1
|
Fishman-Jacob T, Youdim MBH. A sporadic Parkinson's disease model via silencing of the ubiquitin-proteasome/E3 ligase component, SKP1A. J Neural Transm (Vienna) 2024; 131:675-707. [PMID: 37644186 PMCID: PMC11192832 DOI: 10.1007/s00702-023-02687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Our and other's laboratory microarray-derived transcriptomic studies in human PD substantia nigra pars compacta (SNpc) samples have opened an avenue to concentrate on potential gene intersections or cross-talks along the dopaminergic (DAergic) neurodegenerative cascade in sporadic PD (SPD). One emerging gene candidate identified was SKP1A (p19, S-phase kinase-associated protein 1A), found significantly decreased in the SNpc as confirmed later at the protein level. SKP1 is part of the Skp1, Cullin 1, F-box protein (SCF) complex, the largest known class of sophisticated ubiquitin-proteasome/E3-ligases and was found to directly interact with FBXO7, a gene defective in PARK15-linked PD. This finding has led us to the hypothesis that a targeted site-specific reduction of Skp1 levels in DAergic neuronal cell culture and animal systems may result in a progressive loss of DAergic neurons and hopefully recreate motor disabilities in animals. The second premise considers the possibility that both intrinsic and extrinsic factors (e.g., manipulation of selected genes and mitochondria impairing toxins), alleged to play central roles in DAergic neurodegeneration in PD, may act in concert as modifiers of Skp1 deficiency-induced phenotype alterations ('dual-hit' hypothesis of neurodegeneration). To examine a possible role of Skp1 in DAergic phenotype, we have initially knocked down the expression of SKP1A gene in an embryonic mouse SN-derived cell line (SN4741) with short hairpin RNA (shRNA) lentiviruses (LVs). The deficiency of SKP1A closely recapitulated cardinal features of the DAergic pathology of human PD, such as decreased expression of DAergic phenotypic markers and cell cycle aberrations. Furthermore, the knocked down cells displayed a lethal phenotype when induced to differentiate exhibiting proteinaceous round inclusion structures, which were almost identical in composition to human Lewy bodies, a hallmark of PD. These findings support a role for Skp1 in neuronal phenotype, survival, and differentiation. The identification of Skp1 as a key player in DAergic neuron function suggested that a targeted site-specific reduction of Skp1 levels in mice SNpc may result in a progressive loss of DAergic neurons and terminal projections in the striatum. The injected LV SKP1shRNA to mouse SN resulted in decreased expression of Skp1 protein levels within DAergic neurons and loss of tyrosine hydroxylase immunoreactivity (TH-IR) in both SNpc and striatum that was accompanied by time-dependent motor disabilities. The reduction of the vertical movements, that is rearing, may be reminiscent of the early occurrence of hypokinesia and axial, postural instability in PD. According to the 'dual-hit' hypothesis of neurodegenerative diseases, it is predicted that gene-gene and/or gene-environmental factors would act in concert or sequentially to propagate the pathological process of PD. Our findings are compatible with this conjecture showing that the genetic vulnerability caused by knock down of SKP1A renders DAergic SN4741 cells especially sensitive to genetic reduction of Aldh1 and exposure to the external stressors MPP+ and DA, which have been implicated in PD pathology. Future consideration should be given in manipulation SKP1A expression as therapeutic window, via its induction genetically or pharmacological, to prevent degeneration of the nigra striatal dopamine neurons, since UPS is defective.
Collapse
Affiliation(s)
- Tali Fishman-Jacob
- Youdim Pharmaceutical Ltd, New Northern Industrial Park, 1 Ha- Tsmikha St, Stern Building, Fl-3, P. O. Box 72, 2069207, Yokneam, Israel
| | - Moussa B H Youdim
- Youdim Pharmaceutical Ltd, New Northern Industrial Park, 1 Ha- Tsmikha St, Stern Building, Fl-3, P. O. Box 72, 2069207, Yokneam, Israel.
| |
Collapse
|
2
|
Riederer P, Nagatsu T, Youdim MBH, Wulf M, Dijkstra JM, Sian-Huelsmann J. Lewy bodies, iron, inflammation and neuromelanin: pathological aspects underlying Parkinson's disease. J Neural Transm (Vienna) 2023; 130:627-646. [PMID: 37062012 PMCID: PMC10121516 DOI: 10.1007/s00702-023-02630-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 04/17/2023]
Abstract
Since the description of some peculiar symptoms by James Parkinson in 1817, attempts have been made to define its cause or at least to enlighten the pathology of "Parkinson's disease (PD)." The vast majority of PD subtypes and most cases of sporadic PD share Lewy bodies (LBs) as a characteristic pathological hallmark. However, the processes underlying LBs generation and its causal triggers are still unknown. ɑ-Synuclein (ɑ-syn, encoded by the SNCA gene) is a major component of LBs, and SNCA missense mutations or duplications/triplications are causal for rare hereditary forms of PD. Thus, it is imperative to study ɑ-syn protein and its pathology, including oligomerization, fibril formation, aggregation, and spreading mechanisms. Furthermore, there are synergistic effects in the underlying pathogenic mechanisms of PD, and multiple factors-contributing with different ratios-appear to be causal pathological triggers and progression factors. For example, oxidative stress, reduced antioxidative capacity, mitochondrial dysfunction, and proteasomal disturbances have each been suggested to be causal for ɑ-syn fibril formation and aggregation and to contribute to neuroinflammation and neural cell death. Aging is also a major risk factor for PD. Iron, as well as neuromelanin (NM), show age-dependent increases, and iron is significantly increased in the Parkinsonian substantia nigra (SN). Iron-induced pathological mechanisms include changes of the molecular structure of ɑ-syn. However, more recent PD research demonstrates that (i) LBs are detected not only in dopaminergic neurons and glia but in various neurotransmitter systems, (ii) sympathetic nerve fibres degenerate first, and (iii) at least in "brain-first" cases dopaminergic deficiency is evident before pathology induced by iron and NM. These recent findings support that the ɑ-syn/LBs pathology as well as iron- and NM-induced pathology in "brain-first" cases are important facts of PD pathology and via their interaction potentiate the disease process in the SN. As such, multifactorial toxic processes posted on a personal genetic risk are assumed to be causal for the neurodegenerative processes underlying PD. Differences in ratios of multiple factors and their spatiotemporal development, and the fact that common triggers of PD are hard to identify, imply the existence of several phenotypical subtypes, which is supported by arguments from both the "bottom-up/dual-hit" and "brain-first" models. Therapeutic strategies are necessary to avoid single initiation triggers leading to PD.
Collapse
Affiliation(s)
- Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Department of Psychiatry, University of Southern Denmark Odense, J.B. Winslows Vey 18, 5000, Odense, Denmark.
| | - Toshiharu Nagatsu
- Center for Research Promotion and Support, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | | | - Max Wulf
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801, Bochum, Germany
| | | | | |
Collapse
|
3
|
Hényková E, Kaleta M, Klíčová K, Gonzalez G, Novák O, Strnad M, Kaňovský P. Quantitative Determination of Endogenous Tetrahydroisoquinolines, Potential Parkinson's Disease Biomarkers, in Mammals. ACS Chem Neurosci 2022; 13:3230-3246. [PMID: 36375023 DOI: 10.1021/acschemneuro.2c00516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Current diagnostic options for Parkinson's disease are very limited and primarily based on characteristic clinical symptoms. Thus, there are urgent needs for reliable biomarkers that enable us to diagnose the disease in the early stages, differentiate it from other atypical Parkinsonian syndromes, monitor its progression, increase knowledge of its pathogenesis, and improve the development of potent therapies. A promising group of potential biomarkers are endogenous tetrahydroisoquinoline metabolites, which are thought to contribute to the multifactorial etiology of Parkinson's disease. The aim of this critical review is to highlight trends and limitations of available traditional and modern analytical techniques for sample pretreatment (extraction and derivatization procedures) and quantitative determination of tetrahydroisoquinoline derivatives in various types of mammalian fluids and tissues (urine, plasma, cerebrospinal fluid, brain tissue, liver tissue). Particular attention is paid to the most sensitive and specific analytical techniques, involving immunochemistry and gas or liquid chromatography coupled with mass spectrometric, fluorescence, or electrochemical detection. The review also includes a discussion of other relevant agents proposed and tested in Parkinson's disease.
Collapse
Affiliation(s)
- Eva Hényková
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.,Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Michal Kaleta
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.,Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Kateřina Klíčová
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Gabriel Gonzalez
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic.,Department of Experimental Biology, Faculty of Science, Palacky University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.,Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Petr Kaňovský
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| |
Collapse
|
4
|
Bhawna, Kumar A, Bhatia M, Kapoor A, Kumar P, Kumar S. Monoamine oxidase inhibitors: A concise review with special emphasis on structure activity relationship studies. Eur J Med Chem 2022; 242:114655. [PMID: 36037788 DOI: 10.1016/j.ejmech.2022.114655] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022]
Abstract
Monoamine oxidase enzyme is necessary for the management of brain functions. It oxidatively metabolizes monoamines and produces ammonia, aldehyde and hydrogen peroxide as by-products. Excessive production of by-products of monoamine metabolism generates free radicals which cause cellular apoptosis and several neurodegenerative disorders for example Alzheimer's disease, Parkinson's disease, depression and autism. The inhibition of MAOs is an attractive target for the treatment of neurological disorders. Clinically approved MAO inhibitors for example selegiline, rasagiline, clorgyline, pargyline etc. are irreversible in nature and cause some adverse effects while recently studied reversible MAO inhibitors are devoid of harmful effects of old monoamine oxidase inhibitors. In this review article we have listed various synthesized molecules containing different moieties like coumarin, chalcone, thiazole, thiourea, caffeine, pyrazole, chromone etc. along with their activity, mode of action, structure activity relationship and molecular docking studies.
Collapse
Affiliation(s)
- Bhawna
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Meenakshi Bhatia
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Archana Kapoor
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India.
| |
Collapse
|
5
|
Landau R, Halperin R, Sullivan P, Zibly Z, Leibowitz A, Goldstein DS, Sharabi Y. The rat rotenone model reproduces the abnormal pattern of central catecholamine metabolism found in Parkinson's disease. Dis Model Mech 2021; 15:274082. [PMID: 34842277 PMCID: PMC8807569 DOI: 10.1242/dmm.049082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
Recent reports indicate that Parkinson's disease (PD) involves specific functional abnormalities in residual neurons – decreased vesicular sequestration of cytoplasmic catecholamines via the vesicular monoamine transporter (VMAT) and decreased aldehyde dehydrogenase (ALDH) activity. This double hit builds up the autotoxic metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL), the focus of the catecholaldehyde hypothesis for the pathogenesis of PD. An animal model is needed that reproduces this abnormal catecholamine neurochemical pattern. Adult rats received subcutaneous vehicle or the mitochondrial complex 1 inhibitor rotenone (2 mg/kg/day via a minipump) for 10 days. Locomotor activity was recorded, and striatal tissue sampled for catechol contents and catechol ratios that indicate the above abnormalities. Compared to vehicle, rotenone reduced locomotor activity (P=0.002), decreased tissue dopamine concentrations (P=0.00001), reduced indices of vesicular sequestration (3,4-dihydroxyphenylacetic acid (DOPAC)/dopamine) and ALDH activity (DOPAC/DOPAL) (P=0.0025, P=0.036), and increased DOPAL levels (P=0.04). The rat rotenone model involves functional abnormalities in catecholaminergic neurons that replicate the pattern found in PD putamen. These include a vesicular storage defect, decreased ALDH activity and DOPAL build-up. The rat rotenone model provides a suitable in vivo platform for studying the catecholaldehyde hypothesis. Summary: This study presents an animal model that reflects the neurochemical pattern found in Parkinson's patients, the basis of the new and evolving catecholaldehyde hypothesis for the disease.
Collapse
Affiliation(s)
- Regev Landau
- Neuroautonomic Service, Chaim Sheba Medical Center, Affiliated with the Tel Aviv University Sackler Faculty of Medicine, Tel-HaShomer, Israel
| | - Reut Halperin
- Neuroautonomic Service, Chaim Sheba Medical Center, Affiliated with the Tel Aviv University Sackler Faculty of Medicine, Tel-HaShomer, Israel
| | - Patti Sullivan
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zion Zibly
- Department of Neurosurgery, Chaim Sheba Medical Center, Affiliated with the Tel Aviv University Sackler Faculty of Medicine, Tel-HaShomer, Israel
| | - Avshalom Leibowitz
- Neuroautonomic Service, Chaim Sheba Medical Center, Affiliated with the Tel Aviv University Sackler Faculty of Medicine, Tel-HaShomer, Israel
| | - David S Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Yehonatan Sharabi
- Neuroautonomic Service, Chaim Sheba Medical Center, Affiliated with the Tel Aviv University Sackler Faculty of Medicine, Tel-HaShomer, Israel
| |
Collapse
|
6
|
Kim S, Jang EY, Song SH, Kim JS, Ryu IS, Jeong CH, Lee S. Brain Microdialysis Coupled to LC-MS/MS Revealed That CVT-10216, a Selective Inhibitor of Aldehyde Dehydrogenase 2, Alters the Neurochemical and Behavioral Effects of Methamphetamine. ACS Chem Neurosci 2021; 12:1552-1562. [PMID: 33871963 DOI: 10.1021/acschemneuro.1c00039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Methamphetamine (MA), a potent central nervous system stimulant, mainly affects the brain dopaminergic and serotoninergic systems. Monoamine oxidase, catechol-O-methyltransferase, and aldehyde dehydrogenase 2 (ALDH2) are important enzymes in the metabolism of dopamine (DA) and serotonin (5-HT); however, the role of ALDH2 in MA addiction remains unclear. This study focused on the real-time changes in DA, 5-HT, and their metabolites, including 3,4-dihydroxyphenylacetic aldehyde and salsolinol, which are metabolites directly related to ALDH2, to examine the effects of the inhibition of ALDH2 on hyperlocomotion induced by MA. Locomotor activity was evaluated in rats after administration of MA and/or CVT-10216 (a selective ALDH2 inhibitor). Moreover, the simultaneous quantification of DA, 5-HT, and their metabolites in brain microdialysates of the rats was performed using a derivatization-assisted LC-MS/MS method after full validation. The validation results proved the method to be selective, sensitive, accurate, and precise, with acceptable linearity within calibration ranges. Intraperitoneal (i.p.) administration of 10 or 20 mg/kg of CVT-10216 significantly decreased MA-induced hyperlocomotion (1 mg/kg, i.p.). The analytical results of rat brain microdialysates demonstrated that the administration of CVT-10216 significantly downregulated DA levels, which were increased upon exposure to MA. Moreover, the increase in 3-methoxytyramine levels following coadministration of CVT-10216 and MA could play a potential role in antagonizing the hyperlocomotion induced by MA. All of these findings suggest that the inhibition of ALDH2 protects against MA-induced hyperlocomotion and has therapeutic potential in MA addiction.
Collapse
Affiliation(s)
- Seungju Kim
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Eun Young Jang
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daegeon 34114, Republic of Korea
| | - Sang-Hoon Song
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Ji Sun Kim
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daegeon 34114, Republic of Korea
| | - In Soo Ryu
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daegeon 34114, Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701, Republic of Korea
| |
Collapse
|
7
|
Goldstein DS. The "Sick-but-not-Dead" Phenomenon Applied to Catecholamine Deficiency in Neurodegenerative Diseases. Semin Neurol 2020; 40:502-514. [PMID: 32906170 PMCID: PMC10680399 DOI: 10.1055/s-0040-1713874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The catecholamines dopamine and norepinephrine are key central neurotransmitters that participate in many neurobehavioral processes and disease states. Norepinephrine is also the main neurotransmitter mediating regulation of the circulation by the sympathetic nervous system. Several neurodegenerative disorders feature catecholamine deficiency. The most common is Parkinson's disease (PD), in which putamen dopamine content is drastically reduced. PD also entails severely decreased myocardial norepinephrine content, a feature that characterizes two other Lewy body diseases-pure autonomic failure and dementia with Lewy bodies. It is widely presumed that tissue catecholamine depletion in these conditions results directly from loss of catecholaminergic neurons; however, as highlighted in this review, there are also important functional abnormalities in extant residual catecholaminergic neurons. We refer to this as the "sick-but-not-dead" phenomenon. The malfunctions include diminished dopamine biosynthesis via tyrosine hydroxylase (TH) and L-aromatic-amino-acid decarboxylase (LAAAD), inefficient vesicular sequestration of cytoplasmic catecholamines, and attenuated neuronal reuptake via cell membrane catecholamine transporters. A unifying explanation for catecholaminergic neurodegeneration is autotoxicity exerted by 3,4-dihydroxyphenylacetaldehyde (DOPAL), an obligate intermediate in cytoplasmic dopamine metabolism. In PD, putamen DOPAL is built up with respect to dopamine, associated with a vesicular storage defect and decreased aldehyde dehydrogenase activity. Probably via spontaneous oxidation, DOPAL potently oligomerizes and forms quinone-protein adducts with ("quinonizes") α-synuclein (AS), a major constituent in Lewy bodies, and DOPAL-induced AS oligomers impede vesicular storage. DOPAL also quinonizes numerous intracellular proteins and inhibits enzymatic activities of TH and LAAAD. Treatments targeting DOPAL formation and oxidation therefore might rescue sick-but-not-dead catecholaminergic neurons in Lewy body diseases.
Collapse
Affiliation(s)
- David S. Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
8
|
Manzoor S, Hoda N. A comprehensive review of monoamine oxidase inhibitors as Anti-Alzheimer's disease agents: A review. Eur J Med Chem 2020; 206:112787. [PMID: 32942081 DOI: 10.1016/j.ejmech.2020.112787] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/22/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
Monoamine oxidases (MAO-A and MAO-B) are mammalian flavoenzyme, which catalyze the oxidative deamination of several neurotransmitters like norepinephrine, dopamine, tyramine, serotonin, and some other amines. The oxidative deamination produces several harmful side products like ammonia, peroxides, and aldehydes during the biochemical reaction. The concentration of biochemical neurotransmitter alteration in the brain by MAO is directly related with several neurological disorders like Alzheimer's disease and Parkinson's disease (PD). Activated MAO also contributes to the amyloid beta (Aβ) aggregation by two successive cleft β-secretase and γ-secretase of amyloid precursor protein (APP). Additionally, activated MAO is also involved in aggregation of neurofibrillary tangles and cognitive destruction through the cholinergic neuronal damage and disorder of the cholinergic system. MAO inhibition has general anti-Alzheimer's disease effect as a consequence of oxidative stress reduction prompted by MAO enzymes. In this review, we outlined and addressed recent understanding on MAO enzymes such as their structure, physiological function, catalytic mechanism, and possible therapeutic goals in AD. In addition, it also highlights the current development and discovery of potential MAO inhibitors (MAOIs) from various chemical scaffolds.
Collapse
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
9
|
Wang YS, Lee SY, Chen SL, Chang YH, Wang TY, Lin SH, Wang CL, Huang SY, Lee I, Chen P, Yang Y, Lu RB. Role of DRD2 and ALDH2 genes in bipolar II disorder with and without comorbid anxiety disorder. Eur Psychiatry 2020; 29:142-8. [DOI: 10.1016/j.eurpsy.2013.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/05/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022] Open
Abstract
AbstractThe presence of comorbid anxiety disorders (AD) and bipolar II disorders (BP-II) compounds disability complicates treatment, worsens prognosis, and has been understudied. The genes involved in metabolizing dopamine and encoding dopamine receptors, such as aldehyde dehydrogenase 2 (ALDH2) and dopamine D2 receptor (DRD2) genes, may be important to the pathogenesis of BP-II comorbid with AD. We aimed to clarify ALDH2 and DRD2 genes for predisposition to BP-II comorbid with and without AD. The sample consisted of 335 subjects BP-II without AD, 127 subjects BP-II with AD and 348 healthy subjects as normal control. The genotypes of the ALDH2 and DRD2 Taq-IA polymorphisms were determined using polymerase chain reactions plus restriction fragment length polymorphism analysis. Logistic regression analysis showed a statistically significant association between DRD2 Taq-I A1/A2 genotype and BP-II with AD (OR = 2.231, P = 0.021). Moreover, a significant interaction of the DRD2 Taq-I A1/A1 and the ALDH2*1*1 genotypes in BP-II without AD was revealed (OR = 5.623, P = 0.001) compared with normal control. Our findings support the hypothesis that a unique genetic distinction between BP-II with and without AD, and suggest a novel association between DRD2 Taq-I A1/A2 genotype and BP-II with AD. Our study also provides further evidence that the ALDH2 and DRD2 genes interact in BP-II, particularly BP-II without AD.
Collapse
|
10
|
Gülcan HO, Orhan IE. The Main Targets Involved in Neuroprotection for the Treatment of Alzheimer’s Disease and Parkinson Disease. Curr Pharm Des 2020; 26:509-516. [DOI: 10.2174/1381612826666200131103524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/21/2019] [Indexed: 01/28/2023]
Abstract
With respect to the total cure failure of current drugs used in the treatment of neurodegenerative diseases,
alternative strategies are followed. Particularly, neuroprotection approaches are questioned. Metal chelation,
antioxidant towards oxidative stress, modulation of the amyloidogenic pathway, MAO-B inhibition, and
NMDA receptor antagonism is more or less typical examples. Some of the representative drug candidates with
promising neuroprotective features are assessed in clinical trials. Although initial attempts were found hopeful,
none of the candidates have been found successful in each required clinical trials, particularly depending on the
failures in terms of cognitive enhancement and slowing the progressive characteristics of neurodegenerative diseases.
Today, neuroprotection is evaluated using multi-target ligand-based drug design studies. Within this study,
the clinical outcomes of these studies, the rationale behind the design of the molecules are reviewed concomitant
to the representative drug candidates of each group.
Collapse
Affiliation(s)
- Hayrettin O. Gülcan
- Eastern Mediterranean University, Faculty of Pharmacy, Famagusta, TR. North Cyprus, via Mersin 10, Turkey
| | - Ilkay E. Orhan
- Gazi University, Faculty of Pharmacy, Department of Pharmacognosy, Etiler, Ankara, Turkey
| |
Collapse
|
11
|
Lee PW, Wang TY, Chang YH, Lee SY, Chen SL, Wang ZC, Chen PS, Chu CH, Huang SY, Tzeng NS, Lee IH, Chen KC, Yang YK, Hong JS, Lu RB. ALDH2 Gene: Its Effects on the Neuropsychological Functions in Patients with Opioid Use Disorder Undergoing Methadone Maintenance Treatment. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:136-144. [PMID: 31958914 PMCID: PMC7006970 DOI: 10.9758/cpn.2020.18.1.136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 11/18/2022]
Abstract
Objective Patients with opioid use disorder (OUD) have impaired attention, inhibition control, and memory function. The aldehyde dehydrogenase 2(ALDH2) gene has been associated with OUD and ALDH2 gene polymorphisms may affect aldehyde metabolism and cognitive function in other substance use disorder. Therefore, we aimed to investigate whether ALDH2 genotypes have significant effects on neuropsychological functions in OUD patients undergoing methadone maintenance therapy (MMT). Methods OUD patients undergoing MMT were investigated and followed-up for 12 weeks. ALDH2 gene polymorphisms were genotyped. Connors' Continuous Performance Test (CPT) and the Wechsler Memory Scale-Revised (WMS-R) were administered at baseline and after 12 weeks of MMT. Multivariate linear regressions and generalized estimating equations (GEEs) were used to examine the correlation between the ALDH2 genotypes and performance on the CPTs and WMS-R. Results We enrolled 86 patients at baseline; 61 patients completed the end-of-study assessments. The GEE analysis showed that, after the 12 weeks of MMT, OUD patients with the ALDH2 *1/*2+*2/*2 (ALDH2 inactive) genotypes had significantly higher commission error T-scores (p= 0.03), significantly lower hit reaction time T-scores (p= 0.04), and significantly lower WMS-R visual memory index scores (p= 0.03) than did patients with the ALDH2 1*/*1 (ALDH2 active) genotype. Conclusion OUD patients with the ALDH2 inactive genotypes performed worse in cognitive domains of attention, impulse control, and memory than did those with the ALDH2 active genotype. We conclude that the ALDH2 gene is important in OUD and is associated with neuropsychological performance after MMT.
Collapse
Affiliation(s)
- Po-Wei Lee
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Tzu-Yun Wang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Yun-Hsuan Chang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan.,Department of Psychology, Asia University, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Sheng-Yu Lee
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan.,Department of Psychiatry, Kaohsiung Veterans General Hospital, Taiwan
| | - Shiou-Lan Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan.,Graduate Institute of Medicine, College of Medicine, Taiwan.,Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ze-Cheng Wang
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang, China.,Beijing YiNing Hospital, Beijing, China
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan.,Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Hsien Chu
- 0Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - San-Yuan Huang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taiwan.,Student Counseling Center, National Defense Medical Center, Taipei, Taiwan
| | - I Hui Lee
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan.,Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Kao Chin Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan.,Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan.,Addiction Research Center, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Jau-Shyong Hong
- Neurobiology Laboratory, NIH/NIEHS, Research Triangle Park, NC, USA
| | - Ru-Band Lu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan.,The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang, China.,Beijing YiNing Hospital, Beijing, China.,Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
12
|
Goldstein DS. The catecholaldehyde hypothesis: where MAO fits in. J Neural Transm (Vienna) 2020; 127:169-177. [PMID: 31807952 PMCID: PMC10680281 DOI: 10.1007/s00702-019-02106-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022]
Abstract
Monoamine oxidase (MAO) plays a central role in the metabolism of the neurotransmitters dopamine, norepinephrine, and serotonin. This brief review focuses on 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is the immediate product of MAO acting on cytoplasmic dopamine. DOPAL is toxic; however, normally DOPAL is converted via aldehyde dehydrogenase (ALDH) to 3,4-dihydroxyphenylacetic acid (DOPAC), which rapidly exits the neurons. In addition to vesicular uptake of dopamine via the vesicular monoamine transporter (VMAT), the two-enzyme sequence of MAO and ALDH keeps cytoplasmic dopamine levels low. Dopamine oxidizes readily to form toxic products that could threaten neuronal homeostasis. The catecholaldehyde hypothesis posits that diseases featuring catecholaminergic neurodegeneration result from harmful interactions between DOPAL and the protein alpha-synuclein, a major component of Lewy bodies in diseases such as Parkinson disease, dementia with Lewy bodies, and pure autonomic failure. DOPAL potently oligomerizes alpha-synuclein, and alpha-synuclein oligomers impede vesicular functions, shifting the fate of cytoplasmic dopamine toward MAO-catalyzed formation of DOPAL-a vicious cycle. When MAO deaminates dopamine to form DOPAL, hydrogen peroxide is generated; and DOPAL, hydrogen peroxide, and divalent metal cations react to form hydroxyl radicals, which peroxidate lipid membranes. Lipid peroxidation products in turn inhibit ALDH, causing DOPAL to accumulate-another vicious cycle. MAO inhibition decreases DOPAL formation but concurrently increases the spontaneous oxidation of dopamine, potentially trading off one form of toxicity for another. These considerations rationalize a neuroprotection strategy based on concurrent treatment with an MAO inhibitor and an anti-oxidant.
Collapse
Affiliation(s)
- David S Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological, Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike MSC-1620, Building 10 Room 8N260, Bethesda, MD, 20892-1620, USA.
| |
Collapse
|
13
|
Guglielmi P, Secci D, Petzer A, Bagetta D, Chimenti P, Rotondi G, Ferrante C, Recinella L, Leone S, Alcaro S, Zengin G, Petzer JP, Ortuso F, Carradori S. Benzo[ b]tiophen-3-ol derivatives as effective inhibitors of human monoamine oxidase: design, synthesis, and biological activity. J Enzyme Inhib Med Chem 2019; 34:1511-1525. [PMID: 31422706 PMCID: PMC6713090 DOI: 10.1080/14756366.2019.1653864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A series of benzo[b]thiophen-3-ols were synthesised and investigated as potential human monoamine oxidase (hMAO) inhibitors in vitro as well as ex vivo in rat cortex synaptosomes by means of evaluation of 3,4-dihydroxyphenylacetic acid/dopamine (DOPAC/DA) ratio and lactate dehydrogenase (LDH) activity. Most of these compounds possessed high selectivity for the MAO-B isoform and a discrete antioxidant and chelating potential. Molecular docking studies of all the compounds underscored potential binding site interactions suitable for MAO inhibition activity, and suggested structural requirements to further improve the activity of this scaffold by chemical modification of the aryl substituents. Starting from this heterocyclic nucleus, novel lead compounds for the treatment of neurodegenerative disease could be developed.
Collapse
Affiliation(s)
- Paolo Guglielmi
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Daniela Secci
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Anél Petzer
- b Pharmaceutical Chemistry, School of Pharmacy, Centre of Excellence for Pharmaceutical Sciences, North-West University , Potchefstroom , South Africa
| | - Donatella Bagetta
- c Dipartimento di Scienze della Salute, "Magna Graecia" University of Catanzaro, Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto , Catanzaro , Italy.,d Net4Science Academic Spin-Off, Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto, "Magna Graecia" University of Catanzaro , Catanzaro , Italy
| | - Paola Chimenti
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Giulia Rotondi
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Claudio Ferrante
- e Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Lucia Recinella
- e Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Sheila Leone
- e Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Stefano Alcaro
- c Dipartimento di Scienze della Salute, "Magna Graecia" University of Catanzaro, Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto , Catanzaro , Italy.,d Net4Science Academic Spin-Off, Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto, "Magna Graecia" University of Catanzaro , Catanzaro , Italy
| | - Gokhan Zengin
- f Department of Biology, Science Faculty, Selcuk University , Konya , Turkey
| | - Jacobus P Petzer
- b Pharmaceutical Chemistry, School of Pharmacy, Centre of Excellence for Pharmaceutical Sciences, North-West University , Potchefstroom , South Africa
| | - Francesco Ortuso
- c Dipartimento di Scienze della Salute, "Magna Graecia" University of Catanzaro, Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto , Catanzaro , Italy.,d Net4Science Academic Spin-Off, Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto, "Magna Graecia" University of Catanzaro , Catanzaro , Italy
| | - Simone Carradori
- e Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| |
Collapse
|
14
|
Masato A, Plotegher N, Boassa D, Bubacco L. Impaired dopamine metabolism in Parkinson's disease pathogenesis. Mol Neurodegener 2019; 14:35. [PMID: 31488222 PMCID: PMC6728988 DOI: 10.1186/s13024-019-0332-6] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
A full understanding of Parkinson's Disease etiopathogenesis and of the causes of the preferential vulnerability of nigrostriatal dopaminergic neurons is still an unsolved puzzle. A multiple-hit hypothesis has been proposed, which may explain the convergence of familial, environmental and idiopathic forms of the disease. Among the various determinants of the degeneration of the neurons in Substantia Nigra pars compacta, in this review we will focus on the endotoxicity associated to dopamine dyshomeostasis. In particular, we will discuss the relevance of the reactive dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) in the catechol-induced neurotoxicity. Indeed, the synergy between the catechol and the aldehyde moieties of DOPAL exacerbates its reactivity, resulting in modification of functional protein residues, protein aggregation, oxidative stress and cell death. Interestingly, αSynuclein, whose altered proteostasis is a recurrent element in Parkinson's Disease pathology, is considered a preferential target of DOPAL modification. DOPAL triggers αSynuclein oligomerization leading to synapse physiology impairment. Several factors can be responsible for DOPAL accumulation at the pre-synaptic terminals, i.e. dopamine leakage from synaptic vesicles, increased rate of dopamine conversion to DOPAL by upregulated monoamine oxidase and decreased DOPAL degradation by aldehyde dehydrogenases. Various studies report the decreased expression and activity of aldehyde dehydrogenases in parkinsonian brains, as well as genetic variants associated to increased risk in developing the pathology. Thus, we discuss how the deregulation of these enzymes might be considered a contributing element in the pathogenesis of Parkinson's Disease or a down-stream effect. Finally, we propose that a better understanding of the impaired dopamine metabolism in Parkinson's Disease would allow a more refined patients stratification and the design of more targeted and successful therapeutic strategies.
Collapse
Affiliation(s)
- Anna Masato
- Department of Biology, University of Padova, Padova, Italy
| | | | - Daniela Boassa
- Department of Neurosciences, and National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
15
|
Goldstein DS, Sharabi Y. The heart of PD: Lewy body diseases as neurocardiologic disorders. Brain Res 2019; 1702:74-84. [PMID: 29030055 PMCID: PMC10712237 DOI: 10.1016/j.brainres.2017.09.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 01/01/2023]
Abstract
This review provides an update about cardiac sympathetic denervation in Lewy body diseases. The family of Lewy body diseases includes Parkinson's disease (PD), pure autonomic failure (PAF), and dementia with Lewy bodies (DLB). All three feature intra-neuronal cytoplasmic deposits of the protein, alpha-synuclein. Multiple system atrophy (MSA), the parkinsonian form of which can be difficult to distinguish from PD with orthostatic hypotension, involves glial cytoplasmic inclusions that contain alpha-synuclein. By now there is compelling neuroimaging, neuropathologic, and neurochemical evidence for cardiac sympathetic denervation in Lewy body diseases. In addition to denervation, there is decreased storage of catecholamines in the residual terminals. The degeneration develops in a centripetal, retrograde, "dying back" sequence. Across synucleinopathies the putamen and cardiac catecholaminergic lesions seem to occur independently of each other, whereas non-motor aspects of PD (e.g., anosmia, dementia, REM behavior disorder, OH) are associated with each other and with cardiac sympathetic denervation. Cardiac sympathetic denervation can be caused by synucleinopathy in inherited PD. According to the catecholaldehyde hypothesis, 3,4-dihydroxyphenylacetaldehyde (DOPAL), an intermediary metabolite of dopamine, causes or contributes to the death of catecholamine neurons, especially by interacting with proteins such as alpha-synuclein. DOPAL oxidizes spontaneously to DOPAL-quinone, which probably converts alpha-synuclein to its toxic oligomeric form. Decreasing DOPAL production and oxidation might slow the neurodegenerative process. Tracking cardiac sympathetic innervation over time could be the basis for a proof of principle experimental therapeutics trial targeting DOPAL.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1620, United States.
| | - Yehonatan Sharabi
- Chaim Sheba Medical Center and Tel Aviv University Sackler Faculty of Medicine, Israel.
| |
Collapse
|
16
|
Tambasco N, Romoli M, Calabresi P. Selective basal ganglia vulnerability to energy deprivation: Experimental and clinical evidences. Prog Neurobiol 2018; 169:55-75. [DOI: 10.1016/j.pneurobio.2018.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
|
17
|
Biochemical characterization of the catecholaldehyde reactivity of L-carnosine and its therapeutic potential in human myocardium. Amino Acids 2018; 51:97-102. [PMID: 30191330 DOI: 10.1007/s00726-018-2647-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/28/2018] [Indexed: 01/28/2023]
Abstract
Oxidative deamination of norepinephrine (NE) and dopamine (DA) by monoamine oxidase (MAO) generates the catecholaldehydes 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL) and 3,4-dihydroxyphenylacetaldehyde (DOPAL), respectively, and H2O2. Catecholaldehydes are highly reactive electrophiles that have been implicated as causal factors in the etiology of neurodegenerative diseases and cardiac injury from ischemia and diabetes. The reactivity of both catechol and aldehyde groups enables the catecholaldehdyes to cross-link proteins and other biological molecules. Carnosine is a β-alanyl-histidine dipeptide found in millimolar concentrations in brain and myocardium. It is well known to detoxify aldehydes formed from oxidized lipids and sugars, yet the reactivity of carnosine with catecholaldehydes has never been reported. Here, we investigated the ability of carnosine to form conjugates with DOPAL and DOPEGAL. Both catecholaldehydes were highly reactive towards L-cysteine (L-Cys), as well as carnosine; however, glutathione (GSH) showed essentially no reactivity towards DOPAL. In contrast, GSH readily reacted with the lipid peroxidation product 4-hydroxy-2-nonenal (4HNE), while carnosine showed low reactivity to 4HNE by comparison. To determine whether carnosine mitigates catecholaldehyde toxicity, samples of atrial myocardium were collected from patients undergoing elective cardiac surgery. Using permeabilized myofibers prepared from this tissue, mitochondrial respiration analysis revealed a concentration-dependent decrease in ADP-stimulated respiration with DOPAL. Pre-incubation with carnosine, but not GSH or L-Cys, significantly reduced this effect (p < 0.05). Carnosine was also able to block formation of catecholaldehyde protein adducts in isolated human cardiac mitochondria treated with NE. These findings demonstrate the unique reactivity of carnosine towards catecholaldehydes and, therefore, suggest a novel and distinct biological role for histidine dipeptides in this detoxification reaction. The therapeutic potential of carnosine in diseases associated with catecholamine-related toxicity is worthy of further examination.
Collapse
|
18
|
Lee SY, Wang TY, Chen SL, Chang YH, Chen PS, Huang SY, Tzeng NS, Wang LJ, Lee IH, Chen KC, Yang YK, Yang YH, Chen CS, Lu RB. ALDH2 modulated changes in cytokine levels and cognitive function in bipolar disorder: A 12-week follow-up study. Aust N Z J Psychiatry 2018; 52:680-689. [PMID: 28778129 DOI: 10.1177/0004867417720517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES We investigated the association of the aldehyde dehydrogenase 2 ( ALDH2) polymorphism (rs671), which is involved with the dopaminergic function, and with changes in cytokine levels and cognitive function, in a 12-week follow-up study in patients with bipolar disorder. METHODS Patients with a first diagnosis of bipolar disorder were recruited. Symptom severity and levels of plasma cytokines (tumor necrosis factor α, C-reactive protein, interleukin 6 and transforming growth factor β1) were examined during weeks 0, 1, 2, 4, 8 and 12. Neurocognitive function was evaluated at baseline and endpoint. The ALDH2 polymorphism genotype was determined. RESULTS A total of 541 patients with bipolar disorder were recruited, and 355 (65.6%) completed the 12-week follow-up. A multiple linear regression analysis showed a significant ( p = 0.000226) association between the ALDH2 polymorphism and changes in C-reactive protein levels. Different aspects of cognitive function improved in patients with different ALDH2 genotypes. Only patients with the ALDH2*1*1 genotype showed significant correlations between improvement of cognitive function and increased transforming growth factor -β1. CONCLUSION The ALDH2 gene might influence changes in cytokine levels and cognitive performance in patients with bipolar disorder. Additionally, changes in cytokine levels and cognitive function were correlated only in patients with specific ALDH2 genotypes.
Collapse
Affiliation(s)
- Sheng-Yu Lee
- 1 Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,2 Department of Psychiatry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,3 Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,4 Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan.,5 Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Tzu-Yun Wang
- 5 Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Shiou-Lan Chen
- 5 Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan.,6 Lipid Science and Aging Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Hsuan Chang
- 5 Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan.,7 Department of Psychology, Asia University, Taichung, Taiwan
| | - Po-See Chen
- 5 Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan.,8 Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| | - San-Yuan Huang
- 9 Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Nian-Sheng Tzeng
- 9 Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,10 Student Counseling Center, National Defense Medical Center, Taipei, Taiwan
| | - Liang-Jen Wang
- 1 Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,11 Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - I-Hui Lee
- 5 Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Kao-Chin Chen
- 5 Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yen Kuang Yang
- 5 Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan.,12 Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Yi-Hsin Yang
- 13 School of Pharmacy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Sheng Chen
- 1 Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,2 Department of Psychiatry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,14 Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ru-Band Lu
- 5 Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan.,8 Addiction Research Center, National Cheng Kung University, Tainan, Taiwan.,15 Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,16 Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
19
|
Jinsmaa Y, Sharabi Y, Sullivan P, Isonaka R, Goldstein DS. 3,4-Dihydroxyphenylacetaldehyde-Induced Protein Modifications and Their Mitigation by N-Acetylcysteine. J Pharmacol Exp Ther 2018; 366:113-124. [PMID: 29700232 DOI: 10.1124/jpet.118.248492] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/19/2018] [Indexed: 12/11/2022] Open
Abstract
The catecholaldehyde hypothesis posits that 3,4-dihydroxyphenylacetaldehyde (DOPAL), an obligate intermediary metabolite of dopamine, is an autotoxin that challenges neuronal homeostasis in catecholaminergic neurons. DOPAL toxicity may involve protein modifications, such as oligomerization of α-synuclein (AS). Potential interactions between DOPAL and other proteins related to catecholaminergic neurodegeneration, however, have not been systemically explored. This study examined DOPAL-induced protein-quinone adduct formation ("quinonization") and protein oligomerization, ubiquitination, and aggregation in cultured MO3.13 human oligodendrocytes and PC12 rat pheochromocytoma cells and in test tube experiments. Using near-infrared fluorescence spectroscopy, we detected spontaneous DOPAL oxidation to DOPAL-quinone, DOPAL-induced quinonization of intracellular proteins in both cell lines, and DOPAL-induced quinonization of several proteins related to catecholaminergic neurodegeneration, including AS, the type 2 vesicular monoamine transporter, glucocerebrosidase, ubiquitin, and l-aromatic-amino-acid decarboxylase (LAAAD). DOPAL also oligomerized AS, ubiquitin, and LAAAD; inactivated LAAAD (IC50 54 μM); evoked substantial intracellular protein ubiquitination; and aggregated intracellular AS. Remarkably, N-acetylcysteine, which decreases DOPAL-quinone formation, attenuated or prevented all of these protein modifications and functional changes. The results fit with the proposal that treatments based on decreasing the formation and oxidation of DOPAL may slow or prevent catecholaminergic neurodegeneration.
Collapse
Affiliation(s)
- Yunden Jinsmaa
- Clinical Neurocardiology Section, Clinical Neurosciences Program/Division of Intramural Research/National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, Maryland (Y.J., Y.S., P.S., R.I., D.S.G.), and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Y.S.)
| | - Yehonatan Sharabi
- Clinical Neurocardiology Section, Clinical Neurosciences Program/Division of Intramural Research/National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, Maryland (Y.J., Y.S., P.S., R.I., D.S.G.), and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Y.S.)
| | - Patti Sullivan
- Clinical Neurocardiology Section, Clinical Neurosciences Program/Division of Intramural Research/National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, Maryland (Y.J., Y.S., P.S., R.I., D.S.G.), and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Y.S.)
| | - Risa Isonaka
- Clinical Neurocardiology Section, Clinical Neurosciences Program/Division of Intramural Research/National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, Maryland (Y.J., Y.S., P.S., R.I., D.S.G.), and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Y.S.)
| | - David S Goldstein
- Clinical Neurocardiology Section, Clinical Neurosciences Program/Division of Intramural Research/National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, Maryland (Y.J., Y.S., P.S., R.I., D.S.G.), and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Y.S.)
| |
Collapse
|
20
|
Tripathi AC, Upadhyay S, Paliwal S, Saraf SK. Privileged scaffolds as MAO inhibitors: Retrospect and prospects. Eur J Med Chem 2018; 145:445-497. [PMID: 29335210 DOI: 10.1016/j.ejmech.2018.01.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/01/2017] [Accepted: 01/01/2018] [Indexed: 12/24/2022]
Abstract
This review aims to be a comprehensive, authoritative, critical, and readable review of general interest to the medicinal chemistry community because it focuses on the pharmacological, chemical, structural and computational aspects of diverse chemical categories as monoamine oxidase inhibitors (MAOIs). Monoamine oxidases (MAOs), namely MAO-A and MAO-B represent an enormously valuable class of neuronal enzymes embodying neurobiological origin and functions, serving as potential therapeutic target in neuronal pharmacotherapy, and hence we have coined the term "Neurozymes" which is being introduced for the first time ever. Nowadays, therapeutic attention on MAOIs engrosses two imperative categories; MAO-A inhibitors, in certain mental disorders such as depression and anxiety, and MAO-B inhibitors, in neurodegenerative disorders like Alzheimer's disease (AD) and Parkinson's disease (PD). The use of MAOIs declined due to some potential side effects, food and drug interactions, and introduction of other classes of drugs. However, curiosity in MAOIs is reviving and the recent developments of new generation of highly selective and reversible MAOIs, have renewed the therapeutic prospective of these compounds. The initial section of the review emphasizes on the detailed classification, structural and binding characteristics, therapeutic potential, current status and future challenges of the privileged pharmacophores. However, the chemical prospective of privileged scaffolds such as; aliphatic and aromatic amines, amides, hydrazines, azoles, diazoles, tetrazoles, indoles, azines, diazines, xanthenes, tricyclics, benzopyrones, and more interestingly natural products, along with their conclusive SARs have been discussed in the later segment of review. The last segment of the article encompasses some patents granted in the field of MAOIs, in a simplistic way.
Collapse
Affiliation(s)
- Avinash C Tripathi
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, UP, India
| | - Savita Upadhyay
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, UP, India
| | - Sarvesh Paliwal
- Pharmacy Department, Banasthali Vidyapith, Banasthali, Tonk 304022, Rajasthan, India
| | - Shailendra K Saraf
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, UP, India.
| |
Collapse
|
21
|
Goldstein DS, Jinsmaa Y, Sullivan P, Sharabi Y. N-Acetylcysteine Prevents the Increase in Spontaneous Oxidation of Dopamine During Monoamine Oxidase Inhibition in PC12 Cells. Neurochem Res 2017; 42:3289-3295. [PMID: 28840582 PMCID: PMC10792588 DOI: 10.1007/s11064-017-2371-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022]
Abstract
The catecholaldehyde hypothesis for the pathogenesis of Parkinson's disease proposes that the deaminated dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) is toxic to nigrostriatal dopaminergic neurons. Inhibiting monoamine oxidase (MAO) should therefore slow the disease progression; however, MAO inhibition increases spontaneous oxidation of dopamine, as indicated by increased 5-S-cysteinyl-dopamine (Cys-DA) levels, and the oxidation products may also be toxic. This study examined whether N-acetylcysteine (NAC), a precursor of the anti-oxidant glutathione, attenuates the increase in Cys-DA production during MAO inhibition. Rat pheochromocytoma PC12 cells were incubated with NAC, the MAO-B inhibitor selegiline, or both. Selegiline decreased DOPAL and increased Cys-DA levels (p < 0.0001 each). Co-incubation of NAC at pharmacologically relevant concentrations (1-10 µM) with selegiline (1 µM) attenuated or prevented the Cys-DA response to selegiline, without interfering with the selegiline-induced decrease in DOPAL production or inhibiting tyrosine hydroxylation. NAC therefore mitigates the increase in spontaneous oxidation of dopamine during MAO inhibition.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, CNP/DIR/NINDS/NIH, 9000 Rockville Pike, Bldg. 10 Rm. 5N220, Bethesda, MD, 20892-1620, USA.
| | - Yunden Jinsmaa
- Clinical Neurocardiology Section, CNP/DIR/NINDS/NIH, 9000 Rockville Pike, Bldg. 10 Rm. 5N220, Bethesda, MD, 20892-1620, USA
| | - Patti Sullivan
- Clinical Neurocardiology Section, CNP/DIR/NINDS/NIH, 9000 Rockville Pike, Bldg. 10 Rm. 5N220, Bethesda, MD, 20892-1620, USA
| | - Yehonatan Sharabi
- Clinical Neurocardiology Section, CNP/DIR/NINDS/NIH, 9000 Rockville Pike, Bldg. 10 Rm. 5N220, Bethesda, MD, 20892-1620, USA
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
TrkB neurotrophic activities are blocked by α-synuclein, triggering dopaminergic cell death in Parkinson's disease. Proc Natl Acad Sci U S A 2017; 114:10773-10778. [PMID: 28923922 DOI: 10.1073/pnas.1713969114] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BDNF/TrkB neurotrophic signaling is essential for dopaminergic neuronal survival, and the activities are reduced in the substantial nigra (SN) of Parkinson's disease (PD). However, whether α-Syn (alpha-synuclein) aggregation, a hallmark in the remaining SN neurons in PD, accounts for the neurotrophic inhibition remains elusive. Here we show that α-Syn selectively interacts with TrkB receptors and inhibits BDNF/TrkB signaling, leading to dopaminergic neuronal death. α-Syn binds to the kinase domain on TrkB, which is negatively regulated by BDNF or Fyn tyrosine kinase. Interestingly, α-Syn represses TrkB lipid raft distribution, decreases its internalization, and reduces its axonal trafficking. Moreover, α-Syn also reduces TrkB protein levels via up-regulation of TrkB ubiquitination. Remarkably, dopamine's metabolite 3,4-Dihydroxyphenylacetaldehyde (DOPAL) stimulates the interaction between α-Syn and TrkB. Accordingly, MAO-B inhibitor rasagiline disrupts α-Syn/TrkB complex and rescues TrkB neurotrophic signaling, preventing α-Syn-induced dopaminergic neuronal death and restoring motor functions. Hence, our findings demonstrate a noble pathological role of α-Syn in antagonizing neurotrophic signaling, providing a molecular mechanism that accounts for its neurotoxicity in PD.
Collapse
|
23
|
Xavier RM, Vorderstrasse A. Genetic Basis of Positive and Negative Symptom Domains in Schizophrenia. Biol Res Nurs 2017; 19:559-575. [PMID: 28691507 DOI: 10.1177/1099800417715907] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Schizophrenia is a highly heritable disorder, the genetic etiology of which has been well established. Yet despite significant advances in genetics research, the pathophysiological mechanisms of this disorder largely remain unknown. This gap has been attributed to the complexity of the polygenic disorder, which has a heterogeneous clinical profile. Examining the genetic basis of schizophrenia subphenotypes, such as those based on particular symptoms, is thus a useful strategy for decoding the underlying mechanisms. This review of literature examines the recent advances (from 2011) in genetic exploration of positive and negative symptoms in schizophrenia. We searched electronic databases PubMed, Web of Science, and Cumulative Index to Nursing and Allied Health Literature using key words schizophrenia, symptoms, positive symptoms, negative symptoms, cognition, genetics, genes, genetic predisposition, and genotype in various combinations. We identified 115 articles, which are included in the review. Evidence from these studies, most of which are genetic association studies, identifies shared and unique gene associations for the symptom domains. Genes associated with neurotransmitter systems and neuronal development/maintenance primarily constitute the shared associations. Needed are studies that examine the genetic basis of specific symptoms within the broader domains in addition to functional mechanisms. Such investigations are critical to developing precision treatment and care for individuals afflicted with schizophrenia.
Collapse
Affiliation(s)
| | - Allison Vorderstrasse
- 2 Duke Center for Applied Genomics and Precision Medicine, Duke University School of Nursing, Durham, NC, USA
| |
Collapse
|
24
|
Anandhan A, Jacome MS, Lei S, Hernandez-Franco P, Pappa A, Panayiotidis MI, Powers R, Franco R. Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism. Brain Res Bull 2017; 133:12-30. [PMID: 28341600 PMCID: PMC5555796 DOI: 10.1016/j.brainresbull.2017.03.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 12/24/2022]
Abstract
The loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of protein inclusions (Lewy bodies) are the pathological hallmarks of Parkinson's disease (PD). PD is triggered by genetic alterations, environmental/occupational exposures and aging. However, the exact molecular mechanisms linking these PD risk factors to neuronal dysfunction are still unclear. Alterations in redox homeostasis and bioenergetics (energy failure) are thought to be central components of neurodegeneration that contribute to the impairment of important homeostatic processes in dopaminergic cells such as protein quality control mechanisms, neurotransmitter release/metabolism, axonal transport of vesicles and cell survival. Importantly, both bioenergetics and redox homeostasis are coupled to neuro-glial central carbon metabolism. We and others have recently established a link between the alterations in central carbon metabolism induced by PD risk factors, redox homeostasis and bioenergetics and their contribution to the survival/death of dopaminergic cells. In this review, we focus on the link between metabolic dysfunction, energy failure and redox imbalance in PD, making an emphasis in the contribution of central carbon (glucose) metabolism. The evidence summarized here strongly supports the consideration of PD as a disorder of cell metabolism.
Collapse
Affiliation(s)
- Annadurai Anandhan
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Maria S Jacome
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States
| | - Shulei Lei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Pablo Hernandez-Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
| | | | - Robert Powers
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States; Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Rodrigo Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States.
| |
Collapse
|
25
|
Linking Stress, Catecholamine Autotoxicity, and Allostatic Load with Neurodegenerative Diseases: A Focused Review in Memory of Richard Kvetnansky. Cell Mol Neurobiol 2017; 38:13-24. [PMID: 28488009 DOI: 10.1007/s10571-017-0497-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
In this Focused Review, we provide an update about evolving concepts that may link chronic stress and catecholamine autotoxicity with neurodegenerative diseases such as Parkinson's disease. Richard Kvetnansky's contributions to the field of stress and catecholamine systems inspired some of the ideas presented here. We propose that coordination of catecholaminergic systems mediates adjustments maintaining health and that senescence-related disintegration of these systems leads to disorders of regulation and to neurodegenerative diseases such as Parkinson's disease. Chronically repeated episodes of stress-related catecholamine release and reuptake, with attendant increases in formation of the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde, might accelerate this process.
Collapse
|
26
|
Yu RL, Tan CH, Lu YC, Wu RM. Aldehyde dehydrogenase 2 is associated with cognitive functions in patients with Parkinson's disease. Sci Rep 2016; 6:30424. [PMID: 27453488 PMCID: PMC4958972 DOI: 10.1038/srep30424] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/01/2016] [Indexed: 11/16/2022] Open
Abstract
Neurotransmitter degradation has been proposed to cause the accumulation of neurotoxic metabolites. The metabolism of these metabolites involves aldehyde dehydrogenase 2 (ALDH2). The Asian-specific single nucleotide polymorphism rs671 causes reduced enzyme activity. This study aims to explore whether Parkinson's disease (PD) patients with reduced ALDH2 activity owing to the rs671 polymorphism are at risk for neuropsychological impairments. A total of 139 PD patients were recruited. Each participant was assessed for medical characteristics and their ALDH2 genotype. The Mini-Mental State Examination (MMSE), the Clinical Dementia Rating Scale and the Frontal Behavioral Inventory were used to measure neuropsychological functions. We found that the MMSE scores were significantly lower in patients with inactive ALDH2 (U = 1873.5, p = 0.02). The presence of cognitive impairments was significantly more frequent in the inactive ALDH2 group (46.0%) than in the active ALDH2 group (26.3%) (χ(2) = 5.886, p = 0.01). The inactive group showed significant deterioration in hobbies and exhibited more severe "disorganization" and "hyper-sexuality" behaviours. The additive effects of the allele on the development of cognitive impairments in PD patients may be an important finding that provides further insight into the pathogenic mechanism of cognitive dysfunction in PD.
Collapse
Affiliation(s)
- Rwei-Ling Yu
- Institute of Behavioral Medicine, National Cheng Kung University, College of Medicine, Tainan, Taiwan
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Hsiang Tan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ying-Che Lu
- Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
27
|
Merino-Jiménez C, Aragón J, Ceja V, Rodríguez-Martínez G, Cázares-Raga FE, Chardonnet S, Pionneau C, Rendon A, Montañez C. Dp71Δ78-79 dystrophin mutant stimulates neurite outgrowth in PC12 cells via upregulation and phosphorylation of HspB1. Proteomics 2016; 16:1331-40. [PMID: 26936078 DOI: 10.1002/pmic.201500211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 01/24/2016] [Accepted: 02/29/2016] [Indexed: 11/05/2022]
Abstract
PC12 cells acquire a neuronal phenotype in response to nerve growth factor (NGF). However, this phenotype is more efficiently achieved when the Dp71Δ78-79 dystrophin mutant is stably expressed in PC12-C11 cells. To investigate the effect of Dp71Δ78-79 overexpression on the protein profile of PC12-C11 cells, we compared the expression profiles of undifferentiated and NGF-differentiated PC12-C11 and PC12 cells by 2DE. In undifferentiated cultures, one protein was downregulated, and five were upregulated. Dp71Δ78-79 overexpression had a greater effect on differentiated cultures, with ten proteins downregulated and seven upregulated. The protein with the highest upregulation was HspB1. Changes in HspB1 expression were validated by Western blot and immunofluorescence analyses. Interestingly, the neurite outgrowth in PC12-C11 cells was affected by a polyclonal antibody against HspB1, and the level of HspB1 and HspB1Ser86 decreased, suggesting an important role for this protein in this cellular process. Our results show that Dp71Δ78-79 affects the expression level of some proteins and that the stimulated neurite outgrowth produced by this mutant is mainly through upregulation and phosphorylation of HspB1.
Collapse
Affiliation(s)
- Candelaria Merino-Jiménez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F., México
| | - Jorge Aragón
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F., México
| | - Víctor Ceja
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F., México
| | - Griselda Rodríguez-Martínez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F., México
| | - Febe E Cázares-Raga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F., México
| | - Solenne Chardonnet
- UPMC Univ Paris 06, UMS 2 Omique, Sorbonne Universités, Plateforme P3S, Paris, France.,UMS 29 Omique, INSERM, Plateforme P3S, Paris, France
| | - Cédric Pionneau
- UPMC Univ Paris 06, UMS 2 Omique, Sorbonne Universités, Plateforme P3S, Paris, France.,UMS 29 Omique, INSERM, Plateforme P3S, Paris, France
| | - Alvaro Rendon
- Institut de la Vision, INSERM UMR_S968, CNRS UMR_7210, Université Pierre et Marie Curie Paris 06, Paris, France
| | - Cecilia Montañez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F., México
| |
Collapse
|
28
|
ALDH2 polymorphism, associated with attenuating negative symptoms in patients with schizophrenia treated with add-on dextromethorphan. J Psychiatr Res 2015; 69:50-6. [PMID: 26343594 DOI: 10.1016/j.jpsychires.2015.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Increasing the evidence of inflammation's contribution to schizophrenia; using anti-inflammatory or neurotrophic therapeutic agents to see whether they improve schizophrenia treatment. Dextromethorphan (DM), a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, might protect monoamine neurons. Whether treating schizophrenia with risperidone plus add-on DM is more effective than risperidone (RISP) alone, and the association between the ALDH2 polymorphism and treatment response were investigated. METHODS A double-blind study in which patients with schizophrenia were randomly assigned to the RISP + DM (60 mg/day; n = 74) or the RISP + Placebo (n = 75) group. The Positive and Negative Syndrome Scale (PANSS) and the Scale for the Assessment of Negative Symptoms (SANS) scores were used to evaluate clinical response during weeks 0, 1, 2, 4, 6, 8, and 11. The genotypes of the ALDH2 polymorphism were determined using polymerase chain reactions plus restriction fragment length polymorphism analysis. A generalized estimating equation was used to analyze the effects of ALDH2 polymorphism on the clinical performance of DM. RESULTS PANSS and SANS scores were significantly lower in both groups after 11 weeks of treatment. SANS total scores were significantly lower in the RISP + DM group in patients with the ALDH2*2*2 genotype. CONCLUSIONS RISP plus add-on DM treatment reduced negative schizophrenia symptoms in patients with the ALDH2 polymorphism.
Collapse
|
29
|
Goldstein DS, Sullivan P, Cooney A, Jinsmaa Y, Kopin IJ, Sharabi Y. Rotenone decreases intracellular aldehyde dehydrogenase activity: implications for the pathogenesis of Parkinson's disease. J Neurochem 2015; 133:14-25. [PMID: 25645689 DOI: 10.1111/jnc.13042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 12/20/2022]
Abstract
Repeated systemic administration of the mitochondrial complex I inhibitor rotenone produces a rodent model of Parkinson's disease (PD). Mechanisms of relatively selective rotenone-induced damage to nigrostriatal dopaminergic neurons remain incompletely understood. According to the 'catecholaldehyde hypothesis,' buildup of the autotoxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) contributes to PD pathogenesis. Vesicular uptake blockade increases DOPAL levels, and DOPAL is detoxified mainly by aldehyde dehydrogenase (ALDH). We tested whether rotenone interferes with vesicular uptake and intracellular ALDH activity. Endogenous and F-labeled catechols were measured in PC12 cells incubated with rotenone (0-1000 nM, 180 min), without or with F-dopamine (2 μM) to track vesicular uptake and catecholamine metabolism. Rotenone dose dependently increased DOPAL, F-DOPAL, and 3,4-dihydroxyphenylethanol (DOPET) levels while decreasing dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels and the ratio of dopamine to the sum of its deaminated metabolites. In test tubes, rotenone did not affect conversion of DOPAL to DOPAC by ALDH when NAD(+) was supplied, whereas the direct-acting ALDH inhibitor benomyl markedly increased DOPAL and decreased DOPAC concentrations in the reaction mixtures. We propose that rotenone builds up intracellular DOPAL by decreasing ALDH activity and attenuating vesicular sequestration of cytoplasmic catecholamines. The results provide a novel mechanism for selective rotenone-induced toxicity in dopaminergic neurons. We report that rotenone, a mitochondrial complex I inhibitor that produces an animal model of Parkinson's disease, increases intracellular levels of the toxic dopamine metabolite 3,4-dihydroxyphenyl-acetaldehyde (DOPAL), via decreased DOPAL metabolism by aldehyde dehydrogenase (ALDH) and decreased vesicular sequestration of cytoplasmic dopamine by the vesicular monoamine transporter (VMAT). The results provide a novel mechanism for rotenone-induced toxicity in dopaminergic neurons.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, CNP/DIR/NINDS/NIH, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
30
|
Tiernan CT, Edwin EA, Hawong HY, Ríos-Cabanillas M, Goudreau JL, Atchison WD, Lookingland KJ. Methylmercury impairs canonical dopamine metabolism in rat undifferentiated pheochromocytoma (PC12) cells by indirect inhibition of aldehyde dehydrogenase. Toxicol Sci 2015; 144:347-56. [PMID: 25601988 DOI: 10.1093/toxsci/kfv001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The environmental neurotoxicant methylmercury (MeHg) disrupts dopamine (DA) neurochemical homeostasis by stimulating DA synthesis and release. Evidence also suggests that DA metabolism is independently impaired. The present investigation was designed to characterize the DA metabolomic profile induced by MeHg, and examine potential mechanisms by which MeHg inhibits the DA metabolic enzyme aldehyde dehydrogenase (ALDH) in rat undifferentiated PC12 cells. MeHg decreases the intracellular concentration of 3,4-dihydroxyphenylacetic acid (DOPAC). This is associated with a concomitant increase in intracellular concentrations of the intermediate metabolite 3,4-dihydroxyphenylaldehyde (DOPAL) and the reduced metabolic product 3,4-dihydroxyethanol. This metabolomic profile is consistent with inhibition of ALDH, which catalyzes oxidation of DOPAL to DOPAC. MeHg does not directly impair ALDH enzymatic activity, however MeHg depletes cytosolic levels of the ALDH cofactor NAD(+), which could contribute to impaired ALDH activity following exposure to MeHg. The observation that MeHg shunts DA metabolism along an alternative metabolic pathway and leads to the accumulation of DOPAL, a reactive species associated with protein and DNA damage, as well as cell death, is of significant consequence. As a specific metabolite of DA, the observed accumulation of DOPAL provides evidence for a specific mechanism by which DA neurons may be selectively vulnerable to MeHg.
Collapse
Affiliation(s)
- Chelsea T Tiernan
- *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824
| | - Ethan A Edwin
- *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824
| | - Hae-Young Hawong
- *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824 *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824
| | - Mónica Ríos-Cabanillas
- *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824
| | - John L Goudreau
- *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824 *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824 *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824
| | - William D Atchison
- *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824 *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824
| | - Keith J Lookingland
- *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824 *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
31
|
Goldstein DS, Kopin IJ, Sharabi Y. Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders. Pharmacol Ther 2014; 144:268-82. [PMID: 24945828 PMCID: PMC4591072 DOI: 10.1016/j.pharmthera.2014.06.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 02/07/2023]
Abstract
Several neurodegenerative diseases involve loss of catecholamine neurons-Parkinson disease is a prototypical example. Catecholamine neurons are rare in the nervous system, and why they are vulnerable in PD and related disorders has been mysterious. Accumulating evidence supports the concept of "autotoxicity"-inherent cytotoxicity of catecholamines and their metabolites in the cells in which they are produced. According to the "catecholaldehyde hypothesis" for the pathogenesis of Parkinson disease, long-term increased build-up of 3,4-dihydroxyphenylacetaldehyde (DOPAL), the catecholaldehyde metabolite of dopamine, causes or contributes to the eventual death of dopaminergic neurons. Lewy bodies, a neuropathologic hallmark of PD, contain precipitated alpha-synuclein. Bases for the tendency of alpha-synuclein to precipitate in the cytoplasm of catecholaminergic neurons have also been mysterious. Since DOPAL potently oligomerizes and aggregates alpha-synuclein, the catecholaldehyde hypothesis provides a link between alpha-synucleinopathy and catecholamine neuron loss in Lewy body diseases. The concept developed here is that DOPAL and alpha-synuclein are nodes in a complex nexus of interacting homeostatic systems. Dysfunctions of several processes, including decreased vesicular sequestration of cytoplasmic catecholamines, decreased aldehyde dehydrogenase activity, and oligomerization of alpha-synuclein, lead to conversion from the stability afforded by negative feedback regulation to the instability, degeneration, and system failure caused by induction of positive feedback loops. These dysfunctions result from diverse combinations of genetic predispositions, environmental exposures, stress, and time. The notion of catecholamine autotoxicity has several implications for treatment, disease modification, and prevention. Conversely, disease modification clinical trials would provide key tests of the catecholaldehyde hypothesis.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Irwin J Kopin
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
32
|
Blum K, Oscar-Berman M, Badgaiyan RD, Palomo T, Gold MS. Hypothesizing dopaminergic genetic antecedents in schizophrenia and substance seeking behavior. Med Hypotheses 2014; 82:606-14. [PMID: 24636783 PMCID: PMC4039414 DOI: 10.1016/j.mehy.2014.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/12/2014] [Accepted: 02/17/2014] [Indexed: 01/05/2023]
Abstract
The dopamine system has been implicated in both substance use disorder (SUD) and schizophrenia. A recent meta-analysis suggests that A1 allele of the DRD2 gene imposes genetic risk for SUD, especially alcoholism and has been implicated in Reward Deficiency Syndrome (RDS). We hypothesize that dopamine D2 receptor (DRD2) gene Taq1 A2 allele is associated with a subtype of non-SUD schizophrenics and as such may act as a putative protective agent against the development of addiction to alcohol or other drugs of abuse. Schizophrenics with SUD may be carriers of the DRD2 Taq1 A1 allele, and/or other RDS reward polymorphisms and have hypodopaminergic reward function. One plausible mechanism for alcohol seeking in schizophrenics with SUD, based on previous research, may be a deficiency of gamma type endorphins that has been linked to schizophrenic type psychosis. We also propose that alcohol seeking behavior in schizophrenics, may serve as a physiological self-healing process linked to the increased function of the gamma endorphins, thereby reducing abnormal dopaminergic activity at the nucleus accumbens (NAc). These hypotheses warrant further investigation and cautious interpretation. We, therefore, encourage research involving neuroimaging, genome wide association studies (GWAS), and epigenetic investigation into the relationship between neurogenetics and systems biology to unravel the role of dopamine in psychiatric illness and SUD.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA; Department of Clinical Neurology, Path Research Foundation, New York, NY, USA; Department of Genomics, IGENE, LLC, Austin, TX, USA; Department of Psychiatry, Human Integrated Services Unit University of Vermont Center for Clinical & Translational Science, College of Medicine, Burlington, VT, USA; Dominion Diagnostics, LLC, North Kingstown, RI, USA; Department of Addiction Research & Therapy, Malibu Beach Recovery Center, Malibu Beach, CA, USA; RD Solutions, LLC, Research Center, Austin, TX, USA; Department of Nutrigenomics, RD Solutions, LLC, La Jolla, CA, USA.
| | - Marlene Oscar-Berman
- Departments of Psychiatry and Anatomy & Neurobiology, Boston University School of Medicine and Boston VA Healthcare System, Boston, MA, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry and Neuroimaging Laboratory, SUNY-at Buffalo, Buffalo, NY, USA
| | - Tomas Palomo
- Unidad de Alcoholismo y Patología Dual, Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Av. de Córdoba s/n, Madrid E-28041, Spain
| | - Mark S Gold
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
33
|
Michel TM, Käsbauer L, Gsell W, Jecel J, Sheldrick AJ, Cortese M, Nickl-Jockschat T, Grünblatt E, Riederer P. Aldehyde dehydrogenase 2 in sporadic Parkinson's disease. Parkinsonism Relat Disord 2014; 20 Suppl 1:S68-72. [DOI: 10.1016/s1353-8020(13)70018-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Phillipson OT. Management of the aging risk factor for Parkinson's disease. Neurobiol Aging 2013; 35:847-57. [PMID: 24246717 DOI: 10.1016/j.neurobiolaging.2013.10.073] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 01/12/2023]
Abstract
The aging risk factor for Parkinson's disease is described in terms of specific disease markers including mitochondrial and gene dysfunctions relevant to energy metabolism. This review details evidence for the ability of nutritional agents to manage these aging risk factors. The combination of alpha lipoic acid, acetyl-l-carnitine, coenzyme Q10, and melatonin supports energy metabolism via carbohydrate and fatty acid utilization, assists electron transport and adenosine triphosphate synthesis, counters oxidative and nitrosative stress, and raises defenses against protein misfolding, inflammatory stimuli, iron, and other endogenous or xenobiotic toxins. These effects are supported by gene expression via the antioxidant response element (ARE; Keap/Nrf2 pathway), and by peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1 alpha), a transcription coactivator, which regulates gene expression for energy metabolism and mitochondrial biogenesis, and maintains the structural integrity of mitochondria. The effectiveness and synergies of the combination against disease risks are discussed in relation to gene action, dopamine cell loss, and the accumulation and spread of pathology via misfolded alpha-synuclein. In addition there are potential synergies to support a neurorestorative role via glial derived neurotrophic factor expression.
Collapse
Affiliation(s)
- Oliver T Phillipson
- School of Medical Sciences, University of Bristol, University Walk, Bristol, UK.
| |
Collapse
|
35
|
Design, synthesis, and in vitro hMAO-B inhibitory evaluation of some 1-methyl-3,5-diphenyl-4,5-dihydro-1H-pyrazoles. Bioorg Med Chem Lett 2013; 23:5128-30. [DOI: 10.1016/j.bmcl.2013.07.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 01/12/2023]
|
36
|
Wang TY, Lee SY, Chen SL, Huang SY, Chang YH, Tzeng NS, Wang CL, Hui Lee I, Yeh TL, Yang YK, Lu RB. Association between DRD2, 5-HTTLPR, and ALDH2 genes and specific personality traits in alcohol- and opiate-dependent patients. Behav Brain Res 2013; 250:285-92. [DOI: 10.1016/j.bbr.2013.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
|
37
|
Wang TY, Lee SY, Chen SL, Chang YH, Chen SH, Chu CH, Huang SY, Tzeng NS, Wang CL, Yeh PH, Lee IH, Yeh TL, Yang YK, Lu RB. The ADH1B and DRD2 gene polymorphism may modify the protective effect of the ALDH2 gene against heroin dependence. Prog Neuropsychopharmacol Biol Psychiatry 2013; 43:134-9. [PMID: 23266708 DOI: 10.1016/j.pnpbp.2012.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/10/2012] [Accepted: 12/15/2012] [Indexed: 10/27/2022]
Abstract
Understanding the influences of genes involved in dopamine and serotonin metabolism, such as the aldehyde dehydrogenase 2 (ALDH2) and alcohol dehydrogenase 1B (ADH1B) genes, is critical for understanding addictive behavior. In addition, dopamine D2 receptor (DRD2) gene may also interact with the dopamine metabolizing genes and link to addiction. Therefore, we investigated the association between the ALDH2, ADH1B and DRD2 polymorphisms and heroin dependence. Heroin-dependent Han Chinese patients (n=304) and healthy controls (n=335) were recruited. Genotypes of ALDH2, ADH1B and DRD2 polymorphisms were analyzed using a polymerase chain reaction with restriction fragment length polymorphism. The frequency of the ALDH2*1/*1 genotype was significantly lower in heroin-dependent patients than in controls, but the frequency of ADH1B and DRD2 genotypes was not significantly different. Further stratification of the ALDH2 gene with the ADH1B gene showed that the protective effect of ALDH2*1/*1 existed only in patients who also carried the ADH1B*1/*1 and ADH1B*1/*2 genotype. Logistic regression analysis showed a significant interaction between ALDH2 and ADH1B (P=0.022) and DRD2, ALDH2 and ADH1B in patients (P=0.037). The ALDH2*1/*1, ADH1B*1/*1, and ADH1B*1/*2 genotypes may interact and protect their carriers against heroin dependence and the protective effect may be varied by the DRD2 gene polymorphism. We conclude that the protective effect of the ALDH2 polymorphism against heroin dependence may be modified by the ADH1B and DRD2 polymorphism.
Collapse
Affiliation(s)
- Tzu-Yun Wang
- Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Interaction between novelty seeking and the aldehyde dehydrogenase 2 gene in heroin-dependent patients. J Clin Psychopharmacol 2013; 33:386-90. [PMID: 23609397 DOI: 10.1097/jcp.0b013e3182900fb3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Heroin dependence is a multifactor disorder. We investigated the association of genetic factors and heroin-dependent temperaments to determine whether a temperament-gene interaction is involved in the pathogenesis of heroin dependence. METHODS Three hundred seventy participants (259 heroin-dependent patients and 111 healthy controls) were recruited and finished the Tridimensional Personality Questionnaire to assess personality traits (temperament). The genotypes of the aldehyde dehydrogenase 2 (ALDH2) gene and the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene using polymerase chain reactions plus restriction fragment length polymorphism analysis. RESULTS Multiple logistic regression analysis showed significant main effects for novelty seeking (P ≤ 0.001) and harm-avoidance (P = 0.001) scores, and a significant interaction effect between novelty seeking and ALDH2 genotypes (P = 0.016) in heroin-dependent patients compared with controls. When stratified by the ALDH2 genotypes, only heroin-dependent patients with the *1*2 and *2*2 genotypes at ALDH2 had higher novelty-seeking scores than did controls (heroin dependence = 15.94, controls = 12.46; P ≤ 0.001). CONCLUSIONS Our results provide initial evidence that the ALDH2 gene interacted with novelty seeking in heroin-dependent Han Chinese patients in Taiwan.
Collapse
|
39
|
Abstract
Monoamine oxidase inhibitors have been available for more than 50 years, initially developed as antidepressants but currently used in a variety of psychiatric and neurological conditions. There has been a recent surge of interest in monoamine oxidase inhibitors because of their reported neuroprotective and/or neurorescue properties. Interestingly, it seems that often these properties are independent of their ability to inhibit monoamine oxidase. This review article presents an overview of the neuroprotective/neurorescue properties of these multifaceted drugs and focuses on phenelzine, (-)-deprenyl, rasagiline, ladostigil, tranylcypromine, moclobemide, and clorgyline and their possible neuroprotective mechanisms.
Collapse
|
40
|
Donsante A, Sullivan P, Goldstein DS, Brinster LR, Kaler SG. L-threo-dihydroxyphenylserine corrects neurochemical abnormalities in a Menkes disease mouse model. Ann Neurol 2013; 73:259-65. [PMID: 23224983 PMCID: PMC3597755 DOI: 10.1002/ana.23787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/21/2012] [Accepted: 10/05/2012] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Menkes disease is a lethal neurodegenerative disorder of infancy caused by mutations in a copper-transporting adenosine triphosphatase gene, ATP7A. Among its multiple cellular tasks, ATP7A transfers copper to dopamine beta hydroxylase (DBH) within the lumen of the Golgi network or secretory granules, catalyzing the conversion of dopamine to norepinephrine. In a well-established mouse model of Menkes disease, mottled-brindled (mo-br), we tested whether systemic administration of L-threo-dihydroxyphenylserine (L-DOPS), a drug used successfully to treat autosomal recessive norepinephrine deficiency, would improve brain neurochemical abnormalities and neuropathology. METHODS At 8, 10, and 12 days of age, wild-type and mo-br mice received intraperitoneal injections of 200μg/g body weight of L-DOPS, or mock solution. Five hours after the final injection, the mice were euthanized, and brains were removed. We measured catecholamine metabolites affected by DBH via high-performance liquid chromatography with electrochemical detection, and assessed brain histopathology. RESULTS Compared to mock-treated controls, mo-br mice that received intraperitoneal L-DOPS showed significant increases in brain norepinephrine (p < 0.001) and its deaminated metabolite, dihydroxyphenylglycol (p < 0.05). The ratio of a non-beta-hydroxylated metabolite in the catecholamine biosynthetic pathway, dihydroxyphenylacetic acid, to the beta-hydroxylated metabolite, dihydroxyphenylglycol, improved equivalently to results obtained previously with brain-directed ATP7A gene therapy (p < 0.01). However, L-DOPS treatment did not arrest global brain pathology or improve somatic growth, as gene therapy had. INTERPRETATION We conclude that (1) L-DOPS crosses the blood-brain barrier in mo-br mice and corrects brain neurochemical abnormalities, (2) norepinephrine deficiency is not the cause of neurodegeneration in mo-br mice, and (3) L-DOPS treatment may ameliorate noradrenergic hypofunction in Menkes disease.
Collapse
Affiliation(s)
- Anthony Donsante
- Unit on Human Copper Metabolism, Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Patricia Sullivan
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA
| | - David S. Goldstein
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA
| | - Lauren R. Brinster
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD USA
| | - Stephen G. Kaler
- Unit on Human Copper Metabolism, Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
41
|
Propargylamine-derived multitarget-directed ligands: fighting Alzheimer’s disease with monoamine oxidase inhibitors. J Neural Transm (Vienna) 2012; 120:893-902. [DOI: 10.1007/s00702-012-0948-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 12/02/2012] [Indexed: 01/16/2023]
|
42
|
Selected C7-substituted chromone derivatives as monoamine oxidase inhibitors. Bioorg Chem 2012; 45:1-11. [DOI: 10.1016/j.bioorg.2012.08.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/07/2012] [Accepted: 08/16/2012] [Indexed: 12/30/2022]
|
43
|
Mostert S, Mentz W, Petzer A, Bergh JJ, Petzer JP. Inhibition of monoamine oxidase by 8-[(phenylethyl)sulfanyl]caffeine analogues. Bioorg Med Chem 2012; 20:7040-50. [DOI: 10.1016/j.bmc.2012.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/01/2012] [Accepted: 10/08/2012] [Indexed: 12/30/2022]
|
44
|
Lu RB, Lee JF, Huang SY, Lee SY, Chang YH, Kuo PH, Chen SL, Chen SH, Chu CH, Lin WW, Wu PL, Ko HC. Interaction between ALDH2*1*1 and DRD2/ANKK1 TaqI A1A1 genes may be associated with antisocial personality disorder not co-morbid with alcoholism. Addict Biol 2012; 17:865-74. [PMID: 21070510 DOI: 10.1111/j.1369-1600.2010.00268.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies on acetaldehyde dehydrogenase 2 (ALDH2) focused on drinking behavior or alcoholism because the ALDH2*2 allele protects against the risk of developing alcoholism. The mechanism provides that the ALDH2 gene's protective effect is also involved in dopamine metabolism. The interaction of the ALDH2 gene with neurotransmitters, such as dopamine, is suggested to be related to alcoholism. Because alcoholism is often co-morbid with antisocial personality disorder (ASPD), previous association studies on antisocial alcoholism cannot differentiate whether those genes relate to ASPD with alcoholism or ASPD only. This study examined the influence of the interaction effect of the ALDH2*1*1, *1*2 or *2*2 polymorphisms with the dopamine 2 receptor (DRD2) Taq I polymorphism on ASPD. Our 541 Han Chinese male participants were classified into three groups: antisocial alcoholism (ASPD co-morbid with alcohol dependence, antisocial ALC; n = 133), ASPD without alcoholism (ASPD not co-morbid with alcohol dependence, antisocial non-ALC; n = 164) and community controls (healthy volunteers from the community; n = 244). Compared with healthy controls, individuals with the DRD2 A1/A1 and the ALDH2*1/*1 genotypes were at a 5.39 times greater risk for antisocial non-ALC than were those with other genotypes. Our results suggest that the DRD2/ANKK1 and ALDH2 genes interacted in the antisocial non-ALC group; a connection neglected in previous studies caused by not separating antisocial ALC from ASPD. Our study made this distinction and showed that these two genes may be associated ASPD without co-morbid alcoholism.
Collapse
Affiliation(s)
- Ru-Band Lu
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lee SY, Chen SL, Chang YH, Chu CH, Huang SY, Tzeng NS, Wang CL, Lin SH, Lee IH, Yeh TL, Yang YK, Lu RB. The ALDH2 and 5-HT2A genes interacted in bipolar-I but not bipolar-II disorder. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:247-51. [PMID: 22564712 DOI: 10.1016/j.pnpbp.2012.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Clarifying the similarities and differences between the two most common subtypes of bipolar disorder, bipolar-I and bipolar-II, is essential for improving our understanding of them. Because the serotonergic system has been implicated in the pathogenesis of bipolar disorder, it may be important to investigate genes such as the aldehyde dehydrogenase 2 (ALDH2) and serotonin 2A receptor genes, which are involved in metabolizing serotonin and encoding serotonin receptors. We examined the association of the ALDH2 and 5-HT2A-A1438G polymorphisms with bipolar I and II and possible interactions between these genes. METHODS One thousand forty-nine participants were recruited: 249 with bipolar-I, 456 with bipolar-II, and 344 healthy controls. The genotypes of the ALDH2 and 5HT2A-A1438G polymorphisms were determined using polymerase chain reactions plus restriction fragment length polymorphism analysis. RESULTS Logistic regression analysis showed a significant effect of the ALDH2 and the 5-HT2A-A1438G polymorphisms, and a significant interaction effect for the A/G genotypes of the 5-HT2A-A1438G polymorphism and the ALDH2*1*1 genotypes (p=0.004) discriminated between bipolar-I patients and controls without bipolar disorder. These polymorphisms, however, were not associated with bipolar-II disorder. LIMITATIONS The significant differences of age and gender between patients and controls limit the comparison, although statistical adjustments were made for them. CONCLUSION Our findings provide initial evidence that the ALDH2 and 5-HT2A genes interact in bipolar-I but not in bipolar-II disorder. Our findings suggest a unique genetic distinction between bipolar-I and bipolar-II.
Collapse
Affiliation(s)
- Sheng-Yu Lee
- Department of Psychiatry, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Xiong N, Long X, Xiong J, Jia M, Chen C, Huang J, Ghoorah D, Kong X, Lin Z, Wang T. Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson's disease models. Crit Rev Toxicol 2012; 42:613-32. [PMID: 22574684 DOI: 10.3109/10408444.2012.680431] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The etiology of Parkinson's disease (PD) is attributed to both environmental and genetic factors. The development of PD reportedly involves mitochondrial impairment, oxidative stress, α-synuclein aggregation, dysfunctional protein degradation, glutamate toxicity, calcium overloading, inflammation and loss of neurotrophic factors. Based on a link between mitochondrial dysfunction and pesticide exposure, many laboratories, including ours, have recently developed parkinsonian models by utilization of rotenone, a well-known mitochondrial complex I inhibitor. Rotenone models for PD appear to mimic most clinical features of idiopathic PD and recapitulate the slow and progressive loss of dopaminergic (DA) neurons and the Lewy body formation in the nigral-striatal system. Notably, potential human parkinsonian pathogenetic and pathophysiological mechanisms have been revealed through these models. In this review, we summarized various rotenone-based models for PD and discussed the implied etiology of and treatment for PD.
Collapse
Affiliation(s)
- Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430022, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Legoabe LJ, Petzer A, Petzer JP. Inhibition of monoamine oxidase by selected C6-substituted chromone derivatives. Eur J Med Chem 2012; 49:343-53. [DOI: 10.1016/j.ejmech.2012.01.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 11/15/2022]
|
48
|
Manley-King CI, Bergh JJ, Petzer JP. Monoamine oxidase inhibition by C4-substituted phthalonitriles. Bioorg Chem 2012; 40:114-124. [DOI: 10.1016/j.bioorg.2011.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 11/16/2022]
|
49
|
Wang TY, Lee SY, Chen SL, Chen SH, Chu CH, Huang SY, Tzeng NS, Chang YH, Wang CL, Lee IH, Yeh TL, Yang YK, Lu RB. The aldehyde dehydrogenase 2 gene is associated with heroin dependence. Drug Alcohol Depend 2012; 120:220-4. [PMID: 21723677 DOI: 10.1016/j.drugalcdep.2011.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 06/03/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Determining the influences of genes involved in metabolizing dopamine and encoding dopamine receptors, such as the aldehyde dehydrogenase 2 (ALDH2) and dopamine D2 receptor/ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1) genes, is critical for understanding addictive behavior. Therefore, we investigated the association between the ALDH2 and DRD2/ANKK1 Taq IA polymorphisms and heroin dependence. METHODS Heroin-dependent Han Chinese patients (250) and healthy controls (312) were recruited. ALDH2 and DRD2/ANKK1 Taq IA polymorphisms were genotyped. RESULTS The frequency of ALDH2*1/*2 and *2/*2 genotypes was significantly higher in heroin-dependent patients than in controls, but the frequency of DRD2 Taq IA genotypes was not significantly different. Logistic regression analysis showed no significant interaction between ALDH2 and DRD2 Taq IA genotypes in patients. CONCLUSIONS The ALDH2 polymorphism, but not the DRD2, was associated with heroin dependence.
Collapse
Affiliation(s)
- Tzu-Yun Wang
- Department of Psychiatry, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kong D, Kotraiah V. Modulation of aldehyde dehydrogenase activity affects (±)-4-hydroxy-2E-nonenal (HNE) toxicity and HNE-protein adduct levels in PC12 cells. J Mol Neurosci 2011; 47:595-603. [PMID: 22170038 DOI: 10.1007/s12031-011-9688-y] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
Oxidative stress is known to be one of the major factors underlying Parkinson's disease (PD). One of the consequences of oxidative stress is lipid peroxidation. A toxic product of lipid peroxidation, (±)-4-hydroxy-2E-nonenal (HNE) leads to membrane disruption and formation of HNE-protein adducts and such adducts have been detected in PD brain tissues. Aldehyde dehydrogenases (ALDHs) are involved in metabolizing HNE and other endogenous aldehydes. Interestingly, the cytosolic aldehyde dehydrogenase 1A1 (ALDH1A1) has been reported to be down-regulated in brain tissues affected in PD which could result in enhancement of HNE toxicity. We sought to first establish the role of ALDH1A1 in mediating HNE toxicity in PC12 cells by overexpressing ALDH1A1 and by using disulfiram, an ALDH inhibitor. Overexpression and inhibition of ALDH1A1 activity resulted in reduced and increased HNE toxicity, respectively. We then established conditions for detecting HNE-protein adducts following HNE treatment and showed that overexpression and inhibition of ALDH activity resulted in reduced and increased formation of HNE-protein adducts, respectively. We also show that 6-methyl-2-(phenylazo)-3-pyridinol, previously identified as an activator of ALDH1A1, can protect PC12 cells against HNE-mediated toxicity and can cause a small but significant decrease in levels of HNE-protein adducts. Our results should encourage identification of more potent ALDH activators and their testing in the PC12-HNE model. Such cytoprotective compounds could then be tested for their neuroprotective activity in in vivo models of oxidative stress-induced PD.
Collapse
Affiliation(s)
- Dehe Kong
- Exonhit Inc., Gaithersburg, MD 20877, USA
| | | |
Collapse
|