 PMCID: PMC8154594 DOI: 10.1021/acs.jpcb.1c01502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Electric interactions
have a strong impact on the structure and
dynamics of biomolecules in their native water environment. Given
the variety of water arrangements in hydration shells and the femto-
to subnanosecond time range of structural fluctuations, there is a
strong quest for sensitive noninvasive probes of local electric fields.
The stretching vibrations of phosphate groups, in particular the asymmetric
(PO2)− stretching vibration νAS(PO2)−, allow for a quantitative
mapping of dynamic electric fields in aqueous environments via a field-induced
redshift of their transition frequencies and concomitant changes of
vibrational line shapes. We present a systematic study of νAS(PO2)− excitations in molecular
systems of increasing complexity, including dimethyl phosphate (DMP),
short DNA and RNA duplex structures, and transfer RNA (tRNA) in water.
A combination of linear infrared absorption, two-dimensional infrared
(2D-IR) spectroscopy, and molecular dynamics (MD) simulations gives
quantitative insight in electric-field tuning rates of vibrational
frequencies, electric field and fluctuation amplitudes, and molecular
interaction geometries. Beyond neat water environments, the formation
of contact ion pairs of phosphate groups with Mg2+ ions
is demonstrated via frequency upshifts of the νAS(PO2)− vibration, resulting in a distinct
vibrational band. The frequency positions of contact geometries are
determined by an interplay of attractive electric and repulsive exchange
interactions.
Collapse
Affiliation(s)
- Thomas Elsaesser
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin 12489, Germany
| | - Jakob Schauss
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin 12489, Germany
| | - Achintya Kundu
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin 12489, Germany
| | - Benjamin P Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin 12489, Germany
| |
Collapse
|
14
|
Liu T, Yu T, Zhang S, Wang Y, Zhang W. Thermodynamic and kinetic properties of a single base pair in A-DNA and B-DNA. Phys Rev E 2021; 103:042409. [PMID: 34005973 DOI: 10.1103/physreve.103.042409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/27/2021] [Indexed: 11/07/2022]
Abstract
Double stranded DNA can adopt different forms, the so-called A-, B-, and Z-DNA, which play different biological roles. In this work, the thermodynamic and the kinetic parameters for the base-pair closing and opening in A-DNA and B-DNA were calculated by all-atom molecular dynamics simulations at different temperatures. The thermodynamic parameters of the base pair in B-DNA were in good agreement with the experimental results. The free energy barrier of breaking a single base stack results from the enthalpy increase ΔH caused by the disruption of hydrogen bonding and base-stacking interactions, as well as water and base interactions. The free energy barrier of base pair closing comes from the unfavorable entropy loss ΔS caused by the restriction of torsional angles and hydration. It was found that the enthalpy change ΔH and the entropy change ΔS for the base pair in A-DNA are much larger than those in B-DNA, and the transition rates between the opening and the closing state for the base pair in A-DNA are much slower than those in B-DNA. The large difference of the enthalpy and entropy change for forming the base pair in A-DNA and B-DNA results from different hydration in A-DNA and B-DNA. The hydration pattern observed around DNA is an accompanying process for forming the base pair, rather than a follow-up of the conformation.
Collapse
Affiliation(s)
- Taigang Liu
- Department of Physics Wuhan University, Wuhan 430072, China
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Ting Yu
- Department of Physics Wuhan University, Wuhan 430072, China
| | - Shuhao Zhang
- Department of Physics Wuhan University, Wuhan 430072, China
| | - Yujie Wang
- Department of Physics Wuhan University, Wuhan 430072, China
- Department of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466000, China
| | - Wenbing Zhang
- Department of Physics Wuhan University, Wuhan 430072, China
| |
Collapse
|
15
|
Golyshev VM, Pyshnyi DV, Lomzov AA. Effects of Phosphoryl Guanidine Modification of Phosphate Residues on the Structure and Hybridization of Oligodeoxyribonucleotides. J Phys Chem B 2021; 125:2841-2855. [PMID: 33724825 DOI: 10.1021/acs.jpcb.0c10214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phosphoryl guanidine oligonucleotides (PGOs) are promising tools for biological research and development of biosensors and therapeutics. We performed structural and hybridization analyses of octa-, deca-, and dodecamers with all phosphate residues modified by 1,3-dimethylimidazolidine-2-imine moieties. Similarity of the B-form double helix between native and modified duplexes was noted. In PGO duplexes, we detected a decrease in the proportion of C2'-endo and an increased proportion of C1'-exo sugar conformations of the modified chain. Applicability of the two-state model to denaturation transition of all studied duplexes was proved for the first time. Sequence-dependent effects of this modification on hybridization properties were observed. The thermal stability of PGO complexes is almost native at 100 mM NaCl and slightly increases with decreasing ionic strength. An increase in water activity and dramatic changes in interaction with cations and in solvation of PGOs and their duplexes were noted, resulting in slight elevation of the melting temperature after an ionic-strength decrease from 1 M NaCl down to deionized water. Decreased binding of sodium ions and decreased water solvation were documented for PGOs and their duplexes. In contrast to DNA, the PGO duplex formation leads to a release of several cations. The water shell is significantly more disordered near PGOs and their complexes. Nevertheless, changes in solvation during the formation of native and PGO complexes are similar and indicate that it is possible to develop models for predictive calculations of the thermodynamic properties of phosphoryl guanidine oligomers. Our results may help devise an approach for the rational design of PGOs as novel improved molecular probes and tools for many modern methods involving oligonucleotides.
Collapse
Affiliation(s)
- Victor M Golyshev
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexander A Lomzov
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
16
|
Lee JS, Oviedo JP, Bandara YMNDY, Peng X, Xia L, Wang Q, Garcia K, Wang J, Kim MJ, Kim MJ. Detection of nucleotides in hydrated ssDNA via 2D h-BN nanopore with ionic-liquid/salt-water interface. Electrophoresis 2021; 42:991-1002. [PMID: 33570197 DOI: 10.1002/elps.202000356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 02/03/2023]
Abstract
Accomplishing slow translocation speed with high sensitivity has been the most critical mission for solid-state nanopore (SSN) device to electrically detect nucleobases in ssDNA. In this study, a method to detect nucleobases of ssDNA using a 2D SSN is introduced by considerably reducing the translocation speed and effectively increasing its sensitivity. The ultra-thin titanium dioxide coated hexagonal boron nitride nanopore was fabricated, along with an ionic-liquid 1-butyl-3-methylimidazolium hexafluorophosphate/2.0 M KCl aqueous (cis/trans) interface, for increasing both the spatial and the temporal resolutions. As the ssDNA molecules entered the nanopore, a brief surge of electrical conductivity occurred, which was followed by multiple resistive pulses from nucleobases during the translocation of ssDNA and another brief current surge flagging the exit of the molecule. The continuous detection of nucleobases using a 2D SSN device is a novel achievement: the water molecules bound to ssDNA increased the molecular conductivity and amplified electrical signals during the translocation. Along with the experiment, computational simulations using COMSOL Multiphysics are presented to explain the pivotal role of water molecules bound to ssDNA to detect nucleobases using a 2D SSN.
Collapse
Affiliation(s)
- Jung Soo Lee
- Applied Science Program, Lyle School of Engineering, Southern Methodist University, Dallas, TX, USA
| | - Juan Pablo Oviedo
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, USA
| | | | - Xin Peng
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, USA.,Department of Physical Chemistry, University of Science and Technology, Beijing, P. R. China
| | - Longsheng Xia
- Department of Electrical Engineering, The University of Texas at Dallas, Richardson, TX, USA
| | - Qingxiao Wang
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, USA
| | - Kevin Garcia
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, USA.,Monterrey Institute of Technology and Higher Education, Mexico City, Mexico
| | - Jinguo Wang
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, USA
| | - Min Jun Kim
- Applied Science Program, Lyle School of Engineering, Southern Methodist University, Dallas, TX, USA.,Deparment of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Moon Jae Kim
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, USA.,Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
17
|
Paston SV, Polyanichko AM, Shulenina OV, Osinnikova DN. A Study of the DNA Structure in Films Using FTIR Spectroscopy. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920060159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Ali TH, Mandal AM, Heidelberg T, Duali Hussen RS, Goh EW. Ionic magnetic core-shell nanoparticles for DNA extraction. RSC Adv 2020; 10:38818-38830. [PMID: 35518431 PMCID: PMC9057385 DOI: 10.1039/d0ra05933a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/16/2020] [Indexed: 11/21/2022] Open
Abstract
Magnetic nanoparticles with specific surface features are interesting materials for biomedical applications. The combination of molecular interactions on small particles with macroscopic cohesion forces offers unique opportunities. This work reports the synthesis of magnetic core-shell nanoparticles with alkylimidazolium coated surface for effective DNA extraction. A magnetic Fe2O3 core was coated with a silica shell and functionalized with an organic halide. This enabled a surface coating with organic cations to mediate effective molecular interactions with polyanionic DNA. The large surface area of the ∼20 nm small particles with a magnetization of 25 emu g-1 enabled high DNA particle loading of 1/30 m% with easy isolation based on an external magnetic field. Moreover, the coating of the particles stabilized DNA against ultrasound initiated fragmentation.
Collapse
Affiliation(s)
- Tammar Hussein Ali
- Chemistry Department, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Muthanna University 66001 Samawah Al Muthanna Iraq
| | - Amar Mousa Mandal
- College of Basic Education, Science Department, Al-Muthanna University 66001 Samawah Al Muthanna Iraq
| | - Thorsten Heidelberg
- Chemistry Department, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia
| | | | - Ean Wai Goh
- Chemistry Department, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia
| |
Collapse
|
19
|
Abstract
![]()
Molecular association of proteins with nucleic
acids is required
for many biological processes essential to life. Electrostatic interactions
via ion pairs (salt bridges) of nucleic acid phosphates and protein
side chains are crucial for proteins to bind to DNA or RNA. Counterions
around the macromolecules are also key constituents for the thermodynamics
of protein–nucleic acid association. Until recently, there
had been only a limited amount of experiment-based information about
how ions and ionic moieties behave in biological macromolecular processes.
In the past decade, there has been significant progress in quantitative
experimental research on ionic interactions with nucleic acids and
their complexes with proteins. The highly negatively charged surfaces
of DNA and RNA electrostatically attract and condense cations, creating
a zone called the ion atmosphere. Recent experimental studies were
able to examine and validate theoretical models on ions and their
mobility and interactions with macromolecules. The ionic interactions
are highly dynamic. The counterions rapidly diffuse within the ion
atmosphere. Some of the ions are released from the ion atmosphere
when proteins bind to nucleic acids, balancing the charge via intermolecular
ion pairs of positively charged side chains and negatively charged
backbone phosphates. Previously, the release of counterions had been
implicated indirectly by the salt-concentration dependence of the
association constant. Recently, direct detection of counterion
release by NMR spectroscopy
has become possible and enabled more accurate and quantitative analysis
of the counterion release and its entropic impact on the thermodynamics
of protein–nucleic acid association. Recent studies also revealed
the dynamic nature of ion pairs of protein side chains and nucleic
acid phosphates. These ion pairs undergo transitions between two major
states. In one of the major states, the cation and the anion are in
direct contact and form hydrogen bonds. In the other major state,
the cation and the anion are separated by water. Transitions between
these states rapidly occur on a picosecond to nanosecond time scale.
When proteins interact with nucleic acids, interfacial arginine (Arg)
and lysine (Lys) side chains exhibit considerably different behaviors.
Arg side chains show a higher propensity to form rigid contacts with
nucleotide bases, whereas Lys side chains tend to be more mobile at
the molecular interfaces. The dynamic ionic interactions may facilitate
adaptive molecular recognition and play both thermodynamic and kinetic
roles in protein–nucleic acid interactions.
Collapse
Affiliation(s)
- Binhan Yu
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| | - B. Montgomery Pettitt
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| | - Junji Iwahara
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| |
Collapse
|
20
|
Kalra K, Gorle S, Cavallo L, Oliva R, Chawla M. Occurrence and stability of lone pair-π and OH-π interactions between water and nucleobases in functional RNAs. Nucleic Acids Res 2020; 48:5825-5838. [PMID: 32392301 PMCID: PMC7293021 DOI: 10.1093/nar/gkaa345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 01/15/2023] Open
Abstract
We identified over 1000 instances of water-nucleobase stacking contacts in a variety of RNA molecules from a non-redundant set of crystal structures with resolution ≤3.0 Å. Such contacts may be of either the lone pair-π (lp-π) or the OH-π type, in nature. The distribution of the distances of the water oxygen from the nucleobase plane peaks at 3.5 Å for A, G and C, and approximately at 3.1-3.2 Å for U. Quantum mechanics (QM) calculations confirm, as expected, that the optimal energy is reached at a shorter distance for the lp-π interaction as compared to the OH-π one (3.0 versus 3.5 Å). The preference of each nucleobase for either type of interaction closely correlates with its electrostatic potential map. Furthermore, QM calculations show that for all the nucleobases a favorable interaction, of either the lp-π or the OH-π type, can be established at virtually any position of the water molecule above the nucleobase skeleton, which is consistent with the uniform projection of the OW atoms over the nucleobases ring we observed in the experimental occurrences. Finally, molecular dynamics simulations of a model system for the characterization of water-nucleobase stacking contacts confirm the stability of these interactions also under dynamic conditions.
Collapse
Affiliation(s)
- Kanav Kalra
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Suresh Gorle
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy
| | - Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
21
|
Černý J, Božíková P, Malý M, Tykač M, Biedermannová L, Schneider B. Structural alphabets for conformational analysis of nucleic acids available at dnatco.datmos.org. Acta Crystallogr D Struct Biol 2020; 76:805-813. [PMID: 32876056 PMCID: PMC7466747 DOI: 10.1107/s2059798320009389] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
A detailed description of the dnatco.datmos.org web server implementing the universal structural alphabet of nucleic acids is presented. It is capable of processing any mmCIF- or PDB-formatted files containing DNA or RNA molecules; these can either be uploaded by the user or supplied as the wwPDB or PDB-REDO structural database access code. The web server performs an assignment of the nucleic acid conformations and presents the results for the intuitive annotation, validation, modeling and refinement of nucleic acids.
Collapse
Affiliation(s)
- Jiří Černý
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| | - Paulína Božíková
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| | - Michal Malý
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| | - Michal Tykač
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| | - Lada Biedermannová
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| | - Bohdan Schneider
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| |
Collapse
|
22
|
Alexiou TS, Mintis DG, Mavrantzas VG. Molecular Dynamics Simulation of the Diffusion Dynamics of Linear DNA Fragments in Dilute Solution with the Parmbsc1 Force Field and Comparison with Experimental Data and Theoretical Models. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Terpsichori S. Alexiou
- Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, Patras, GR 26504, Greece
| | - Dimitris G. Mintis
- Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, Patras, GR 26504, Greece
| | - Vlasis G. Mavrantzas
- Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, Patras, GR 26504, Greece
- Department of Mechanical and Process Engineering, Particle Technology Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
23
|
Wang H, Liu Z, An C, Li H, Hu F, Dong S. Self-Assembling Glycopeptide Conjugate as a Versatile Platform for Mimicking Complex Polysaccharides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001264. [PMID: 32832369 PMCID: PMC7435236 DOI: 10.1002/advs.202001264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Polysaccharides are a class of carbohydrates that play pivotal roles in living systems such as being chemical messengers in many vital biological pathways. However, the complexity and heterogeneity of these natural structures have posed daunting challenges on their production, characterization, evaluation, and applications. While there have been various types of synthetic skeletons that could mimic some biological aspects of polysaccharides, a safer and more easily accessed system is still desired to avoid the unnatural components and difficulties in modifying the structures. In this work, conveniently accessible self-assembling glycopeptide conjugates are developed, where the natural O-glycosidic linkages and phosphoryl modifications assist the self-assembly and concurrently reduce the risk of toxicity. The generated nanoparticles in aqueous solution offer a multivalent display of structurally controllable carbohydrates as mimics of polysaccharides, among which a mannosylated version exhibits immunostimulatory effects in both cellular assays and vaccination of mice. The obtained results demonstrate the potential of this glycopeptide conjugate-derived platform in exploiting the intriguing properties of carbohydrates in a more structurally maneuverable fashion.
Collapse
Affiliation(s)
- Hanxuan Wang
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Zhichao Liu
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Chuanjing An
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Haoting Li
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Fanlei Hu
- Department of Rheumatology and ImmunologyPeking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135)Beijing100044China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| |
Collapse
|
24
|
Sarkar S, Rajdev P, Singh PC. Hydrogen bonding of ionic liquids in the groove region of DNA controls the extent of its stabilization: synthesis, spectroscopic and simulation studies. Phys Chem Chem Phys 2020; 22:15582-15591. [PMID: 32613973 DOI: 10.1039/d0cp01548b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ionic liquids (ILs) have been extensively used for stabilization and long-term DNA storage. However, molecular level understanding of the role of the hydrogen bond of DNA with ILs in its stabilization is still inadequate. Two ILs, namely, 1,1,3,3-tetramethylguanidinium acetate (TMG) and 2,2-diethyl-1,1,3,3-tetramethylguanidinium acetate (DETMG), have been synthesized, of which TMG has a hydrogen bonding N-H group whereas DETMG does not contain any hydrogen bonding site. It has been found that both TMG and DETMG cations interact in the groove region of DNA; however, their mode of interaction is distinctly different, which causes the stabilization of DNA in the presence of TMG, whereas the effect is opposite in the case of DETMG. It is apparent from the data that only the accommodation of ILs in the groove region is not enough for the stabilization of DNA. MD simulation and spectroscopic studies combinedly indicate that the hydrogen bonding capability of the TMG cation enhances the hydrogen bonding between the Watson-Crick base pairs of DNA, resulting in its stabilization. In contrast, the bigger size as well as the absence of the hydrogen bonding site of the DETMG cation perturbs the minor groove width and base pair step parameters of DNA during its intrusion into the minor groove, which decreases the hydrogen bond between the Watson-Crick base pairs of DNA, leading to destabilization.
Collapse
Affiliation(s)
- Sunipa Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | | | | |
Collapse
|
25
|
|
26
|
Minguirbara A, Vamhindi BSDR, Koyambo-Konzapa SJ, Nsangou M. Effects of counterions and solvents on the geometrical and vibrational features of dinucleoside-monophosphate (dNMP): case of 3',5'-dideoxycytidine-monophosphate (dDCMP). J Mol Model 2020; 26:99. [PMID: 32285211 DOI: 10.1007/s00894-020-04369-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/25/2020] [Indexed: 11/26/2022]
Abstract
The effects of the interaction of the monovalent (Li+, Na+, K+) and divalent (Mg2+) counterions hexahydrated (6H2O), with the PO2- group, on the geometrical and vibrational characteristics of 3', 5'-dDCMP, were studied using the DFT/B3LYP/6-31++G(d) method. These calculations were performed using the explicit (6H2O) and hybrid (6H2O/Continuum) solvation models. The optimizations reveal that in the conformation g-g- and in the explicit model of solvation, the small ions (Li+, Na+) deviate from the bisector plane of the angle O1-P-O2 and the large ions (K+ and Mg2+) remain in this plane, whereas in the hybrid model of solvation, the counterions deviate from this plane. However, when the conformer is g+g+, the monovalent counterions deviate and divide the remainder of the plane regardless of the type of solvation model. In addition, the g-g- conformer is the most stable in the presence of the explicit solvent, while the g+g+ conformer is the most stable in the presence of the hybrid solvent. Finally, the normal modes of the conformers g-g- and g+g+ in the presence of the counterions in the hybrid model show a better agreement with the available experimental data of the DNA forms A, B (g-g-), and Z (g+g+) relatively to the explicit model. This very good agreement is illustrated by the very small deviations ≤ 0.08% (g-g-) and ≤ 0.41% (g+g+) observed between the calculated and experimental data for the PO2- (asymmetric) stretching mode in the presence of the counterion K+ in the hybrid model. Graphical abstract.
Collapse
Affiliation(s)
- Alain Minguirbara
- Department of Physics, Faculty of Science, University of Maroua, Maroua, P.O.Box 814, Cameroon
| | | | | | - Mama Nsangou
- CERDISFA, Department of Physics, Higher Teacher's Training College, University of Maroua, Maroua, P.O.Box 46, Cameroon.
- Department of Physics, Faculty of Science, University of Ngaoundere, Ngaoundere, P.O.Box 454, Cameroon.
| |
Collapse
|
27
|
Kundu A, Schauss J, Fingerhut BP, Elsaesser T. Change of Hydration Patterns upon RNA Melting Probed by Excitations of Phosphate Backbone Vibrations. J Phys Chem B 2020; 124:2132-2138. [PMID: 32101008 DOI: 10.1021/acs.jpcb.0c01474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The water hydration shell has a decisive impact on the structural and functional properties of RNA. Changes of the RNA structure upon melting and in biochemical processes are accompanied by a change of hydration patterns, a process that is barely characterized. To discern hydration geometries around the backbone phosphate groups of an RNA double helix at the molecular level, we combine two-dimensional infrared spectroscopy of phosphate vibrations with theoretical simulations. There are three distinct coexisting hydration motifs of the RNA A-helix: an ordered chain-like arrangement of water molecules with links between neighboring phosphate groups, separate local hydration shells of up to six water molecules, and hydrated phosphate/counterion contact pairs. RNA disordering upon melting is connected with a transition from predominantly ordered water structures to local hydration shells around phosphate units. Structural fluctuations are dominated by librational water motions occurring on a 300 fs time scale, without exchange between hydration motifs.
Collapse
Affiliation(s)
- Achintya Kundu
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin 12489, Germany
| | - Jakob Schauss
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin 12489, Germany
| | - Benjamin P Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin 12489, Germany
| | - Thomas Elsaesser
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin 12489, Germany
| |
Collapse
|
28
|
Sarkar S, Singh PC. Alteration of the groove width of DNA induced by the multimodal hydrogen bonding of denaturants with DNA bases in its grooves affects their stability. Biochim Biophys Acta Gen Subj 2020; 1864:129498. [DOI: 10.1016/j.bbagen.2019.129498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/08/2023]
|
29
|
Bendandi A, Dante S, Zia SR, Diaspro A, Rocchia W. Chromatin Compaction Multiscale Modeling: A Complex Synergy Between Theory, Simulation, and Experiment. Front Mol Biosci 2020; 7:15. [PMID: 32158765 PMCID: PMC7051991 DOI: 10.3389/fmolb.2020.00015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/27/2020] [Indexed: 12/24/2022] Open
Abstract
Understanding the mechanisms that trigger chromatin compaction, its patterns, and the factors they depend on, is a fundamental and still open question in Biology. Chromatin compacts and reinforces DNA and is a stable but dynamic structure, to make DNA accessible to proteins. In recent years, computational advances have provided larger amounts of data and have made large-scale simulations more viable. Experimental techniques for the extraction and reconstitution of chromatin fibers have improved, reinvigorating theoretical and experimental interest in the topic and stimulating debate on points previously considered as certainties regarding chromatin. A great assortment of approaches has emerged, from all-atom single-nucleosome or oligonucleosome simulations to various degrees of coarse graining, to polymer models, to fractal-like structures and purely topological models. Different fiber-start patterns have been studied in theory and experiment, as well as different linker DNA lengths. DNA is a highly charged macromolecule, making ionic and electrostatic interactions extremely important for chromatin topology and dynamics. Indeed, the repercussions of varying ionic concentration have been extensively examined at the computational level, using all-atom, coarse-grained, and continuum techniques. The presence of high-curvature AT-rich segments in DNA can cause conformational variations, attesting to the fact that the role of DNA is both structural and electrostatic. There have been some tentative attempts to describe the force fields governing chromatin conformational changes and the energy landscapes of these transitions, but the intricacy of the system has hampered reaching a consensus. The study of chromatin conformations is an intrinsically multiscale topic, influenced by a wide range of biological and physical interactions, spanning from the atomic to the chromosome level. Therefore, powerful modeling techniques and carefully planned experiments are required for an overview of the most relevant phenomena and interactions. The topic provides fertile ground for interdisciplinary studies featuring a synergy between theoretical and experimental scientists from different fields and the cross-validation of respective results, with a multi-scale perspective. Here, we summarize some of the most representative approaches, and focus on the importance of electrostatics and solvation, often overlooked aspects of chromatin modeling.
Collapse
Affiliation(s)
- Artemi Bendandi
- Physics Department, University of Genoa, Genoa, Italy
- Nanophysics & NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Silvia Dante
- Nanophysics & NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Syeda Rehana Zia
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Alberto Diaspro
- Physics Department, University of Genoa, Genoa, Italy
- Nanophysics & NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Walter Rocchia
- Concept Lab, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
30
|
Yu B, Montgomery Pettitt B, Iwahara J. Experimental Evidence of Solvent-Separated Ion Pairs as Metastable States in Electrostatic Interactions of Biological Macromolecules. J Phys Chem Lett 2019; 10:7937-7941. [PMID: 31809050 PMCID: PMC6936746 DOI: 10.1021/acs.jpclett.9b03084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrostatic interactions via ion pairs are vital for biological macromolecules. Regarding the free energy of each ion pair as a function of the interionic distance, continuum electrostatic models predict a single energy minimum corresponding to the contact ion-pair (CIP) state, whereas atomically detailed theoretical hydration studies predict multiple energy minima corresponding to the CIP and solvent-separated ion-pair (SIP) states. Through a statistical analysis of high-resolution crystal structures, we present experimental evidence of the SIP as a metastable state. The histogram of interionic distances between protein side-chain NH3+ and DNA phosphate groups clearly shows two major peaks corresponding to the CIP and SIP states. The statistical data are consistent with the probability distribution of the CIP-SIP equilibria previously obtained with molecular dynamics simulations. Spatial distributions of NH3+ ions and water molecules around phosphates reveal preferential sites for CIP and SIP formations and show how the ions compete with water molecules.
Collapse
|
31
|
Sarkar S, Chowdhury A, Singh PC. Multimodal Interactions of Dopamine Hydrochloride with the Groove Region of DNA: A Key Factor in the Enhanced Stability of DNA. J Phys Chem B 2019; 123:10700-10708. [DOI: 10.1021/acs.jpcb.9b09254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sunipa Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Abhinanda Chowdhury
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Prashant Chandra Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
32
|
Schauss J, Kundu A, Fingerhut BP, Elsaesser T. Contact Ion Pairs of Phosphate Groups in Water: Two-Dimensional Infrared Spectroscopy of Dimethyl Phosphate and ab Initio Simulations. J Phys Chem Lett 2019; 10:6281-6286. [PMID: 31560211 DOI: 10.1021/acs.jpclett.9b02157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The interaction of phosphate groups with ions in an aqueous environment has a strong impact on the structure and folding processes of DNA and RNA. The dynamic variety of ionic arrangements, including both contact pairs and water separated ions, and the molecular coupling mechanisms are far from being understood. In a combined experimental and theoretical approach, we address the properties of contact ion pairs of the prototypical system dimethyl phosphate with Na+, Ca2+, and Mg2+ ions in water. Linear and femtosecond two-dimensional infrared (2D-IR) spectroscopy of the asymmetric (PO2)- stretching vibration separates and characterizes the different species via their blue-shifted vibrational signatures and 2D-IR line shapes. Phosphate-magnesium contact pairs stand out as the most compact geometry while the contact pairs with Ca2+ and Na+ display a wider structural variation. Microscopic density functional theory simulations rationalize the observed frequency shifts and reveal distinct differences between the contact geometries.
Collapse
Affiliation(s)
- Jakob Schauss
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Berlin 12489 , Germany
| | - Achintya Kundu
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Berlin 12489 , Germany
| | - Benjamin P Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Berlin 12489 , Germany
| | - Thomas Elsaesser
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Berlin 12489 , Germany
| |
Collapse
|
33
|
Sarkar S, Singh PC. Mechanistic Aspects of Fungicide-Induced DNA Damage: Spectroscopic and Molecular Dynamics Simulation Studies. J Phys Chem B 2019; 123:8653-8661. [DOI: 10.1021/acs.jpcb.9b06009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sunipa Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Prashant Chandra Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
34
|
Dos Santos MAF, Habitzreuter MA, Schwade MH, Borrasca R, Antonacci M, Gonzatti GK, Netz PA, Barbosa MC. Dynamical aspects of supercooled TIP3P-water in the grooves of DNA. J Chem Phys 2019; 150:235101. [PMID: 31228916 DOI: 10.1063/1.5100601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We investigate by molecular dynamics simulations the mobility of the water located at the DNA minor and major grooves. We employ the TIP3P water model, and our system is analyzed for a range of temperatures 190-300 K. For high temperatures, the water at the grooves shows an Arrhenius behavior similar to that observed in the bulk water. At lower temperatures, a departure from the bulk behavior is observed. This slowing down in the dynamics is compared with the dynamics of the hydrogen of the DNA at the grooves and with the autocorrelation functions of the water hydrogen bonds. Our results indicate that the hydrogen bonds of the water at the minor grooves are highly correlated, which suggests that this is the mechanism for the slow dynamics at this high confinement.
Collapse
Affiliation(s)
- M A F Dos Santos
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil
| | - M A Habitzreuter
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil
| | - M H Schwade
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil
| | - R Borrasca
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil
| | - M Antonacci
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil
| | - G K Gonzatti
- Instituto de Química, Universidade Federal do Rio Grande do Sul, CEP 91501-970, Porto Alegre, RS, Brazil
| | - P A Netz
- Instituto de Química, Universidade Federal do Rio Grande do Sul, CEP 91501-970, Porto Alegre, RS, Brazil
| | - M C Barbosa
- Instituto de Física, Departamento de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
35
|
Russo D, De Angelis A, Paciaroni A, Frick B, de Sousa N, Wurm FR, Teixeira J. Protein-Polymer Dynamics as Affected by Polymer Coating and Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2674-2679. [PMID: 30677298 DOI: 10.1021/acs.langmuir.8b03636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We investigate the relaxation dynamics of protein-polymer conjugates by neutron scattering spectroscopy to understand to which extent the coating of a protein by a polymer can replace water in promoting thermal structural fluctuations. For this purpose, we compare the dynamics of protein-polymer mixtures to that of conjugates with a variable number of polymers covalently attached to the protein. Results show that the flexibility of the protein is larger in protein-polymer mixtures than in native protein or in conjugates, even in the dry state. Upon hydration, both the native protein and the conjugate show equivalent dynamics, suggesting that the polymer grafted on the protein surface adsorbs all water molecules.
Collapse
Affiliation(s)
- D Russo
- Consiglio Nazionale delle Ricerche & Istituto Officina dei Materiali c/o Institut Laue Langevin , 38042 Grenoble , France
- Australian Nuclear Science and Technology Organisation , New Illawarra Road, Lucas Heights , NSW 2234 , Australia
| | - A De Angelis
- Dipartimento di Fisica e Geologia , Università degli Studi di Perugia and CNISM , Via Pascoli, 06123 Perugia , Italy
| | - A Paciaroni
- Dipartimento di Fisica e Geologia , Università degli Studi di Perugia and CNISM , Via Pascoli, 06123 Perugia , Italy
| | - B Frick
- Institut Laue-Langevin , 38042 Grenoble , France
| | - N de Sousa
- Australian Nuclear Science and Technology Organisation , New Illawarra Road, Lucas Heights , NSW 2234 , Australia
| | - F R Wurm
- Max-Planck-Institut für Polymerforschung , Ackermannweg 10 , 55128 Mainz , Germany
| | - J Teixeira
- Laboratoire Léon Brillouin (CEA/CNRS), CEA Saclay , 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
36
|
Kochmann S, Le ATH, Hili R, Krylov SN. Predicting efficiency of NECEEM‐based partitioning of protein binders from nonbinders in DNA‐encoded libraries. Electrophoresis 2018; 39:2991-2996. [DOI: 10.1002/elps.201800270] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Sven Kochmann
- Department of Chemistry and Centre for Research on Biomolecular InteractionsYork University Toronto Ontario Canada
| | - An T. H. Le
- Department of Chemistry and Centre for Research on Biomolecular InteractionsYork University Toronto Ontario Canada
| | - Ryan Hili
- Department of Chemistry and Centre for Research on Biomolecular InteractionsYork University Toronto Ontario Canada
| | - Sergey N. Krylov
- Department of Chemistry and Centre for Research on Biomolecular InteractionsYork University Toronto Ontario Canada
| |
Collapse
|
37
|
Kuchuk K, Sivan U. Hydration Structure of a Single DNA Molecule Revealed by Frequency-Modulation Atomic Force Microscopy. NANO LETTERS 2018; 18:2733-2737. [PMID: 29564895 DOI: 10.1021/acs.nanolett.8b00854] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydration interaction shapes biomolecules and is a dominant intermolecular force. Mapping the hydration patterns of biomolecules is therefore essential for understanding molecular processes in biology. Numerous studies have been devoted to this challenge, but current methods cannot map the hydration of single biomolecules, let alone do so under physiological conditions. Here, we show that frequency-modulation atomic force microscopy (FM-AFM) can fill this gap and generate 3D hydration maps of single DNA molecules under near-physiological conditions. Additionally, we present real-space images of DNA in which the double helix is resolved with unprecedented resolution, clearly revealing individual phosphate groups along the DNA backbone. FM-AFM therefore emerges as a powerful enabling tool in the study of individual biomolecules and their hydration under physiological conditions.
Collapse
Affiliation(s)
- Kfir Kuchuk
- Department of Physics and the Russell Berrie Nanotechnology Institute , Technion - Israel Institute of Technology , Haifa , 3200003 , Israel
| | - Uri Sivan
- Department of Physics and the Russell Berrie Nanotechnology Institute , Technion - Israel Institute of Technology , Haifa , 3200003 , Israel
| |
Collapse
|
38
|
Minguirbara A, Nsangou M. DFT study of geometrical and vibrational features of a 3',5'-deoxydisugar-monophosphate (dDSMP) DNA model in the presence of counterions and solvent. J Mol Model 2018. [PMID: 29516189 DOI: 10.1007/s00894-018-3629-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The B3LYP/6-31++G* theoretical level was used to study the influence of various hexahydrated monovalent (Li+, Na+, K+) and divalent (Mg2+) metal counterions in interaction with the charged PO2- group, on the geometrical and vibrational characteristics of the DNA fragments of 3',5'-dDSMP, represented by four conformers (g+g+, g+t, g-g- and g-t). All complexes were optimized through two solvation models [the explicit model (6H2O) and the hybrid model (6H2O/Continuum)]. The results obtained established that, in the hybrid model, counterions (Li+, Na+, K+, Mg2+) always remain in the bisector plane of the O1-P-O2 angle. When these counterions are explicitly hydrated, the smallest counterions (Li+, Na+) deviate from the bisector plane, while the largest counterions (K+ and Mg2+) always remain in the same plane. On the other hand, the present calculations reveal that the g+g+ conformer is the most stable in the presence of monovalent counterions, while conformers g+t and g-t are the most stable in the presence of the divalent counterion Mg2+. Finally, the hybrid solvation model seems to be in better agreement with the available crystallographic and spectroscopic (Raman) experiments than the explicit model. Indeed, the six conformational torsions of the C4'-C3'-O3'-PO-2-O5'-C5'-C4' segment of all complexes of the g-g- conformer in 6H2O/Continuum remain similar to the available experimental data of A- and B-DNA forms. The calculated wavenumbers of the g+g+ conformer in the presence of the monovalent counterion and of g-t conformer in presence of the divalent counterion in the hybrid model are in good agreement with the Raman experimental data of A- and B-DNA forms. In addition, the maximum deviation between the calculated wavenumbers in the 6H2O/Continuum for the g+g+ conformer and experimental value measured in an aqueous solution of the DMP-Na+ complex, is <1.07% for the PO2- (asymmetric and symmetric) stretching modes and <2.03% for the O5'-C5' and O3'-C3' stretching modes. Graphical abstract dDSMP-(OO)- Mg2+/6W/Continuum.
Collapse
Affiliation(s)
- Alain Minguirbara
- Department of Physics, Higher Teachers' Training College, University of Maroua, PO Box 46, Maroua, Cameroon
| | - Mama Nsangou
- Department of Physics, Higher Teachers' Training College, University of Maroua, PO Box 46, Maroua, Cameroon.
| |
Collapse
|
39
|
Porschke D. Kinetics of the B-A transition of DNA: analysis of potential contributions to a reaction barrier. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:325-332. [PMID: 29404661 PMCID: PMC5982448 DOI: 10.1007/s00249-018-1276-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/21/2017] [Accepted: 01/02/2018] [Indexed: 11/28/2022]
Abstract
Because of open problems in the relation between results obtained by relaxation experiments and molecular dynamics simulations on the B-A transition of DNA, relaxation measurements of the B-A dynamics have been extended to a wider range of conditions. Field-induced reaction effects are measured selectively by the magic angle technique using a novel cell construction preventing perturbations from cell window anisotropy. The kinetics was recorded for the case of poly[d(AT)] up to the salt concentration limit of 4.4 mM, where aggregation does not yet interfere. Now experimental data on the B-A dynamics are available for poly[d(AT)] at salt concentrations of 0.18, 0.73, 2.44 and 4.4 mM. In all cases, a spectrum of time constants is found, ranging from ~ 10 μs up to components approaching ~ 1 ms. The relatively small dependence of these data on the salt concentration indicates that electrostatic effects on the kinetics are not as strong as may be expected. The ethanol content at the transition center is a linear function of the logarithm of the salt concentration, and the slope is close to that expected from polyelectrolyte theory. The B-A transition dynamics was also measured in D2O at a salt concentration of 2.4 mM: the center of the transition is found at 20.0 mol/l H2O and at 20.1 mol/l D2O with an estimated accuracy of ± 0.1 mol/l; the spectrum of time constants at the respective transition centers is very similar. The experimental results are discussed regarding the data obtained by molecular dynamics simulations.
Collapse
Affiliation(s)
- Dietmar Porschke
- Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| |
Collapse
|
40
|
Szymborska-Małek K, Komorowska M, Gąsior-Głogowska M. Effects of Near Infrared Radiation on DNA. DLS and ATR-FTIR Study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:258-267. [PMID: 28723592 DOI: 10.1016/j.saa.2017.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/13/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
We presume that the primary effect of Near Infrared (NIR) radiation on aqueous solutions of biological molecules concerns modification of hydrogen bonded structures mainly the global and the hydration shell water molecules. Since water has a significant influence on the DNA structure, we expect that the thermal stability of DNA could be modified by NIR radiation. The herring sperm DNA was exposed to NIR radiation (700-1100nm) for 5, 10, and 20min periods. The temperature dependent infrared measurements were done for the thin films formed on the diamond ATR crystal from evaporated DNA solutions exposed and unexposed to NIR radiation. For the NIR-treated samples (at room temperature) the B form was better conserved than in the control sample independently of the irradiation period. Above 50°C a considerable increase in the A form was only observed for 10min NIR exposed samples. The hydrodynamic radius, (Rh), studied by the dynamic light scattering, showed drastic decrease with the increasing irradiation time. Principal components analysis (PCA) allowed to detect the spectral features correlated with the NIR effect and thermal stability of the DNA films. Obtained results strongly support the idea that the photoionization of water by NIR radiation in presence of DNA molecules is the main factor influencing on its physicochemical properties.
Collapse
Affiliation(s)
- Katarzyna Szymborska-Małek
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Box 1410, 50-950 Wroclaw 2, Poland
| | - Małgorzata Komorowska
- Wrocław University of Science and Technology, Faculty of Fundamental Problems of Technology, Department of Biomedical Engineering, 27 Stanisława Wyspiańskiego St., 50-370 Wrocław, Poland.
| | - Marlena Gąsior-Głogowska
- Wrocław University of Science and Technology, Faculty of Fundamental Problems of Technology, Department of Biomedical Engineering, 27 Stanisława Wyspiańskiego St., 50-370 Wrocław, Poland
| |
Collapse
|
41
|
Ma J, Wang F, Denisov SA, Adhikary A, Mostafavi M. Reactivity of prehydrated electrons toward nucleobases and nucleotides in aqueous solution. SCIENCE ADVANCES 2017; 3:e1701669. [PMID: 29250599 PMCID: PMC5732001 DOI: 10.1126/sciadv.1701669] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/13/2017] [Indexed: 05/28/2023]
Abstract
DNA damage induced via dissociative attachment by low-energy electrons (0 to 20 eV) is well studied in both gas and condensed phases. However, the reactivity of ultrashort-lived prehydrated electrons ([Formula: see text]) with DNA components in a biologically relevant environment has not been fully explored to date. The electron transfer processes of [Formula: see text] to the DNA nucleobases G, A, C, and T and to nucleosides/nucleotides were investigated by using 7-ps electron pulse radiolysis coupled with pump-probe transient absorption spectroscopy in aqueous solutions. In contrast to previous results, obtained by using femtosecond laser pump-probe spectroscopy, we show that G and A cannot scavenge [Formula: see text] at concentrations of ≤50 mM. Observation of a substantial decrease of the initial yield of hydrated electrons ([Formula: see text]) and formation of nucleobase/nucleotide anion radicals at increasing nucleobase/nucleotide concentrations present direct evidence for the earliest step in reductive DNA damage by ionizing radiation. Our results show that [Formula: see text] is more reactive with pyrimidine than purine nucleobases/nucleotides with a reactivity order of T > C > A > G. In addition, analyses of transient signals show that the signal due to formation of the resulting anion radical directly correlates with the loss of the initial [Formula: see text] signal. Therefore, our results do not agree with the previously proposed dissociation of transient negative ions in nucleobase/nucleotide solutions within the timescale of these experiments. Moreover, in a molecularly crowded medium (for example, in the presence of 6 M phosphate), the scavenging efficiency of [Formula: see text] by G is significantly enhanced. This finding implies that reductive DNA damage by ionizing radiation depends on the microenvironment around [Formula: see text].
Collapse
Affiliation(s)
- Jun Ma
- Laboratoire de Chimie Physique, CNRS–Université Paris-Sud 11, Bâtiment 349, 91405 Orsay, France
| | - Furong Wang
- Laboratoire de Chimie Physique, CNRS–Université Paris-Sud 11, Bâtiment 349, 91405 Orsay, France
| | - Sergey A. Denisov
- Laboratoire de Chimie Physique, CNRS–Université Paris-Sud 11, Bâtiment 349, 91405 Orsay, France
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI 48309, USA
| | - Mehran Mostafavi
- Laboratoire de Chimie Physique, CNRS–Université Paris-Sud 11, Bâtiment 349, 91405 Orsay, France
| |
Collapse
|
42
|
Understanding B-DNA to A-DNA transition in the right-handed DNA helix: Perspective from a local to global transition. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 128:63-73. [DOI: 10.1016/j.pbiomolbio.2017.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 04/16/2017] [Accepted: 05/23/2017] [Indexed: 01/19/2023]
|
43
|
Abstract
The structure and function of biomolecules are strongly influenced by their hydration shells. Structural fluctuations and molecular excitations of hydrating water molecules cover a broad range in space and time, from individual water molecules to larger pools and from femtosecond to microsecond time scales. Recent progress in theory and molecular dynamics simulations as well as in ultrafast vibrational spectroscopy has led to new and detailed insight into fluctuations of water structure, elementary water motions, electric fields at hydrated biointerfaces, and processes of vibrational relaxation and energy dissipation. Here, we review recent advances in both theory and experiment, focusing on hydrated DNA, proteins, and phospholipids, and compare dynamics in the hydration shells to bulk water.
Collapse
Affiliation(s)
- Damien Laage
- École
Normale Supérieure, PSL Research University, UPMC Univ Paris
06, CNRS, Département de Chimie,
PASTEUR, 24 rue Lhomond, 75005 Paris, France
- Sorbonne
Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France
| | - Thomas Elsaesser
- Max-Born-Institut
für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - James T. Hynes
- École
Normale Supérieure, PSL Research University, UPMC Univ Paris
06, CNRS, Département de Chimie,
PASTEUR, 24 rue Lhomond, 75005 Paris, France
- Sorbonne
Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France
- Department
of Chemistry and Biochemistry, University
of Colorado, Boulder, Colorado 80309, United
States
| |
Collapse
|
44
|
Liu Y, Guchhait B, Siebert T, Fingerhut BP, Elsaesser T. Molecular couplings and energy exchange between DNA and water mapped by femtosecond infrared spectroscopy of backbone vibrations. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:044015. [PMID: 28405593 PMCID: PMC5384856 DOI: 10.1063/1.4980075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/31/2017] [Indexed: 05/15/2023]
Abstract
Molecular couplings between DNA and water together with the accompanying processes of energy exchange are mapped via the ultrafast response of DNA backbone vibrations after OH stretch excitation of the water shell. Native salmon testes DNA is studied in femtosecond pump-probe experiments under conditions of full hydration and at a reduced hydration level with two water layers around the double helix. Independent of their local hydration patterns, all backbone vibrations in the frequency range from 940 to 1120 cm-1 display a quasi-instantaneous reshaping of the spectral envelopes of their fundamental absorption bands upon excitation of the water shell. The subsequent reshaping kinetics encompass a one-picosecond component, reflecting the formation of a hot ground state of the water shell, and a slower contribution on a time scale of tens of picoseconds. Such results are benchmarked by measurements with resonant excitation of the backbone modes, resulting in distinctly different absorption changes. We assign the fast changes of DNA absorption after OH stretch excitation to structural changes in the water shell which couple to DNA through the local electric fields. The second slower process is attributed to a flow of excess energy from the water shell into DNA, establishing a common heated ground state in the molecular ensemble. This interpretation is supported by theoretical calculations of the electric fields exerted by the water shell at different temperatures.
Collapse
Affiliation(s)
- Yingliang Liu
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , 12489 Berlin, Germany
| | - Biswajit Guchhait
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , 12489 Berlin, Germany
| | - Torsten Siebert
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , 12489 Berlin, Germany
| | - Benjamin P Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , 12489 Berlin, Germany
| | - Thomas Elsaesser
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , 12489 Berlin, Germany
| |
Collapse
|
45
|
Laage D, Elsaesser T, Hynes JT. Perspective: Structure and ultrafast dynamics of biomolecular hydration shells. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:044018. [PMID: 28470026 PMCID: PMC5398927 DOI: 10.1063/1.4981019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/31/2017] [Indexed: 05/25/2023]
Abstract
The structure and function of biomolecules can be strongly influenced by their hydration shells. A key challenge is thus to determine the extent to which these shells differ from bulk water, since the structural fluctuations and molecular excitations of hydrating water molecules within these shells can cover a broad range in both space and time. Recent progress in theory, molecular dynamics simulations, and ultrafast vibrational spectroscopy has led to new and detailed insight into the fluctuations of water structure, elementary water motions, and electric fields at hydrated biointerfaces. Here, we discuss some central aspects of these advances, focusing on elementary molecular mechanisms and processes of hydration on a femto- to picosecond time scale, with some special attention given to several issues subject to debate.
Collapse
Affiliation(s)
- Damien Laage
- Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Départment de Chimie, PASTEUR, 24 rue Lhomond, 75005 Paris, France
| | - Thomas Elsaesser
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | | |
Collapse
|
46
|
Peng S, Lal A, Luo D, Lu Y. An optically-gated AuNP-DNA protonic transistor. NANOSCALE 2017; 9:6953-6958. [PMID: 28451677 DOI: 10.1039/c6nr08944e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bio-interface transistors, which manipulate the transportation of ions (i.e. protons), play an important role in bridging physical devices with biological functionalities, because electrical signals are carried by ions/protons in biological systems. All available ionic transistors use electrostatic gates to tune the ionic carrier density, which requires complicated interconnect wires. In contrast, an optical gate, which offers the advantages of remote control as well as multiple light wavelength selections, has never been explored for ionic devices. Here, we demonstrate a light-gated protonic transistor fabricated from an Au nanoparticle and DNA (AuNP-DNA) hybrid membrane. The device can be turned on and off completely by using light, with a high on/off current ratio of up to 2 orders of magnitude. Moreover, the device only responds to specific light wavelengths due to the plasmonic effect from the AuNPs, which enables the capability of wavelength selectivity. Our results open up new avenues for exploring remotely controlled ionic circuits, in vivo protonic switches, and other biomedical applications.
Collapse
Affiliation(s)
- Songming Peng
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | | | | | | |
Collapse
|
47
|
Jelavić S, Tobler DJ, Hassenkam T, De Yoreo JJ, Stipp SLS, Sand KK. Prebiotic RNA polymerisation: energetics of nucleotide adsorption and polymerisation on clay mineral surfaces. Chem Commun (Camb) 2017; 53:12700-12703. [DOI: 10.1039/c7cc04276k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A set of experimentally measured and internally consistent Gibbs free energies of binding between different model nucleotides and mineral surfaces is reported.
Collapse
Affiliation(s)
- S. Jelavić
- Nano-Science Center
- Department of Chemistry
- University of Copenhagen
- Copenhagen OE 2100
- Denmark
| | - D. J. Tobler
- Nano-Science Center
- Department of Chemistry
- University of Copenhagen
- Copenhagen OE 2100
- Denmark
| | - T. Hassenkam
- Nano-Science Center
- Department of Chemistry
- University of Copenhagen
- Copenhagen OE 2100
- Denmark
| | - J. J. De Yoreo
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
- Department of Materials Science and Engineering
| | - S. L. S. Stipp
- Nano-Science Center
- Department of Chemistry
- University of Copenhagen
- Copenhagen OE 2100
- Denmark
| | - K. K. Sand
- Nano-Science Center
- Department of Chemistry
- University of Copenhagen
- Copenhagen OE 2100
- Denmark
| |
Collapse
|
48
|
Siebert T, Guchhait B, Liu Y, Fingerhut BP, Elsaesser T. Range, Magnitude, and Ultrafast Dynamics of Electric Fields at the Hydrated DNA Surface. J Phys Chem Lett 2016; 7:3131-6. [PMID: 27468144 DOI: 10.1021/acs.jpclett.6b01369] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Range and magnitude of electric fields at biomolecular interfaces and their fluctuations in a time window down to the subpicosecond regime have remained controversial, calling for electric-field mapping in space and time. Here, we trace fluctuating electric fields at the surface of native salmon DNA via their interactions with backbone vibrations in a wide range of hydration levels by building the water shell layer by layer. Femtosecond two-dimensional infrared spectroscopy and ab initio based theory establish water molecules in the first two layers as the predominant source of interfacial electric fields, which fluctuate on a 300 fs time scale with an amplitude of 25 MV/cm due to thermally excited water motions. The observed subnanometer range of these electric interactions is decisive for biochemical structure and function.
Collapse
Affiliation(s)
- Torsten Siebert
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , D-12489 Berlin, Germany
| | - Biswajit Guchhait
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , D-12489 Berlin, Germany
| | - Yingliang Liu
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , D-12489 Berlin, Germany
| | - Benjamin P Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , D-12489 Berlin, Germany
| | - Thomas Elsaesser
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , D-12489 Berlin, Germany
| |
Collapse
|
49
|
Guchhait B, Liu Y, Siebert T, Elsaesser T. Ultrafast vibrational dynamics of the DNA backbone at different hydration levels mapped by two-dimensional infrared spectroscopy. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:043202. [PMID: 26798841 PMCID: PMC4720115 DOI: 10.1063/1.4936567] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/12/2015] [Indexed: 05/28/2023]
Abstract
DNA oligomers are studied at 0% and 92% relative humidity, corresponding to N < 2 and N > 20 water molecules per base pair. Two-dimensional (2D) infrared spectroscopy of DNA backbone modes between 920 and 1120 cm(-1) maps fluctuating interactions at the DNA surface. At both hydration levels, a frequency fluctuation correlation function with a 300 fs decay and a slow decay beyond 10 ps is derived from the 2D lineshapes. The fast component reflects motions of DNA helix, counterions, and water shell. Its higher amplitude at high hydration level reveals a significant contribution of water to the fluctuating forces. The slow component reflects disorder-induced inhomogeneous broadening.
Collapse
Affiliation(s)
- Biswajit Guchhait
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , 12489 Berlin, Germany
| | - Yingliang Liu
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , 12489 Berlin, Germany
| | - Torsten Siebert
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , 12489 Berlin, Germany
| | - Thomas Elsaesser
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , 12489 Berlin, Germany
| |
Collapse
|
50
|
Hydration of proteins and nucleic acids: Advances in experiment and theory. A review. Biochim Biophys Acta Gen Subj 2016; 1860:1821-35. [PMID: 27241846 DOI: 10.1016/j.bbagen.2016.05.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Most biological processes involve water, and the interactions of biomolecules with water affect their structure, function and dynamics. SCOPE OF REVIEW This review summarizes the current knowledge of protein and nucleic acid interactions with water, with a special focus on the biomolecular hydration layer. Recent developments in both experimental and computational methods that can be applied to the study of hydration structure and dynamics are reviewed, including software tools for the prediction and characterization of hydration layer properties. MAJOR CONCLUSIONS In the last decade, important advances have been made in our understanding of the factors that determine how biomolecules and their aqueous environment influence each other. Both experimental and computational methods contributed to the gradually emerging consensus picture of biomolecular hydration. GENERAL SIGNIFICANCE An improved knowledge of the structural and thermodynamic properties of the hydration layer will enable a detailed understanding of the various biological processes in which it is involved, with implications for a wide range of applications, including protein-structure prediction and structure-based drug design.
Collapse
|