1
|
Lesch KP, Araragi N, Waider J, van den Hove D, Gutknecht L. Targeting brain serotonin synthesis: insights into neurodevelopmental disorders with long-term outcomes related to negative emotionality, aggression and antisocial behaviour. Philos Trans R Soc Lond B Biol Sci 2012; 367:2426-43. [PMID: 22826343 DOI: 10.1098/rstb.2012.0039] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aggression, which comprises multi-faceted traits ranging from negative emotionality to antisocial behaviour, is influenced by an interaction of biological, psychological and social variables. Failure in social adjustment, aggressiveness and violence represent the most detrimental long-term outcome of neurodevelopmental disorders. With the exception of brain-specific tryptophan hydroxylase-2 (Tph2), which generates serotonin (5-HT) in raphe neurons, the contribution of gene variation to aggression-related behaviour in genetically modified mouse models has been previously appraised (Lesch 2005 Novartis Found Symp. 268, 111-140; Lesch & Merschdorf 2000 Behav. Sci. Law 18, 581-604). Genetic inactivation of Tph2 function in mice led to the identification of phenotypic changes, ranging from growth retardation and late-onset obesity, to enhanced conditioned fear response, increased aggression and depression-like behaviour. This spectrum of consequences, which are amplified by stress-related epigenetic interactions, are attributable to deficient brain 5-HT synthesis during development and adulthood. Human data relating altered TPH2 function to personality traits of negative emotionality and neurodevelopmental disorders characterized by deficits in cognitive control and emotion regulation are based on genetic association and are therefore not as robust as the experimental mouse results. Mouse models in conjunction with approaches focusing on TPH2 variants in humans provide unexpected views of 5-HT's role in brain development and in disorders related to negative emotionality, aggression and antisocial behaviour.
Collapse
Affiliation(s)
- Klaus-Peter Lesch
- Division of Molecular Psychiatry (MP), Laboratory of Translational Neuroscience (LTN), Department of Psychiatry, Psychosomatics, and Psychotherapy, University of Wuerzburg, , Fuechsleinstrasse 15, 97080 Wuerzburg, Germany.
| | | | | | | | | |
Collapse
|
2
|
Trajkovska V, Kirkegaard L, Krey G, Marcussen AB, Thomsen MS, Chourbaji S, Brandwein C, Ridder S, Halldin C, Gass P, Knudsen GM, Aznar S. Activation of glucocorticoid receptors increases 5-HT2A receptor levels. Exp Neurol 2009; 218:83-91. [DOI: 10.1016/j.expneurol.2009.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Revised: 04/02/2009] [Accepted: 04/07/2009] [Indexed: 11/29/2022]
|
3
|
Ebert PJ, Campbell DB, Levitt P. Bacterial artificial chromosome transgenic analysis of dynamic expression patterns of regulator of G-protein signaling 4 during development. I. Cerebral cortex. Neuroscience 2006; 142:1145-61. [PMID: 16996696 PMCID: PMC1780259 DOI: 10.1016/j.neuroscience.2006.08.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 08/04/2006] [Accepted: 08/08/2006] [Indexed: 11/22/2022]
Abstract
Signaling through G-protein-coupled receptors is modulated by a family of regulator of G protein signaling (RGS) proteins that have been implicated in several neurological and psychiatric disorders. Defining the detailed expression patterns and developmental regulation of RGS proteins has been hampered by an absence of antibodies useful for mapping. We have utilized bacterial artificial chromosome (BAC) methods to create transgenic mice that express GFP under the control of endogenous regulator of G-protein signaling 4 (RGS4) enhancer elements. This report focuses on expression patterns in the developing and mature cerebral cortex. Based on reporter distribution, RGS4 is expressed by birth in neurons across all cortical domains, but in different patterns that suggest region- and layer-specific regulation. Peak expression typically occurs before puberty, with complex down-regulation by adulthood. Deep and superficial neurons, in particular, vary in their patterns across developmental age and region and, in primary sensory cortices, layer IV neurons exhibit low or no expression of the GFP reporter. These data suggest that altering RGS4 function will produce a complex neuronal phenotype with cell- and subdomain-specificity in the cerebral cortex.
Collapse
Affiliation(s)
- P J Ebert
- Department of Pharmacology, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB III, Room 8114, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
4
|
Taylor C, Fricker AD, Devi LA, Gomes I. Mechanisms of action of antidepressants: from neurotransmitter systems to signaling pathways. Cell Signal 2005; 17:549-57. [PMID: 15683730 PMCID: PMC3581018 DOI: 10.1016/j.cellsig.2004.12.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Accepted: 12/21/2004] [Indexed: 12/22/2022]
Abstract
Antidepressants are commonly used in the treatment of anxiety and depression, medical conditions that affect approximately 17-20% of the population. The clinical effects of antidepressants take several weeks to manifest, suggesting that these drugs induce adaptive changes in brain structures affected by anxiety and depression. In order to develop shorter-acting and more effective drugs for the treatment of anxiety and depression, it is important to understand how antidepressants bring about their beneficial effects. Recent reports suggest that antidepressants can induce neurogenesis in the adult brain, although the mechanisms involved are not clearly understood. In this review, we describe the different neurotransmitter systems that are affected by anxiety and depression and how they are modulated by antidepressant treatment with a focus on signaling molecules and pathways that are activated during neurotransmitter receptor induced neurogenesis.
Collapse
Affiliation(s)
| | | | - Lakshmi A. Devi
- Corresponding authors. Lakshmi A. Devi is to be contacted at Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, 19-84 Annenberg Building, One Gustave L. Levy Place, New York, NY 10029, United States. Tel.: +1 212 241 8345; fax: +1 212 996 7214. Ivone Gomes, Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, 19-86 Annenberg Building, One Gustave L. Levy Place, New York, NY 10029, United States. Tel.: +1 212 241 6545; fax: +1 212 996 7214. (L.A. Devi)8 (I. Gomes)
| | - Ivone Gomes
- Corresponding authors. Lakshmi A. Devi is to be contacted at Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, 19-84 Annenberg Building, One Gustave L. Levy Place, New York, NY 10029, United States. Tel.: +1 212 241 8345; fax: +1 212 996 7214. Ivone Gomes, Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, 19-86 Annenberg Building, One Gustave L. Levy Place, New York, NY 10029, United States. Tel.: +1 212 241 6545; fax: +1 212 996 7214. (L.A. Devi)8 (I. Gomes)
| |
Collapse
|
5
|
Islam A, Thompson KSJ, Akhtar S, Handley SL. Increased 5-HT2A receptor expression and function following central glucocorticoid receptor knockdown in vivo. Eur J Pharmacol 2005; 502:213-20. [PMID: 15476747 DOI: 10.1016/j.ejphar.2004.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 06/18/2004] [Accepted: 09/01/2004] [Indexed: 10/26/2022]
Abstract
Central glucocorticoid receptor function may be reduced in depression. In vivo modelling of glucocorticoid receptor underfunctionality would assist in understanding its role in depressive illness. The role of glucocorticoid receptors in modulating 5-HT(2A) receptor expression and function in the central nervous system (CNS) is presently unclear, but 5-HT(2A) receptor function also appears altered in depression. With the aid of RNAse H accessibility mapping, we have developed a 21-mer antisense oligodeoxynucleotide (5'-TAAAAACAGGCTTCTGATCCT-3', termed GRAS-5) that showed 56% reduction in glucocorticoid receptor mRNA and 80% down-regulation in glucocorticoid receptor protein in rat C6 glioma cells. Sustained delivery to rat cerebral ventricles in slow release biodegradable polymer microspheres produced a marked decrease in glucocorticoid receptor mRNA and protein in hypothalamus (by 39% and 80%, respectively) and frontal cortex (by 26% and 67%, respectively) 5 days after a single injection, with parallel significant up-regulation of 5-HT(2A) receptor mRNA expression (13%) and binding (21%) in frontal cortex. 5-HT(2A) receptor function, determined by DOI-head-shakes, showed a 55% increase. These findings suggest that central 5-HT(2A) receptors are, directly or indirectly, under tonic inhibitory control by glucocorticoid receptor.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line, Tumor
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Cerebral Cortex/physiology
- Gene Silencing/drug effects
- Hypothalamus/drug effects
- Hypothalamus/metabolism
- Hypothalamus/physiology
- Male
- Molecular Sequence Data
- Oligonucleotides, Antisense/metabolism
- Oligonucleotides, Antisense/pharmacology
- Protein Binding/drug effects
- Protein Binding/physiology
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT2A/biosynthesis
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/physiology
- Receptors, Glucocorticoid/deficiency
- Receptors, Glucocorticoid/genetics
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Aminul Islam
- LHS, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | | | | | | |
Collapse
|
6
|
Dwivedi Y, Mondal AC, Payappagoudar GV, Rizavi HS. Differential regulation of serotonin (5HT)2A receptor mRNA and protein levels after single and repeated stress in rat brain: role in learned helplessness behavior. Neuropharmacology 2005; 48:204-14. [PMID: 15695159 DOI: 10.1016/j.neuropharm.2004.10.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 09/20/2004] [Accepted: 10/15/2004] [Indexed: 01/07/2023]
Abstract
Stress-induced learned helplessness in animals serves as a model of behavioral depression and other stress-related disorders. Our recent report that repeated stress prolongs the duration of learned helplessness behavior in rats may be important since acute and recurrent disorders may have different responsive mechanisms. To examine the role of serotonergic (5HT) mechanisms in such behavior, we studied the expression of 5HT2A receptors in different brain areas of rats, and further investigated whether the alterations in expression of 5HT2A receptors are similar after single versus repeated stress. Rats exposed to inescapable shock once on day 1, or twice, on day 1 and day 7, were tested for escape latency on days 2 and 4, or day 14, respectively. Higher escape latencies were observed on day 2 after single, and on day 14 after repeated shock. Whereas the single-stress paradigm produced a significant decrease of 5HT2A receptor mRNA and protein expression in hippocampus of non-learned helpless and learned helpless rats as compared with tested controls, repeated stress resulted in increase in frontal cortex but decrease in hippocampus and hypothalamus of learned helpless rats only, as compared with tested control rats. These results demonstrate differential regulation of 5HT2A receptors in LH rats after single and repeated stress, which may be critical in the pathophysiology of depression/other stress-related disorders.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
7
|
Abstract
Fear is an adaptive component of the acute "stress" response to potentially-dangerous (external and internal) stimuli which threaten to perturb homeostasis. However, when disproportional in intensity, chronic and/or irreversible, or not associated with any genuine risk, it may be symptomatic of a debilitating anxious state: for example, social phobia, panic attacks or generalized anxiety disorder. In view of the importance of guaranteeing an appropriate emotional response to aversive events, it is not surprising that a diversity of mechanisms are involved in the induction and inhibition of anxious states. Apart from conventional neurotransmitters, such as monoamines, gamma-amino-butyric acid (GABA) and glutamate, many other modulators have been implicated, including: adenosine, cannabinoids, numerous neuropeptides, hormones, neurotrophins, cytokines and several cellular mediators. Accordingly, though benzodiazepines (which reinforce transmission at GABA(A) receptors), serotonin (5-HT)(1A) receptor agonists and 5-HT reuptake inhibitors are currently the principle drugs employed in the management of anxiety disorders, there is considerable scope for the development of alternative therapies. In addition to cellular, anatomical and neurochemical strategies, behavioral models are indispensable for the characterization of anxious states and their modulation. Amongst diverse paradigms, conflict procedures--in which subjects experience opposing impulses of desire and fear--are of especial conceptual and therapeutic pertinence. For example, in the Vogel Conflict Test (VCT), the ability of drugs to release punishment-suppressed drinking behavior is evaluated. In reviewing the neurobiology of anxious states, the present article focuses in particular upon: the multifarious and complex roles of individual modulators, often as a function of the specific receptor type and neuronal substrate involved in their actions; novel targets for the management of anxiety disorders; the influence of neurotransmitters and other agents upon performance in the VCT; data acquired from complementary pharmacological and genetic strategies and, finally, several open questions likely to orientate future experimental- and clinical-research. In view of the recent proliferation of mechanisms implicated in the pathogenesis, modulation and, potentially, treatment of anxiety disorders, this is an opportune moment to survey their functional and pathophysiological significance, and to assess their influence upon performance in the VCT and other models of potential anxiolytic properties.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Centre de Rescherches de Croissy, Institut de Recherches (IDR) Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France.
| |
Collapse
|
8
|
Sempere T, Cedeño N, Urbina M, Lima L. 8-[3H]-hydroxy-2-(di-n-propylamino)tetralin binding sites in blood lymphocytes of rats and the modulation by mitogens and immobilization. J Neuroimmunol 2003; 138:8-16. [PMID: 12742647 DOI: 10.1016/s0165-5728(03)00091-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Serotonin 5-HT(1A) receptors were characterized in rat resting lymphocytes obtained by cardiac puncture with the use of the ligand [3H]8-hydroxy-2-(di-n-propylamino)tetralin. Selectivity of the specific binding was demonstrated by inhibition experiments with various serotonergic and nonserotonergic drugs. The rank order of potency for inhibition was WAY-100478>pindobind>NAN-190>buspirone>imipramine>serotonin. While pimozide, desipramine, nomifensine, haloperidol and sulpiride did not inhibit the binding. Kinetic parameters calculated from saturation experiments indicated one site of interaction, with an equilibrium dissociation constant of 2.50 nM and maximum binding capacity of 487.21 nmol/10(6) cells. Complete dissociation was obtained with serotonin as the displacement agent, and equilibrium dissociation constant calculated by association and dissociation experiments was 2.03 nM. Thus, serotonin 5-HT(1A) receptors are present in resting lymphocytes. The in vivo administration of the mitogens lipopolysacharide (0.1 mg/kg, 18 h) or concanavalin A (0.2 mg/kg, 18 h) increased the number of sites. The elevation produced by the latter was of higher magnitude than that of lipopolysacharide, and two sites of the binding were determined by isotopic dilution. Immobilization stress (1 h daily for 7 days) also resulted in a significant increase of binding capacity, but was smaller than that produced by the mitogens. The affinity of binding was not affect by the treatments. The results indicate that serotonin 5-HT(1A) receptors are modulated by unspecific and specific immune system activation, as well as by a potent stress condition, which might result in relevant functional modifications in the response of rat lymphocytes.
Collapse
Affiliation(s)
- Telésfora Sempere
- Laboratorio de Neuroquímica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apdo. 21827, Caracas 1020-A, Venezuela
| | | | | | | |
Collapse
|
9
|
St-Hilaire M, Tremblay PO, Lévesque D, Barden N, Rouillard C. Effects of cocaine on c-fos and NGFI-B mRNA expression in transgenic mice underexpressing glucocorticoid receptors. Neuropsychopharmacology 2003; 28:478-89. [PMID: 12629527 DOI: 10.1038/sj.npp.1300067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Numerous evidences suggest that stress and stress-related hormones can modulate the activity of the brain reward pathway and thus may account for individual vulnerability towards the reinforcing effects of drugs of abuse. Transgenic (TG) mice expressing an antisense mRNA against the glucocorticoid receptor (GR), which partially blocks GR expression, were used to assess the role of GR dysfunction on cocaine (COC)-induced c-fos and Nerve-Growth Factor Inducible-B (NGFI-B, or Nur77) gene expression. These two genes belong to different families of transcription factors and have been shown to be modulated by various dopaminergic drugs. TG and wild-type (WT) mice were both acutely and repeatedly treated with COC (20 mg/kg, i.p.). In the chronic experiment, mice received a 5-day treatment of COC and were challenged 5 days later with COC or vehicle. Locomotor activity was assessed during the entire chronic experiment in the mouse home cages. Animals were sacrificed 1 h after the last injection and NGFI-B and c-fos mRNA levels in the prefrontal cortex, the nucleus accumbens and the striatum were measured by in situ hybridization. Acute COC administration led to significantly smaller c-fos increases in TG mice compared to WT, whereas repeated COC treatment potentiated c-fos induction both in TG and WT mice to equivalent levels. TG mice displayed higher basal NGFI-B expression in the nucleus accumbens and the level of NGFI-B mRNA was differently modulated by COC in TG mice compared to WT mice. In accordance with data on c-fos expression, behavioral data indicate a blunted locomotor effect on the first COC injection in TG mice, a phenomenon corrected by the repeated COC treatment. These results suggest that an alteration of the hypothalamus-pituitary-adrenal axis can modify COC-induced regulation of the transcription factors c-fos and NGFI-B, and that these changes parallel those seen at the behavioral level. It also demonstrates that the differences at the behavioral and molecular levels noted between TG and WT mice after acute COC injection disappear following repeated COC administration, suggesting that repeated COC has a greater impact in TG mice underexpressing GRs.
Collapse
MESH Headings
- Animals
- Cocaine/pharmacology
- DNA-Binding Proteins/biosynthesis
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Genes, fos/drug effects
- Genes, fos/physiology
- Humans
- Male
- Mice
- Mice, Transgenic
- Nuclear Receptor Subfamily 4, Group A, Member 1
- RNA, Messenger/biosynthesis
- Receptors, Cytoplasmic and Nuclear
- Receptors, Glucocorticoid/deficiency
- Receptors, Glucocorticoid/genetics
- Receptors, Steroid
- Transcription Factors/biosynthesis
Collapse
Affiliation(s)
- M St-Hilaire
- Unité de Neuroscience, Centre de recherche du CHUL, Sainte-Foy, Québec, Canada
| | | | | | | | | |
Collapse
|
10
|
Müller M, Holsboer F, Keck ME. Genetic modification of corticosteroid receptor signalling: novel insights into pathophysiology and treatment strategies of human affective disorders. Neuropeptides 2002; 36:117-31. [PMID: 12359503 DOI: 10.1054/npep.2002.0896] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Every disturbance of the body, either real or imagined, evokes a stress response. Essential to this stress response is the activation of the hypothalamic-pituitary-adrenocortical (HPA) system, finally resulting in the release of glucocorticoid hormones from the adrenal cortex. Glucocorticoid hormones, in turn, feed back to this system by central activation of two types of corticosteroid receptors: the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR) which markedly differ in their neuroanatomical distribution and ligand affinity. Whereas a brief period of controllable stress, experienced with general arousal and excitement, can be a challenge and might thus be beneficial, chronically elevated levels of circulating corticosteroids are believed to enhance vulnerability to a variety of diseases, including affective disorders. Corticosteroids are known to influence emotions and cognitive processes, such as learning and memory. In addition, corticosteroids play extremely important roles in modulating fear and anxiety-related behaviour. The mechanisms by which corticosteroids exert their effects on behaviour are often indirect, by modulating particular sets of neurons or neurotransmitter systems. In addition, the timing of corticosteroid increase (before, during or after exposure to a stressor) determines whether and how behaviour is affected. The cumulative evidence makes a strong case implicating corticosteroid receptor dysfunction in the pathogenesis of affective disorders. Although definitive controlled trials remain to be conducted, there is evidence indicating that cortisol-lowering or corticosteroid receptor antagonist treatments may be of clinical benefit in selected individuals with major depression. A more detailed knowledge of the GR signalling pathways therefore opens up the possibility to specifically target GR function. In recent years, refined molecular technologies and the generation of genetically engineered mice (e.g. "conventional" and "conditional" knock-outs) have allowed to specifically target individual genes involved in corticosteroid receptor signalling and stress hormone regulation. Given the fundamental role of corticosteroid receptors in hippocampal integrity and mental performance during aging and psychiatric disorders, the identification and detailed characterization of these molecular pathways will ultimately lead to the development of novel neuropharmacological intervention strategies.
Collapse
Affiliation(s)
- Marianne Müller
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804, Munich, Germany.
| | | | | |
Collapse
|
11
|
Abstract
Knowledge of the genetic and molecular events underlying the neuroendocrine and behavioural sequelae of the response to stress has advanced rapidly over recent years. The response of an individual to a stressful experience is a polygenic trait, but also involves non-genetic sources of variance. Using a combination of top-down (quantitative trait locus [QTL] and microarray analysis) and bottom-up (gene targeting, transgenesis, antisense technology and random mutagenesis) strategies, we are beginning to dissect the molecular players in the mediation of the stress response. Given the wealth of the data obtained from mouse mutants, this review will primarily focus on the contributions made by transgenesis and knockout studies, but the relative contribution of QTL studies and microarray studies will also be briefly addressed. From these studies it is evident that several neuroendocrine and behavioural alterations induced by stress can be modelled in mouse mutants with alterations in hypothalamic-pituitary-adrenal axis activity or other, extrahypothalamic, neurotransmitter systems known to be involved in the stress response. The relative contribution of these models to understanding the stress response and their limitations will be discussed.
Collapse
Affiliation(s)
- T Steckler
- CNS Discovery, Janssen Research Foundation, Turnhioutseweg 30, B-2340 Beerse, Belgium.
| |
Collapse
|