1
|
Petty A, Howes O, Eyles D. Animal Models of Relevance to the Schizophrenia Prodrome. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:22-32. [PMID: 36712558 PMCID: PMC9874082 DOI: 10.1016/j.bpsgos.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 02/01/2023] Open
Abstract
Patients with schizophrenia often undergo a prodromal phase prior to diagnosis. Given the absence of significant therapeutic improvements, attention has recently shifted to the possibility of intervention during this early stage to delay or diminish symptom severity or even prevent onset. Unfortunately, the 20 or so trials of intervention to date have not been successful in either preventing onset or improving long-term outcomes in subjects who are at risk of developing schizophrenia. One reason may be that the biological pathways an effective intervention must target are not static. The prodromal phase typically occurs during late adolescence, a period during which a number of brain circuits and structures are still maturing. We propose that developing a deeper understanding of which circuits/processes and brain structures are still maturing at this time and which processes drive the transition to schizophrenia will take us a step closer to developing better prophylactic interventions. Fortunately, such knowledge is now emerging from clinical studies, complemented by work in animal models. Our task here is to describe what would constitute an appropriate animal model to study and to potentially intervene in such processes. Such a model would allow invasive analysis of the cellular and molecular substrates of the progressive neurobiology that defines the schizophrenia prodrome and hopefully offer valuable insights into potential prophylactic targets.
Collapse
Affiliation(s)
- Alice Petty
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | | | - Darryl Eyles
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.,Queensland Centre for Mental Health Research, Wacol, Queensland, Australia
| |
Collapse
|
2
|
Darwish B, Chamaa F, Al-Chaer ED, Saadé NE, Abou-Kheir W. Intranigral Injection of Endotoxin Suppresses Proliferation of Hippocampal Progenitor Cells. Front Neurosci 2019; 13:687. [PMID: 31333405 PMCID: PMC6616074 DOI: 10.3389/fnins.2019.00687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/17/2019] [Indexed: 11/13/2022] Open
Abstract
Brain inflammation can result in functional disorders observed in several neurodegenerative diseases and that can be also associated with reduced neurogenesis. In this study, we investigate the effect of mild inflammation, induced by unilateral injection of Endotoxin (ET) in the substantia nigra (SN)/Ventral Tegmental Area, on the proliferation and survival of stem/progenitor cells in the dentate gyrus (DG) of the hippocampus. Adult female rats received unilateral injection of ET (2 μg/2 μl saline) or sterile saline (2 μl) in the right SN followed by 5′-Bromo-2′-deoxyuridine (BrdU) injections (66 mg/kg/injection). Intranigral ET injection induced bilateral decrease in the number of newly born BrdU positive cells in the DG. This effect was paralleled by a significant decrease in the exploratory behavior of rats, as assessed by the Y-maze novel arm exploration task. ET also induced a transient decrease in the number of tyrosine hydroxylase-positive cells in the injected SN, impaired motor behavior, and caused microglial activation in the SN. This study provides an experimental simulation of the remote effects of moderate and reversible neuroinflammation resulting in impaired communication between midbrain dopaminergic neurons and the hippocampus.
Collapse
Affiliation(s)
- Batoul Darwish
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Chamaa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Elie D Al-Chaer
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nayef E Saadé
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
3
|
Molochnikov I, Cohen D. Hemispheric differences in the mesostriatal dopaminergic system. Front Syst Neurosci 2014; 8:110. [PMID: 24966817 PMCID: PMC4052732 DOI: 10.3389/fnsys.2014.00110] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 05/24/2014] [Indexed: 11/20/2022] Open
Abstract
The mesostriatal dopaminergic system, which comprises the mesolimbic and the nigrostriatal pathways, plays a major role in neural processing underlying motor and limbic functions. Multiple reports suggest that these processes are influenced by hemispheric differences in striatal dopamine (DA) levels, DA turnover and its receptor activity. Here, we review studies which measured the concentration of DA and its metabolites to examine the relationship between DA imbalance and animal behavior under different conditions. Specifically, we assess evidence in support of endogenous, inter-hemispheric DA imbalance; determine whether the known anatomy provides a suitable substrate for this imbalance; examine the relationship between DA imbalance and animal behavior; and characterize the symmetry of the observed inter-hemispheric laterality in the nigrostriatal and the mesolimbic DA systems. We conclude that many studies provide supporting evidence for the occurrence of experience-dependent endogenous DA imbalance which is controlled by a dedicated regulatory/compensatory mechanism. Additionally, it seems that the link between DA imbalance and animal behavior is better characterized in the nigrostriatal than in the mesolimbic system. Nonetheless, a variety of brain and behavioral manipulations demonstrate that the nigrostriatal system displays symmetrical laterality whereas the mesolimbic system displays asymmetrical laterality which supports hemispheric specialization in rodents. The reciprocity of the relationship between DA imbalance and animal behavior (i.e., the capacity of animal training to alter DA imbalance for prolonged time periods) remains controversial, however, if confirmed, it may provide a valuable non-invasive therapeutic means for treating abnormal DA imbalance.
Collapse
Affiliation(s)
- Ilana Molochnikov
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| | - Dana Cohen
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| |
Collapse
|
4
|
Chronic hyperdopaminergic activity of schizophrenia is associated with increased ΔFosB levels and cdk-5 signaling in the nucleus accumbens. Neuroscience 2012; 222:124-35. [DOI: 10.1016/j.neuroscience.2012.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 11/18/2022]
|
5
|
Uehara T, Sumiyoshi T, Seo T, Itoh H, Matsuoka T, Suzuki M, Kurachi M. Long-term effects of neonatal MK-801 treatment on prepulse inhibition in young adult rats. Psychopharmacology (Berl) 2009; 206:623-30. [PMID: 19370341 DOI: 10.1007/s00213-009-1527-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 03/20/2009] [Indexed: 10/20/2022]
Abstract
RATIONALE Blockade of N-methyl-D-asparate (NMDA) receptors has been shown to produce some of the abnormal behaviors related to symptoms of schizophrenia in rodents and human. Neonatal treatment of rats with non-competitive NMDA antagonists has been shown to induce behavioral abnormality in a later period. OBJECTIVES The aim of this study was to determine whether brief disruption of NMDA receptor function during a critical stage of development is sufficient to produce sensorimotor-gating deficits in the late adolescence or early adulthood in the rat. METHODS Male pups received the NMDA receptor blocker MK-801 (0.13 or 0.20 mg/kg), or an equal volume of saline on postnatal day (PD) 7 through 10. The animals were tested twice for prepulse inhibition (PPI) and locomotor activity in pre- (PD 35-38) and post- (PD 56-59) puberty. RESULTS Neonatal exposure to both doses MK-801 disrupted PPI in the adolescence and early adulthood. Low-dose MK-801 elicited long-term effects on startle amplitudes, whereas high-dose MK-801 did not. Neither dose of MK-801 showed a significant effect on spontaneous locomotor activity, whereas the high dose attenuated rearing. CONCLUSIONS The results of this study suggest neonatal exposure to MK-801 disrupted sensorimotor gating in the adolescence and early adulthood stages. These findings indicate that rats transiently exposed to NMDA blockers in neonatal periods are useful for the study of the pathophysiology and treatment of schizophrenia.
Collapse
Affiliation(s)
- Takashi Uehara
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, Japan.
| | | | | | | | | | | | | |
Collapse
|
6
|
Meyer F, Peterschmitt Y, Louilot A. Postnatal functional inactivation of the entorhinal cortex or ventral subiculum has different consequences for latent inhibition-related striatal dopaminergic responses in adult rats. Eur J Neurosci 2009; 29:2035-48. [DOI: 10.1111/j.1460-9568.2009.06755.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Kalus P, Falkai P, Heinz A. [Structural and functional brain changes in schizophrenic disorders. Indications of early neuronal developmental disturbances?]. DER NERVENARZT 2008; 79:275-87. [PMID: 18264816 DOI: 10.1007/s00115-008-2414-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The neurodevelopmental hypothesis of schizophrenia, which was established 30 years ago and discussed controversially for a long time, postulates that pre- and perinatally acting cerebral noxae cause disturbances of corticogenesis in the developing neuronal fibre systems which are essential for later onset of the disease. During recent years the cerebral alterations of schizophrenic patients could be further characterized as area-, layer-, and cell type-specific changes in temporolimbic and frontal regions leading to specific abnormalities of intrinsic and extrinsic connectivity. Animal models allowed for realistic imitations of these structural lesions and for elucidating their functional consequences concerning transmitter systems and behaviour. With modern neuroimaging techniques microstructural changes and alterations in cerebral activation can be exactly demonstrated and related to the specific psychopathologic features of schizophrenia.
Collapse
Affiliation(s)
- P Kalus
- Psychiatrische Universitätsklinik der Charité im St. Hedwig Krankenhaus, Grosse Hamburger Strasse 5-11, 10115 Berlin.
| | | | | |
Collapse
|
8
|
Harich S, Koch M, Schwabe K. Effects of repeated dizocilpine treatment on adult rat behavior after neonatal lesions of the entorhinal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:816-27. [PMID: 18221827 DOI: 10.1016/j.pnpbp.2007.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 12/03/2007] [Accepted: 12/16/2007] [Indexed: 12/16/2022]
Abstract
Disturbed cortical development is implicated in some psychiatric diseases, e.g. in schizophrenia. Additionally, N-methyl-d-aspartate (NMDA) receptor antagonists like ketamine or phencyclidine have been reported to exacerbate schizophrenic symptoms. We here investigated the effects of neonatal entorhinal cortex (EC) lesions on adult rat behavior before and after repeated high-dose treatment with the NMDA antagonist dizocilpine, in order to combine these etiopathogenetical factors in an animal model. Bilateral neonatal (postnatal day 7) lesions were induced by microinjection of ibotenic acid (1.3 microg/0.2 microl PBS) into the EC. Naive and sham-lesioned rats served as controls. Adult rats were tested for behavioral flexibility on a cross maze, for locomotor activity in the open field and for sensorimotor gating using prepulse inhibition (PPI) of startle. Rats were then treated with dizocilpine (0.5 mg/kg b.i.d. for 7 days) and retested 1 week after withdrawal using the same behavioral tests as before. PPI was additionally measured after acute low-dose challenge with dizocilpine (0.15 mg/kg). EC lesions reduced behavioral flexibility as shown by impaired switching between spatial (allocentric) and non-spatial (egocentric) maze strategies. High-dose dizocilpine treatment disturbed switching to the egocentric strategy in all groups, which added to the effect of EC lesions. Neonatal EC lesions did not alter locomotor activity or PPI, but high-dose dizocilpine treatment reduced motor activity of all groups without changing PPI. The combination of neonatal EC lesions and adult dizocilpine treatment does not lead to super-additive effects on behavior. However, both treatments may serve to model certain aspects of psychiatric symptoms.
Collapse
Affiliation(s)
- Silke Harich
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, P.O. Box 33 04 40, 28334 Bremen, Germany.
| | | | | |
Collapse
|
9
|
Peterschmitt Y, Meyer F, Louilot A. Neonatal functional blockade of the entorhinal cortex results in disruption of accumbal dopaminergic responses observed in latent inhibition paradigm in adult rats. Eur J Neurosci 2007; 25:2504-13. [PMID: 17445246 DOI: 10.1111/j.1460-9568.2007.05503.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Latent inhibition (LI) has been found to be disrupted in non-treated patients with schizophrenia. Dopaminergic (DAergic) dysfunctioning is generally acknowledged to occur in schizophrenia. Various abnormalities in the entorhinal cortex (ENT) have been described in patients with schizophrenia. Numerous data also suggest that schizophrenia has a neurodevelopmental origin. The present study was designed to test the hypothesis that reversible inactivation of the ENT during neonatal development results in disrupted DA responses characteristic of LI in adult rats. Tetrodotoxin (TTX) was microinjected locally in the left ENT at postnatal day 8 (PND8). DA variations were recorded in the dorsomedial shell and core parts of the nucleus accumbens (Nacc) using in vivo voltammetry in freely-moving grown-up rats in a LI paradigm. In the first session the animals were pre-exposed (PE) to the conditional stimulus (banana odour) alone. In the second they were aversively conditioned to banana odour. In the third (test) session the following results were obtained in PE animals subjected to temporary inactivation of the ENT at PND8: (1) aversive behaviour was observed in TTX-PE conditioned animals; (2) DA variations in the dorsomedial shell and core parts of the Nacc were similar in TTX-PE and non-pre-exposed conditioned rats. These findings strongly suggest that neonatal disconnection of the ENT disrupts LI in adult animals. They may further our understanding of the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Y Peterschmitt
- INSERM U 666 and Institute of Physiology, Louis Pasteur University, Faculty of Medicine, 11 rue Humann, 67085 Strasbourg CEDEX, France
| | | | | |
Collapse
|
10
|
Uehara T, Sumiyoshi T, Matsuoka T, Itoh H, Kurachi M. Effect of prefrontal cortex inactivation on behavioral and neurochemical abnormalities in rats with excitotoxic lesions of the entorhinal cortex. Synapse 2007; 61:391-400. [PMID: 17372984 DOI: 10.1002/syn.20383] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Morphological studies report reductions in the volume of medial temporal lobe structures and the prefrontal cortex in subjects with schizophrenia. The present study was performed to clarify the role of prefrontal-temporo-limbic system in the manifestation of psychosis, using entorhinal cortical lesion rats as a vulnerability animal model. Quinolinic acid (lesion group) or phosphate buffer (sham group) was infused into the left entorhinal cortex (EC) of male Wistar rats. On the 28th postoperative day, methamphetamine (MAP; 1 mg/kg, i.p.)-induced dopamine (DA) release in the nucleus accumbens (NAC) and the basolateral amygdala (BLA), as well as locomotor activity and prepulse inhibition (PPI), was measured following microinfusion of lidocaine or the cerebrospinal fluid (CSF) into the medial prefrontal cortex (mPFC). Lesions of the EC resulted in enhancement of MAP-induced DA release in the NAC and BLA. Further analysis revealed that the enhancement by EC lesions of MAP-induce DA release in the NAC was particularly evident in the lidocaine-infused rats. EC lesions also enhanced MAP-induced locomotor activity, especially in the lidocaine-treated animals. By contrast, infusion of lidocaine into mPFC attenuated MAP-induced DA release in the BLA, irrespective of the lesion status. Both EC lesions and lidocaine infusion disrupted PPI. These results indicate that inactivation of the mPFC, as well as structural abnormalities in the EC, leads to dysregulation of DAergic neurotransmissions in the limbic regions. The implications of these findings in relation to the neural basis for psychosis vulnerability are discussed.
Collapse
Affiliation(s)
- Takashi Uehara
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Science, Toyama, Japan.
| | | | | | | | | |
Collapse
|
11
|
Brummelte S, Teuchert-Noodt G. Postnatal development of dopamine innervation in the amygdala and the entorhinal cortex of the gerbil (Meriones unguiculatus). Brain Res 2006; 1125:9-16. [PMID: 17112487 DOI: 10.1016/j.brainres.2006.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 10/03/2006] [Accepted: 10/03/2006] [Indexed: 11/16/2022]
Abstract
Dopamine (DA) projections from the mesencephalon are believed to play a critical role during development and are essential for cognitive and behavioral functions. Since the postnatal maturation patterns of these projections differ substantially between various brain regions, cortical, limbic or subcortical areas might exhibit varying vulnerabilities concerning developmental disorders. The dopaminergic afferents of the rodent prefrontal cortex show an extremely prolonged maturation which is very sensitive to epigenetic challenges. However, less is known about the development of the DA innervation of caudal limbic areas. Therefore, immunohistochemically stained DA fibers were quantitatively examined in the basolateral (BLA) and central amygdaloid nucleus (CE) and the ventrolateral entorhinal cortex (EC) of the Mongolian gerbil (Meriones unguiculatus). Animals of different ages, ranging from juvenile [postnatal day (PD) 14, 20, 30)] to adolescent (PD70), adult (6, 18 months) and aged (24 months), were analyzed. Results show a significant increase of fibers between PD14 and PD20 in the BLA and lateral part of the CE, with a trend for a subsequent decline in fiber densities until PD30. The EC and medial part of the CE showed no developmental changes. Interestingly, none of the investigated areas showed significant reductions of DA fibers during aging.
Collapse
Affiliation(s)
- Susanne Brummelte
- Department of Neuroanatomy, Faculty of Biology, University of Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany.
| | | |
Collapse
|
12
|
Seeman P, Schwarz J, Chen JF, Szechtman H, Perreault M, McKnight GS, Roder JC, Quirion R, Boksa P, Srivastava LK, Yanai K, Weinshenker D, Sumiyoshi T. Psychosis pathways converge via D2high dopamine receptors. Synapse 2006; 60:319-46. [PMID: 16786561 DOI: 10.1002/syn.20303] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The objective of this review is to identify a target or biomarker of altered neurochemical sensitivity that is common to the many animal models of human psychoses associated with street drugs, brain injury, steroid use, birth injury, and gene alterations. Psychosis in humans can be caused by amphetamine, phencyclidine, steroids, ethanol, and brain lesions such as hippocampal, cortical, and entorhinal lesions. Strikingly, all of these drugs and lesions in rats lead to dopamine supersensitivity and increase the high-affinity states of dopamine D2 receptors, or D2High, by 200-400% in striata. Similar supersensitivity and D2High elevations occur in rats born by Caesarian section and in rats treated with corticosterone or antipsychotics such as reserpine, risperidone, haloperidol, olanzapine, quetiapine, and clozapine, with the latter two inducing elevated D2High states less than that caused by haloperidol or olanzapine. Mice born with gene knockouts of some possible schizophrenia susceptibility genes are dopamine supersensitive, and their striata reveal markedly elevated D2High states; suchgenes include dopamine-beta-hydroxylase, dopamine D4 receptors, G protein receptor kinase 6, tyrosine hydroxylase, catechol-O-methyltransferase, the trace amine-1 receptor, regulator of G protein signaling RGS9, and the RIIbeta form of cAMP-dependent protein kinase (PKA). Striata from mice that are not dopamine supersensitive did not reveal elevated D2High states; these include mice with knockouts of adenosine A2A receptors, glycogen synthase kinase GSK3beta, metabotropic glutamate receptor 5, dopamine D1 or D3 receptors, histamine H1, H2, or H3 receptors, and rats treated with ketanserin or aD1 antagonist. The evidence suggests that there are multiple pathways that convergetoelevate the D2High state in brain regions and that this elevation may elicit psychosis. This proposition is supported by the dopamine supersensitivity that is a common feature of schizophrenia and that also occurs in many types of genetically altered, drug-altered, and lesion-altered animals. Dopamine supersensitivity, in turn, correlates with D2High states. The finding that all antipsychotics, traditional and recent ones, act on D2High dopamine receptors further supports the proposition.
Collapse
Affiliation(s)
- Philip Seeman
- Department of Pharmacology, University of Toronto, and Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5S 1A8.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Risterucci C, Jeanneau K, Schöppenthau S, Bielser T, Künnecke B, von Kienlin M, Moreau JL. Functional magnetic resonance imaging reveals similar brain activity changes in two different animal models of schizophrenia. Psychopharmacology (Berl) 2005; 180:724-34. [PMID: 15726331 DOI: 10.1007/s00213-005-2204-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 02/06/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE AND OBJECTIVES In schizophrenia research, most of the functional imaging studies have been performed in psychotic patients, but little is known about brain areas involved in the expression of psychotic-like symptoms in animal models. The objective of this study was to visualize and compare brain activity abnormalities in a neurodevelopmental and a pharmacological animal model of schizophrenia. METHODS Blood perfusion of specific brain areas, taken as indirect measure of brain activity, was investigated in adult rats following either neonatal ventral hippocampal lesion or acute administration of phencyclidine. Quantitative perfusion magnetic resonance imaging was performed on five frontal brain slices using the continuous arterial spin labeling technique. The mean perfusion was calculated in several brain structures, which were identified on anatomical images. RESULTS Lesioned animals exhibiting deficits in prepulse inhibition of the startle reflex showed a significant blood perfusion increase in the nucleus accumbens, basolateral amygdala, ventral pallidum, entorhinal-piriform cortex, orbital prefrontal cortex, and in the bed nucleus of the stria terminalis, and a decrease of perfusion in the temporal cortex. Similar effects were seen following acute phencyclidine administration in naïve animals. CONCLUSION Our data point out specific cortical and subcortical brain areas involved in the development of psychotic-like symptoms in two different animal models of schizophrenia. The observed brain activity abnormalities are reminiscent of classical neuroimaging findings described in schizophrenic patients.
Collapse
Affiliation(s)
- Céline Risterucci
- CNS Research, F. Hoffmann-La Roche Ltd., PRBD-N, Bldg 72/129, 4070, Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
14
|
Sumiyoshi T, Seeman P, Uehara T, Itoh H, Tsunoda M, Kurachi M. Increased proportion of high-affinity dopamine D2 receptors in rats with excitotoxic damage of the entorhinal cortex, an animal model of schizophrenia. ACTA ACUST UNITED AC 2005; 140:116-9. [PMID: 16054726 DOI: 10.1016/j.molbrainres.2005.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 06/22/2005] [Accepted: 07/06/2005] [Indexed: 10/25/2022]
Abstract
Excitotoxic lesions of the left entorhinal cortex (EC) cause dopamine supersensitivity. In order to determine if these lesions selectively alter the high-affinity state of dopamine D2 receptors (D2(High)), these high-affinity states were measured by competition between dopamine and [3H]domperidone in striata from lesioned rats and sham-operated animals. The proportion of D2(High) sites was significantly elevated by 200% in the EC-lesioned rats while that of the D1(High) sites, measured by dopamine/[3H]SCH23390 competition, was unaltered. These results provide a biochemical basis for behavioral supersensitivity in rats with EC lesions.
Collapse
Affiliation(s)
- Tomiki Sumiyoshi
- Department of Neuropsychiatry, Toyama Medical and Pharmaceutical University School of Medicine, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Suzuki M, Zhou SY, Takahashi T, Hagino H, Kawasaki Y, Niu L, Matsui M, Seto H, Kurachi M. Differential contributions of prefrontal and temporolimbic pathology to mechanisms of psychosis. ACTA ACUST UNITED AC 2005; 128:2109-22. [PMID: 15930048 DOI: 10.1093/brain/awh554] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Common abnormalities within the schizophrenia spectrum may be essential for the pathogenesis of schizophrenia, but additional pathological changes may be required for the development of full-blown schizophrenia. Clarifying the neurobiological similarities and differences between established schizophrenia and a milder form of schizophrenia spectrum disorder would potentially discriminate the pathophysiological mechanisms underlying the core features of the schizophrenia spectrum from those associated with overt psychosis. High-resolution MRIs were acquired from 25 patients with schizotypal disorder, 53 patients with schizophrenia and 59 healthy volunteers matched for age, gender, handedness and parental education. Volumetric measurements of the medial temporal structures and the prefrontal cortex subcomponents were performed using consecutive 1-mm thick coronal slices. Parcellation of the prefrontal cortex into subcomponents was performed according to the intrinsic anatomical landmarks of the frontal sulci/gyri. Compared with the controls, the bilateral volumes of the amygdala and the hippocampus were reduced comparably in the schizotypal and schizophrenia patients. The parahippocampal gyrus volume did not differ significantly between diagnostic groups. Total prefrontal grey matter volumes were smaller bilaterally in the schizophrenia patients than in the controls and the schizotypal patients, whereas the schizotypal patients had larger prefrontal grey matter than the controls in the right hemisphere. In the schizophrenia patients, grey matter volumes of the bilateral superior frontal gyrus, left middle frontal gyrus, bilateral inferior frontal gyrus and bilateral straight gyrus were smaller than those in the controls. The schizophrenia patients also had reduced grey matter volumes in the right superior frontal gyrus, bilateral middle frontal gyrus and right inferior frontal gyrus relative to the schizotypal patients. Compared with the controls, the schizotypal patients had larger volumes of the bilateral middle frontal gyrus and smaller volumes of the right straight gyrus. There were no significant between-group differences in volumes of the ventral medial prefrontal cortex or the orbitofrontal cortex. These findings suggest that volume reductions in the amygdala and hippocampus are the common morphological substrates for the schizophrenia spectrum, which presumably represent the vulnerability. Additional widespread involvement of the prefrontal cortex in schizophrenia may lead to the loss of inhibitory control in other brain regions and suggests (although it is not specifically be related to) its critical role in the manifestation of overt psychosis.
Collapse
Affiliation(s)
- Michio Suzuki
- Department of Neuropsychiatry, Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Goto K, Ueki A, Iso H, Morita Y. Involvement of nucleus accumbens dopaminergic transmission in acoustic startle: observations concerning prepulse inhibition in rats with entorhinal cortex lesions. Psychiatry Clin Neurosci 2004; 58:441-5. [PMID: 15298660 DOI: 10.1111/j.1440-1819.2004.01281.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The relationship between the entorhinal cortex and prepulse inhibition (PPI) as well as the nucleus accumbens dopaminergic participation in acoustic startle were examined in rats. After the entorhinal cortex was damaged bilaterally using ibotenic acid, a microdialysis probe was placed in the nucleus accumbens for detection of dopamine before, during and after acoustic startle stimuli. In rats with bilateral entorhinal cortex lesions PPI was reduced, and extracellular dopamine in the nucleus accumbens was elevated with or without acoustic stimuli. The entorhinal cortex and the sensorimotor gating system thus may be related via dopaminergic connections in the nucleus accumbens, even though dopamine release did not coincide completely with acoustic startle stimuli.
Collapse
Affiliation(s)
- Kyoko Goto
- Department of Neuropsychiatry, Hyogo College of Medicine, Hyogo, Japan.
| | | | | | | |
Collapse
|
17
|
Sumiyoshi T, Tsunoda M, Uehara T, Tanaka K, Itoh H, Sumiyoshi C, Kurachi M. Enhanced locomotor activity in rats with excitotoxic lesions of the entorhinal cortex, a neurodevelopmental animal model of schizophrenia: Behavioral and in vivo microdialysis studies. Neurosci Lett 2004; 364:124-9. [PMID: 15196692 DOI: 10.1016/j.neulet.2004.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2004] [Revised: 04/12/2004] [Accepted: 04/13/2004] [Indexed: 11/16/2022]
Abstract
In order to examine the construct validity of rats with excitotoxic damage of the left entorhinal cortex (EC) as an animal model of schizophrenia, we measured dopamine (DA)-related behaviors and methamphetamine (MAP)-induced DA release in the accumbens nucleus (NAC) in these animals. Quinolinic acid (lesion group) or phosphate buffer (sham group) was infused into the left EC of adolescent (postnatal 7 weeks) male Wistar rats. On the 14th and 28th postoperative day, spontaneous and MAP (1 mg/kg, i.p.)-induced locomotor activities, as well as MAP-induced stereotypy, were measured. The lesioned rats exhibited significantly greater spontaneous or MAP-induced locomotor activity on both of the postoperative days than did sham-operated animals, while EC lesions did not affect MAP-induced stereotypy on either occasion. MAP (1 mg/kg, i.p.)-induced DA release in NAC was measured by in vivo microdialysis on the 28th postoperative day. Lesioned rats did not show a significant change in MAP (1 mg/kg, i.p.)-induced DA release in NAC compared to sham-operated animals. These results suggest that excitotoxic damage of the left EC produces behavioral changes consistent with altered mesolimbic dopaminergic transmissions, possibly mediated by postsynaptic supersensitivity.
Collapse
Affiliation(s)
- Tomiki Sumiyoshi
- Department of Neuropsychiatry, Toyama Medical and Pharmaceutical University, School of Medicine, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Jongen-Rêlo AL, Leng A, Lüber M, Pothuizen HHJ, Weber L, Feldon J. The prenatal methylazoxymethanol acetate treatment: a neurodevelopmental animal model for schizophrenia? Behav Brain Res 2004; 149:159-81. [PMID: 15129780 DOI: 10.1016/s0166-4328(03)00228-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The prenatal methylazoxymethanol acetate (MAM) treatment has been proposed as a suitable model for the neurodevelopmental aspects of schizophrenia since the morphological abnormalities it induces in the brain are subtle and in line with most reports of neuropathology in schizophrenic brains. However, the functional aspects of this treatment have not been investigated with behavioural paradigms that are relevant for the psychopathology of the symptoms of schizophrenia. In the present study, we investigated the validity of the prenatal MAM treatment as a developmental model for schizophrenia with a prepulse inhibition of the acoustic startle reflex, latent inhibition, locomotor activity, and cognition and emotionality with freezing in fear conditioning paradigms. We have conducted two studies: in Study I, MAM was injected from E09 to E12, and in Study II MAM was administered at later stages in the embryonic development, from E12 to E15. Morphologically, the prenatal MAM treatment induced mild to severe reduction in brain weights and in the entorhinal cortex, prefrontal cortex and striatum volumes, the severity of the effects depending on the timing of administration. However, despite the morphological abnormalities induced by the MAM treatments, no behavioural deficits were observed in the MAM-treated animals when compared to Controls in prepulse inhibition, latent inhibition with the two-way active avoidance, and in the freezing paradigms. Therefore, due to the consistent lack of treatment effect observed in the present investigation, we conclude that the prenatal MAM treatment has no validity as a behavioural model for schizophrenia.
Collapse
Affiliation(s)
- Ana L Jongen-Rêlo
- Behavioural Neurobiology Laboratory, Swiss Federal Institute of Technology, Zurich, Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland
| | | | | | | | | | | |
Collapse
|
19
|
Uehara T, Sumiyoshi T, Itoh H, Kurachi M. Inhibition of dopamine synthesis with alpha-methyl-p-tyrosine abolishes the enhancement of methamphetamine-induced extracellular dopamine levels in the amygdala of rats with excitotoxic lesions of the entorhinal cortex. Neurosci Lett 2004; 356:21-4. [PMID: 14746892 DOI: 10.1016/j.neulet.2003.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study was performed to investigate the mechanisms underlying the augmentation of methamphetamine (MAP)-induced dopamine (DA) release in the entorhinal cortex-lesioned rats. Quinolinic acid or phosphate buffered saline was infused into the left entorhinal cortex of adolescent rats (postnatal day 7 weeks). After 4 weeks of lesioning, acute MAP (2 mg/kg, i.p.)-induced DA release in the amygdala was significantly enhanced in lesioned rats compared to sham operated rats. Inhibition of DA synthesis by alpha-methyl-p-tyrosine, an inhibitor of catecholamine synthesis, resulted in abolishment of the enhancement of MAP (2 or 5 mg/kg, i.p.)-induced DA release in the amygdala of lesioned rats. These results suggest that excessive DA pool in nerve terminals underlies the augmentation of MAP-induced DA release in the amygdala of the lesioned rats.
Collapse
Affiliation(s)
- Takashi Uehara
- Department of Neuropsychiatry, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | |
Collapse
|
20
|
Schmadel S, Schwabe K, Koch M. Effects of neonatal excitotoxic lesions of the entorhinal cortex on cognitive functions in the adult rat. Neuroscience 2004; 128:365-74. [PMID: 15350648 DOI: 10.1016/j.neuroscience.2004.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2004] [Indexed: 10/26/2022]
Abstract
The entorhinal cortex (EC) is involved in a variety of cognitive functions by virtue of its neuronal input from the neocortex and projection to the hippocampal formation and the limbic-striatal system. Neonatal lesions are increasingly considered useful models for disconnection syndromes such as schizophrenia. Therefore, we investigated the effects of neonatal EC lesions on adult rat behavior. Neonatal (postnatal day 7) lesions were inflicted by bilateral injections of ibotenate into the EC. Sham-lesioned (vehicle injection) and naive (unoperated) rats served as controls. Locomotor activity was measured in prepubertal and young adult rats. Adult rats were then tested for spatial learning in an eight-arm radial maze (reinforced delayed alternation) and for motivation (progressive ratio schedule of operant behavior). Finally, prepulse inhibition (PPI) of the acoustic startle reflex and locomotor activity were investigated with and without apomorphine (APO) challenge. Brain tissue damage was assessed using Nissl-staining. The total volume of the adult rat EC was reduced after neonatal ibotenate-injection. Neonatal EC-lesions increased perseveration only in a delayed task in the radial maze and induced a leftward-shift of breakpoints in operant responding. Lesions did not alter baseline locomotor activity, but enhanced the locomotor stimulating effect of APO. PPI was not affected by neonatal lesions of the EC with and without APO challenge. Neonatal lesions of the EC impaired the ability to hold information during delays and reduced motivation during operant behavior which reflects a state of anhedonia. Thus, they may serve as an animal model for certain aspects of schizophrenia.
Collapse
Affiliation(s)
- S Schmadel
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, PO Box 33 04 40, 28334, Germany.
| | | | | |
Collapse
|
21
|
Uehara T, Sumiyoshi T, Itoh H, Kurachi M. Modulation of stress-induced dopamine release by excitotoxic damage of the entorhinal cortex in the rat. Brain Res 2003; 989:112-6. [PMID: 14519517 DOI: 10.1016/s0006-8993(03)03363-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the sham-operated rats, exposure to either footshock or psychological stress induced similar biphasic alterations of dopamine (DA) release (an initial increase followed by a decrease below baseline levels) in the amygdala 4 weeks after the surgery. On the other hand, the left entorhinal cortex lesions abolished the late decrement phase of DA release below baseline levels. These results suggest that entorhinal cortex lesions modulate stress-induced dopaminergic transmissions in the lateral amygdala.
Collapse
Affiliation(s)
- Takashi Uehara
- Department of Neuropsychiatry, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | |
Collapse
|
22
|
Seillier A, Coutureau E, Thiriet N, Herbeaux K, Zwiller J, Di Scala G, Will B, Majchrzak M. Bilateral lesions of the entorhinal cortex differentially modify haloperidol- and olanzapine-induced c-fos mRNA expression in the rat forebrain. Neuropharmacology 2003; 45:190-200. [PMID: 12842125 DOI: 10.1016/s0028-3908(03)00147-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lesions of the entorhinal cortex are now an accepted model for mimicking some of the neuropathological aspects of schizophrenia, since evidence has accumulated for the presence of cytoarchitectonic abnormalities within this cortex in schizophrenic patients. The present study was undertaken to address the functional consequences of bilateral entorhinal cortex lesions on antipsychotic-induced c-fos expression. After a 15-day recovery period, the effect of a typical antipsychotic, haloperidol (1 mg/kg), on c-fos mRNA expression was compared with that of an atypical one, olanzapine (10 mg/kg), in both sham-lesioned and entorhinal cortex-lesioned rats. In sham-lesioned rats, both haloperidol and olanzapine induced c-fos expression in the caudal cingulate cortex, dorsomedial and dorsolateral caudate-putamen, nucleus accumbens core and shell and lateral septum. In addition, olanzapine, but not haloperidol, increased c-fos expression within the central amygdala. In entorhinal cortex-lesioned rats, haloperidol-induced c-fos expression was markedly reduced in most areas. In contrast, the olanzapine-induced c-fos expression was not altered in the nucleus accumbens shell and lateral septum of the lesioned rats. These findings reveal that entorhinal cortex lesions affect c-fos expression in a compound- and regional-dependent manner. Our results further emphasize the importance of the exploration of the mechanisms of action of antipsychotic drugs in the context of an associated cortical pathology.
Collapse
Affiliation(s)
- A Seillier
- Laboratoire de Neurosciences Comportementales et Cognitives, UMR 7521, Université Louis Pasteur, CNRS, IFR des Neurosciences, Strasbourg, France.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The objective of the present study was to provide a pathophysiological model of the development of schizophrenia. The method used was the selective review of recent findings, including those of animal models from our own department, to clarify the relationship between morphological brain changes and dopamine metabolism, and the pathophysiology of schizophrenia. The results showed that entorhinal cortex-lesioned animals had increased concentrations of dopamine in the amygdala, and methamphetamine-induced dopamine release in the amygdala of lesioned rats was significantly enhanced compared with sham-operated rats. These results and the morphological findings in schizotypal disorder patients support the view that temporal lobe changes may underlie a vulnerability to schizophrenia. Latent dysfunction in these regions may become clinically apparent as positive psychotic symptoms due to additional frontal lobe changes in schizophrenia. For the emergence of positive Schneiderian symptoms, aberrant activity of sociality-related circuits, including the amygdala was postulated. In conclusion, a temporo-frontal two-step hypothesis for the development of schizophrenia was suggested.
Collapse
Affiliation(s)
- Masayoshi Kurachi
- Department of Psychiatry, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Toyama, Japan.
| |
Collapse
|
24
|
Coutureau E, Léna I, Daugé V, Di Scala G. The entorhinal cortex-nucleus accumbens pathway and latent inhibition: a behavioral and neurochemical study in rats. Behav Neurosci 2002; 116:95-104. [PMID: 11895187 DOI: 10.1037/0735-7044.116.1.95] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Latent inhibition (LI) refers to the decrease in conditioned response produced by the repeated nonrein-forced preexposure to the to-be-conditioned stimulus. Experiment I investigated the effects of electrolytic lesions of the entorhinal cortex on LI in a conditioned emotional response procedure. Entorhinal cortex lesions attenuated LI. Experiments 2 and 3 investigated whether this attenuation of LI could result from a modification in nucleus accumbens (NAcc) dopamine (DA) release. Rats with entorhinal cortex lesions displayed normal spontaneous and amphetamine-induced locomotor activity, as well as normal basal and amphetamine-induced release of DA within the NAcc (assessed by microdialysis). Taken together, these results show that entorhinal cortex lesions disrupt LI in a way that is unlikely to be due to an alteration of DA release within the NAcc.
Collapse
Affiliation(s)
- Etienne Coutureau
- Laboratoire de Neurosciences Comportementales et Cognitives, Centre National de la Recherche Scientifique, Université Louis Pasteur, Strasbourg, France.
| | | | | | | |
Collapse
|