1
|
Jia F, Luo T, Zhuang JY, Guo P, Fang N, Jiang YB, Jiang T. Noncovalently Bridging Cell-Surface Proteins Using Synthetic Peptides to Modulate Cell Apoptosis. NANO LETTERS 2025; 25:268-275. [PMID: 39680928 DOI: 10.1021/acs.nanolett.4c04959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Controlled high-order clustering of cell-surface proteins is an essential but unmatched regulatory mechanism in living systems for the modulation of cell behavior. Here, we present a strategy for generating extended and tunable one-dimensional clusters of death receptors on live cell surfaces by employing synthetic peptides to noncovalently bridging the proteins. The on-cell assembly process is validated through super-resolution fluorescence imaging and fluorescence lifetime imaging analyses. By adjusting the number of spacing peptides between the receptors before and even after the cluster formation, receptor separation can be precisely varied at nanoscale to drive cells into apoptotic or antiapoptotic states. Remarkably, this approach results in higher levels of cell apoptosis compared to the conventional practice of using preformed ligand-appended peptide coassemblies. These results demonstrate that in situ fabrication of cell-interfacing materials with compositional control permits robust and effective manipulation of high-order clustering of cell-surface proteins, advancing our ability to regulate cell behavior.
Collapse
Affiliation(s)
- Fan Jia
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Tian Luo
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Jin-Yan Zhuang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Pan Guo
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Ning Fang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Tao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
2
|
Huhn A, Nissley D, Wilson DB, Kutuzov MA, Donat R, Tan TK, Zhang Y, Barton MI, Liu C, Dejnirattisai W, Supasa P, Mongkolsapaya J, Townsend A, James W, Screaton G, van der Merwe PA, Deane CM, Isaacson SA, Dushek O. The molecular reach of antibodies crucially underpins their viral neutralisation capacity. Nat Commun 2025; 16:338. [PMID: 39746910 PMCID: PMC11695720 DOI: 10.1038/s41467-024-54916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/22/2024] [Indexed: 01/04/2025] Open
Abstract
Key functions of antibodies, such as viral neutralisation, depend on high-affinity binding. However, viral neutralisation poorly correlates with antigen affinity for reasons that have been unclear. Here, we use a new mechanistic model of bivalent binding to study >45 patient-isolated IgG1 antibodies interacting with SARS-CoV-2 RBD surfaces. The model provides the standard monovalent affinity/kinetics and new bivalent parameters, including the molecular reach: the maximum antigen separation enabling bivalent binding. We find large variations in these parameters across antibodies, including reach variations (22-46 nm) that exceed the physical antibody size (~15 nm). By using antigens of different physical sizes, we show that these large molecular reaches are the result of both the antibody and antigen sizes. Although viral neutralisation correlates poorly with affinity, a striking correlation is observed with molecular reach. Indeed, the molecular reach explains differences in neutralisation for antibodies binding with the same affinity to the same RBD-epitope. Thus, antibodies within an isotype class binding the same antigen can display differences in molecular reach, substantially modulating their binding and functional properties.
Collapse
Affiliation(s)
- Anna Huhn
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Daniel Nissley
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| | - Daniel B Wilson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Mikhail A Kutuzov
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Robert Donat
- MRC Translate Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tiong Kit Tan
- MRC Translate Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ying Zhang
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
- Department of Mathematics and Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Michael I Barton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, Thailand
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alain Townsend
- MRC Translate Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - William James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Gavin Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, UK
| | | | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK.
| | - Samuel A Isaacson
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA.
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Adjei-Sowah E, Rangasami V, Loiselle AE, Benoit DSW. Optimizing Ligand Valency to Maximize Tendon Accumulation of Peptide-Targeted Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68864-68876. [PMID: 39630483 DOI: 10.1021/acsami.4c13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
In many tissues, including musculoskeletal tissues such as tendon, systemic delivery typically results in poor targeting of free drugs. Hence, we previously developed a targeted drug delivery nanoparticle (NP) system for tendon healing, leveraging a tartrate resistant acid phosphatase (TRAP) binding peptide (TBP) ligand. The greatest tendon targeting was observed with NPs functionalized with 30 000 TBP ligands per NP at day 7 during the proliferative healing phase, relative to the inflammatory (day 3) and early remodeling (day 14) phases of healing. Nevertheless, TRAP activity varies throughout healing and, therefore, may offer an opportunity for optimizing temporal therapeutic targeting through multivalent interactions. Hence, in this study, we hypothesized that the ligand density (9000-55,000 TBPs per NP) can optimize tendon accumulation on the basis of variable TRAP levels. The multivalent nanoparticles were loaded with three different fluorophores. In vitro, the ligand density and fluorophore had no effect on the physicochemical properties of the NPs, including size, charge, polydispersity index, or dye loading efficiency; however, the TRAP binding affinity correlated positively with the ligand density. In vivo, the ligand density correlated positively with NP homing and retention in the tendon, establishing opportunities to leverage ligand density for tendon targeting across the tendon healing cascade, during aging, and in other tendon pathologies, including tendinopathies.
Collapse
Affiliation(s)
- Emmanuela Adjei-Sowah
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14623, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Vigneshkumar Rangasami
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Alayna E Loiselle
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14623, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
- Department of Orthopedics & Physical Performance, University of Rochester Medical Center, Rochester, New York 14642, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14623, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
- Department of Orthopedics & Physical Performance, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
4
|
Xia C, Chen X, Jiang YB, Jiang T. Self-Assembled Peptide Sheet-Mediated Multivalent Capture of Cells with Enhanced Tunability. Chembiochem 2024:e202400797. [PMID: 39622775 DOI: 10.1002/cbic.202400797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/30/2024] [Indexed: 12/13/2024]
Abstract
We report the creation of multivalent ligand surfaces for cell capture by conjugation of ligand-appended 2D peptide assemblies on an antifouling glass substrate. The sheet-like structures organize ligands into non-uniform, patchy patterns, enhancing multivalent cell targeting. A 155 % increase in captured cells was achieved compared to the presentation of the ligands on surfaces lacking the peptide sheets. Being orthogonal to the commonly used dendrimer- and cyclic organic molecular-based scaffolds, this peptide assembly-based approach offers a facile method to modulate the identity, number, and spatial distribution of ligands through controlled peptide coassembly. Using this method, we constructed a surface bearing two types of ligands, which demonstrates a 128 % enhancement in targeting selectivity between two model cells compared to the mono-ligand surface. These findings illustrate that integration of peptide assemblies into ligand substrates permits robust and effective manipulation of multivalent cell targeting, advancing the development of customizable cell-binding materials.
Collapse
Affiliation(s)
- Cai Xia
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen, 361005, China
| | - Xin Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen, 361005, China
- College of Materials Science and Engineering, Huaqiao University, Key Laboratory of Molecular Designing and Green Conversions (Fujian University), Xiamen, 361021, China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen, 361005, China
| | - Tao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen, 361005, China
| |
Collapse
|
5
|
Ringl F, Stadler M, van Dongen KA, Adib Razavi M, Saalmüller A, Mair KH. Solving technical issues in flow cytometry to characterize porcine CD8α/β expressing lymphocytes. Vet Immunol Immunopathol 2024; 278:110853. [PMID: 39500097 DOI: 10.1016/j.vetimm.2024.110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024]
Abstract
The CD8 molecule is a cell surface receptor and well described as co-receptor on T cells, binding directly to the major histocompatibility complex class I on antigen presenting cells. CD8 antigens are comprised of two distinct polypeptide chains, the α and the β chain. In the pig, the CD8 receptor is expressed by several lymphocyte subsets, including Natural Killer cells, γδ T cells and antigen experienced CD4+ αβ T cells. On these cell populations CD8 is expressed as αα homodimers. Porcine cytolytic T cells on the other hand exclusively express CD8 αβ heterodimers. Several monoclonal antibodies (mAbs) for either of the two chains are available and are frequently used in flow cytometry. We observed that distinct combinations of mAb clones for CD8α and CD8β chains can cause troubles in multi-color staining panels. Therefore, we aimed for an in-depth study of the usage of different CD8-specific mAb clones and optimizing co-staining strategies for flow cytometry. We tested mAb clones 11/295/33 and 76-2-11 for the detection of CD8α and mAb clones PPT23 and PG164A for the detection of CD8β. The results indicate that the CD8α clone 11/295/33 should not be used together with either of the two CD8β clones in the same incubation step, as co-staining led to a highly reduced ability of CD8β mAb binding and loss in signal in flow cytometry. This can lead to potential false results in detecting CD8αβ cytolytic T cells. In case of the CD8α mAb clone 76-2-11, no inhibition in binding of either CD8β mAb clones was observed, making it the preferred choice in multi-color staining panels. The obtained data will help in future panel designs for flow cytometry in the pig and therefore improving studies of porcine immune cells.
Collapse
Affiliation(s)
- Florian Ringl
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Immunology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Maria Stadler
- Immunology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Katinka A van Dongen
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Immunology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mahsa Adib Razavi
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Immunology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Armin Saalmüller
- Immunology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kerstin H Mair
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Immunology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria; Immunology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Liu Z, Chu H, Zhao W, Yang C, Liu T, Shen N, Tang Z. Polymeric Multivalent Fc Binding Peptides-Fabricated Clinical Compounding Bispecific Antibody Potentiates Dual Immunotherapy Targeting PD1 and CTLA-4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2408899. [PMID: 39606809 DOI: 10.1002/advs.202408899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Dual Opdivo plus Yervoy immunotherapy, targeting the immune checkpoints PD1 and CTLA-4, is successful in clinical use. However, it is associated with a high incidence of adverse events, and its therapeutic efficacy needs improving. In this study, polymeric multivalent Fc-binding peptides (PLG-Fc-III-4C) are employed to fabricate a bispecific antibody (PD1/CTLA-4 BsAb) to potentiate dual immunotherapy targeting PD1 and CTLA-4. The PD1/CTLA-4 BsAb is prepared by mixing PLG-Fc-III-4C with aPD1 and aCTLA-4 in an aqueous solution for 3 h using the clinically optimal 3:1 proportion of aPD1 to aCTLA-4. PD1/CTLA-4 BsAb significantly inhibits tumors in MC38 colon cancer-bearing mice more effectively than the combination of aPD1 and aCTLA-4, with tumor suppression rates of 96.8% and 77.3%, respectively. It also induces a higher percentage of CD8+ T cells and increases the secretion of effector cytokines while reducing Treg levels in tumors compared to phosphate-buffered saline, indicating significant tumor immunity regulation. Mechanistically, a 6.3-fold increase in PD1/CTLA-4 BsAb accumulation in tumors due to the tumor targeting ability of aPD1, and the PD1/CTLA-4 BsAb significantly reduces the adverse colitis event in healthy mice, compared to aPD1 and aCTLA-4. Thus, these findings provide a novel approach to enhance antitumor therapy using aPD1 and aCTLA-4.
Collapse
Affiliation(s)
- Zongyu Liu
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, 130000, China
| | - Hongyu Chu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Weidong Zhao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Chenguang Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Tongjun Liu
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, 130000, China
| | - Na Shen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| |
Collapse
|
7
|
Meletli F, Gündüz C, Alparslan MM, Attar A, Demir S, İskit E, Danış Ö. Design, synthesis and biological evaluation of novel benzocoumarin derivatives as potent inhibitors of MAO-B activity. Bioorg Med Chem Lett 2024; 113:129984. [PMID: 39384075 DOI: 10.1016/j.bmcl.2024.129984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/17/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
The continued research of novel reversible inhibitors targeting monoamine oxidase (MAO) B remains crucial for effectively symptomatic treatment of Parkinson's disease. In this study we synthesized and evaluated a new series of 3-aryl benzo[g] and benzo[h] coumarin derivatives as MAO-B inhibitors. Compound A6 has been found to display the most potent inhibitory activity and selectivity against the MAO-B isoform (IC50 = 13 nM and SI = >7693.31 respectively). Inhibition mode of A6 on MAO-B was predicted as mixed reversible inhibition with a Ki value of 3.274 nM. Furthermore, in order to elaborate structure-activity relationships, the binding mode of A6 was investigated by molecular docking simulations.
Collapse
Affiliation(s)
- Furkan Meletli
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul, Turkey.
| | - Cihan Gündüz
- Department of Chemistry and Biochemistry, Pace University, New York, USA
| | | | - Azade Attar
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Istanbul, Turkey
| | - Serap Demir
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul, Turkey
| | - Ece İskit
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul, Turkey
| | - Özkan Danış
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul, Turkey.
| |
Collapse
|
8
|
Chen Y, Liu F, Pal S, Hu Q. Proteolysis-targeting drug delivery system (ProDDS): integrating targeted protein degradation concepts into formulation design. Chem Soc Rev 2024; 53:9582-9608. [PMID: 39171633 DOI: 10.1039/d4cs00411f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Targeted protein degradation (TPD) has emerged as a revolutionary paradigm in drug discovery and development, offering a promising avenue to tackle challenging therapeutic targets. Unlike traditional drug discovery approaches that focus on inhibiting protein function, TPD aims to eliminate proteins of interest (POIs) using modular chimeric structures. This is achieved through the utilization of proteolysis-targeting chimeras (PROTACs), which redirect POIs to E3 ubiquitin ligases, rendering them for degradation by the cellular ubiquitin-proteasome system (UPS). Additionally, other TPD technologies such as lysosome-targeting chimeras (LYTACs) and autophagy-based protein degraders facilitate the transportation of proteins to endo-lysosomal or autophagy-lysosomal pathways for degradation, respectively. Despite significant growth in preclinical TPD research, many chimeras fail to progress beyond this stage in the drug development. Various factors contribute to the limited success of TPD agents, including a significant hurdle of inadequate delivery to the target site. Integrating TPD into delivery platforms could surmount the challenges of in vivo applications of TPD strategies by reshaping their pharmacokinetics and pharmacodynamic profiles. These proteolysis-targeting drug delivery systems (ProDDSs) exhibit superior delivery performance, enhanced targetability, and reduced off-tissue side effects. In this review, we will survey the latest progress in TPD-inspired drug delivery systems, highlight the importance of introducing delivery ideas or technologies to the development of protein degraders, outline design principles of protein degrader-inspired delivery systems, discuss the current challenges, and provide an outlook on future opportunities in this field.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fengyuan Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Samira Pal
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
9
|
Blawitzki LC, Bartels N, Bonda L, Schmidt S, Monzel C, Hartmann L. Glycomacromolecules to Tailor Crowded and Heteromultivalent Glycocalyx Mimetics. Biomacromolecules 2024; 25:5979-5994. [PMID: 39122664 DOI: 10.1021/acs.biomac.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
The glycocalyx, a complex carbohydrate layer on cell surfaces, plays a crucial role in various biological processes. Understanding native glycocalyces' complexity is challenging due to their intricate and dynamic nature. Simplified mimics of native glycocalyces offer insights into glycocalyx functions but often lack molecular precision and fail to replicate key features of the natural analogues like molecular crowding and heteromultivalency. We introduce membrane-anchoring precision glycomacromolecules synthesized via solid-phase polymer synthesis (SPPoS) and thiol-induced, light-activated controlled radical polymerization (TIRP), enabling the construction of crowded and heteromultivalent glycocalyx mimetics with varying molecular weights and densities in giant unilamellar vesicles (GUVs). The incorporation and dynamics of glycomacromolecules in the GUVs are examined via microscopy and fluorescence correlation spectroscopy (FCS) and studies on lectin-carbohydrate-mediated adhesion of GUVs reveal inhibitory and promotional adhesion effects corresponding to different glycocalyx mimetic compositions, bridging the gap between synthetic models and native analogues.
Collapse
Affiliation(s)
- Luca-Cesare Blawitzki
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Department for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg i.Br., Germany
| | - Nina Bartels
- Department for Experimental Medical Physics, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Lorand Bonda
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Stephan Schmidt
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Department for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg i.Br., Germany
| | - Cornelia Monzel
- Department for Experimental Medical Physics, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Laura Hartmann
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Department for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg i.Br., Germany
| |
Collapse
|
10
|
Alcantara KP, Malabanan JWT, Vajragupta O, Rojsitthisak P, Rojsitthisak P. A promising strategy of surface-modified nanoparticles targeting CXCR4 for precision cancer therapy. J Drug Target 2024; 32:587-605. [PMID: 38634290 DOI: 10.1080/1061186x.2024.2345235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Nanoparticle (NP) functionalization with specific ligands enhances targeted cancer therapy and imaging by promoting receptor recognition and improving cellular uptake. This review focuses on recent research exploring the interaction between cancer cell-expressed chemokine receptor 4 (CXCR4) and ligand-conjugated NPs, utilising small molecules, peptides, and antibodies. Active NP targeting has shown improved tumour targeting and reduced toxicity, enabling precision therapy and diagnosis. However, challenges persist in the clinical translation of targeted NPs due to issues with biological response, tumour accumulation, and maintaining NP quality at an industrial scale. Biological and intratumoral barriers further hinder efficient NP accumulation in tumours, hampering translatability. To address these challenges, the academic community is refocusing efforts on understanding NP biological fate and establishing robust preclinical models. Future studies should investigate NP-body interactions, develop computational models, and identify optimal preclinical models. Establishing central NP research databases and fostering collaboration across disciplines is crucial to expediting clinical translation. Overcoming these hurdles will unlock the transformative potential of CXCR4-ligand-NP conjugates in revolutionising cancer treatment.
Collapse
Affiliation(s)
- Khent Primo Alcantara
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - John Wilfred T Malabanan
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
11
|
Xiao B, Ackun-Farmmer MA, Adjei-Sowah E, Liu Y, Chandrasiri I, Benoit DSW. Advancing Bone-Targeted Drug Delivery: Leveraging Biological Factors and Nanoparticle Designs to Improve Therapeutic Efficacy. ACS Biomater Sci Eng 2024; 10:2224-2234. [PMID: 38537162 DOI: 10.1021/acsbiomaterials.3c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Designing targeted drug delivery systems to effectively treat bone diseases ranging from osteoporosis to nonunion bone defects remains a significant challenge. Previously, nanoparticles (NPs) self-assembled from diblock copolymers of poly(styrene-alt-maleic anhydride)-b-poly(styrene) (PSMA-b-PS) delivering a Wnt agonist were shown to effectively target bone and improve healing via the introduction of a peptide with high affinity to tartrate-resistant acid phosphatase (TRAP), an enzyme deposited by the osteoclasts during bone remodeling. Despite these promising results, the underlying biological factors governing targeting and subsequent drug delivery system (DDS) design parameters have not been examined to enable the rational design to improve bone selectivity. Therefore, this work investigated the effect of target ligand density, the treatment window after injury, specificity of TRAP binding peptide (TBP), the extent of TRAP deposition, and underlying genetic factors (e.g., mouse strain differences) on TBP-NP targeting. Data based on in vitro binding studies and in vivo biodistribution analyses using a murine femoral fracture model suggest that TBP-NP-TRAP interactions and TBP-NP bone accumulation were ligand-density-dependent; in vitro, TRAP affinity was correlated with ligand density up to the maximum of 200,000 TBP ligands/NP, while NPs with 80,000 TBP ligands showed 2-fold increase in fracture accumulation at day 21 post injury compared with that of untargeted or scrambled controls. While fracture accumulation exhibited similar trends when injected at day 3 compared to that at day 21 postfracture, there were no significant differences observed between TBP-functionalized and control NPs, possibly due to saturation of TRAP by NPs at day 3. Leveraging a calcium-depletion diet, TRAP deposition and TBP-NP bone accumulation were positively correlated, confirming that TRAP-TBP binding leads to TBP-NP bone accumulation in vivo. Furthermore, TBP-NP exhibited similar bone accumulation in both C57BL/6 and BALB/c mouse strains versus control NPs, suggesting the broad applicability of TBP-NP regardless of the underlying genetic differences. These studies provide insight into TBP-NP design, mechanism, and therapeutic windows, which inform NP design and treatment strategies for fractures and other bone-associated diseases that leverage TRAP, such as marrow-related hematologic diseases.
Collapse
Affiliation(s)
- Baixue Xiao
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14623, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14623, United States
| | - Marian A Ackun-Farmmer
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14623, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14623, United States
| | - Emmanuela Adjei-Sowah
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14623, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14623, United States
| | - Yuxuan Liu
- Materials Science Program, University of Rochester, Rochester, New York 14623, United States
| | - Indika Chandrasiri
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14623, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14623, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14623, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14623, United States
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14623, United States
- Materials Science Program, University of Rochester, Rochester, New York 14623, United States
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
12
|
Hajiali H, Rotherham M, El Haj AJ. Remote Activation of Mechanotransduction via Integrin Alpha-5 via Aptamer-Conjugated Magnetic Nanoparticles Promotes Osteogenesis. Pharmaceutics 2023; 16:21. [PMID: 38258032 PMCID: PMC10821094 DOI: 10.3390/pharmaceutics16010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Bone regeneration and repair are complex processes in the adult skeleton, and current research has focused on understanding and controlling these processes. Magnetic nanoparticle (MNP)-based platforms have shown potential in tissue engineering and regenerative medicine through the use of magnetic nanomaterials combined with remotely applied dynamic fields. Previous studies have demonstrated the ability of MNP-induced mechanoactivation to trigger downstream signaling and promote new bone formation. In this study, we aimed to compare the osteogenic induction achieved using the mechanoreceptor targets, Piezo1, Fzd1, Fzd2, and integrin alpha-5. We compared the binding efficacy of different types of agonists (antibodies vs. aptamers) to these receptors. Moreover, we optimized the aptamer concentration (2.5, 5, and 10 μg/mg) for the selected receptor to determine the optimum concentration for promoting bone formation. Our data demonstrated that the mechanoactivation of integrins (CD49e) significantly upregulated the RUNX2 and LEF1 genes compared to other selected receptors. Furthermore, comparing the mechanoactivation of cells using MNPs conjugated with CD49e antibodies and aptamers revealed that MNP-aptamers significantly enhanced the upregulation of LEF1 genes. This suggests that aptamer-mediated mechanoactivation is a promising alternative to antibody-mediated activation. Finally, our results showed that the concentration of the aptamer loaded onto the MNPs strongly influenced the mechanoactivation of the cells. These findings provide valuable insights into the use of MNP platforms for bone regeneration and highlight the potential of aptamers in promoting signaling pathways related to bone formation. The novelty of our study lies in elucidating the unique advantages of aptamers in mediating mechanoactivation, presenting a promising avenue for advancing bone regenerative strategies.
Collapse
Affiliation(s)
- Hadi Hajiali
- Healthcare Technologies Institute, Institute of Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TH, UK
| | | | - Alicia J. El Haj
- Healthcare Technologies Institute, Institute of Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TH, UK
| |
Collapse
|
13
|
Bamezai S, Maresca di Serracapriola G, Morris F, Hildebrandt R, Amil MAS, Ledesma‐Amaro R. Protein engineering in the computational age: An open source framework for exploring mutational landscapes in silico. ENGINEERING BIOLOGY 2023; 7:29-38. [PMID: 38094241 PMCID: PMC10715127 DOI: 10.1049/enb2.12028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/04/2023] [Accepted: 10/25/2023] [Indexed: 10/16/2024] Open
Abstract
The field of protein engineering has seen tremendous expansion in the last decade, with researchers developing novel proteins with specialised functionalities for a range of uses, from drug discovery to industrial biotechnology. The emergence of computational tools and high-throughput screening technology has substantially sped up the process of protein engineering. However, much of the expertise required to engage in such projects is still concentrated in the hands of a few specialised individuals, including computational biologists and structural biochemists. The international Genetically Engineered Machine (iGEM) competition represents a platform for undergraduate students to innovate in synthetic biology. Yet, due to their complexity, arduous protein engineering projects are hindered by the resources available and strict timelines of the competition. The authors highlight how the 2022 iGEM Team, 'Sporadicate', set out to develop InFinity 1.0, a computational framework for increased accessibility to effective protein engineering, hoping to increase awareness and accessibility to novel in silico tools.
Collapse
Affiliation(s)
- Shirin Bamezai
- Department of Bioengineering and Imperial College Centre for Synthetic BiologyImperial College LondonLondonUK
| | | | - Freya Morris
- Department of Bioengineering and Imperial College Centre for Synthetic BiologyImperial College LondonLondonUK
| | | | | | - Rodrigo Ledesma‐Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic BiologyImperial College LondonLondonUK
| |
Collapse
|
14
|
Piao H, Xie W, Li S, Wang J, Liu C, Quan P, Fang L. Ternary Deep Eutectic Solvents System of Colchicine, 4-Hydroxyacetophenone, and Protocatechuic Acid and Characterization of Transdermal Enhancement Mechanism. AAPS PharmSciTech 2023; 24:229. [PMID: 37964102 DOI: 10.1208/s12249-023-02681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
This study aimed to prepare colchicine (CO), 4-hydroxyacetophenone (HA), and protocatechuic acid (CA) contained in transdermal rubber plasters into a more releasable and acrylate pressure-sensitive adhesive (PSA) to optimize traditional Touguling rubber plasters (TOU) with enhanced transdermal permeability by using deep eutectic solvents (DES) technology. We compared the difference in the release behavior of CO between rubber plaster and PSA, determined the composition of the patch through pharmacodynamic experiments, explored the transdermal behavior of the three components, optimized the patch formula factors, and improved the penetration of CO through the skin. We also focused on elucidating the interactions among the three components of DES and the intricate relationship between DES and the skin. The melting point of DES was determined using DSC, while FTIR, 13C NMR, and ATR-FTIR were used to explore the intricate molecular mechanisms underlying the formation of DES, as well as its enhancement of skin permeability. The results of this investigation confirmed the successful formation of DES, marked by a discernible melting point at 27.33°C. The optimized patch, formulated with a molar ratio of 1:1:1 for CO, HA, and CA, significantly enhanced skin permeability, with the measured skin permeation quantities being 32.26 ± 2.98 µg/cm2, 117.67 ± 7.73 µg/cm2, and 56.79 ± 1.30 µg/cm2 respectively. Remarkably, the optimized patch also demonstrated similar analgesic and anti-inflammatory effects compared to commercial diclofenac diethylamide patches in different pharmacodynamics studies. The formation of DES altered drug compatibility with skin lipids and increased retention, driven by the interaction among the three component molecules through hydrogen bonding, effectively shielding the skin-binding sites and enhancing component permeation. In summary, the study demonstrated that optimized DES patches can concurrently enhance the penetration of CO, HA, and CA, thereby providing a promising approach for the development of DES in transdermal drug delivery systems. The findings also shed light on the molecular mechanisms underlying the transdermal behavior of DES and offer insights for developing more effective traditional Chinese medicine transdermal drug delivery systems.
Collapse
Affiliation(s)
- Huiqing Piao
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Wanchen Xie
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Shiqi Li
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Jiaqi Wang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Peng Quan
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
15
|
Ieven T, Coorevits L, Vandebotermet M, Tuyls S, Vanneste H, Santy L, Wets D, Proost P, Frans G, Devolder D, Breynaert C, Bullens DMA, Schrijvers R. Endotyping of IgE-Mediated Polyethylene Glycol and/or Polysorbate 80 Allergy. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3146-3160. [PMID: 37380070 PMCID: PMC10291891 DOI: 10.1016/j.jaip.2023.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Polyethylene glycol (PEG) and polysorbate 80 (PS80) allergy preclude from SARS-CoV-2 vaccination. The mechanism(s) governing cross-reactivity and PEG molecular weight dependence remain unclear. OBJECTIVES To evaluate PEGylated lipid nanoparticle (LNP) vaccine (BNT162b2) tolerance and explore the mechanism of reactivity in PEG and/or PS80 allergic patients. METHODS PEG/PS80 dual- (n = 3), PEG mono- (n = 7), and PS80 mono-allergic patients (n = 2) were included. Tolerability of graded vaccine challenges was assessed. Basophil activation testing on whole blood (wb-BAT) or passively sensitized donor basophils (allo-BAT) was performed using PEG, PS80, BNT162b2, and PEGylated lipids (ALC-0159). Serum PEG-specific IgE was measured in patients (n = 10) and controls (n = 15). RESULTS Graded BNT162b2 challenge in dual- and PEG mono-allergic patients (n = 3/group) was well tolerated and induced anti-spike IgG seroconversion. PS80 mono-allergic patients (n = 2/2) tolerated single-dose BNT162b2 vaccination. Wb-BAT reactivity to PEG-containing antigens was observed in dual- (n = 3/3) and PEG mono- (n = 2/3), but absent in PS80 mono-allergic patients (n = 0/2). BNT162b2 elicited the highest in vitro reactivity. BNT162b2 reactivity was IgE mediated, complement independent, and inhibited in allo-BAT by preincubation with short PEG motifs, or detergent-induced LNP degradation. PEG-specific IgE was only detectable in dual-allergic (n = 3/3) and PEG mono-allergic (n = 1/6) serum. CONCLUSION PEG and PS80 cross-reactivity is determined by IgE recognizing short PEG motifs, whereas PS80 mono-allergy is PEG-independent. PS80 skin test positivity in PEG allergics was associated with a severe and persistent phenotype, higher serum PEG-specific IgE levels, and enhanced BAT reactivity. Spherical PEG exposure via LNP enhances BAT sensitivity through increased avidity. All PEG and/or PS80 excipient allergic patients can safely receive SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Toon Ieven
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Lieve Coorevits
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Martijn Vandebotermet
- Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium; Department of Pulmonology, AZ Groeninge Hospital, Kortrijk, Belgium
| | - Sebastiaan Tuyls
- Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium; Department of Pulmonology, GZA St-Augustinus Hospital, Wilrijk, Belgium
| | - Hélène Vanneste
- Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium; Department of Pulmonology, AZ Vesalius, Tongeren, Belgium
| | - Lisa Santy
- Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium; Department of Internal Medicine, Division of Pulmonology, St-Jozefskliniek, Izegem, Belgium
| | - Dries Wets
- Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Paul Proost
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Glynis Frans
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - David Devolder
- Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| | - Christine Breynaert
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Dominique M A Bullens
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Rik Schrijvers
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
16
|
Johnson SN, Brucks SD, Apley KD, Farrell MP, Berkland CJ. Multivalent Scaffolds to Promote B cell Tolerance. Mol Pharm 2023; 20:3741-3756. [PMID: 37410969 DOI: 10.1021/acs.molpharmaceut.3c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Autoimmune diseases are characterized by aberrant immune responses toward self-antigens. Current treatments lack specificity, promoting adverse effects by broadly suppressing the immune system. Therapies that specifically target the immune cells responsible for disease are a compelling strategy to mitigate adverse effects. Multivalent formats that display numerous binding epitopes off a single scaffold may enable selective immunomodulation by eliciting signals through pathways unique to the targeted immune cells. However, the architecture of multivalent immunotherapies can vary widely, and there is limited clinical data with which to evaluate their efficacy. Here, we set forth to review the architectural properties and functional mechanisms afforded by multivalent ligands and evaluate four multivalent scaffolds that address autoimmunity by altering B cell signaling pathways. First, we address both synthetic and natural polymer backbones functionalized with a variety of small molecule, peptide, and protein ligands for probing the effects of valency and costimulation. Then, we review nanoparticles composed entirely from immune signals which have been shown to be efficacious. Lastly, we outline multivalent liposomal nanoparticles capable of displaying high numbers of protein antigens. Taken together, these examples highlight the versatility and desirability of multivalent ligands for immunomodulation and illuminate strengths and weaknesses of multivalent scaffolds for treating autoimmunity.
Collapse
Affiliation(s)
- Stephanie N Johnson
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Spencer D Brucks
- Department of Chemistry, Harvey Mudd College, Claremont, California 91711, United States
| | - Kyle D Apley
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Mark P Farrell
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
17
|
Pineros-Rodriguez M, Richez L, Khadra A. Theoretical quantification of the polyvalent binding of nanoparticles coated with peptide-major histocompatibility complex to T cell receptor-nanoclusters. Math Biosci 2023; 358:108995. [PMID: 36924879 DOI: 10.1016/j.mbs.2023.108995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
Nanoparticles (NPs) coated with peptide-major histocompatibility complexes (pMHCs) can be used as a therapy to treat autoimmune diseases. They do so by inducing the differentiation and expansion of disease-suppressing T regulatory type 1 (Tr1) cells by binding to their T cell receptors (TCRs) expressed as TCR-nanoclusters (TCRnc). Their efficacy can be controlled by adjusting NP size and number of pMHCs coated on them (referred to as valence). The binding of these NPs to TCRnc on T cells is thus polyvalent and occurs at three levels: the TCR-pMHC, NP-TCRnc and T cell levels. In this study, we explore how this polyvalent interaction is manifested and examine if it can facilitate T cell activation downstream. This is done by developing a multiscale biophysical model that takes into account the three levels of interactions and the geometrical complexity of the binding. Using the model, we quantify several key parameters associated with this interaction analytically and numerically, including the insertion probability that specifies the number of remaining pMHC binding sites in the contact area between T cells and NPs, the dwell time of interaction between NPs and TCRnc, carrying capacity of TCRnc, the distribution of covered and bound TCRs, and cooperativity in the binding of pMHCs within the contact area. The model was fit to previously published dose-response curves of interferon-γ obtained experimentally by stimulating a population of T cells with increasing concentrations of NPs at various valences and NP sizes. Exploring the parameter space of the model revealed that for an appropriate choice of the contact area angle, the model can produce moderate jumps between dose-response curves at low valences. This suggests that the geometry and kinetics of NP binding to TCRnc can act in synergy to facilitate T cell activation.
Collapse
Affiliation(s)
| | - Louis Richez
- Quantitative Life Sciences Program, McGill University, Montreal, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, Canada.
| |
Collapse
|
18
|
Kim YE, Byun MY, Lee KY, Lee MS. Hydrothermal synthesis of mesoporous TiO2 using β-diketonate stabilizing agents for photocatalytic degradation of methyl violet 2B under visible light. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Host neuronal PRSS3 interacts with enterovirus A71 3A protein and its role in viral replication. Sci Rep 2022; 12:12846. [PMID: 35896602 PMCID: PMC9328647 DOI: 10.1038/s41598-022-17272-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022] Open
Abstract
Enterovirus A71 (EV-A71) causes hand, foot, and mouth disease associated with neurological complications in young children. Currently, there is no specific treatment for EV-A71 infection due to the inadequate information on viral biology and neuropathogenesis. Among enteroviruses, nonstructural 3A protein mediates the formation of replication organelles which plays a major role in viral RNA synthesis and assembly. Although enteroviral 3A proteins have been intensively studied, the data on EV-A71 3A, especially in neuronal cells, are still limited. In this study, PRSS3 (mesotrypsinogen, also known as brain trypsinogen) was identified as EV-A71 3A-interacting counterpart from the transfected human neuroblastoma SH-SY5Y cells by pull-down assay and liquid chromatography tandem mass spectrometry. It was confirmed that PRSS3 variant 3 derived from human SH-SY5Y cells had the physical interaction with EV-A71 3A. Importantly, the role of PRSS3 in EV-A71 replication was verified by overexpression and siRNA-mediated gene silencing approaches. The detailed mechanism of the PRSS3 involved in EV-A71 replication and neuropathogenesis warrants further experimental elucidation. In conclusion, this study has discovered a novel EV-A71 3A interacting protein that offers the opportunity to study the neuropathogenesis of the infection which paves the way for developing a specific and effective treatment for the disease.
Collapse
|
20
|
Zhang Y, Liu Y. A Digital Microfluidic Device Integrated with Electrochemical Impedance Spectroscopy for Cell-Based Immunoassay. BIOSENSORS 2022; 12:330. [PMID: 35624631 PMCID: PMC9138827 DOI: 10.3390/bios12050330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 05/31/2023]
Abstract
The dynamic immune response to various diseases and therapies has been considered a promising indicator of disease status and therapeutic effectiveness. For instance, the human peripheral blood mononuclear cell (PBMC), as a major player in the immune system, is an important index to indicate a patient's immune function. Therefore, establishing a simple yet sensitive tool that can frequently assess the immune system during the course of disease and treatment is of great importance. This study introduced an integrated system that includes an electrochemical impedance spectroscope (EIS)-based biosensor in a digital microfluidic (DMF) device, to quantify the PBMC abundance with minimally trained hands. Moreover, we exploited the unique droplet manipulation feature of the DMF platform and conducted a dynamic cell capture assay, which enhanced the detection signal by 2.4-fold. This integrated system was able to detect as few as 104 PBMCs per mL, presenting suitable sensitivity to quantify PBMCs. This integrated system is easy-to-operate and sensitive, and therefore holds great potential as a powerful tool to profile immune-mediated therapeutic responses in a timely manner, which can be further evolved as a point-of-care diagnostic device to conduct near-patient tests from blood samples.
Collapse
Affiliation(s)
- Yuqian Zhang
- Department of Surgery, Division of Surgical Research, Mayo Clinic, Rochester, MN 55905, USA;
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuguang Liu
- Department of Surgery, Division of Surgical Research, Mayo Clinic, Rochester, MN 55905, USA;
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
21
|
Dyrda-Terniuk T, Sugajski M, Pryshchepa O, Śliwiak J, Buszewska-Forajta M, Pomastowski P, Buszewski B. The Study of Protein-Cyclitol Interactions. Int J Mol Sci 2022; 23:2940. [PMID: 35328362 PMCID: PMC8952220 DOI: 10.3390/ijms23062940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 11/17/2022] Open
Abstract
Investigation of interactions between the target protein molecule and ligand allows for an understanding of the nature of the molecular recognition, functions, and biological activity of protein-ligand complexation. In the present work, non-specific interactions between a model protein (Bovine Serum Albumin) and four cyclitols were investigated. D-sorbitol and adonitol represent the group of linear-structure cyclitols, while shikimic acid and D-(-)-quinic acid have cyclic-structure molecules. Various analytical methods, including chromatographic analysis (HPLC-MS/MS), electrophoretic analysis (SDS-PAGE), spectroscopic analysis (spectrofluorimetry, Fourier transform infrared spectroscopy, and Raman spectroscopy), and isothermal titration calorimetry (ITC), were applied for the description of protein-cyclitol interactions. Additionally, computational calculations were performed to predict the possible binding places. Kinetic studies allowed us to clarify interaction mechanisms that may take place during BSA and cyclitol interaction. The results allow us, among other things, to evaluate the impact of the cyclitol's structure on the character of its interactions with the protein.
Collapse
Affiliation(s)
- Tetiana Dyrda-Terniuk
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (T.D.-T.); (M.S.); (O.P.); (B.B.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Mateusz Sugajski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (T.D.-T.); (M.S.); (O.P.); (B.B.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Oleksandra Pryshchepa
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (T.D.-T.); (M.S.); (O.P.); (B.B.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Joanna Śliwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland;
| | - Magdalena Buszewska-Forajta
- Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Paweł Pomastowski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (T.D.-T.); (M.S.); (O.P.); (B.B.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| |
Collapse
|
22
|
Critical parameters for design and development of multivalent nanoconstructs: recent trends. Drug Deliv Transl Res 2022; 12:2335-2358. [PMID: 35013982 PMCID: PMC8747862 DOI: 10.1007/s13346-021-01103-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/16/2022]
Abstract
A century ago, the groundbreaking concept of the magic bullet was given by Paul Ehrlich. Since then, this concept has been extensively explored in various forms to date. The concept of multivalency is among such advancements of the magic bullet concept. Biologically, the concept of multivalency plays a critical role in significantly huge numbers of biochemical interactions. This concept is the sole reason behind the higher affinity of biological molecules like viruses to more selectively target the host cell surface receptors. Multivalent nanoconstructs are a promising approach for drug delivery by the active targeting principle. Designing and developing effective and target-specific multivalent drug delivery nanoconstructs, on the other hand, remain a challenge. The underlying reason for this is a lack of understanding of the crucial interactions between ligands and cell surface receptors, as well as the design of nanoconstructs. This review highlights the need for a better theoretical understanding of the multivalent effect of what happens to the receptor-ligand complex after it has been established. Furthermore, the critical parameters for designing and developing robust multivalent systems have been emphasized. We have also discussed current advances in the design and development of multivalent nanoconstructs for drug delivery. We believe that a thorough knowledge of theoretical concepts and experimental methodologies may transform a brilliant idea into clinical translation.
Collapse
|
23
|
Tan ZC, Orcutt-Jahns BT, Meyer AS. A quantitative view of strategies to engineer cell-selective ligand binding. Integr Biol (Camb) 2021; 13:269-282. [PMID: 34931243 DOI: 10.1093/intbio/zyab019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/12/2022]
Abstract
A critical property of many therapies is their selective binding to target populations. Exceptional specificity can arise from high-affinity binding to surface targets expressed exclusively on target cell types. In many cases, however, therapeutic targets are only expressed at subtly different levels relative to off-target cells. More complex binding strategies have been developed to overcome this limitation, including multi-specific and multivalent molecules, creating a combinatorial explosion of design possibilities. Guiding strategies for developing cell-specific binding are critical to employ these tools. Here, we employ a uniquely general multivalent binding model to dissect multi-ligand and multi-receptor interactions. This model allows us to analyze and explore a series of mechanisms to engineer cell selectivity, including mixtures of molecules, affinity adjustments, valency changes, multi-specific molecules and ligand competition. Each of these strategies can optimize selectivity in distinct cases, leading to enhanced selectivity when employed together. The proposed model, therefore, provides a comprehensive toolkit for the model-driven design of selectively binding therapies.
Collapse
Affiliation(s)
- Zhixin Cyrillus Tan
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA 90024, USA
| | - Brian T Orcutt-Jahns
- Department of Bioengineering, University of California, Los Angeles, CA 90024, USA
| | - Aaron S Meyer
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA 90024, USA.,Department of Bioengineering, University of California, Los Angeles, CA 90024, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90024, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90024, USA
| |
Collapse
|
24
|
Tan ZC, Meyer AS. A general model of multivalent binding with ligands of heterotypic subunits and multiple surface receptors. Math Biosci 2021; 342:108714. [PMID: 34637774 PMCID: PMC8612982 DOI: 10.1016/j.mbs.2021.108714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/13/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Multivalent cell surface receptor binding is a ubiquitous biological phenomenon with functional and therapeutic significance. Predicting the amount of ligand binding for a cell remains an important question in computational biology as it can provide great insight into cell-to-cell communication and rational drug design toward specific targets. In this study, we extend a mechanistic, two-step multivalent binding model. This model predicts the behavior of a mixture of different multivalent ligand complexes binding to cells expressing various types of receptors. It accounts for the combinatorially large number of interactions between multiple ligands and receptors, optionally allowing a mixture of complexes with different valencies and complexes that contain heterogeneous ligand units. We derive the macroscopic predictions and demonstrate how this model enables large-scale predictions on mixture binding and the binding space of a ligand. This model thus provides an elegant and computationally efficient framework for analyzing multivalent binding.
Collapse
Affiliation(s)
- Zhixin Cyrillus Tan
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, California, 90095, United States
| | - Aaron S Meyer
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, California, 90095, United States; Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, 90095, United States; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, 90095, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California, 90095, United States.
| |
Collapse
|
25
|
Lee D, Green A, Wu H, Kwon JS. Hybrid
PDE‐kMC
modeling approach to simulate multivalent lectin‐glycan binding process. AIChE J 2021. [DOI: 10.1002/aic.17453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dongheon Lee
- Department of Biomedical Engineering Duke University Durham North Carolina USA
| | - Aaron Green
- Artie McFerrin Department of Chemical Engineering Texas A&M University Texas USA
| | - Hung‐Jen Wu
- Artie McFerrin Department of Chemical Engineering Texas A&M University Texas USA
| | - Joseph Sang‐Il Kwon
- Artie McFerrin Department of Chemical Engineering Texas A&M University Texas USA
| |
Collapse
|
26
|
Tesfaye A, Rodríguez‐Nogales A, Benedé S, Fernández TD, Paris JL, Rodriguez MJ, Jiménez‐Sánchez IM, Bogas G, Mayorga C, Torres MJ, Montañez MI. Nanoarchitectures for efficient IgE cross-linking on effector cells to study amoxicillin allergy. Allergy 2021; 76:3183-3193. [PMID: 33784407 PMCID: PMC8518075 DOI: 10.1111/all.14834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/28/2021] [Accepted: 03/14/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Amoxicillin (AX) is nowadays the β-lactam that more frequently induces immediate allergic reactions. Nevertheless, diagnosis of AX allergy is occasionally challenging due to risky in vivo tests and non-optimal sensitivity of in vitro tests. AX requires protein haptenation to form multivalent conjugates with increased size to be immunogenic. Knowing adduct structural features for promoting effector cell activation would help to improve in vitro tests. We aimed to identify the optimal structural requirement in specific cellular degranulation to AX using well-precised nanoarchitectures of different lengths. METHOD We constructed eight Bidendron Antigens (BiAns) based on polyethylene glycol (PEG) linkers of different lengths (600-12,000 Da), end-coupled with polyamidoamine dendrons that were terminally multi-functionalized with amoxicilloyl (AXO). In vitro IgE recognition was studied by competitive radioallergosorbent test (RAST) and antibody-nanoarchitecture complexes by transmission electron microscopy (TEM). Their allergenic activity was evaluated using bone marrow-derived mast cells (MCs) passively sensitized with mouse monoclonal IgE against AX and humanized RBL-2H3 cells sensitized with polyclonal antibodies from sera of AX-allergic patients. RESULTS All BiAns were recognized by AX-sIgE. Dose-dependent activation responses were observed in both cellular assays, only with longer structures, containing spacers in the range of PEG 6000-12,000 Da. Consistently, greater proportion of immunocomplexes and number of antibodies per complex for longer BiAns were visualized by TEM. CONCLUSIONS BiAns are valuable platforms to study the mechanism of effector cell activation. These nanomolecular tools have demonstrated the importance of the adduct size to promote effector cell activation in AX allergy, which will impact for improving in vitro diagnostics.
Collapse
Affiliation(s)
- Amene Tesfaye
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Alba Rodríguez‐Nogales
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Sara Benedé
- Instituto de Investigación en Ciencias de la Alimentación (CIALCSIC‐UAM)MadridSpain
| | - Tahía D. Fernández
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Departamento de Biología Celular Genética y FisiologíaFacultad de CienciasUniversidad de MálagaMálagaSpain
| | - Juan L. Paris
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Maria J. Rodriguez
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Isabel M. Jiménez‐Sánchez
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Gador Bogas
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain
| | - Cristobalina Mayorga
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain
| | - María J. Torres
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain
- Departamento de MedicinaFacultad de MedicinaUniversidad de MálagaMálagaSpain
| | - María I. Montañez
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| |
Collapse
|
27
|
Identification of a Neutralizing Epitope on TOSV Gn Glycoprotein. Vaccines (Basel) 2021; 9:vaccines9080924. [PMID: 34452049 PMCID: PMC8402642 DOI: 10.3390/vaccines9080924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022] Open
Abstract
Emerging and re-emerging viral infections have been an important public health problem in recent years. We focused our attention on Toscana virus (TOSV), an emergent neurotropic negative-strand RNA virus of the Phenuiviridae family. The mechanisms of protection against phlebovirus natural infection are not known; however, it is supposed that a virus-neutralizing antibody response against viral glycoproteins would be useful to block the first stages of infection. By using an improved memory B cell immortalization method, we obtained a panel of human mAbs which reacted with TOSV antigens. We identified three epitopes of TOSV Gn glycoproteins by neutralizing mAbs using synthetic peptide arrays on membrane support (SPOT synthesis). These epitopes, separated in primary structure, might be exposed near one another as a conformational epitope in their native structure. In vivo studies were conducted to evaluate the humoral response elicited in mice immunized with the identified peptides. The results underlined the hypothesis that the first two peptides located in the NH2 terminus could form a conformational epitope, while the third, located near the transmembrane sequence in the carboxyl terminus, was necessary to strengthen neutralizing activity. Our results emphasize the importance of identifying neutralizing epitopes shared among the various phleboviruses, which could be exploited for the development of a potential epitope-based diagnostic assay or a polyvalent protective vaccine against different phleboviruses.
Collapse
|
28
|
Borkar VT. A novel ternary approach to quantitatively assess the reactivity of nitroaniline regioisomers by investigation of rapid iodination kinetics using hydrodynamic voltammetry, reduction propensities from polarography, and binding affinities from molecular docking simulations. INT J CHEM KINET 2021. [DOI: 10.1002/kin.21525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vitthal T. Borkar
- Nowrosjee Wadia College, Chemistry Research Centre Pune Maharashtra 411001 India
| |
Collapse
|
29
|
Mello MG, Westerhausen MT, Singh P, Doble PA, Wanagat J, Bishop DP. Assessing the reproducibility of labelled antibody binding in quantitative multiplexed immuno-mass spectrometry imaging. Anal Bioanal Chem 2021; 413:5509-5516. [PMID: 34304281 DOI: 10.1007/s00216-021-03536-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 11/27/2022]
Abstract
Immuno-mass spectrometry imaging (iMSI) uses laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to determine the spatial expression of biomolecules in tissue sections following immunolabelling with antibodies conjugated to a metal reporter. As with all immunolabelling techniques, the binding efficiency of multiplexed staining can be affected by a number of factors including epitope blocking and other forms of steric hindrance. To date, the effects on the binding of metal-conjugated antibodies to their epitopes in a multiplexed analysis have yet to be quantitatively explored by iMSI. Here we describe a protocol to investigate the effects of multiplexing on reproducible binding using the muscle proteins, dystrophin, sarcospan, and myosin as a model, with antibodies conjugated with Maxpar® reagents before histological application to murine quadriceps sections using standard immunolabelling protocols and imaging with LA-ICP-MS. The antibodies were each individually applied to eight sections, and multiplexed to another eight sections. The average concentrations of the lanthanide analytes were determined, before statistical analyses found there was no significant difference between the individual and multiplexed application of the antibodies. These analyses provide a framework for ensuring reproducibility of antibody binding during multiplexed iMSI, which will allow quantitative exploration of protein-protein interactions and provide a greater understanding of fundamental biological processes during healthy and diseased states.
Collapse
Affiliation(s)
- Monique G Mello
- Atomic Medicine Initiative, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW, 2007, Australia
| | - Mika T Westerhausen
- Atomic Medicine Initiative, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW, 2007, Australia
| | - Prashina Singh
- Atomic Medicine Initiative, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW, 2007, Australia
| | - Philip A Doble
- Atomic Medicine Initiative, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW, 2007, Australia
| | - Jonathan Wanagat
- Division of Geriatrics, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| | - David P Bishop
- Atomic Medicine Initiative, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
30
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [PMID: 33734247 DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Stimulus-cleavable nanoscale drug delivery systems are receiving significant attention owing to their capability of achieving exquisite control over drug release via the exposure to specific stimuli. Central to the construction of such systems is the integration of cleavable linkers showing susceptibility to one stimulus or several stimuli with drugs, prodrugs or fluorogenic probes on the one hand, and nanocarriers on the other hand. This review summarises recent advances in stimulus-cleavable linkers from various research areas and the corresponding mechanisms of linker cleavage and biological applications. The feasibility of extending their applications to the majority of nanoscale drug carriers including nanomaterials, polymers and antibodies are further highlighted and discussed. This review also provides general design guidelines to incorporate stimulus-cleavable linkers into nanocarrier-based drug delivery systems, which will hopefully spark new ideas and applications.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia and Department of Materials Science & Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
31
|
Wang DD, Zhang XN. Advances in receptor modulation strategies for flexible, efficient, and enhanced antitumor efficacy. J Control Release 2021; 333:418-447. [PMID: 33812919 DOI: 10.1016/j.jconrel.2021.03.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022]
Abstract
Tumor-sensitivity, effective transport, and precise delivery to tumor cells of nano drug delivery systems (NDDs) have been great challenges to cancer therapy in recent years. The conventional targeting approach involves actively installing the corresponding ligand on the nanocarriers, which is prone to recognize the antigen blasts overexpressed on the surface of tumor cells. However, there are some probable limitations for the active tumor-targeting systems in vivo as follows: a. the limited ligand amount of modifications; b. possible steric hindrance, which was likely to prevent ligand-receptor interaction during the delivery process. c. the restrained antigen saturation highly expressed on the cell membrane, will definitely decrease the specificity and often lead to "off-target" effects of NDDs; and d. water insolubility of nanocarriers due to excess of ligands modification. Obviously, any regulation of receptors on surface of tumor cells exerted an important influence on the delivery of targeting systems. Herein, receptor upregulation was mostly desired for enhancing targeted therapy from the cellular level. This technique with the amplification of receptors has the potential to enhance tumor sensitivity towards corresponding ligand-modified nanoparticles, and thereby increasing the effective therapeutic concentration as well as improving the efficacy of chemotherapy. The enhancement of positively expressed receptors on tumor cells and receptor-dependent therapeutic agents or NDDs with an assembled "self-promoting" effect contributes to increasing cell sensitivity to NPs, and will provide a basic platform for clinical therapeutic practice. In this review, we highlight the significance of modulating various receptors on different types of cancer cells for drug delivery and therapeutic benefits.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Xue-Nong Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
32
|
Sun Y, Davis E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:746. [PMID: 33809633 PMCID: PMC8000772 DOI: 10.3390/nano11030746] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
To achieve the promise of stimuli-responsive drug delivery systems for the treatment of cancer, they should (1) avoid premature clearance; (2) accumulate in tumors and undergo endocytosis by cancer cells; and (3) exhibit appropriate stimuli-responsive release of the payload. It is challenging to address all of these requirements simultaneously. However, the numerous proof-of-concept studies addressing one or more of these requirements reported every year have dramatically expanded the toolbox available for the design of drug delivery systems. This review highlights recent advances in the targeting and stimuli-responsiveness of drug delivery systems. It begins with a discussion of nanocarrier types and an overview of the factors influencing nanocarrier biodistribution. On-demand release strategies and their application to each type of nanocarrier are reviewed, including both endogenous and exogenous stimuli. Recent developments in stimuli-responsive targeting strategies are also discussed. The remaining challenges and prospective solutions in the field are discussed throughout the review, which is intended to assist researchers in overcoming interdisciplinary knowledge barriers and increase the speed of development. This review presents a nanocarrier-based drug delivery systems toolbox that enables the application of techniques across platforms and inspires researchers with interdisciplinary information to boost the development of multifunctional therapeutic nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
| | - Edward Davis
- Materials Engineering Program, Mechanical Engineering Department, Auburn University, 101 Wilmore Drive, Auburn, AL 36830, USA;
| |
Collapse
|
33
|
Integrated strategy for the separation of endotoxins from biofluids. LPS capture on newly synthesized protein. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Hilt E, Sun YS, McCloskey TW, Eck S, McIntosh T, Grugan KD, Lanham DF, Standifer N, Green C, Litwin V, Stewart JJ. Best practices for optimization and validation of flow cytometry-based receptor occupancy assays. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 100:63-71. [PMID: 33259706 DOI: 10.1002/cyto.b.21970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/16/2020] [Accepted: 10/15/2020] [Indexed: 01/15/2023]
Abstract
In the development of therapeutic compounds that bind cell surface molecules, it is critical to demonstrate the extent to which the drug engages its target. For cell-associated targets, flow cytometry is well-suited to monitor drug-to-target engagement through receptor occupancy assays (ROA). The technology allows for the identification of specific cell subsets within heterogeneous populations and the detection of nonabundant cellular antigens. There are numerous challenges in the design, development, and implementation of robust ROA. Among the most difficult challenges are situations where there is receptor modulation or when the target-antigen is expressed at low levels. When the therapeutic molecules are bi-specific and bind multiple targets, these challenges are increased. This manuscript discusses the challenges and proposes best practices for designing, optimizing, and validating ROA.
Collapse
Affiliation(s)
- Ed Hilt
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | | | | | - Steve Eck
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | | | - Katharine D Grugan
- Biologics Development Sciences, Janssen BioTherapeutics, Janssen R&D, LLC, Spring House, Pennsylvania, USA
| | | | - Nathan Standifer
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, South San Francisco, California, USA
| | - Cherie Green
- Development Sciences, Genentech, Inc., A Member of the Roche Group, South San Francisco, California, USA
| | | | | |
Collapse
|
35
|
Patel S, Hussain T. Synergism between Angiotensin receptors ligands: Role of Angiotensin-(1-7) in modulating AT 2 R agonist response on nitric oxide in kidney cells. Pharmacol Res Perspect 2020; 8:e00667. [PMID: 33197136 PMCID: PMC7668194 DOI: 10.1002/prp2.667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/04/2023] Open
Abstract
Angiotensin-(1-7), an endogenous agonist for the MasR, has been shown to interact with ang-II AT1 R and AT2 R. Earlier we showed a physical and functional interaction between MasR and AT2 R in response to their respective agonists ang-(1-7) and C21. Moreover, ang-(1-7) is cardio-protective via AT1 R and alters ang-II function. Such complex nature of ang-(1-7) function is not clearly understood, particularly in relation to its functional interaction with these receptors. We tested how ang-(1-7) affects AT2 R function by utilizing HK-2 cells. The HK-2 cells were treated with a wide range of concentrations of angiotensin receptor agonists. The generation of NO• in response to agonists was determined as a readout and subjected to Bliss definition (δ score) to assess the nature of functional interaction between these receptors. Preincubation with ang-(1-7) followed by incubation with endogenous AT1 R/AT2 R agonist ang-II (δ = 162) or selective AT2 R agonist C21 (δ = 304) synergized NO• formation. The synergism was also observed when the order of incubation with ang-(1-7)/C21 was reversed (δ = 484), but not when the cells were simultaneously incubated with a mixture of ang-(1-7) and C21 (δ = 76). The synergism with nonpeptidic MasR agonist AVE0991 followed by C21 (δ = 45) was minimal. Ligand binding experiment suggested the binding of ang-(1-7) with these three receptors. However, the synergism observed with ang-(1-7) and ang-II/C21 was sensitive to the antagonists of AT2 R (PD123319) and AT1 R (candesartan), but not MasR (A779). Ang-(1-7) at lower concentrations synergies the AT2 R function in an AT1 R-dependent but MasR-independent manner. This phenomenon may have a physiological significance.
Collapse
Affiliation(s)
- Sanket Patel
- Department of Pharmacological and Pharmaceutical SciencesCollege of PharmacyUniversity of HoustonHoustonTXUSA
| | - Tahir Hussain
- Department of Pharmacological and Pharmaceutical SciencesCollege of PharmacyUniversity of HoustonHoustonTXUSA
| |
Collapse
|
36
|
Borkar VT. A quantitative assessment of the reactivity of the regioisomers of xylenol by investigation of rapid chlorination kinetics in aqueous solution employing hydrodynamic voltammetry complemented by molecular docking with acetylcholinesterase: A two‐pronged approach. INT J CHEM KINET 2020. [DOI: 10.1002/kin.21460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vitthal T. Borkar
- Department of Chemistry Nowrosjee Wadia College Research Center Pune 411001 India
| |
Collapse
|
37
|
Bernhard S, Goodman CK, Norton EG, Alme DG, Lawrence CM, Cloninger MJ. Time-Dependent Fluorescence Spectroscopy to Quantify Complex Binding Interactions. ACS OMEGA 2020; 5:29017-29024. [PMID: 33225133 PMCID: PMC7675582 DOI: 10.1021/acsomega.0c03416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/23/2020] [Indexed: 05/13/2023]
Abstract
Measuring the binding affinity for proteins that can aggregate or undergo complex binding motifs presents a variety of challenges. In this study, fluorescence lifetime measurements using intrinsic tryptophan fluorescence were performed to address these challenges and to quantify the binding of a series of carbohydrates and carbohydrate-functionalized dendrimers to recombinant human galectin-3. Collectively, galectins represent an important target for study; in particular, galectin-3 plays a variety of roles in cancer biology. Galectin-3 binding dissociation constants (K D) were quantified: lactoside (73 ± 4 μM), methyllactoside (54 ± 10 μM), and lactoside-functionalized G(2), G(4), and G(6)-PAMAM dendrimers (120 ± 58 μM, 100 ± 45 μM, and 130 ± 25 μM, respectively). The chosen examples showcase the widespread utility of time-dependent fluorescence spectroscopy for determining binding constants, including interactions for which standard methods have significant limitations.
Collapse
Affiliation(s)
- Samuel
P. Bernhard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718, United States
| | - Candace K. Goodman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718, United States
| | - Erienne G. Norton
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718, United States
| | - Daniel G. Alme
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718, United States
| | - C. Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718, United States
| | - Mary J. Cloninger
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718, United States
| |
Collapse
|
38
|
Jacobi F, Wilms D, Seiler T, Queckbörner T, Tabatabai M, Hartmann L, Schmidt S. Effect of PEGylation on Receptor Anchoring and Steric Shielding at Interfaces: An Adhesion and Surface Plasmon Resonance Study with Precision Polymers. Biomacromolecules 2020; 21:4850-4856. [PMID: 32986404 DOI: 10.1021/acs.biomac.0c01060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This study aims at quantifying the steric shielding effect of multivalent glycoconjugates targeting pathogens by blocking their carbohydrate binding sites. Specifically, PEGylated and non-PEGylated glycoconjugates are studied as inhibitors of lectins and bacterial adhesins evaluating the steric repulsion effect of the nonbinding PEG chains. We use the soft colloidal probe (SCP) adhesion assay to monitor the change in the adhesion energy of mannose (Man)-decorated hydrogel particles on a layer of concanavalin A (ConA) in the presence of sequence-defined multivalent glycoconjugate inhibitors over time. The results show that PEGylated glycoconjugates achieve a stronger adhesion inhibition when compared to non-PEGylated glycoconjugates although the dissociation constants (KD) of the PEGgylated compounds to ConA were larger. These results appear in line with Escherichia coli adhesion inhibition assays showing a small increase of bacteria detachment by PEGgylated glycoconjugates compared to non-PEGylated compounds. This suggests that an increase of sterical shielding via PEGylation may help reduce the invasiveness of pathogens even after they have adhered. Adhesion studies based on electrostatic interactions using amine-linked PEG of varying molecular weight confirm that such sterical shielding effect is not limited to carbohydrate-mediated adhesion.
Collapse
Affiliation(s)
- Fawad Jacobi
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Dusseldorf, Germany
| | - Dimitri Wilms
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Dusseldorf, Germany
| | - Theresa Seiler
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Dusseldorf, Germany
| | - Torben Queckbörner
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Dusseldorf, Germany
| | - Monir Tabatabai
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Dusseldorf, Germany
| | - Laura Hartmann
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Dusseldorf, Germany
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Dusseldorf, Germany
| |
Collapse
|
39
|
Yeast Spt6 Reads Multiple Phosphorylation Patterns of RNA Polymerase II C-Terminal Domain In Vitro. J Mol Biol 2020; 432:4092-4107. [PMID: 32439331 PMCID: PMC7327521 DOI: 10.1016/j.jmb.2020.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022]
Abstract
Transcription elongation factor Spt6 associates with RNA polymerase II (RNAP II) via a tandem SH2 (tSH2) domain. The mechanism and significance of the RNAP II–Spt6 interaction is still unclear. Recently, it was proposed that Spt6-tSH2 is recruited via a newly described phosphorylated linker between the Rpb1 core and its C-terminal domain (CTD). Here, we report binding studies with isolated tSH2 of Spt6 (Spt6-tSH2) and Spt6 lacking the first unstructured 297 residues (Spt6ΔN) with a minimal CTD substrate of two repetitive heptads phosphorylated at different sites. The data demonstrate that Spt6 also binds the phosphorylated CTD, a site that was originally proposed as a recognition epitope. We also show that an extended CTD substrate harboring 13 repetitive heptads of the tyrosine-phosphorylated CTD binds Spt6-tSH2 and Spt6ΔN with tighter affinity than the minimal CTD substrate. The enhanced binding is achieved by avidity originating from multiple phosphorylation marks present in the CTD. Interestingly, we found that the steric effects of additional domains in the Spt6ΔN construct partially obscure the binding of the tSH2 domain to the multivalent ligand. We show that Spt6-tSH2 binds various phosphorylation patterns in the CTD and found that the studied combinations of phospho-CTD marks (1,2; 1,5; 2,4; and 2,7) all facilitate the interaction of CTD with Spt6. Our structural studies reveal a plasticity of the tSH2 binding pockets that enables the accommodation of CTDs with phosphorylation marks in different registers. High-affinity Pol II CTD-binding by Spt6 is achieved by avidity originating from multiple phosphorylation marks presented in the CTD, suggesting how phosphorylation levels fine-tune the CTD interactome. Structure of RNAP II CTD bound with tandem SH2 domain of Spt6 reveals how phosphorylated CTD is recognized. Isolated tSH2 of Spt6 binds the extended CTD substrate with tighter affinity than nearly full-length Spt6, suggesting that the steric effects of additional domains in Spt6 influence the binding of the tSH2 domain to the multivalent CTD ligand.
Collapse
|
40
|
Bar L, Dejeu J, Lartia R, Bano F, Richter RP, Coche-Guérente L, Boturyn D. Impact of Antigen Density on Recognition by Monoclonal Antibodies. Anal Chem 2020; 92:5396-5403. [DOI: 10.1021/acs.analchem.0c00092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Laure Bar
- University of Grenoble-Alpes, CNRS, DCM UMR 5250, 570 rue de la chimie, CS 40700, 38058 Grenoble Cedex 9, France
| | - Jérôme Dejeu
- University of Grenoble-Alpes, CNRS, DCM UMR 5250, 570 rue de la chimie, CS 40700, 38058 Grenoble Cedex 9, France
| | - Rémy Lartia
- University of Grenoble-Alpes, CNRS, DCM UMR 5250, 570 rue de la chimie, CS 40700, 38058 Grenoble Cedex 9, France
| | - Fouzia Bano
- University of Leeds, School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Center for Structural Molecular Biology, and Bragg Centre for Materials Research, Leeds LS2 9JT, United Kingdom
| | - Ralf P. Richter
- University of Leeds, School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Center for Structural Molecular Biology, and Bragg Centre for Materials Research, Leeds LS2 9JT, United Kingdom
| | - Liliane Coche-Guérente
- University of Grenoble-Alpes, CNRS, DCM UMR 5250, 570 rue de la chimie, CS 40700, 38058 Grenoble Cedex 9, France
| | - Didier Boturyn
- University of Grenoble-Alpes, CNRS, DCM UMR 5250, 570 rue de la chimie, CS 40700, 38058 Grenoble Cedex 9, France
| |
Collapse
|
41
|
Wang J, Min J, Eghtesadi SA, Kane RS, Chilkoti A. Quantitative Study of the Interaction of Multivalent Ligand-Modified Nanoparticles with Breast Cancer Cells with Tunable Receptor Density. ACS NANO 2020; 14:372-383. [PMID: 31899613 DOI: 10.1021/acsnano.9b05689] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Multivalent nanoparticles that target a cell surface receptor that is overexpressed by cancer cells are a promising delivery system for cancer therapy. However, the impact of the receptor density and nanoparticle ligand valency on the cell uptake has not been studied in a system where both variables can be systematically tuned over a wide range. To address this lacuna, we report cell-uptake studies on a genetically engineered breast cancer cell line with tunable ErbB2 expression by a polypeptide micelle with tunable ligand valency. We examined the uptake of ErbB2-targeting micelles at 5 ligand densities and 11 receptor densities. We identified a matching pattern between receptors and ligands in which a receptor-to-ligand density ratio of 0.7-4.5 and a minimum of ∼1.6 bonds are required to initiate receptor-mediated endocytosis. Lower and upper limits of receptor density in the cell-uptake profile suggested a standard by which to categorize breast cancer patients as ErbB2-low, ErbB2-medium, and ErbB2-high, with each group expected to respond differently to multivalent therapeutic nanoparticles. At ErbB2-medium and ErbB2-high levels, increasing the ligand valency to 40-valent ErbB2-targeting peptides for a 20 nm radius nanoparticle accelerated the cell uptake, suggesting that the use of nanoparticles with high ligand valency for drug delivery will greatly benefit patients in these two groups. This study advances our understanding of how to rationally optimize nanotechnology for targeted drug delivery.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Junseon Min
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Seyed Ali Eghtesadi
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Ravi S Kane
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
42
|
Multivalent HER2-binding polymer conjugates facilitate rapid endocytosis and enhance intracellular drug delivery. J Control Release 2019; 319:285-299. [PMID: 31899273 DOI: 10.1016/j.jconrel.2019.12.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/18/2019] [Accepted: 12/28/2019] [Indexed: 01/26/2023]
Abstract
Incorporating targeting moieties that recognize cancer-specific cellular markers can enhance specificity of anticancer nanomedicines. The HER2 receptor is overexpressed on numerous cancers, making it an attractive target. However, unlike many receptors that trigger endocytosis upon ligand binding, HER2 is an internalization-resistant receptor. As most chemotherapeutics act on intracellular targets, this presents a significant challenge for exploiting HER2 overexpression for improved tumor killing. However, hyper-crosslinking of HER2 has been shown to override the receptor's native behavior and trigger internalization. This research co-opts this crosslinking-mediated internalization for efficient intracellular delivery of an anticancer nanomedicine - specifically a HPMA copolymer-based drug delivery system. This polymeric carrier was conjugated with a small (7 kDa) HER2-binding affibody peptide to produce a panel of polymer-affibody conjugates with valences from 2 to 10 peptides per polymer chain. The effect of valence on surface binding and uptake was evaluated separately. All conjugates demonstrated similar (nanomolar) binding affinity towards HER2-positive ovarian carcinoma cells, but higher-valence conjugates induced more rapid endocytosis, with over 90% of the surface-bound conjugate internalized within 4 h. Furthermore, this enhancement was sensitive to crowding - high surface loading reduced conjugates' ability to crosslink receptors. Collectively, this evidence strongly supports a crosslinking-mediated endocytosis mechanism. Lead candidates from this panel achieved high intracellular delivery even at picomolar treatment concentrations; untargeted HPMA copolymers required 1000-fold higher treatment concentrations to achieve similar levels of intracellular accumulation. This increased intracellular delivery also translated to a more potent nanomedicine against HER2-positive cells; incorporation of the chemotherapeutic paclitaxel into this targeted carrier enhanced cytotoxicity over untargeted polymer-drug conjugate.
Collapse
|
43
|
Raghunath G, Dyer RB. Kinetics of Histidine-Tagged Protein Association to Nickel-Decorated Liposome Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12550-12561. [PMID: 31466440 PMCID: PMC6759406 DOI: 10.1021/acs.langmuir.9b01700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nickel-chelating lipids offer a convenient platform for reversible immobilization of histidine-tagged proteins to liposome surfaces. This interaction recently found utility as a model system for studying membrane remodeling triggered by protein crowding. Despite its wide array of utility, the molecular details of transient protein association to the lipid surfaces decorated with such chelator lipids remains poorly understood. In this study, we explore the kinetics of protein-liposome association across a wide concentration range using stopped-flow fluorescence. The fluorescence of histidine-tagged protein containing an intrinsic fluorophore (superfolder green fluorescent protein, SfGFP) was quenched upon binding to Ni-NTA-modified liposomes containing the quencher Dabsyl-PE lipids. Stopped-flow fluorescence reveals a complex, multiexponential binding behavior with a fast (kobs ∼ 10-20 s-1) phase and slower (kobs < 4 s-1) phase. Interestingly, the observed rates for the slower phase increase initially under low concentrations but start decreasing once a critical concentration is reached. Despite differences in the binding time scales, we observe that the trend of decreasing rates is reproducible irrespective of the chelator lipid doping level, protein surface charge, or lipid composition. Consideration of the protein footprint and membrane surface area occupancy leads us to conclude that the multiphasic binding behavior is reflective of protein binding via two distinct binding conformations. We propose that preliminary steps in protein association involve binding of a sterically occlusive side-on conformation followed by reorganization that leads to an end-on conformation with increased packing density. These results are important for the improvement of histidine-tag-based immobilization strategies and offer mechanistic insight into intermediates preceding membrane bending driven by protein crowding.
Collapse
|
44
|
Hall D. On the nature of the optimal form of the holdase-type chaperone stress response. FEBS Lett 2019; 594:43-66. [PMID: 31432502 DOI: 10.1002/1873-3468.13580] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 11/08/2022]
Abstract
The holdase paradigm of chaperone action involves preferential binding by the chaperone to the unfolded protein state, thereby preventing it from either, associating with other unstable proteins (to form large dysfunctional aggregates), or being degraded by the proteolytic machinery of the cell/organism. In this paper, we examine the necessary physical constraints imposed upon the holdase chaperone response in a cell-like environment and use these limitations to comment on the likely nature of the optimal form of chaperone response in vivo.
Collapse
Affiliation(s)
- Damien Hall
- Laboratory of Biochemistry and Genetics, NIDDK, NIH, Bethesda, MD, USA.,Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
45
|
Shen J, Hu L, Dai J, Chen B, Zhong G, Zhou X. Mutations in pheromone-binding protein3 contribute to pheromone response variations in Plutella xylostella (L.) (Lepidoptera: Plutellidae). PEST MANAGEMENT SCIENCE 2019; 75:2034-2042. [PMID: 30624018 DOI: 10.1002/ps.5325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/23/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Diamondback moth Plutella xylostella (L.) (Lepidoptera: Plutellidae) is one of the most important crucifer pests. Commercial sex attractants have been developed to monitor and control P. xylostella. However, some studies have demonstrated a variety of pheromone responses of P. xylostella in different locations of the world. Soluble pheromone-binding proteins (PBPs), as a subfamily of odorant-binding proteins (OBPs), could selectively bind and transport pheromones across aqueous sensillar lymph to the surface of olfactory receptor neurons. It is worthy to study whether the mutation of PxylPBPs is one of the reasons for the different responses of sex attractors in different regions. RESULTS In this study, P. xylostella males were collected from seven Chinese provinces, including Hainan, Guangdong, Yunnan, Fujian, Hunan, Zhejiang, and Hebei. PxylPBP1, PxylPBP2, and PxylPBP3 were cloned, and 3, 6, and 32 types of mutation pattern were identified, respectively. These mutation patterns were distributed in each province with different frequency. The results of fluorescence displacement binding assay and in silico simulation revealed that the three mutant PxylPBP3 were more sensitive to Z11-16:Ald than the reference protein (ACI28451). CONCLUSION This result implied that mutation of PxylPBP3 may have contributed to regional differences in pheromone responses of P. xylostella. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianmei Shen
- College of Agriculture and Biology, ZhongKai University of Agriculture and Engineering, Guangzhou, China
| | - Liming Hu
- College of Agriculture and Biology, ZhongKai University of Agriculture and Engineering, Guangzhou, China
| | - Jianqing Dai
- Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Binghan Chen
- College of Agriculture and Biology, ZhongKai University of Agriculture and Engineering, Guangzhou, China
| | - Guohua Zhong
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xinhua Zhou
- College of Chemistry and Chemical Engineering, ZhongKai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
46
|
Lopes P, Costa-Rama E, Beirão I, Nouws HPA, Santos-Silva A, Delerue-Matos C. Disposable electrochemical immunosensor for analysis of cystatin C, a CKD biomarker. Talanta 2019; 201:211-216. [PMID: 31122413 DOI: 10.1016/j.talanta.2019.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 11/16/2022]
Abstract
Specific monitoring of cystatin C (CysC) levels in biological fluids is critical for diagnosis, treatment and mechanistic understanding of a spectrum of diseases, particularly chronic kidney disease (CKD). Despite evidences that CysC correlates with the high risk and/or progression of CKD, its use in clinical practice is still scarce. In this context, we report the development of a simple and sensitive immunosensor for the detection of CysC. The biosensor combines the technology of cost-effective screen-printed electrodes with the high specificity of a sandwich immunoassay. Optimized conditions showed that the sensor operates in a linear range between 10 and 100 ng mL-1, with a detection limit and a sensitivity of 6.0 ng mL-1 and 6.4 ± 0.3 μA ng mL-1 cm-2, respectively. Moreover, the sensor provided precise results (RSD ≤ 6.2%) and the quantification of CysC in CKD serum samples revealed to be in agreement with the values obtained by a particle-enhanced nephelometric immunoassay. In this light, the proposed immunosensor qualifies for clinical application, constituting a step forward in the development of fast, sensitive and cost-effective diagnostic tools that can improve the current medical care settings of CKD patients.
Collapse
Affiliation(s)
- Paula Lopes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico, Rua Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal.
| | - Estefanía Costa-Rama
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico, Rua Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal
| | - Idalina Beirão
- Centro Hospitalar Universitário do Porto, Largo Professor Abel Salazar, 2, 4099-001, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Henri P A Nouws
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico, Rua Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal
| | - Alice Santos-Silva
- REQUIMTE/UCIBIO, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-213, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico, Rua Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal.
| |
Collapse
|
47
|
Hu Q, Sun W, Wang J, Ruan H, Zhang X, Ye Y, Shen S, Wang C, Lu W, Cheng K, Dotti G, Zeidner JF, Wang J, Gu Z. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nat Biomed Eng 2018; 2:831-840. [PMID: 31015615 DOI: 10.1038/s41551-018-0310-2] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 09/07/2018] [Indexed: 12/12/2022]
Abstract
Patients with acute myeloid leukaemia who relapse following therapy have few treatment options and face poor outcomes. Immune checkpoint inhibition, for example, by antibody-mediated programmed death-1 (PD-1) blockade, is a potent therapeutic modality that improves treatment outcomes in acute myeloid leukaemia. Here, we show that systemically delivered blood platelets decorated with anti-PD-1 antibodies (aPD-1) and conjugated to haematopoietic stem cells (HSCs) suppress the growth and recurrence of leukaemia in mice. Following intravenous injection into mice bearing leukaemia cells, the HSC-platelet-aPD-1 conjugate migrated to the bone marrow and locally released aPD-1, significantly enhancing anti-leukaemia immune responses, and increasing the number of active T cells, production of cytokines and chemokines, and survival time of the mice. This cellular conjugate also promoted resistance to re-challenge with leukaemia cells. Taking advantage of the homing capability of HSCs and in situ activation of platelets for the enhanced delivery of a checkpoint inhibitor, this cellular combination-mediated drug delivery strategy can significantly augment the therapeutic efficacy of checkpoint blockade.
Collapse
Affiliation(s)
- Quanyin Hu
- Department of Bioengineering, University of California, Los Angeles, CA, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Wujin Sun
- Department of Bioengineering, University of California, Los Angeles, CA, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Jinqiang Wang
- Department of Bioengineering, University of California, Los Angeles, CA, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Huitong Ruan
- Department of Bioengineering, University of California, Los Angeles, CA, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA.,Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Xudong Zhang
- Department of Bioengineering, University of California, Los Angeles, CA, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Yanqi Ye
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Song Shen
- National Engineering Research Center for Tissue Restoration and Reconstruction, and School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, China
| | - Chao Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Ke Cheng
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joshua F Zeidner
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, and School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA, USA. .,California NanoSystems Institute, University of California, Los Angeles, CA, USA. .,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA. .,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA. .,Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, USA.
| |
Collapse
|
48
|
Johnson ME. Modeling the Self-Assembly of Protein Complexes through a Rigid-Body Rotational Reaction-Diffusion Algorithm. J Phys Chem B 2018; 122:11771-11783. [PMID: 30256109 DOI: 10.1021/acs.jpcb.8b08339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The reaction-diffusion equations provide a powerful framework for modeling nonequilibrium, cell-scale dynamics over the long time scales that are inaccessible by traditional molecular modeling approaches. Single-particle reaction-diffusion offers the highest resolution technique for tracking such dynamics, but it has not been applied to the study of protein self-assembly due to its treatment of reactive species as single-point particles. Here, we develop a relatively simple but accurate approach for building rigid structure and rotation into single-particle reaction-diffusion methods, providing a rate-based method for studying protein self-assembly. Our simplifying assumption is that reactive collisions can be evaluated purely on the basis of the separations between the sites, and not their orientations. The challenge of evaluating reaction probabilities can then be performed using well-known equations based on translational diffusion in both 3D and 2D, by employing an effective diffusion constant we derive here. We show how our approach reproduces both the kinetics of association, which is altered by rotational diffusion, and the equilibrium of reversible association, which is not. Importantly, the macroscopic kinetics of association can be predicted on the basis of the microscopic parameters of our structurally resolved model, allowing for critical comparisons with theory and other rate-based simulations. We demonstrate this method for efficient, rate-based simulations of self-assembly of clathrin trimers, highlighting how formation of regular lattices impacts the kinetics of association.
Collapse
Affiliation(s)
- Margaret E Johnson
- TC Jenkins Department of Biophysics , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| |
Collapse
|
49
|
Robinett RA, Guan N, Lux A, Biburger M, Nimmerjahn F, Meyer AS. Dissecting FcγR Regulation through a Multivalent Binding Model. Cell Syst 2018; 7:41-48.e5. [PMID: 29960887 DOI: 10.1016/j.cels.2018.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/31/2018] [Accepted: 05/22/2018] [Indexed: 10/28/2022]
Abstract
Many immune receptors transduce activation across the plasma membrane through their clustering. With Fcγ receptors (FcγRs), this clustering is driven by binding to antibodies of differing affinities that are in turn bound to multivalent antigen. As a consequence of this activation mechanism, accounting for and rationally manipulating immunoglobulin (Ig)G effector function is complicated by, among other factors, differing affinities between FcγR species and changes in the valency of antigen binding. In this study, we show that a model of multivalent receptor-ligand binding can effectively account for the contribution of IgG-FcγR affinity and immune complex valency. This model in turn enables us to make specific predictions about the effect of immune complexes of defined composition. In total, these results enable both rational immune complex design for a desired IgG effector function and the deconvolution of effector function by immune complexes.
Collapse
Affiliation(s)
- Ryan A Robinett
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ning Guan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anja Lux
- Division of Genetics, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Markus Biburger
- Division of Genetics, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Aaron S Meyer
- Department of Bioengineering, Jonsson Comprehensive Cancer Center, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
50
|
Sotnikov DV, Zherdev AV, Dzantiev BB. Mathematical Modeling of Bioassays. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523069 DOI: 10.1134/s0006297917130119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The high affinity and specificity of biological receptors determine the demand for and the intensive development of analytical systems based on use of these receptors. Therefore, theoretical concepts of the mechanisms of these systems, quantitative parameters of their reactions, and relationships between their characteristics and ligand-receptor interactions have become extremely important. Many mathematical models describing different bioassay formats have been proposed. However, there is almost no information on the comparative characteristics of these models, their assumptions, and predictive insights. In this review we suggested a set of criteria to classify various bioassays and reviewed classical and contemporary publications on these bioassays with special emphasis on immunochemical analysis systems as the most common and in-demand techniques. The possibilities of analytical and numerical modeling are discussed, as well as estimations of the minimum concentrations that may be detected in bioassays and recommendations for the choice of assay conditions.
Collapse
Affiliation(s)
- D V Sotnikov
- Bach Institute of Biochemistry, Research Center for Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|