1
|
Kalaycioglu GD, Bor G, Yaghmur A. Simple-by-design approach for production of stabilizer-free cubosomes from phosphatidylglycerol and docosahexaenoic acid monoacylglycerol. J Colloid Interface Sci 2024; 675:825-835. [PMID: 39002233 DOI: 10.1016/j.jcis.2024.07.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Docosahexaenoic acid monoacylglycerol represents a promising lipid constituent in the development of drug nanocarriers owing to its amphiphilicity and the beneficial health effects of this docosahexaenoic acid precursor in various disorders including cancer and inflammatory diseases. Here, we describe the formation and characterization of simple-by-design and stabilizer-free lamellar and non-lamellar crystalline nanoparticles (vesicles and cubosomes, respectively) from binary mixtures of docosahexaenoic acid monoacylglycerol and phosphatidylglycerol, which is a ubiquitous amphiphilic component present in biological systems. At the physiological temperature of 37 °C, these single amphiphilic components tend to exhibit inverse hexagonal and lamellar liquid crystalline phases, respectively, on exposure to excess water. They can also be combined and dispersed in excess water by employing a high-energy emulsification method (by means of ultrasonication) to produce through an electrostatic stabilization mechanism colloidally stable nanodispersions. A colloidal transformation from vesicles to cubosomes was detected with increasing MAG-DHA content. Through use of synchrotron small-angle X-ray scattering, cryo-transmission electron microscopy, and nanoparticle tracking analysis, we report on the structural and morphological features, and size characteristics of these nanodispersions. Depending on the lipid composition, their internal liquid crystalline architectures were spanning from a lamellar (Lα) phase to biphasic features of coexisting inverse bicontinuous (Q2) cubic Pn3m and Im3m phases. Thus, a direct colloidal vesicle-cubosome transformation was detected by augmenting the concentration of docosahexaenoic acid monoacylglycerol. The produced cubosomes were thermally stable within the investigated temperature range of 5-60 °C. Collectively, our findings contribute to understanding of the imperative steps for production of stabilizer-free cubosomes from biocompatible lipids through a simple-by-design approach. We also discuss the potential therapeutic use and future implications for development of next-generation of multifunctional vesicles and cubosomes for co-delivery of docosahexaenoic acid and drugs in treatment of diseases.
Collapse
Affiliation(s)
- Gokce Dicle Kalaycioglu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; Department of Chemical Engineering, Hacettepe University, Beytepe 06800 Ankara, Turkey.
| | - Gizem Bor
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
2
|
Maleš P, Nikšić-Franjić I, Wang A, Pem B, Bakarić D. Optical and molecular features of negatively curved surfaces created by POPE lipids: A crucial role of the initial conditions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124462. [PMID: 38754204 DOI: 10.1016/j.saa.2024.124462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Membrane fusion is closely related to plasma membrane domains rich in cone-shaped phosphatidylethanolamine (PE) lipids that can reverse membrane curvature under certain conditions. The phase transition of PE-based lipid membranes from the lamellar fluid phase (Lα) to the inverse hexagonal phase (HII) is commonly taken as a general model in reconstructing the membrane fusion pathway, and whose structural features have been mostly described so far using structural and microscopic techniques. The aim of this paper is to decipher the optical and molecular features of Lβ → Lα and especially of Lα → HII transition of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) lipids at pH = 7.0 when they are initially prepared in the form of both multi- and unilamellar liposomes (MLVs and LUVs). The distinction between optical properties of MLS- and LUVs-derived HII phase, provided from turbidity-sensitive temperature-dependent UV-Vis spectra, was attributed to different formation mechanisms of HII phase. Most importantly, from FTIR spectroscopic data of POPE lipids in Lβ (15 °C), Lα (50 °C) and HII (85 °C) phases we identified the changes in molecular features of POPE lipids during phase transitions. Among the latter, by far the most significant is different hydration pattern of POPE lipids in MLVs- and LUVs-derived HII phase which extends from the polar-apolar interface all the way to the terminal amino group of the POPE lipid, along with the changes in the conformation of glycerol backbone as evidenced by the signature of α-methylene groups. Molecular dynamics simulations confirmed higher water penetration in HII phase and provided insight into hydrogen bonding patterns.
Collapse
Affiliation(s)
- Petra Maleš
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Ivana Nikšić-Franjić
- School of Science, Constructor University, Bremen GmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Anna Wang
- School of Chemistry, Australian Centre for Astrobiology, and ARC Centre of Excellence in Synthetic Biology, University of New South Wales Sydney, Bedegal Country, Sydney, NSW 2052, Australia
| | - Barbara Pem
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Danijela Bakarić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| |
Collapse
|
3
|
Srivatsav AT, Liang K, Jaworek MW, Dong W, Matsuo T, Grélard A, Peters J, Winter R, Duan M, Kapoor S. Residual Membrane Fluidity in Mycobacterial Cell Envelope Layers under Extreme Conditions Underlines Membrane-Centric Adaptation. J Phys Chem B 2024; 128:6838-6852. [PMID: 38960927 DOI: 10.1021/acs.jpcb.4c02469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
One of the routes for adaptation to extreme environments is via remodeling of cell membrane structure, composition, and biophysical properties rendering a functional membrane. Collective studies suggest some form of membrane feedback in mycobacterial species that harbor complex lipids within the outer and inner cell wall layers. Here, we study the homeostatic membrane landscape of mycobacteria in response to high hydrostatic pressure and temperature triggers using high pressure fluorescence, mass and infrared spectroscopies, NMR, SAXS, and molecular dynamics simulations. Our findings reveal that mycobacterial membrane possesses unique and lipid-specific pressure-induced signatures that attenuate progression to highly ordered phases. Both inner and outer membrane layers exhibit phase coexistence of nearly identical lipid phases keeping residual fluidity over a wide range of temperature and pressure, but with different sensitivities. Lipidomic analysis of bacteria grown under pressure revealed lipidome remodeling in terms of chain length, unsaturation, and specific long-chained characteristic mycobacterial lipids, rendering a fluid bacterial membrane. These findings could help understand how bacteria may adapt to a broad spectrum of harsh environments by modulating their lipidome to select lipids that enable the maintenance of a fluid functional cell envelope.
Collapse
Affiliation(s)
- Aswin T Srivatsav
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Kuan Liang
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Michel W Jaworek
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Dortmund D-44227, Germany
| | - Wanqian Dong
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tatsuhito Matsuo
- University of Grenoble Alpes, CNRS, LIPhy, Grenoble 38044, France
- Institut Laue Langevin, Grenoble F-38042, Cedex 9, France
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Axelle Grélard
- Université de Bordeaux, CNRS, Bordeaux INP, Institut de Chimie & Biologie des Membranes & des Nano-objets, UMR5248, Institut Européen de Chimie et Biologie, Pessac F-33607, France
| | - Judith Peters
- University of Grenoble Alpes, CNRS, LIPhy, Grenoble 38044, France
- Institut Laue Langevin, Grenoble F-38042, Cedex 9, France
- Institut Universitaire de France (IUF), UFR de PhITEM, CS 10090, Grenoble 38044, France
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Dortmund D-44227, Germany
| | - Mojie Duan
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
4
|
Kataoka-Hamai C. Triacylglycerol-droplet-induced bilayer spontaneous curvature in giant unilamellar vesicles. Biophys J 2024; 123:1857-1868. [PMID: 38822522 PMCID: PMC11267425 DOI: 10.1016/j.bpj.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
This study investigated the incorporation of triacylglycerol droplets in the bilayers of giant unilamellar vesicles (GUVs) using four triacylglycerols and four phosphatidylcholines by confocal laser scanning microscopy. The triacylglycerol droplets were incorporated between the monolayer leaflets of the GUVs. Among the spherical droplets protruding on only one side of the bilayers, the droplets bound to the outer leaflets outnumbered those bound to the inner leaflets. The more frequent droplet binding to the outer leaflet caused transbilayer asymmetry in the droplet surface density. A vesicle consisting of a single-bilayer spherical segment and a double-bilayer spherical segment was also observed. The yield of these vesicles was comparable with or higher than that of the droplet-incorporating GUVs for many of the phosphatidylcholine-triacylglycerol combinations. In a vesicle consisting of single-bilayer and double-bilayer segments, most of the triacylglycerol droplets were localized on the outermost membrane surface along the segment boundary and in the double-bilayer segment. To rationalize the formation of these vesicle structures, we propose that the transbilayer asymmetry in the droplet surface density induces spontaneous curvature of the bilayer, with the bilayer spontaneously bending away from the droplets. Energy calculations performed assuming the existence of spontaneous curvature of the bilayer corroborated the experimentally determined membrane shapes for the vesicles consisting of unilamellar and bilamellar regions.
Collapse
Affiliation(s)
- Chiho Kataoka-Hamai
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
5
|
Pandia S, Mahapatra A, Chakraborty H. A Coronin 1-Derived Peptide Inhibits Membrane Fusion by Modulating Membrane Organization and Dynamics. J Phys Chem B 2024; 128:4986-4995. [PMID: 38739415 DOI: 10.1021/acs.jpcb.4c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Membrane fusion is considered the first step in the entry of enveloped viruses into the host cell. Several targeted strategies have been implemented to block viral entry by limiting the fusion protein to form a six-helix bundle, which is a prerequisite for fusion. Nonetheless, the development of broad-spectrum fusion inhibitors is essential to combat emerging and re-emerging viral infections. TG-23, a coronin 1, a tryptophan-aspartate-rich phagosomal protein-derived peptide, demonstrated inhibition of fusion between small unilamellar vesicles (SUVs) by modulating the membrane's physical properties. However, its inhibitory efficacy reduces with an increasing concentration of membrane cholesterol. The present work aims to develop a fusion inhibitor whose efficacy would be unaltered in the presence of membrane cholesterol. A stretch of the tryptophan-aspartic acid-containing peptide with a similar secondary structure and hydrophobicity profile of TG-23 from coronin 1 was synthesized, and its ability to inhibit SUV-SUV fusion with varying concentrations of membrane cholesterol was evaluated. Our results demonstrate that the GG-21 peptide inhibits fusion irrespective of the cholesterol content of the membrane. We have further evaluated the peptide-induced change in the membrane organization and dynamics utilizing arrays of steady-state and time-resolved fluorescence measurements and correlated these results with their effect on fusion. Interestingly, GG-21 displays inhibitory efficacy in a wide variety of lipid compositions despite having a secondary structure and physical properties similar to those of TG-23. Overall, our results advocate that the secondary structure and physical properties of the peptide may not be sufficient to predict its inhibitory efficacy.
Collapse
Affiliation(s)
- Swaratmika Pandia
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India
| | - Amita Mahapatra
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Khurda, Bhubaneswar 752050, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai 400094, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India
| |
Collapse
|
6
|
Liu L, Duan C, Wang R. Kinetic pathway and micromechanics of fusion/fission for polyelectrolyte vesicles. J Chem Phys 2024; 160:024908. [PMID: 38214388 DOI: 10.1063/5.0185934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024] Open
Abstract
Despite the wide existence of vesicles in living cells as well as their important applications like drug delivery, the underlying mechanism of vesicle fusion/fission remains under debate. Classical models cannot fully explain recent observations in experiments and simulations. Here, we develop a constrained self-consistent field theory that allows tracking the shape evolution and free energy as a function of center-of-mass separation distance. Fusion and fission are described in a unified framework. Both the kinetic pathway and the mechanical response can be simultaneously captured. By taking vesicles formed by polyelectrolytes as a model system, we predict discontinuous transitions between the three morphologies: parent vesicle with a single cavity, hemifission/hemifusion, and two separated child vesicles, as a result of breaking topological isomorphism. With the increase in inter-vesicle repulsion, we observe a great reduction in the cleavage energy, indicating that vesicle fission can be achieved without hemifission, in good agreement with simulation results. The force-extension relationship elucidates typical plasticity for separating two vesicles. The super extensibility in the mechanical response of vesicle is in stark contrast to soft particles with other morphologies, such as cylinder and sphere. Our work elucidates the fundamental physical chemistry based on intrinsic topological features of vesicle fusion/fission, which provides insights into various phenomena observed in experiments and simulations.
Collapse
Affiliation(s)
- Luofu Liu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| | - Chao Duan
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| | - Rui Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
| |
Collapse
|
7
|
Mishra S, Chakraborty H. Phosphatidylethanolamine and Cholesterol Promote Hemifusion Formation: A Tug of War between Membrane Interfacial Order and Intrinsic Negative Curvature of Lipids. J Phys Chem B 2023; 127:7721-7729. [PMID: 37644708 DOI: 10.1021/acs.jpcb.3c04489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Membrane fusion is an important process for the survival of eukaryotes. The shape of lipids plays an important role in fusion by stabilizing nonlamellar fusion intermediates. Lipids with intrinsic positive curvature such as lysophosphatidylcholine and others inhibit hemifusion formation, whereas lipids having intrinsic negative curvature, e.g., phosphatidylethanolamine and cholesterol (CH), are known to promote hemifusion formation. In this work, we have measured the effect of dioleoylphosphatidylethanolamine (DOPE) and CH on the depth-dependent organization, dynamics, and fusion of dioleoylphosphatidylcholine membranes. Both DOPE and CH promote hemifusion formation despite their ability to order the interfacial and acyl chain region of the membrane and block water percolation at these regions. Generally, membrane ordering and inhibition of water percolation at the acyl chain region are detrimental to membrane fusion. This clearly emphasizes the importance of intrinsic negative curvature of lipids in membrane fusion. Interestingly, DOPE and CH show differential effects on the rate of hemifusion formation, which might be owing to their ability to induce order at the interfacial region and intrinsic negative curvature. Overall, our result is significant in understanding the role of lipidic shape in membrane fusion.
Collapse
Affiliation(s)
- Smruti Mishra
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India
| |
Collapse
|
8
|
Beck K, Nandy J, Hoernke M. Membrane permeabilization can be crucially biased by a fusogenic lipid composition - leaky fusion caused by antimicrobial peptides in model membranes. SOFT MATTER 2023; 19:2919-2931. [PMID: 37010846 DOI: 10.1039/d2sm01691e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Induced membrane permeabilization or leakage is often taken as an indication for activity of membrane-active molecules, such as antimicrobial peptides (AMPs). The exact leakage mechanism is often unknown, but important, because certain mechanisms might actually contribute to microbial killing, while others are unselective, or potentially irrelevant in an in vivo situation. Using an antimicrobial example peptide (cR3W3), we illustrate one of the potentially misleading leakage mechanisms: leaky fusion, where leakage is coupled to membrane fusion. Like many others, we examine peptide-induced leakage in model vesicles consisting of binary mixtures of anionic and zwitterionic phospholipids. In fact, phosphatidylglycerol and phosphatidylethanolamine (PG/PE) are supposed to reflect bacterial membranes, but exhibit a high propensity for vesicle aggregation and fusion. We describe the implications of this vesicle fusion and aggregation for the reliability of model studies. The ambiguous role of the relatively fusogenic PE-lipids becomes clear as leakage decreases significantly when aggregation and fusion are prevented by sterical shielding. Furthermore, the mechanism of leakage changes if PE is exchanged for phosphatidylcholine (PC). We thus point out that the lipid composition of model membranes can be biased towards leaky fusion. This can lead to discrepancies between model studies and activity in true microbes, because leaky fusion is likely prevented by bacterial peptidoglycan layers. In conclusion, choosing the model membrane might implicate the type of effect (here leakage mechanism) that is observed. In the worst case, as with leaky fusion of PG/PE vesicles, this is not directly relevant for the intended antimicrobial application.
Collapse
Affiliation(s)
- Katharina Beck
- Chemistry and Pharmacy, Albert-Ludwigs-Universität, Freiburg i. Br., Germany.
| | - Janina Nandy
- Chemistry and Pharmacy, Albert-Ludwigs-Universität, Freiburg i. Br., Germany.
| | - Maria Hoernke
- Chemistry and Pharmacy, Albert-Ludwigs-Universität, Freiburg i. Br., Germany.
| |
Collapse
|
9
|
Joardar A, Chakraborty H. Differential Behavior of Eicosapentaenoic and Docosahexaenoic Acids on the Organization, Dynamics, and Fusion of Homogeneous and Heterogeneous Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4439-4449. [PMID: 36931902 DOI: 10.1021/acs.langmuir.3c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Membrane fusion is a common course in innumerable biological processes that helps in the survival of eukaryotes. Enveloped viruses utilize this process to enter the host cells. Generally, the membrane lipid compositions play an important role in membrane fusion by modulating the membrane's physical properties and the behavior of membrane proteins in the cellular milieu. In this work, we have demonstrated the role of polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, on the organization, dynamics, and fusion of homogeneous and heterogeneous membranes. We have exploited arrays of steady-state and time-resolved fluorescence spectroscopic methods and polyethylene glycol-induced membrane fusion assay to elucidate the behavior of EPA and DHA on dioleoyl phosphatidylcholine (DOPC)/cholesterol (CH) homogeneous and DOPC/sphingomyelin/CH heterogeneous membranes. Our results suggest that EPA and DHA display differential effects on two different membranes. The effects of PUFAs in homogeneous membranes are majorly attributed to their flexible chain dynamics, whereas the ability of PUFA-induced cholesterol transfer from the lo to the ld phase rules their behavior in heterogeneous membranes. Overall, our results provide detailed information on the effect of PUFAs on homogeneous and heterogeneous membranes.
Collapse
Affiliation(s)
- Ankita Joardar
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| |
Collapse
|
10
|
Joardar A, Pandia S, Chakraborty H. Effect of polyunsaturated free fatty acids on the membrane fusion mechanism. SOFT MATTER 2023; 19:733-742. [PMID: 36617878 DOI: 10.1039/d2sm01474b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Membrane fusion is one of the important processes for the survival of eukaryotic cells and the entry of enveloped viruses into the host cells. Lipid composition plays a crucial role by modulating the organization and dynamics of the membrane, as well as the structure and conformation of membrane proteins. The diversity of the lipid acyl chain in its length and degree of unsaturation originates from the variation in free fatty acids (FFAs). We have studied the effect of linoleic (LA) and alpha-linolenic (ALA) acids on the depth-dependent organization, dynamics, and fusion of DOPC/DOPE (70/30 mol%) membranes utilizing steady-state and time-resolved fluorescence spectroscopic methods. Our results suggest that membranes with 5 mol% LA stabilize the stalk-intermediate and promote lipid mixing at the early stage of the process, i.e., the fusion follows the classical stalk model. Conversely, the extents of lipid and content mixing at the stalk intermediate are similar in the presence of 5 mol% of ALA, indicating the fusion mechanism as a nonclassical one like in the DOPC/DOPE (70/30 mol%) membranes. Our results provide an in-depth insight into the effect of the increasing degree of fatty acid tail unsaturation on membrane organization and dynamics and their impact on the membrane fusion mechanism.
Collapse
Affiliation(s)
- Ankita Joardar
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India.
| | - Swaratmika Pandia
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India.
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India.
| |
Collapse
|
11
|
Joardar A, Pattnaik GP, Chakraborty H. Combination of Oleic Acid and the gp41 Fusion Peptide Switches the Phosphatidylethanolamine-Induced Membrane Fusion Mechanism from a Nonclassical to a Classical Stalk Model. J Phys Chem B 2022; 126:3673-3684. [PMID: 35580344 DOI: 10.1021/acs.jpcb.2c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Membrane fusion is considered to be one of the crucial processes for the existence of eukaryotes and the entry of enveloped viruses into host cells. The fusion mechanism depends on the lipid composition of the membrane as well as the properties of fusion proteins or peptides. The gp41 fusion peptide from the human immunodeficiency virus (HIV) is known to catalyze membrane fusion by altering the physical properties of the membrane. Earlier, we demonstrated that a membrane containing 30 mol % phosphatidylethanolamine (PE) circumvents the classical stalk model because of its intrinsic negative curvature. In this work, we demonstrated how the gp41 fusion peptide influences the fusion mechanism of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dioleoyl-sn-glycero-3-phos-pho¬ethanolamine (DOPE) (70/30 mol %) membranes. We further evaluated the effect of the same peptide on the mechanism of fusion for membranes containing 30 mol % PE and a fatty acid with an intrinsic positive curvature (oleic acid (OA)). Our results show that gp41 switches the fusion mechanism from a nonclassical to a classical stalk model when membranes contain OA, but fails to do so for DOPC/DOPE membranes. This could be due to the extreme influence of the intrinsic negative curvature of PE, which is partially downregulated in the presence of OA.
Collapse
Affiliation(s)
- Ankita Joardar
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| | | | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| |
Collapse
|
12
|
Joardar A, Pattnaik GP, Chakraborty H. Mechanism of Membrane Fusion: Interplay of Lipid and Peptide. J Membr Biol 2022; 255:211-224. [PMID: 35435451 PMCID: PMC9014786 DOI: 10.1007/s00232-022-00233-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/25/2022] [Indexed: 11/26/2022]
Abstract
Membrane fusion is an essential process for the survival of eukaryotes and the entry of enveloped viruses into host cells. A proper understanding of the mechanism of membrane fusion would provide us a handle to manipulate several biological pathways, and design efficient vaccines against emerging and re-emerging viral infections. Although fusion proteins take the central stage in catalyzing the process, role of lipid composition is also of paramount importance. Lipid composition modulates membrane organization and dynamics and impacts the lipid–protein (peptide) interaction. Moreover, the intrinsic curvature of lipids has strong impact on the formation of stalk and hemifusion diaphragm. Detection of transiently stable intermediates remains the bottleneck in the understanding of fusion mechanism. In order to circumvent this challenge, analytical methods can be employed to determine the kinetic parameters from ensemble average measurements of observables, such as lipid mixing, content mixing, and content leakage. The current review aims to present an analytical method that would aid our understanding of the fusion mechanism, provides a better insight into the role of lipid shape, and discusses the interplay of lipid and peptide in membrane fusion.
Collapse
Affiliation(s)
- Ankita Joardar
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768019, India
| | | | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768019, India.
| |
Collapse
|
13
|
Yang L. Scattering measurements on lipid membrane structures. Methods Enzymol 2022; 677:385-415. [DOI: 10.1016/bs.mie.2022.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Joardar A, Pattnaik GP, Chakraborty H. Effect of Phosphatidylethanolamine and Oleic Acid on Membrane Fusion: Phosphatidylethanolamine Circumvents the Classical Stalk Model. J Phys Chem B 2021; 125:13192-13202. [PMID: 34839659 DOI: 10.1021/acs.jpcb.1c08044] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membrane fusion is one of the most important processes for the survival of eukaryotic cells and entry of enveloped viruses to the host cells. Lipid composition plays a crucial role in the process by modulating the organization and dynamics of the membrane, as well as the structure and conformation of membrane proteins. Phosphatidylethanolamine (PE), a lipid molecule with intrinsic negative curvature, promotes membrane fusion by stabilizing the non-lamellar intermediate structures in the fusion process. Conversely, oleic acid (OA), with intrinsic positive curvature, inhibits membrane fusion. The current study aimed to investigate polyethylene glycol-mediated lipid mixing, content mixing, content leakage, and depth-dependent membrane organization and dynamics, using arrays of steady-state and time-resolved fluorescence techniques, to determine the causative role of PE and OA in membrane fusion. The results demonstrated that the presence of 30 mol % PE in the membrane promotes membrane fusion through a mechanism that circumvents the classical stalk model. On the contrary, membranes containing OA showed reduced rate and extent of fusion, despite following the same mechanism. Collectively, our findings in terms of membrane organization and dynamics indicated a plausible role of PE and OA in membrane fusion.
Collapse
Affiliation(s)
- Ankita Joardar
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| | | | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| |
Collapse
|
15
|
Goto M, Kazama A, Fukuhara K, Sato H, Tamai N, Ito HO, Matsuki H. Membrane fusion of phospholipid bilayers under high pressure: Spherical and irreversible growth of giant vesicles. Biophys Chem 2021; 277:106639. [PMID: 34171580 DOI: 10.1016/j.bpc.2021.106639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
Membrane fusion of giant vesicles (GVs) for binary bilayers of unsaturated phospholipids, dioleoylphosphatidyl-ethanolamine (DOPE) having an ability to promote membrane fusion, and its homolog dioleoylphosphatidylcholine (DOPC) having an ability to form GV, was investigated under atmospheric and high pressure. While DOPC formed GVs in the presence of inorganic salts with a multivalent metal ion under atmospheric pressure, an equimolar mixture of DOPE and DOPC formed GVs both in the absence and the presence of LaCl3. We examined the change in size and shape of the GVs of this binary mixture in the absence and presence of LaCl3 as a function of time under atmospheric and high pressure. The size and shape of the GVs in the absence of LaCl3 under atmospheric and high pressure and those in the presence of LaCl3 under atmospheric pressure hardly changed with time. By contrast, the GV in the presence of LaCl3 under high pressure gradually changed in the size and shape with time on a time scale of several hours. Namely, the GV became larger than the original GV due to accelerated membrane fusion and its shape became more spherical. This pressure-induced membrane fusion was completely irreversible, and the growth rate was correlated with the applied pressure. The reason for the GV growth by applying pressure was considered on the basis of thermodynamic phase diagrams. We concluded that the growth is attributable to a closer packing of lipid molecules in the bilayer resulting from their preference of smaller volumes under high pressure. Furthermore, the molecular mechanism of the pressure-induced membrane fusion was explored by observing the fusion of two GVs with almost the same size. From their morphological changes, we revealed that the fusion is caused by the actions of Laplace and osmotic pressure.
Collapse
Affiliation(s)
- Masaki Goto
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Akira Kazama
- Department of Biological Science and Technology, Faculty of Engineering, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Kensuke Fukuhara
- Department of Biological Science and Technology, Faculty of Engineering, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Honami Sato
- Department of Biological Science and Technology, Faculty of Engineering, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Nobutake Tamai
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Hiro-O Ito
- Department of Preventive Dentistry, Division of Oral Science, Graduate School of Biomedical Sciences, Tokushima University, 3-8-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Hitoshi Matsuki
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan.
| |
Collapse
|
16
|
Ewert KK, Scodeller P, Simón-Gracia L, Steffes VM, Wonder EA, Teesalu T, Safinya CR. Cationic Liposomes as Vectors for Nucleic Acid and Hydrophobic Drug Therapeutics. Pharmaceutics 2021; 13:1365. [PMID: 34575441 PMCID: PMC8465808 DOI: 10.3390/pharmaceutics13091365] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/09/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022] Open
Abstract
Cationic liposomes (CLs) are effective carriers of a variety of therapeutics. Their applications as vectors of nucleic acids (NAs), from long DNA and mRNA to short interfering RNA (siRNA), have been pursued for decades to realize the promise of gene therapy, with approvals of the siRNA therapeutic patisiran and two mRNA vaccines against COVID-19 as recent milestones. The long-term goal of developing optimized CL-based NA carriers for a broad range of medical applications requires a comprehensive understanding of the structure of these vectors and their interactions with cell membranes and components that lead to the release and activity of the NAs within the cell. Structure-activity relationships of lipids for CL-based NA and drug delivery must take into account that these lipids act not individually but as components of an assembly of many molecules. This review summarizes our current understanding of how the choice of the constituting lipids governs the structure of their CL-NA self-assemblies, which constitute distinct liquid crystalline phases, and the relation of these structures to their efficacy for delivery. In addition, we review progress toward CL-NA nanoparticles for targeted NA delivery in vivo and close with an outlook on CL-based carriers of hydrophobic drugs, which may eventually lead to combination therapies with NAs and drugs for cancer and other diseases.
Collapse
Affiliation(s)
- Kai K. Ewert
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, and Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; (V.M.S.); (E.A.W.)
| | - Pablo Scodeller
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; (P.S.); (L.S.-G.)
| | - Lorena Simón-Gracia
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; (P.S.); (L.S.-G.)
| | - Victoria M. Steffes
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, and Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; (V.M.S.); (E.A.W.)
| | - Emily A. Wonder
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, and Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; (V.M.S.); (E.A.W.)
| | - Tambet Teesalu
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; (P.S.); (L.S.-G.)
- Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Cyrus R. Safinya
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, and Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; (V.M.S.); (E.A.W.)
| |
Collapse
|
17
|
Bor G, Salentinig S, Şahin E, Nur Ödevci B, Roursgaard M, Liccardo L, Hamerlik P, Moghimi SM, Yaghmur A. Cell medium-dependent dynamic modulation of size and structural transformations of binary phospholipid/ω-3 fatty acid liquid crystalline nano-self-assemblies: Implications in interpretation of cell uptake studies. J Colloid Interface Sci 2021; 606:464-479. [PMID: 34399363 DOI: 10.1016/j.jcis.2021.07.149] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Lyotropic non-lamellar liquid crystalline (LLC) nanoparticles, with their tunable structural features and capability of loading a wide range of drugs and reporter probes, are emerging as versatile injectable nanopharmaceuticals. Secondary emulsifiers, such as Pluronic block copolymers, are commonly used for colloidal stabilization of LLC nanoparticles, but their inclusion often compromises the biological safety (e.g., poor hemocompatibility and enhanced cytotoxicity) of the formulation. Here, we introduce a library of colloidally stable, structurally tunable, and pH-responsive lamellar and non-lamellar liquid crystalline nanoparticles from binary mixtures of a phospholipid (phosphatidylglycerol) and three types of omega-3 fatty acids (ω-3 PUFAs), prepared in the absence of a secondary emulsifier and organic solvents. We study formulation size distribution, morphological heterogeneity, and the arrangement of their internal self-assembled architectures by nanoparticle tracking analysis, synchrotron small-angle X-ray scattering, and cryo-transmission electron microscopy. The results show the influence of type and concentration of ω-3 PUFAs in nanoparticle structural transitions spanning from a lamellar (Lα) phase to inverse discontinuous (micellar) cubic Fd3m and hexagonal phase (H2) phases, respectively. We further report on cell-culture medium-dependent dynamic fluctuations in nanoparticle size, number and morphology, and simultaneously monitor uptake kinetics in two human cell lines. We discuss the role of these multiparametric biophysical transformations on nanoparticle-cell interaction kinetics and internalization mechanisms. Collectively, our findings contribute to the understanding of fundamental steps that are imperative for improved engineering of LLC nanoparticles with necessary attributes for pharmaceutical development.
Collapse
Affiliation(s)
- Gizem Bor
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Evrim Şahin
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Begüm Nur Ödevci
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Letizia Liccardo
- Department of Molecular Science and Nanosystems, Ca' Foscari Università di Venezia, Via Torino 155, Venezia Mestre, Italy
| | - Petra Hamerlik
- Brain Tumor Biology, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark
| | - Seyed Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
18
|
Calcium mediated DNA binding in non-lamellar structures formed by DOPG/glycerol monooleate. Chem Phys Lipids 2021; 239:105118. [PMID: 34280362 DOI: 10.1016/j.chemphyslip.2021.105118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/28/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022]
Abstract
In order to test an encapsulation method of short fragmented DNA (∼ 20-300 bp), we study the solubilisation in 150 mM solution of NaCl of a cubic phase formed by glycerol monooleate (GMO) with negatively charged dioleoylphosphatidylglycerol (DOPG) up to the level of unilamellar vesicles and, subsequently, the restoration of the cubic phase using Ca2+ cations. We performed small angle X-ray and neutron scattering (SAXS and SANS) to follow structural changes in DOPG/GMO mixtures induced by increasing DOPG content. The cubic phase (Pn3m space group) is preserved up to ∼ 11 mol% of DOPG in DOPG/GMO. Above 20 mol%, the SANS curves are typical of unilamellar vesicles. The thickness of the DOPG/GMO lipid bilayer (dL) decreases slightly with increasing fraction of DOPG. The addition of 15 mM of CaCl2 solution shields the electrostatic repulsions of DOPG molecules, increases slightly dL and restores the cubic structures in the mixtures up to ∼ 37 mol% of DOPG. Zeta potential shows negative surface charge. The analysis of the data provides the radius of the water nano-channels of the formed non-lamellar structures. We discuss their dimensions with respect to DNA binding. In addition, Ca2+ mediates DNA - DOPG/GMO binding. The formed hexagonal phase, HII, binds less of DNA in comparison with cubic phases (∼ 6 wt% and ∼ 20 wt% of the total amount, respectively). The studied system can be utilized as anionic QII delivery vector for genetic material.
Collapse
|
19
|
Allen ME, Elani Y, Brooks NJ, Seddon JM. The effect of headgroup methylation on polymorphic phase behaviour in hydrated N-methylated phosphoethanolamine:palmitic acid membranes. SOFT MATTER 2021; 17:5763-5771. [PMID: 34019613 DOI: 10.1039/d1sm00178g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mixtures of fatty acids and phospholipids can form hexagonal (HII) and inverse bicontinuous cubic phases, the latter of which are implicated in various cellular processes and have wide-ranging biotechnological applications in protein crystallisation and drug delivery systems. Therefore, it is vitally important to understand the formation conditions of inverse bicontinuous cubic phases and how their properties can be tuned. We have used differential scanning calorimetry and synchrotron-based small angle and wide angle X-ray scattering (SAXS/WAXS) to investigate the polymorphic phase behaviour of palmitic acid/partially-methylated phospholipid mixtures, and how headgroup methylation impacts on inverse bicontinuous cubic phase formation. We find that upon partial methylation of the phospholipid headgroup (1 or 2 methyl substituents) inverse bicontinuous cubic phases are formed (of the Im3m spacegroup), which is not the case with 0 or 3 methyl substituents. This shows how important headgroup methylation is for controlling phase behaviour and how a change in headgroup methylation can be used to controllably tune various inverse bicontinuous phase features such as their lattice parameter and the temperature range of their stability.
Collapse
Affiliation(s)
- Matthew E Allen
- Department of Chemistry, Imperial College London, W12 7SL, UK.
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK
| | | | - John M Seddon
- Department of Chemistry, Imperial College London, W12 7SL, UK.
| |
Collapse
|
20
|
Salvador-Castell M, Golub M, Erwin N, Demé B, Brooks NJ, Winter R, Peters J, Oger PM. Characterisation of a synthetic Archeal membrane reveals a possible new adaptation route to extreme conditions. Commun Biol 2021; 4:653. [PMID: 34079059 PMCID: PMC8172549 DOI: 10.1038/s42003-021-02178-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 04/29/2021] [Indexed: 02/04/2023] Open
Abstract
It has been proposed that adaptation to high temperature involved the synthesis of monolayer-forming ether phospholipids. Recently, a novel membrane architecture was proposed to explain the membrane stability in polyextremophiles unable to synthesize such lipids, in which apolar polyisoprenoids populate the bilayer midplane and modify its physico-chemistry, extending its stability domain. Here, we have studied the effect of the apolar polyisoprenoid squalane on a model membrane analogue using neutron diffraction, SAXS and fluorescence spectroscopy. We show that squalane resides inside the bilayer midplane, extends its stability domain, reduces its permeability to protons but increases that of water, and induces a negative curvature in the membrane, allowing the transition to novel non-lamellar phases. This membrane architecture can be transposed to early membranes and could help explain their emergence and temperature tolerance if life originated near hydrothermal vents. Transposed to the archaeal bilayer, this membrane architecture could explain the tolerance to high temperature in hyperthermophiles which grow at temperatures over 100 °C while having a membrane bilayer. The induction of a negative curvature to the membrane could also facilitate crucial cell functions that require high bending membranes.
Collapse
Affiliation(s)
| | - Maksym Golub
- Université Grenoble Alpes, CNRS, LiPhy, Grenoble, France
- Institut Laue Langevin, Grenoble, France
| | - Nelli Erwin
- Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Dortmund, Germany
| | - Bruno Demé
- Institut Laue Langevin, Grenoble, France
| | | | - Roland Winter
- Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Dortmund, Germany
| | - Judith Peters
- Université Grenoble Alpes, CNRS, LiPhy, Grenoble, France.
- Institut Laue Langevin, Grenoble, France.
| | | |
Collapse
|
21
|
Wei C, Pohorille A. Fast bilayer-micelle fusion mediated by hydrophobic dipeptides. Biophys J 2021; 120:2330-2342. [PMID: 33887225 DOI: 10.1016/j.bpj.2021.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/15/2021] [Accepted: 04/02/2021] [Indexed: 11/30/2022] Open
Abstract
To understand the transition from inanimate matter to life, we studied a process that directly couples simple metabolism to evolution via natural selection, demonstrated experimentally by Adamala and Szostak. In this process, dipeptides synthesized inside precursors of cells promote absorption of fatty acid micelles to vesicles, inducing their preferential growth and division at the expense of other vesicles. The process is explained on the basis of coarse-grained molecular dynamics simulations, each extending for tens of microseconds, carried out to model fusion between a micelle and a membrane, both made of fatty acids in the absence and presence of hydrophobic dipeptides. In all systems with dipeptides, but not in their absence, fusion events were observed. They involve the formation of a stalk made by hydrophobic chains from the micelle and the membrane, similar to that postulated for vesicle-vesicle fusion. The emergence of a stalk is facilitated by transient clusters of dipeptides, side chains of which form hydrophobic patches at the membrane surface. Committor probability calculations indicate that the size of a patch is a suitable reaction coordinate and allows for identifying the transition state for fusion. Free-energy barrier to fusion is greatly reduced in the presence of dipeptides to only 4-5 kcal/mol, depending on the hydrophobicity of side chains. The mechanism of mediated fusion, which is expected to apply to other small peptides and hydrophobic molecules, provides a robust means by which a nascent metabolism can confer evolutionary advantage to precursors of cells.
Collapse
Affiliation(s)
- Chenyu Wei
- NASA Ames Research Center, Moffett Field, California; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Andrew Pohorille
- NASA Ames Research Center, Moffett Field, California; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California.
| |
Collapse
|
22
|
Fakhree MAA, Konings IBM, Kole J, Cambi A, Blum C, Claessens MMAE. The Localization of Alpha-synuclein in the Endocytic Pathway. Neuroscience 2021; 457:186-195. [PMID: 33482328 DOI: 10.1016/j.neuroscience.2021.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 01/24/2023]
Abstract
Alpha-synuclein (αS) is an intrinsically disordered protein (IDP) that is abundantly present in the brain and is associated with Parkinson's disease (PD). In spite of its abundance and its contribution to PD pathogenesis, the exact cellular function of αS remains largely unknown. The ability of αS to remodel phospholipid model membranes combined with biochemical and cellular studies suggests that αS is involved in endocytosis. To unravel with which route(s) and stage(s) of the endocytic pathway αS is associated, we quantified the colocalization between αS and endocytic marker proteins in differentiated SH-SY5Y neuronal cells, using an object based colocalization analysis. Comparison with randomized data allowed us to discriminate between structural and coincidental colocalizations. A large fraction of the αS positive vesicles colocalizes with caveolin positive vesicles, a smaller fraction colocalizes with EEA1 and Rab7. We find no structural colocalization between αS and clathrin and Rab11 positive vesicles. We conclude that in a physiological context, αS is structurally associated with caveolin dependent membrane vesiculation and is found further along the endocytic pathway, in decreasing amounts, on early and late endosomes. Our results not only shed new light on the function of αS, they also provide a possible link between αS function and vesicle trafficking malfunction in PD.
Collapse
Affiliation(s)
- Mohammad A A Fakhree
- Nanobiophysics, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Irene B M Konings
- Nanobiophysics, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jeroen Kole
- Nanobiophysics, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Christian Blum
- Nanobiophysics, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Mireille M A E Claessens
- Nanobiophysics, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
23
|
Sakamoto K, Morishita T, Aburai K, Ito D, Imura T, Sakai K, Abe M, Nakase I, Futaki S, Sakai H. Direct entry of cell-penetrating peptide can be controlled by maneuvering the membrane curvature. Sci Rep 2021; 11:31. [PMID: 33420144 PMCID: PMC7794472 DOI: 10.1038/s41598-020-79518-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/07/2020] [Indexed: 11/25/2022] Open
Abstract
A biomembrane's role is to be a barrier for interior cytosol from an exterior environment to execute the cell's normal biological functions. However, a water-soluble peptide called cell-penetrating peptide (CPP) has been known for its ability to directly penetrate through the biomembranes into cells (cytolysis) without perturbating cell viability and expected to be a promising drug delivery vector. Examples of CPP include peptides with multiple arginine units with strong cationic properties, which is the key to cytolysis. Here we show the conclusive evidence to support the mechanism of CPP's cytolysis and way to control it. The mechanism we proposed is attributed to biomembrane's physicochemical nature as lamellar liquid crystal (Lα). Cytolysis occurs as the temporal and local dynamic phase transitions from Lα to an undulated lamellar with pores called Mesh1. We have shown this phase transfer of Lα composed of dioleoyl-phosphatidylcholine (DOPC) with water by adding oligo-arginine (Rx) as CPP at the equilibrium. Using giant unilamellar vesicle composed of DOPC as a single cell model, we could control the level of cytolysis of CPP (FITC-R8) by changing the curvature of the membrane through osmotic pressure modulation. The cytolysis of CPP utilizes biomembrane's inherent topological and functional flexibility corresponding to the stimuli.
Collapse
Affiliation(s)
- Kazutami Sakamoto
- Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 Japan
| | - Taku Morishita
- Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 Japan
| | - Kenichi Aburai
- Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 Japan
| | - Daisuke Ito
- Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 Japan
| | - Tomohiro Imura
- The National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565 Japan
| | - Kenichi Sakai
- Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 Japan
| | - Masahiko Abe
- Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 Japan
| | - Ikuhiko Nakase
- Present Address: Osaka Prefecture University, Sakai, Osaka, 599-8570 Japan
| | | | - Hideki Sakai
- Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 Japan
| |
Collapse
|
24
|
Mozaheb N, Mingeot-Leclercq MP. Membrane Vesicle Production as a Bacterial Defense Against Stress. Front Microbiol 2020; 11:600221. [PMID: 33362747 PMCID: PMC7755613 DOI: 10.3389/fmicb.2020.600221] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Membrane vesicles are the nano-sized vesicles originating from membranes. The production of membrane vesicles is a common feature among bacteria. Depending on the bacterial growth phase and environmental conditions, membrane vesicles show diverse characteristics. Various physiological and ecological roles have been attributed to membrane vesicles under both homeostatic and stressful conditions. Pathogens encounter several stressors during colonization in the hostile environment of host tissues. Nutrient deficiency, the presence of antibiotics as well as elements of the host’s immune system are examples of stressors threatening pathogens inside their host. To combat stressors and survive, pathogens have established various defensive mechanisms, one of them is production of membrane vesicles. Pathogens produce membrane vesicles to alleviate the destructive effects of antibiotics or other types of antibacterial treatments. Additionally, membrane vesicles can also provide benefits for the wider bacterial community during infections, through the transfer of resistance or virulence factors. Hence, given that membrane vesicle production may affect the activities of antibacterial agents, their production should be considered when administering antibacterial treatments. Besides, regarding that membrane vesicles play vital roles in bacteria, disrupting their production may suggest an alternative strategy for battling against pathogens. Here, we aim to review the stressors encountered by pathogens and shed light on the roles of membrane vesicles in increasing pathogen adaptabilities in the presence of stress-inducing factors.
Collapse
Affiliation(s)
- Negar Mozaheb
- Université catholique de Louvain (UCL), Louvain Drug Research Institute (LDRI), Cellular & Molecular Pharmacology Unit (FACM), Brussels, Belgium
| | - Marie-Paule Mingeot-Leclercq
- Université catholique de Louvain (UCL), Louvain Drug Research Institute (LDRI), Cellular & Molecular Pharmacology Unit (FACM), Brussels, Belgium
| |
Collapse
|
25
|
The role of fusion peptides in depth-dependent membrane organization and dynamics in promoting membrane fusion. Chem Phys Lipids 2020; 234:105025. [PMID: 33301753 DOI: 10.1016/j.chemphyslip.2020.105025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 11/24/2022]
Abstract
Membrane fusion is an important event in the life of eukaryotes; occurs in several processes such as endocytosis, exocytosis, cellular trafficking, compartmentalization, import of nutrients and export of waste, vesiculation, inter cellular communication, and fertilization. The enveloped viruses as well utilize fusion between the viral envelope and host cell membrane for infection. The stretch of 20-25 amino acids located at the N-terminus of the fusion protein, known as fusion peptide, plays a decisive role in the fusion process. The stalk model of membrane fusion postulated a common route of bilayer transformation for stalk, transmembrane contact, and pore formation; and fusion peptide is believed to facilitate bilayer transformation to promote membrane fusion. The peptide-induced change in depth-dependent organization and dynamics could provide important information in understanding the role of fusion peptide in membrane fusion. In this review, we have discussed about three depth-dependent properties of the membrane such as rigidity, polarity and heterogeneity, and the impact of fusion peptide on these three membrane properties.
Collapse
|
26
|
Pattnaik GP, Chakraborty H. Entry Inhibitors: Efficient Means to Block Viral Infection. J Membr Biol 2020; 253:425-444. [PMID: 32862236 PMCID: PMC7456447 DOI: 10.1007/s00232-020-00136-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
The emerging and re-emerging viral infections are constant threats to human health and wellbeing. Several strategies have been explored to develop vaccines against these viral diseases. The main effort in the journey of development of vaccines is to neutralize the fusion protein using antibodies. However, significant efforts have been made in discovering peptides and small molecules that inhibit the fusion between virus and host cell, thereby inhibiting the entry of viruses. This class of inhibitors is called entry inhibitors, and they are extremely efficient in reducing viral infection as the entry of the virus is considered as the first step of infection. Nevertheless, these inhibitors are highly selective for a particular virus as antibody-based vaccines. The recent COVID-19 pandemic lets us ponder to shift our attention towards broad-spectrum antiviral agents from the so-called ‘one bug-one drug’ approach. This review discusses peptide and small molecule-based entry inhibitors against class I, II, and III viruses and sheds light on broad-spectrum antiviral agents.
Collapse
Affiliation(s)
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India. .,Centre of Excellence in Natural Products and Therapeutics, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India.
| |
Collapse
|
27
|
Scapin C, Ferri C, Pettinato E, Zambroni D, Bianchi F, Del Carro U, Belin S, Caruso D, Mitro N, Pellegatta M, Taveggia C, Schwab MH, Nave KA, Feltri ML, Wrabetz L, D'Antonio M. Enhanced axonal neuregulin-1 type-III signaling ameliorates neurophysiology and hypomyelination in a Charcot-Marie-Tooth type 1B mouse model. Hum Mol Genet 2020; 28:992-1006. [PMID: 30481294 DOI: 10.1093/hmg/ddy411] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/30/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) neuropathies are a group of genetic disorders that affect the peripheral nervous system with heterogeneous pathogenesis and no available treatment. Axonal neuregulin 1 type III (Nrg1TIII) drives peripheral nerve myelination by activating downstream signaling pathways such as PI3K/Akt and MAPK/Erk that converge on master transcriptional regulators of myelin genes, such as Krox20. We reasoned that modulating Nrg1TIII activity may constitute a general therapeutic strategy to treat CMTs that are characterized by reduced levels of myelination. Here we show that genetic overexpression of Nrg1TIII ameliorates neurophysiological and morphological parameters in a mouse model of demyelinating CMT1B, without exacerbating the toxic gain-of-function that underlies the neuropathy. Intriguingly, the mechanism appears not to be related to Krox20 or myelin gene upregulation, but rather to a beneficial rebalancing in the stoichiometry of myelin lipids and proteins. Finally, we provide proof of principle that stimulating Nrg1TIII signaling, by pharmacological suppression of the Nrg1TIII inhibitor tumor necrosis factor-alpha-converting enzyme (TACE/ADAM17), also ameliorates the neuropathy. Thus, modulation of Nrg1TIII by TACE/ADAM17 inhibition may represent a general treatment for hypomyelinating neuropathies.
Collapse
Affiliation(s)
| | | | | | | | - Francesca Bianchi
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Ubaldo Del Carro
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | | | - Donatella Caruso
- DiSFeB-Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nico Mitro
- DiSFeB-Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marta Pellegatta
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Carla Taveggia
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Markus H Schwab
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.,Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Klaus-Armin Nave
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - M Laura Feltri
- DIBIT, Divisions of Genetics and Cell Biology.,Hunter James Kelly Research Institute.,Department of Neurology.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Lawrence Wrabetz
- DIBIT, Divisions of Genetics and Cell Biology.,Hunter James Kelly Research Institute.,Department of Neurology.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | | |
Collapse
|
28
|
Fox LJ, Matthews L, Stockdale H, Pichai S, Snow T, Richardson RM, Briscoe WH. Structural changes in lipid mesophases due to intercalation of dendritic polymer nanoparticles: Swollen lamellae, suppressed curvature, and augmented structural disorder. Acta Biomater 2020; 104:198-209. [PMID: 31904557 DOI: 10.1016/j.actbio.2019.12.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 12/19/2022]
Abstract
Understanding interactions between nanoparticles and model membranes is relevant to functional nano-composites and the fundamentals of nanotoxicity. In this study, the effect of polyamidoamine (PAMAM) dendrimers as model nanoparticles (NP) on the mesophase behaviour of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) has been investigated using high-pressure small-angle X-ray scattering (HP-SAXS). The pressure-temperature (p-T) diagrams for POPE mesophases in excess water were obtained in the absence and presence of G2 and G4 polyamidoamine (PAMAM) dendrimers (29 Å and 45 Å in diameter, respectively) at varying NP-lipid number ratio (ν = 0.0002-0.02) over the pressure range p = 1-3000 bar and temperature range T = 20-80 °C. The p-T phase diagram of POPE exhibited the Lβ, Lα and HII phases. Complete analysis of the phase diagrams, including the relative area pervaded by different phases, phase transition temperatures (Tt) and pressures (pt), the lattice parameters (d-spacing), the pressure-dependence of d-spacing (Δd/Δp), and the structural ordering in the mesophase as gauged by the Scherrer coherence length (L) permitted insights into the size- and concentration-dependent interactions between the dendrimers and the model membrane system. The addition of dendrimers changed the phase transition pressure and temperature and resulted in the emergence of highly swollen lamellar phases, dubbed Lβ-den and Lα-den. G4 PAMAM dendrimers at the highest concentration ν = 0.02 suppressed the formation of the HII phase within the temperature range studied, whereas the addition of G2 PAMAM dendrimers at the same concentration promoted an extended mixed lamellar region in which Lα and Lβ phases coexisted. STATEMENT OF SIGNIFICANCE: Using high pressure small angle X-ray scattering in the pressure range 1-3000 bar and temperature range 20-60 °C, we have studied interactions between PAMAM dendrimers (as model nanoparticles) and POPE lipid mesophases (as model membranes). We report the pressure-temperature phase diagrams for the dendrimer-lipid mesophases for the first time. We find that the dendrimers alter the phase transition temperatures (Tt) and pressures (pt), the lattice parameters (d-spacing), and the structural order in the mesophase. We interpret these unprecedented results in terms of the fluidity of the lipid membranes and the interactions between the dendrimers and the membranes. Our findings are of fundamental relevance to the field of nanotoxicity and functional nanomaterials that integrate nanoparticles and organized lipid structures.
Collapse
|
29
|
Kabelka I, Pachler M, Prévost S, Letofsky-Papst I, Lohner K, Pabst G, Vácha R. Magainin 2 and PGLa in Bacterial Membrane Mimics II: Membrane Fusion and Sponge Phase Formation. Biophys J 2019; 118:612-623. [PMID: 31952806 DOI: 10.1016/j.bpj.2019.12.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/06/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022] Open
Abstract
We studied the synergistic mechanism of equimolar mixtures of magainin 2 (MG2a) and PGLa in phosphatidylethanolamine/phosphatidylglycerol mimics of Gram-negative cytoplasmic membranes. In a preceding article of this series, we reported on the early onset of parallel heterodimer formation of the two antimicrobial peptides already at low concentrations and the resulting defect formation in the membranes. Here, we focus on the structures of the peptide-lipid aggregates occurring in the synergistic regime at elevated peptide concentrations. Using a combination of calorimetric, scattering, electron microscopic, and in silico techniques, we demonstrate that the two peptides, even if applied individually, transform originally large unilamellar vesicles into multilamellar vesicles with a collapsed interbilayer spacing resulting from peptide-induced adhesion. Interestingly, the adhesion does not lead to a peptide-induced lipid separation of charged and charge-neutral species. In addition to this behavior, equimolar mixtures of MG2a and PGLa formed surface-aligned fibril-like structures, which induced adhesion zones between the membranes and the formation of transient fusion stalks in molecular dynamics simulations and a coexisting sponge phase observed by small-angle x-ray scattering. The previously reported increased leakage of lipid vesicles of identical composition in the presence of MG2a/PGLa mixtures is therefore related to a peptide-induced cross-linking of bilayers.
Collapse
Affiliation(s)
- Ivo Kabelka
- CEITEC-Central European Institute of Technology, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michael Pachler
- Biophysics Division, Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | | | - Ilse Letofsky-Papst
- Institute for Electron Microscopy and Nanoanalysis and Center for Electron Microscopy, Graz University of Technology, Graz, Austria
| | - Karl Lohner
- Biophysics Division, Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Georg Pabst
- Biophysics Division, Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Robert Vácha
- CEITEC-Central European Institute of Technology, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
30
|
Mycobacterium tuberculosis enters macrophages with aid from a bacterial lipid. Proc Natl Acad Sci U S A 2019; 116:25372-25373. [PMID: 31757857 DOI: 10.1073/pnas.1918900116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Cholesterol alters the inhibitory efficiency of peptide-based membrane fusion inhibitor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183056. [DOI: 10.1016/j.bbamem.2019.183056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/31/2019] [Accepted: 08/23/2019] [Indexed: 11/21/2022]
|
32
|
Meher G, Sinha S, Pattnaik GP, Ghosh Dastidar S, Chakraborty H. Cholesterol Modulates Membrane Properties and the Interaction of gp41 Fusion Peptide To Promote Membrane Fusion. J Phys Chem B 2019; 123:7113-7122. [PMID: 31345037 DOI: 10.1021/acs.jpcb.9b04577] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An envelope glycoprotein, gp41, is crucial for the entry of human immunodeficiency virus (HIV) into the host cell. The 20-23 N-terminal amino acid sequence of gp41 plays an important role in promoting fusion between viral and host cells. Interestingly, the structure and function of the fusion peptide are extremely sensitive to the characteristics of the lipid environment. In this present work, we have extensively utilized steady-state and time-resolved fluorescence spectroscopy in tandem with molecular dynamics simulation to elucidate peptide binding and peptide-induced perturbation to the membrane. We have used two depth-dependent fluorescence probes, 1,6-diphenyl-1,3,5-hexatriene (DPH) and its trimethylammonium derivative (TMA-DPH), to monitor the effect of peptide binding along the bilayer normal and have reconciled the experimental observation with the insights from the simulated molecular events. We have further monitored the effect of membrane cholesterol on peptide-induced membrane perturbation. The molecular dynamics simulation data show that the peptide alters the membrane properties in the vicinity of the peptide and it penetrates to a larger extent into the bilayer when the membrane contains cholesterol. Our results clearly elucidate that cholesterol alters the membrane physical properties in favor of membrane fusion and interaction pattern of the fusion peptide with the membrane in a concentration-dependent fashion. The role of cholesterol is specifically important as the host eukaryotic cells contain a decent amount of cholesterol that might be critical for the entry of HIV into the host cells.
Collapse
Affiliation(s)
- Geetanjali Meher
- School of Chemistry , Sambalpur University , Jyoti Vihar, Burla , Odisha 768 019 , India
| | - Souvik Sinha
- Division of Bioinformatics , Bose Institute , P-1/12 C.I.T. Scheme VII M , Kolkata 700054 , India
| | - Gourab Prasad Pattnaik
- School of Chemistry , Sambalpur University , Jyoti Vihar, Burla , Odisha 768 019 , India
| | - Shubhra Ghosh Dastidar
- Division of Bioinformatics , Bose Institute , P-1/12 C.I.T. Scheme VII M , Kolkata 700054 , India
| | - Hirak Chakraborty
- School of Chemistry , Sambalpur University , Jyoti Vihar, Burla , Odisha 768 019 , India
| |
Collapse
|
33
|
Kolašinac R, Jaksch S, Dreissen G, Braeutigam A, Merkel R, Csiszár A. Influence of Environmental Conditions on the Fusion of Cationic Liposomes with Living Mammalian Cells. NANOMATERIALS 2019; 9:nano9071025. [PMID: 31319557 PMCID: PMC6669649 DOI: 10.3390/nano9071025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022]
Abstract
Lipid-based nanoparticles, also called vesicles or liposomes, can be used as carriers for drugs or many types of biological macromolecules, including DNA and proteins. Efficiency and speed of cargo delivery are especially high for carrier vesicles that fuse with the cellular plasma membrane. This occurs for lipid mixture containing equal amounts of the cationic lipid DOTAP and a neutral lipid with an additional few percents of an aromatic substance. The fusion ability of such particles depends on lipid composition with phosphoethanolamine (PE) lipids favoring fusion and phosphatidyl-choline (PC) lipids endocytosis. Here, we examined the effects of temperature, ionic strength, osmolality, and pH on fusion efficiency of cationic liposomes with Chinese hamster ovary (CHO) cells. The phase state of liposomes was analyzed by small angle neutron scattering (SANS). Our results showed that PC containing lipid membranes were organized in the lamellar phase. Here, fusion efficiency depended on buffer conditions and remained vanishingly small at physiological conditions. In contrast, SANS indicated the coexistence of very small (~50 nm) objects with larger, most likely lamellar structures for PE containing lipid particles. The fusion of such particles to cell membranes occurred with very high efficiency at all buffer conditions. We hypothesize that the altered phase state resulted in a highly reduced energetic barrier against fusion.
Collapse
Affiliation(s)
- Rejhana Kolašinac
- Forschungszentrum Jülich GmbH, Institute of Complex Systems: ICS-7 Biomechanics, 52428 Jülich, Germany
| | - Sebastian Jaksch
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), 85748 Garching, Germany
| | - Georg Dreissen
- Forschungszentrum Jülich GmbH, Institute of Complex Systems: ICS-7 Biomechanics, 52428 Jülich, Germany
| | - Andrea Braeutigam
- Forschungszentrum Jülich GmbH, Institute of Complex Systems: ICS-2 Theoretical Soft Matter and Biophysics, 52428 Jülich, Germany
| | - Rudolf Merkel
- Forschungszentrum Jülich GmbH, Institute of Complex Systems: ICS-7 Biomechanics, 52428 Jülich, Germany
| | - Agnes Csiszár
- Forschungszentrum Jülich GmbH, Institute of Complex Systems: ICS-7 Biomechanics, 52428 Jülich, Germany.
| |
Collapse
|
34
|
Mortezazadeh S, Jamali Y, Naderi-Manesh H, Lyubartsev AP. Implicit solvent systematic coarse-graining of dioleoylphosphatidylethanolamine lipids: From the inverted hexagonal to the bilayer structure. PLoS One 2019; 14:e0214673. [PMID: 30951539 PMCID: PMC6450619 DOI: 10.1371/journal.pone.0214673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/18/2019] [Indexed: 11/21/2022] Open
Abstract
Lamellar and hexagonal lipid structures are of particular importance in the biological processes such as membrane fusion and budding. Atomistic simulations of formation of these phases and transitions between them are computationally prohibitive, hence development of coarse-grained models is an important part of the methodological development in this area. Here we apply systematic bottom-up coarse-graining to model different phase structures formed by 1,2-dioleoylphosphatidylethanolamine (DOPE) lipid molecules. We started from atomistic simulations of DOPE lipids in water carried out at two different water/lipid molar ratio corresponding to the lamellar Lα and inverted hexagonal HII structures at low and high lipid concentrations respectively. The atomistic trajectories were mapped to coarse-grained trajectories, in which each lipid was represented by 14 coarse-grained sites. Then the inverse Monte Carlo method was used to compute the effective coarse-grained potentials which for the coarse-grain model reproduce the same structural properties as the atomistic simulations. The potentials derived from the low concentration atomistic simulation were only able to form a bilayer structure, while both Lα and HII lipid phases were formed in simulations with potentials obtained at high concentration. The typical atomistic configurations of lipids at high concentration combine fragments of both lamellar and non-lamellar structures, that is reflected in the extracted coarse-grained potentials which become transferable and can form a wide range of structures including the inverted hexagonal, bilayer, tubule, vesicle and micellar structures.
Collapse
Affiliation(s)
- Saeed Mortezazadeh
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yousef Jamali
- Department of Mathematics, Tarbiat Modares University, Tehran, Iran
| | - Hossein Naderi-Manesh
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- * E-mail: (HN); (APL)
| | - Alexander P. Lyubartsev
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
- * E-mail: (HN); (APL)
| |
Collapse
|
35
|
Santiago R, Reigada R. Interaction modes between nanosized graphene flakes and liposomes: Adsorption, insertion and membrane fusion. Biochim Biophys Acta Gen Subj 2019; 1863:723-731. [PMID: 30716365 DOI: 10.1016/j.bbagen.2019.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Understanding the effects of graphene-based nanomaterials on lipid membranes is critical to determine their environmental impact and their efficiency in the biomedical context. Graphene has been reported to favourably interact with biological and model lipid membranes. METHODS We report on a systematic coarse-grained molecular dynamics study of the interaction modes of graphene nanometric flakes with POPC/cholesterol liposome membranes. We have simulated graphene layers with a variety of sizes and oxidation degrees, and we have analyzed the trajectories, the interaction modes, and the energetics of the observed phenomena. RESULTS Three interaction modes are reported. Graphene can be transiently adsorbed onto the liposome membrane and/or inserted in its hydrophobic region. Inserted nanosheets prefer a perpendicular orientation, and tilt in order to maximize the contact with phospholipid tails while avoiding the contact with cholesterol molecules. When placed between two liposomes, graphene facilitates their fusion in a single vesicle. CONCLUSIONS Graphene can be temporary adsorbed on the liposome before insertion. Bilayer curvature has an influence on the orientation of inserted graphene particles. Cholesterol molecules are depleted from the surrounding of graphene particles. Graphene layers may catalyse membrane fusion by bypassing the energy barrier required in stalk formation. GENERAL SIGNIFICANCE Nanometric graphene layers can be adsorbed/inserted in lipid-based membranes in different manners and affect the cholesterol distribution in the membrane, implying important consequences on the structure and functionality of biological cell membranes, and on the bioaccumulation of graphene in living organisms. The graphene-mediated mechanism opens new possibilities for vesicle fusion in the experimental context.
Collapse
Affiliation(s)
- Raul Santiago
- Department de Ciència dels Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
| | - Ramon Reigada
- Department de Ciència dels Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
36
|
|
37
|
Xing X, Ma W, Zhao X, Wang J, Yao L, Jiang X, Wu Z. Interaction between Surface Charge-Modified Gold Nanoparticles and Phospholipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12583-12589. [PMID: 30239201 DOI: 10.1021/acs.langmuir.8b01700] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This report clarifies the interaction of surface charge-modified gold nanoparticles (AuNPs) with phospholipid membranes, which is helpful to understand the antibacterial mechanism of positive charge-modified AuNPs to Gram-negative bacteria. Although the simulated bacterial cell membranes as a whole are negatively charged, the local electrostatic repulsive interaction between the positive charge-coated AuNPs and the small-sized flexible cationic head group of dioleyl phosphatidylethanolamine molecules induces the phase transformation of the simulated bacterial cell membranes from a lamellar to an inverted hexagonal phase. Transmembrane pores with a diameter of about 3.0 nm in the inverted hexagonal structure would result in the destruction of cell membrane function. Such an interaction of positive charge-modified AuNPs with the membrane mimics provides a promising route to develop new antibacterial agents by modifying positive charges on the surface of nanoparticles.
Collapse
Affiliation(s)
- Xueqing Xing
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Wanshun Ma
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety , National Center for NanoScience and Technology , Beijing 100190 , China
| | - Xiaoyi Zhao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jiayi Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Lei Yao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Xingyu Jiang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety , National Center for NanoScience and Technology , Beijing 100190 , China
| | - Zhonghua Wu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
38
|
Tran N, Zhai J, Conn CE, Mulet X, Waddington LJ, Drummond CJ. Direct Visualization of the Structural Transformation between the Lyotropic Liquid Crystalline Lamellar and Bicontinuous Cubic Mesophase. J Phys Chem Lett 2018; 9:3397-3402. [PMID: 29809009 DOI: 10.1021/acs.jpclett.8b01110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The transition between the lyotropic liquid crystalline lamellar and the bicontinuous cubic mesophase drives multiple fundamental cellular processes involving changes in cell membrane topology, including endocytosis and membrane budding. While several theoretical models have been proposed to explain this dynamic transformation, experimental validation of these models has been challenging because of the short-lived nature of the intermediates present during the phase transition. Herein, we report the direct observation of a lamellar-to-bicontinuous cubic phase transition in nanoscale dispersions using a combination of cryogenic transmission electron microscopy and static small-angle X-ray scattering. The results represent the first experimental confirmation of a theoretical model which proposed that the bicontinuous cubic phase originates from the center of a lamellar vesicle then propagates outward via the formation of interlamellar attachments and stalks. The observation was possible because of the precise control of the lipid composition to place the dispersion systems at the phase boundary of a lamellar and a cubic phase, allowing for the creation of long-lived structural intermediates. By the surveying of the nanoparticles using cryogenic transmission electron microscopy, a complete phase transition sequence was established.
Collapse
Affiliation(s)
- Nhiem Tran
- School of Science , RMIT University , Melbourne , Victoria 3000 , Australia
- CSIRO Manufacturing, Clayton , Victoria 3168 , Australia
- Australian Synchrotron, ANSTO, Clayton , Victoria 3168 , Australia
| | - Jiali Zhai
- School of Science , RMIT University , Melbourne , Victoria 3000 , Australia
- CSIRO Manufacturing, Clayton , Victoria 3168 , Australia
| | - Charlotte E Conn
- School of Science , RMIT University , Melbourne , Victoria 3000 , Australia
| | - Xavier Mulet
- CSIRO Manufacturing, Clayton , Victoria 3168 , Australia
| | | | - Calum J Drummond
- School of Science , RMIT University , Melbourne , Victoria 3000 , Australia
| |
Collapse
|
39
|
Lozeau LD, Rolle MW, Camesano TA. A QCM-D study of the concentration- and time-dependent interactions of human LL37 with model mammalian lipid bilayers. Colloids Surf B Biointerfaces 2018; 167:229-238. [PMID: 29660601 DOI: 10.1016/j.colsurfb.2018.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/05/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
Abstract
The human antimicrobial peptide LL37 is promising as an alternative to antibiotics due to its biophysical interactions with charged bacterial lipids. However, its clinical potential is limited due to its interactions with zwitterionic mammalian lipids leading to cytotoxicity. Mechanistic insight into the LL37 interactions with mammalian lipids may enable rational design of less toxic LL37-based therapeutics. To this end, we studied concentration- and time-dependent interactions of LL37 with zwitterionic model phosphatidylcholine (PC) bilayers with quartz crystal microbalance with dissipation (QCM-D). LL37 mass adsorption and PC bilayer viscoelasticity changes were monitored by measuring changes in frequency (Δf) and dissipation (ΔD), respectively. The Voigt-Kelvin viscoelastic model was applied to Δf and ΔD to study changes in bilayer thickness and density with LL37 concentration. At low concentrations (0.10-1.00 μM), LL37 adsorbed onto bilayers in a concentration-dependent manner. Further analyses of Δf, ΔD and thickness revealed that peptide saturation on the bilayers was a threshold for interactions observed above 2.00 μM, interactions that were rapid, multi-step, and reached equilibrium in a concentration- and time-dependent manner. Based on these data, we proposed a model of stable transmembrane pore formation at 2.00-10.0 μM, or transition from a primarily lipid to a primarily protein film with a transmembrane pore formation intermediate state at concentrations of LL37 > 10 μM. The concentration-dependent interactions between LL37 and PC bilayers correlated with the observed concentration-dependent biological activities of LL37 (antimicrobial, immunomodulatory and non-cytotoxic at 0.1-1.0 μM, hemolytic and some cytotoxicity at 2.0-13 μM and cytotoxic at >13 μM).
Collapse
Affiliation(s)
- Lindsay D Lozeau
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Marsha W Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Terri A Camesano
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
| |
Collapse
|
40
|
Liu K, Zheng L, Ma C, Göstl R, Herrmann A. DNA-surfactant complexes: self-assembly properties and applications. Chem Soc Rev 2018; 46:5147-5172. [PMID: 28686247 DOI: 10.1039/c7cs00165g] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Over the last few years, DNA-surfactant complexes have gained traction as unique and powerful materials for potential applications ranging from optoelectronics to biomedicine because they self-assemble with outstanding flexibility spanning packing modes from ordered lamellar, hexagonal and cubic structures to disordered isotropic phases. These materials consist of a DNA backbone from which the surfactants protrude as non-covalently bound side chains. Their formation is electrostatically driven and they form bulk films, lyotropic as well as thermotropic liquid crystals and hydrogels. This structural versatility and their easy-to-tune properties render them ideal candidates for assembly in bulk films, for example granting directional conductivity along the DNA backbone, for dye dispersion minimizing fluorescence quenching allowing applications in lasing and nonlinear optics or as electron blocking and hole transporting layers, such as in LEDs or photovoltaic cells, owing to their extraordinary dielectric properties. However, they do not only act as host materials but also function as a chromophore itself. They can be employed within electrochromic DNA-surfactant liquid crystal displays exhibiting remarkable absorptivity in the visible range whose volatility can be controlled by the external temperature. Concomitantly, applications in the biological field based on DNA-surfactant bulk films, liquid crystals and hydrogels are rendered possible by their excellent gene and drug delivery capabilities. Beyond the mere exploitation of their material properties, DNA-surfactant complexes proved outstandingly useful for synthetic chemistry purposes when employed as scaffolds for DNA-templated reactions, nucleic acid modifications or polymerizations. These promising examples are by far not exhaustive but foreshadow their potential applications in yet unexplored fields. Here, we will give an insight into the peculiarities and perspectives of each material and are confident to inspire future developments and applications employing this emerging substance class.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry of Chinese Academy of Sciences, 130022, Changchun, China
| | | | | | | | | |
Collapse
|
41
|
Kolašinac R, Kleusch C, Braun T, Merkel R, Csiszár A. Deciphering the Functional Composition of Fusogenic Liposomes. Int J Mol Sci 2018; 19:ijms19020346. [PMID: 29364187 PMCID: PMC5855568 DOI: 10.3390/ijms19020346] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 12/12/2022] Open
Abstract
Cationic liposomes are frequently used as carrier particles for nucleic acid delivery. The most popular formulation is the equimolar mixture of two components, a cationic lipid and a neutral phosphoethanolamine. Its uptake pathway has been described as endocytosis. The presence of an aromatic molecule as a third component strongly influences the cellular uptake process and results in complete membrane fusion instead of endocytosis. Here, we systematically varied all three components of this lipid mixture and determined how efficiently the resulting particles fused with the plasma membrane of living mammalian cells. Our results show that an aromatic molecule and a cationic lipid component with conical molecular shape are essential for efficient fusion induction. While a neutral lipid is not mandatory, it can be used to control fusion efficiency and, in the most extreme case, to revert the uptake mechanism back to endocytosis.
Collapse
Affiliation(s)
- Rejhana Kolašinac
- Forschungszentrum Jülich GmbH, Institute of Complex Systems (ICS-7), Biomechanics, 52425 Jülich, Germany.
| | - Christian Kleusch
- Forschungszentrum Jülich GmbH, Institute of Complex Systems (ICS-7), Biomechanics, 52425 Jülich, Germany.
| | - Tobias Braun
- Forschungszentrum Jülich GmbH, Institute of Complex Systems (ICS-7), Biomechanics, 52425 Jülich, Germany.
| | - Rudolf Merkel
- Forschungszentrum Jülich GmbH, Institute of Complex Systems (ICS-7), Biomechanics, 52425 Jülich, Germany.
| | - Agnes Csiszár
- Forschungszentrum Jülich GmbH, Institute of Complex Systems (ICS-7), Biomechanics, 52425 Jülich, Germany.
| |
Collapse
|
42
|
Pattnaik GP, Meher G, Chakraborty H. Exploring the Mechanism of Viral Peptide-Induced Membrane Fusion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:69-78. [PMID: 30637691 DOI: 10.1007/978-981-13-3065-0_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Membrane fusion is essential in several cellular processes in the existence of eukaryotic cells such as cellular trafficking, compartmentalization, intercellular communication, sexual reproduction, cell division, and endo- and exocytosis. Membrane fusion proceeds in model membranes as well as biological membranes through the rearrangement of lipids. The stalk hypothesis provides a picture of the general nature of lipid rearrangement based on mechanical properties and phase behavior of water-lipid mesomorphic systems. In spite of extensive research on exploring the mechanism of membrane fusion, a clear molecular understanding of intermediate and pore formation is lacking. In addition, the mechanism by which proteins and peptides reduce the activation energy for stalk and pore formation is not yet clear though there are several propositions on how they catalyze membrane fusion. In this review, we have discussed about various putative functions of fusion peptides by which they reduce activation barrier and thus promote membrane fusion. A careful analysis of the discussed effects of fusion peptides on membranes might open up new possibilities for better understanding of the membrane fusion mechanism.
Collapse
|
43
|
Liu X, Tian F, Yue T, Zhang X, Zhong C. Pulling force and surface tension drive membrane fusion. J Chem Phys 2017; 147:194703. [PMID: 29166098 DOI: 10.1063/1.4997393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite catalyzed by fusion proteins of quite different molecular architectures, intracellular, viral, and cell-to-cell fusions are found to have the essential common features and the nearly same nature of transition states. The similarity inspires us to find a more general catalysis mechanism for membrane fusion that minimally depends on the specific structures of fusion proteins. In this work, we built a minimal model for membrane fusion, and by using dissipative particle dynamics simulations, we propose a mechanism that the pulling force generated by fusion proteins initiates the fusion process and the membrane tension regulates the subsequent fusion stages. The model shows different features compared to previous computer simulation studies: the pulling force catalyzes membrane fusion through lipid head overcrowding in the contacting region, leading to an increase in the head-head repulsion and/or the unfavorable head-tail contacts from opposing membranes, both of which destabilize the contacting leaflets and thus promote membrane fusion or vesicle rupture. Our simulations produce a variety of shapes and intermediates, closely resembling cases seen experimentally. Our work strongly supports the view that the tight pulling mechanism is a conserved feature of fusion protein-mediated fusion and that the membrane tension plays an essential role in fusion.
Collapse
Affiliation(s)
- Xuejuan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Falin Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Tongtao Yue
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Chongli Zhong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
44
|
Oka T, Hasan M, Islam MZ, Moniruzzaman M, Yamazaki M. Low-pH-Induced Lamellar to Bicontinuous Primitive Cubic Phase Transition in Dioleoylphosphatidylserine/Monoolein Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12487-12496. [PMID: 28967756 DOI: 10.1021/acs.langmuir.7b02512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Electrostatic interactions (EIs) play important roles in the structure and stability of inverse bicontinuous cubic (QII) phases of lipid membranes. We examined the effect of pH on the phase of dioleoylphosphatidylserine (DOPS)/monoolein (MO) membranes at low ionic strengths using small-angle X-ray scattering (SAXS). We found that the phase transitions from lamellar liquid-crystalline (Lα) to primitive cubic (QIIP) phases in DOPS/MO (2/8 molar ratio) membranes occurred in buffers containing 50 mM NaCl at and below the final pH of 2.75 as the pH of the membrane suspension was decreased from a neutral value. The kinetic pathway of this transition was revealed using time-resolved SAXS with a stopped-flow apparatus. The first step is a rapid transition from the Lα phase to the hexagonal II (HII) phase, and the second step is a slow transition from the HII phase to the QIIP phase. We determined the rate constants of the first step, k1, and of the second step, k2, by analyzing the time course of SAXS intensities quantitatively. The k1 value increased with temperature. The analysis of this result provided the values of its apparent activation energy, which were constant over temperature but increased with pH. This can be explained by an EI effect on the free energy of the transition state. In contrast, the k2 value decreased with temperature, indicating that the true activation energy increased with temperature. These experimental results were analyzed using the theory of the activation energy of phase transitions of lipid membranes when the free energy of the transition state depends on temperature. On the basis of these results, we discussed the mechanism of this phase transition.
Collapse
Affiliation(s)
- Toshihiko Oka
- Nanomaterials Research Division, Research Institute of Electronics, ‡Department of Physics, Graduate School of Science, and §Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University , Shizuoka 422-8529, Japan
| | - Moynul Hasan
- Nanomaterials Research Division, Research Institute of Electronics, ‡Department of Physics, Graduate School of Science, and §Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University , Shizuoka 422-8529, Japan
| | - Md Zahidul Islam
- Nanomaterials Research Division, Research Institute of Electronics, ‡Department of Physics, Graduate School of Science, and §Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University , Shizuoka 422-8529, Japan
| | - Md Moniruzzaman
- Nanomaterials Research Division, Research Institute of Electronics, ‡Department of Physics, Graduate School of Science, and §Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University , Shizuoka 422-8529, Japan
| | - Masahito Yamazaki
- Nanomaterials Research Division, Research Institute of Electronics, ‡Department of Physics, Graduate School of Science, and §Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University , Shizuoka 422-8529, Japan
| |
Collapse
|
45
|
Fonseca-Santos B, Satake CY, Calixto GMF, dos Santos AM, Chorilli M. Trans-resveratrol-loaded nonionic lamellar liquid-crystalline systems: structural, rheological, mechanical, textural, and bioadhesive characterization and evaluation of in vivo anti-inflammatory activity. Int J Nanomedicine 2017; 12:6883-6893. [PMID: 29066884 PMCID: PMC5604573 DOI: 10.2147/ijn.s138629] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Resveratrol (Res) is a common phytoalexin present in a few edible materials, such as grape skin, peanuts, and red wine. Evidence has shown the beneficial effects of Res on human health, which may be attributed to its anti-inflammatory activity. However, the poor aqueous solubility of Res limits its therapeutic effectiveness. Therefore, the use of nanostructured delivery systems for Res, such as liquid-crystalline systems, could be beneficial. In this study, we aimed to develop, characterize, and determine the in vivo effectiveness of Res-loaded liquid-crystalline systems. Systems containing copaiba balsam oil, polyethylene glycol-40 hydrogenated castor oil, and water were designed. Results of polarized light microscopy, small-angle X-ray scattering, texture-profile analysis, and flow-rheology analysis showed that the Res-loaded liquid-crystalline system had a lamellar structure, textural and mechanical (hardness, compressibility, and adhesiveness) properties, and behaved as a non-Newtonian fluid, showing pseudoplastic behavior upon skin application. Furthermore, all liquid-crystalline systems presented bioadhesive properties that may have assisted in maintaining the anti-inflammatory activity of Res, since the topical application of the Res-loaded lamellar mesophase liquid crystals resulted in edema inhibition in a carrageenan-induced paw-inflammation mouse model. Therefore, Res-loaded lamellar mesophases represent a promising new therapeutic approach for inhibition of skin inflammation.
Collapse
Affiliation(s)
- Bruno Fonseca-Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Cínthia Yuka Satake
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Aline Martins dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
46
|
Nagle JF. X-ray scattering reveals molecular tilt is an order parameter for the main phase transition in a model biomembrane. Phys Rev E 2017; 96:030401. [PMID: 29346876 DOI: 10.1103/physreve.96.030401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 11/07/2022]
Abstract
Synchrotron diffuse x-ray scattering data reveal a dramatic softening of the molecular tilt modulus K_{θ} of the model biomembrane composed of DMPC lipids as the temperature is lowered towards the main phase transition temperature at T_{M}=24^{∘}C. Spontaneous tilt occurs below T_{M}, suggesting that tilt is a symmetry breaking order parameter. Consistent with this hypothesis, it is also found that a different lipid POPS has no spontaneous tilt below its T_{M} at 14^{∘}C and correspondingly its tilt modulus did not soften as T_{M} was approached from above. As previously known, the bending modulus K_{C} of DMPC also softens close to T_{M}, but unlike the tilt modulus, K_{C} has a maximum 3^{∘} above T_{M}, which also marks the limit of the well-known anomalous swelling regime. Tilt adds a different perspective to our previous understanding of the main phase transition in lipid bilayers.
Collapse
Affiliation(s)
- John F Nagle
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
47
|
Meher G, Chakraborty H. Organization and dynamics of Trp14 of hemagglutinin fusion peptide in membrane mimetic environment. Chem Phys Lipids 2017; 205:48-54. [DOI: 10.1016/j.chemphyslip.2017.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/14/2017] [Accepted: 04/26/2017] [Indexed: 01/01/2023]
|
48
|
Nagle JF. Experimentally determined tilt and bending moduli of single-component lipid bilayers. Chem Phys Lipids 2017; 205:18-24. [PMID: 28412174 DOI: 10.1016/j.chemphyslip.2017.04.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 01/14/2023]
Abstract
Values of the bending modulus KC and the tilt modulus Kθ are reported for single component lipid bilayers. The lipids studied have the common names DOPC, DMPC, diC22:1PC, SOPC, POPC, diPhyPC, DLPC, DPPC, DHPC and DEPC, listed in the order of number of samples examined. The experimental method, thus far the only one that measures the tilt modulus of lipid bilayers, first obtains diffuse X-ray scattering data from oriented stacks of bilayers. The values of the moduli emerge from fitting the data to the accepted tilt-dependent continuum model for the free energy of a single bilayer, further enhanced by interactions between bilayers in the stack. The results indicate the broad trend that the tilt modulus for these PC lipids is smaller the closer the temperature is to the main transition temperature. Another trend is that inclusion of tilt raises the value of the bending modulus more for lipids with smaller values of the tilt modulus. Values of both moduli are compared to recent literature values obtained from simulations and values of the bending modulus are compared to the literature values obtained by other experimental methods.
Collapse
Affiliation(s)
- John F Nagle
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| |
Collapse
|
49
|
Chakraborty H, Lentz BR, Kombrabail M, Krishnamoorthy G, Chattopadhyay A. Depth-Dependent Membrane Ordering by Hemagglutinin Fusion Peptide Promotes Fusion. J Phys Chem B 2017; 121:1640-1648. [DOI: 10.1021/acs.jpcb.7b00684] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hirak Chakraborty
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
- School
of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| | - Barry R. Lentz
- Department
of Biochemistry and Biophysics and Program in Molecular and Cellular
Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Mamata Kombrabail
- Department
of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhaba Road, Mumbai, India
| | - G. Krishnamoorthy
- Department
of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhaba Road, Mumbai, India
| | | |
Collapse
|
50
|
Briscoe WH. Aqueous boundary lubrication: Molecular mechanisms, design strategy, and terra incognita. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2016.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|