1
|
Lee JM, Yoo MC, Kim YJ, Kim SS, Yeo SG. Expression of ChAT, Iba-1, and nNOS in the Central Nervous System following Facial Nerve Injury. Antioxidants (Basel) 2024; 13:595. [PMID: 38790700 PMCID: PMC11118893 DOI: 10.3390/antiox13050595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Facial nerve injury can cause significant functional impairment, impacting both the peripheral and central nervous systems. The present study evaluated changes in facial motor function, numbers of cholinergic neurons and microglia, and nNOS levels in the facial nucleus of the central nervous system (CNS) following peripheral facial nerve injury. Facial nerve function, as determined by eyeblink and whisker-movement reflexes, was evaluated at baseline and 1, 2, 3, 4, 8, and 12 weeks after inducing facial nerve injury through compression or axotomy. The expression of choline acetyltransferase (ChAT), ionized calcium-binding adaptor molecule 1 (Iba-1), and neuronal nitric oxide synthase (nNOS) in the facial nucleus of the CNS was analyzed 2, 4, and 12 weeks after peripheral facial nerve injury. Compression-induced facial nerve injury was found to lead to temporary facial motor impairment, whereas axotomy resulted in persistent impairment. Moreover, both compression and axotomy reduced ChAT expression and increased Iba-1 and nNOS expression in the facial nucleus, indicating upregulation of an inflammatory response and neurodegeneration. These results indicate that, compared with compression-induced injury, axotomy-induced facial nerve injury results in greater facial motor dysfunction and more persistent microglial and nitric oxide activation in the facial nucleus of the CNS.
Collapse
Affiliation(s)
- Jae Min Lee
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Myung Chul Yoo
- Department of Physical Medicine & Rehabilitation, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Yong Jun Kim
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Seung Geun Yeo
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
2
|
Wang X, Yao X, Sun Z, Jin Y, Yan Z, Jiang H, Ouyang Y, Yuan WE, Wang C, Fan C. An extracellular matrix mimicking alginate hydrogel scaffold manipulates an inflammatory microenvironment and improves peripheral nerve regeneration by controlled melatonin release. J Mater Chem B 2023; 11:11552-11561. [PMID: 37982207 DOI: 10.1039/d3tb01727c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Low efficiency of nerve growth and unstable release of loaded drugs have become a major problem in repairing peripheral nerve injury. Many intervention strategies were focused on simple drug loading, but have still been less effective. The key challenge is to establish a controlled release microenvironment to enable adequate nerve regeneration. In this study, we fabricate a multilayered compound nerve scaffold by electrospinning: with an anti-adhesive outer layer of polycaprolactone and an ECM-like inner layer consisting of a melatonin-loaded alginate hydrogel. We characterized the scaffold, and the loaded melatonin can be found to undergo controlled release. We applied them to a 15 mm rat model of sciatic nerve injury. After 16 weeks, the animals in each group were evaluated and compared for recovery of motor function, electrophysiology, target organ atrophy status, regenerative nerve morphology and relative protein expression levels of neural markers, inflammatory oxidative stress, and angiogenesis. We identify that the scaffold can improve functional ability evidenced by an increased sciatic functional index and nerve electrical conduction level. The antioxidant melatonin loaded in the scaffold reduces inflammation and oxidative stress in the reinnervated nerves, confirmed by increased HO-1 and decreased TNF-α levels in regenerating nerves. The relative expression of fast-type myosin was elevated in the target gastrocnemius muscle. An improvement in angiogenesis facilitates neurite extension and axonal sprouting. This scaffold can effectively restore the ECM-like microenvironment and improve the quality of nerve regeneration by controlled melatonin release, thus enlightening the design criteria on nerve scaffolds for peripheral nerve injury in the future.
Collapse
Affiliation(s)
- Xu Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyun Yao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyang Sun
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Jin
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiquan Jiang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| | - Chunyang Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Ma Y, Ma J, Lu L, Xiong X, Shao Y, Ren J, Yang J, Liu J. Melatonin Restores Autophagic Flux by Activating the Sirt3/TFEB Signaling Pathway to Attenuate Doxorubicin-Induced Cardiomyopathy. Antioxidants (Basel) 2023; 12:1716. [PMID: 37760018 PMCID: PMC10525655 DOI: 10.3390/antiox12091716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Doxorubicin (DOX) chemotherapy in cancer patients increases the risk of the occurrence of cardiac dysfunction and even results in congestive heart failure. Despite the great progress of pathology in DOX-induced cardiomyopathy, the underlying molecular mechanisms remain elusive. Here, we investigate the protective effects and the underlying mechanisms of melatonin in DOX-induced cardiomyopathy. Our results clearly show that oral administration of melatonin prevented the deterioration of cardiac function caused by DOX treatment, which was evaluated by left ventricular ejection fraction and fractional shortening as well as cardiac fibrosis. The ejection fraction and fractional shortening in the DOX group were 49.48% and 25.5%, respectively, while melatonin treatment increased the ejection fraction and fractional shortening to 60.33 and 31.39 in wild-type mice. Cardiac fibrosis in the DOX group was 3.97%, while melatonin reduced cardiac fibrosis to 1.95% in wild-type mice. Sirt3 is a mitochondrial deacetylase and shows protective effects in diverse cardiovascular diseases. Therefore, to test whether Sirt3 is a key factor in protection, Sirt3 knockout mice were used, and it was found that the protective effects of melatonin in DOX-induced cardiomyopathy were partly abolished. Further analysis revealed that Sirt3 and its downstream molecule TFEB were downregulated in response to DOX treatment, while melatonin administration was able to significantly enhance the expressions of Sirt3 and TFEB. Our in vitro study demonstrated that melatonin enhanced lysosomal function by increasing the Sirt3-mediated increase at the TFEB level, and the accumulation of autolysosomes induced by DOX treatment was attenuated. Thus, autophagic flux disrupted by DOX treatment was restored by melatonin supplementation. In summary, our results demonstrate that melatonin protects the heart against DOX injury by the restoration of autophagic flux via the activation of the Sirt3/TFEB signaling pathway.
Collapse
Affiliation(s)
- Yanyan Ma
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
| | - Linhe Lu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
| | - Xiang Xiong
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
| | - Yalan Shao
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| |
Collapse
|
4
|
Jiang L, Ouyang X, Zhang D, Wang G, Zhang Z, Wang W, Yan H. The role of Gel-Ppy-modified nerve conduit on the repair of sciatic nerve defect in rat model. FASEB J 2023; 37:e22921. [PMID: 37052612 DOI: 10.1096/fj.202201969r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
The serious clinical challenge of peripheral nerve injury (PNI) is nerve regeneration. Nerve conduit represents a promising strategy to contribute to nerve regeneration by bridging injured nerve gaps. However, due to a unique microenvironment of nerve tissue, autologous nerves have not been substituted by nerve conduit. Nerve regeneration after nerve conduit implantation depends on many factors, such as conductivity and biocompatibility. Therefore, Gelatin (Gel) with biocompatibility and polypyrrole (Ppy) with conductivity is highly concerned. In this paper, Gel-Ppy modified nerve conduit was fabricated with great biocompatibility and conductivity to evaluate its properties of enhancing nerve regeneration in vivo and in vitro. The proliferation of Schwann cells on Gel-Ppy modified nerve conduit was remarkably increased. Consistent with in vitro results, the Gel-Ppy nerve conduit could contribute to the regeneration of Schwann cell in vivo. The axon diameters and myelin sheath thickness were also enhanced, resulting in the amelioration of muscle atrophy, nerve conduction, and motor function recovery. To explain this interesting phenomenon, western blot results indicated that the Gel-Ppy conduit facilitated nerve regeneration via upregulating the Rap1 pathway to induce neurite outgrowth. Therefore, the above results demonstrated that Gel-Ppy modified nerve conduit could provide an acceptable microenvironment for nerve regeneration and be popularized as a novel therapeutic strategy of PNI.
Collapse
Affiliation(s)
- Liangfu Jiang
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics (Division of Wound Repair), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xingyu Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Dupiao Zhang
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Gang Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Zhe Zhang
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hede Yan
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Abushukur Y, Knackstedt R. The Impact of Supplements on Recovery After Peripheral Nerve Injury: A Review of the Literature. Cureus 2022; 14:e25135. [PMID: 35733475 PMCID: PMC9205410 DOI: 10.7759/cureus.25135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
Peripheral nerve injury (PNI) can result from trauma, surgical resection, iatrogenic injury, and/or local anesthetic toxicity. Damage to peripheral nerves may result in debilitating weakness, numbness, paresthesia, pain, and/or autonomic instability. As PNI is associated with inflammation and nerve degeneration, means to mitigate this response could result in improved outcomes. Numerous nutrients have been investigated to prevent the negative sequelae of PNI. Alpha-lipoic acid, cytidine diphosphate-choline (CDP Choline), curcumin, melatonin, vitamin B12, and vitamin E have demonstrated notable success in improving recovery following PNI within animal models. While animal studies show ample evidence that various supplements may improve recovery after PNI, similar evidence in human patients is limited. The goal of this review is to analyze supplements that have been used successfully in animal models of PNI to serve as a reference for future studies on human patients. By analyzing supplements that have shown efficacy in animal studies, healthcare providers will have a resource from which to guide decision-making regarding future human studies investigating the role that supplements could play in PNI recovery. Ultimately, establishing a comprehensive understanding of these supplements in human patients following PNI may significantly improve post-surgical outcomes, quality of life, and peripheral nerve regeneration.
Collapse
|
6
|
Leung JWH, Cheung KK, Ngai SPC, Tsang HWH, Lau BWM. Protective Effects of Melatonin on Neurogenesis Impairment in Neurological Disorders and Its Relevant Molecular Mechanisms. Int J Mol Sci 2020; 21:ijms21165645. [PMID: 32781737 PMCID: PMC7460604 DOI: 10.3390/ijms21165645] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 02/05/2023] Open
Abstract
Neurogenesis is the process by which functional new neurons are generated from the neural stem cells (NSCs) or neural progenitor cells (NPCs). Increasing lines of evidence show that neurogenesis impairment is involved in different neurological illnesses, including mood disorders, neurogenerative diseases, and central nervous system (CNS) injuries. Since reversing neurogenesis impairment was found to improve neurological outcomes in the pathological conditions, it is speculated that modulating neurogenesis is a potential therapeutic strategy for neurological diseases. Among different modulators of neurogenesis, melatonin is a particularly interesting one. In traditional understanding, melatonin controls the circadian rhythm and sleep-wake cycle, although it is not directly involved in the proliferation and survival of neurons. In the last decade, it was reported that melatonin plays an important role in the regulation of neurogenesis, and thus it may be a potential treatment for neurogenesis-related disorders. The present review aims to summarize and discuss the recent findings regarding the protective effects of melatonin on the neurogenesis impairment in different neurological conditions. We also address the molecular mechanisms involved in the actions of melatonin in neurogenesis modulation.
Collapse
Affiliation(s)
- Joseph Wai-Hin Leung
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (K.-K.C.); (S.P.-C.N.)
| | - Shirley Pui-Ching Ngai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (K.-K.C.); (S.P.-C.N.)
| | - Hector Wing-Hong Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (K.-K.C.); (S.P.-C.N.)
- Correspondence: (H.W.-H.T.); (B.W.-M.L.)
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (K.-K.C.); (S.P.-C.N.)
- Correspondence: (H.W.-H.T.); (B.W.-M.L.)
| |
Collapse
|
7
|
Tan HY, Ng KY, Koh RY, Chye SM. Pharmacological Effects of Melatonin as Neuroprotectant in Rodent Model: A Review on the Current Biological Evidence. Cell Mol Neurobiol 2020; 40:25-51. [PMID: 31435851 DOI: 10.1007/s10571-019-00724-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022]
Abstract
The progressive loss of structure and functions of neurons, including neuronal death, is one of the main factors leading to poor quality of life. Promotion of functional recovery of neuron after injury is a great challenge in neuroregenerative studies. Melatonin, a hormone is secreted by pineal gland and has antioxidative, anti-inflammatory, and anti-apoptotic properties. Besides that, melatonin has high cell permeability and is able to cross the blood-brain barrier. Apart from that, there are no reported side effects associated with long-term usage of melatonin at both physiological and pharmacological doses. Thus, in this review article, we summarize the pharmacological effects of melatonin as neuroprotectant in central nervous system injury, ischemic-reperfusion injury, optic nerve injury, peripheral nerve injury, neurotmesis, axonotmesis, scar formation, cell degeneration, and apoptosis in rodent models.
Collapse
Affiliation(s)
- Hui Ying Tan
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Rhun Yian Koh
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia.
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
He Y, Fan W, Xu Y, Liu YL, He H, Huang F. Distribution and colocalization of melatonin 1a-receptor and NADPH-d in the trigeminal system of rat. PeerJ 2019; 7:e6877. [PMID: 31106073 PMCID: PMC6500374 DOI: 10.7717/peerj.6877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/31/2019] [Indexed: 01/15/2023] Open
Abstract
Melatonin and nitric oxide (NO) are involved in orofacial signal processing in the trigeminal sensory system. The aim of the present study was to examine the distribution of melatonin 1a-receptor (MT1) and its colocalization with nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the spinal trigeminal nucleus (STN), the trigeminal ganglion (TG), and the mesencephalic trigeminal nucleus (MTN) in the rat, using histochemistry and immunohistochemistry. Our results show that MT1-positive neurons are widely distributed in the TG and the subnucleus caudalis of the STN. Furthermore, we found that MT1 colocalizes with NADPH-d throughout the TG and MTN, most extensively in the TG. The distribution pattern of MT1 and its colocalization with NADPH-d indicate that melatonin might play an important role in the trigeminal sensory system, which could be responsible for the regulation of NO levels.
Collapse
Affiliation(s)
- Yifan He
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Wenguo Fan
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yue Xu
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yong Liang Liu
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongwen He
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Fang Huang
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
9
|
Qian Y, Han Q, Zhao X, Song J, Cheng Y, Fang Z, Ouyang Y, Yuan WE, Fan C. 3D melatonin nerve scaffold reduces oxidative stress and inflammation and increases autophagy in peripheral nerve regeneration. J Pineal Res 2018; 65:e12516. [PMID: 29935084 DOI: 10.1111/jpi.12516] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022]
Abstract
Peripheral nerve defect is a common and severe kind of injury in traumatic accidents. Melatonin can improve peripheral nerve recovery by inhibiting oxidative stress and inflammation after traumatic insults. In addition, it triggers autophagy pathways to increase regenerated nerve proliferation and to reduce apoptosis. In this study, we fabricated a melatonin-controlled-release scaffold to cure long-range nerve defects for the first time. 3D manufacture of melatonin/polycaprolactone nerve guide conduit increased Schwann cell proliferation and neural expression in vitro and promoted functional, electrophysiological and morphological nerve regeneration in vivo. Melatonin nerve guide conduit ameliorated immune milieu by reducing oxidative stress, inflammation and mitochondrial dysfunction. In addition, it activated autophagy to restore ideal microenvironment, to provide energy for nerves and to reduce nerve cell apoptosis, thus facilitating nerve debris clearance and neural proliferation. This innovative scaffold will have huge significance in the nerve engineering.
Collapse
Affiliation(s)
- Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qixin Han
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Xiaotian Zhao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jialin Song
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuan Cheng
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Fang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
10
|
The multiple functions of melatonin in regenerative medicine. Ageing Res Rev 2018; 45:33-52. [PMID: 29630951 DOI: 10.1016/j.arr.2018.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
Melatonin research has been experiencing hyper growth in the last two decades; this relates to its numerous physiological functions including anti-inflammation, oncostasis, circadian and endocrine rhythm regulation, and its potent antioxidant activity. Recently, a large number of studies have focused on the role of melatonin in the regeneration of cells or tissues after their partial loss. In this review, we discuss the recent findings on the molecular involvement of melatonin in the regeneration of various tissues including the nervous system, liver, bone, kidney, bladder, skin, and muscle, among others.
Collapse
|
11
|
Fan W, He Y, Guan X, Gu W, Wu Z, Zhu X, Huang F, He H. Involvement of the nitric oxide in melatonin-mediated protection against injury. Life Sci 2018; 200:142-147. [DOI: 10.1016/j.lfs.2018.03.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 01/04/2023]
|
12
|
Uyanikgil Y, Cavusoglu T, Kılıc KD, Yigitturk G, Celik S, Tubbs RS, Turgut M. Useful Effects of Melatonin in Peripheral Nerve Injury and Development of the Nervous System. J Brachial Plex Peripher Nerve Inj 2017; 12:e1-e6. [PMID: 28603548 PMCID: PMC5465311 DOI: 10.1055/s-0036-1597838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/28/2016] [Indexed: 01/23/2023] Open
Abstract
This review summarizes the role of melatonin (MLT) in defense against toxic-free radicals and its novel effects in the development of the nervous system, and the effect of endogenously produced and exogenously administered MLT in reducing the degree of tissue and nerve injuries. MLT was recently reported to be an effective free radical scavenger and antioxidant. Since endogenous MLT levels fall significantly in senility, these findings imply that the loss of this antioxidant could contribute to the incidence or severity of some age-related neurodegenerative diseases. Considering the high efficacy of MLT in overcoming much of the injury not only to the peripheral nerve but also to other organs, clinical trials for this purpose should be seriously considered.
Collapse
Affiliation(s)
- Yigit Uyanikgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, İzmir, Turkey.,Cord Blood, Cell-Tissue Research and Application Center, Ege University, İzmir, Turkey
| | - Turker Cavusoglu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, İzmir, Turkey.,Cord Blood, Cell-Tissue Research and Application Center, Ege University, İzmir, Turkey
| | - Kubilay Dogan Kılıc
- Department of Histology and Embryology, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Gurkan Yigitturk
- Department of Histology and Embryology, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Servet Celik
- Department of Anatomy, Faculty of Medicine, Ege University, İzmir, Turkey
| | | | - Mehmet Turgut
- Department of Neurosurgery, Adnan Menderes University School of Medicine, Aydın, Turkey
| |
Collapse
|
13
|
Huang CC, Lai CJ, Tsai MH, Wu YC, Chen KT, Jou MJ, Fu PI, Wu CH, Wei IH. Effects of melatonin on the nitric oxide system and protein nitration in the hypobaric hypoxic rat hippocampus. BMC Neurosci 2015; 16:61. [PMID: 26443997 PMCID: PMC4594671 DOI: 10.1186/s12868-015-0199-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/08/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND It is well documented that the nitric oxide (NO) might be directly involved in brain response to hypobaric hypoxia, and could contribute to memory deficiencies. Recent studies have shown that melatonin could attenuate hypoxia or ischemia-induced nerve injuries by decreasing the production of free radicals. The present study, using immunohistochemical and immunoblot methods, aimed to explore whether melatonin treatment may affect the expression of nitric oxide system and protein nitration, and provide neuroprotection in the rat hippocampus injured by hypobaric hypoxia. Prior to hypoxic treatment, adult rats were pretreated with melatonin (100 mg/kg, i.p.) before they were exposed to the altitude chamber with 48 Torr of the partial oxygen concentration (pO2) for 7 h to mimic the ambience of being at 9000 m in height. They were then sacrificed after 0 h, 1, and 3 days of reoxygenation. RESULTS The results obtained from the immunohistochemical and immunoblotting analyses showed that the expressions of neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), nitrotyrosine (Ntyr) and Caspase 3 in the hypoxic hippocampus were increased from 0 h to 3 days of reoxygenation. Interestingly, the hypoxia-induced increase of nNOS, eNOS, iNOS, Ntyr and Caspase 3 protein expression was significantly depressed in the hypoxic rats treated with melatonin. CONCLUSIONS Activation of the nitric oxide system and protein nitration constitutes a hippocampal response to hypobaric hypoxia and administration of melatonin could provide new therapeutic avenues to prevent and/or treat the symptoms produced by hypobaric hypoxia.
Collapse
Affiliation(s)
- Chih-Chia Huang
- Department of Psychiatry, China Medical University Hospital, No. 91 Hsueh-Shih Road, Taichung, Taiwan. .,Institute of Clinical Medical Science, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan. .,Department of Psychiatry, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan.
| | - Chia-Jou Lai
- Institute of Basic Medical Science, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan.
| | - Mang-Hung Tsai
- Department of Anatomy, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan.
| | - Ya-Chieh Wu
- Department of Nursing, Ching-Kuo Institute of Management and Health, 336, Fu-Hsin Road, Keelung, Taiwan.
| | - Kuang-Ti Chen
- Institute of Basic Medical Science, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan.
| | - Ming-Jia Jou
- School of Chinese Medicine for Post Baccalaureate, I Shou University, No. 1, Sec. 1, Syuecheng Road, Dashu District, Kaohsiung, Taiwan.
| | - Pin-I Fu
- Department of Anatomy, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan.
| | - Ching-Hsiang Wu
- Department of Anatomy and Cell Biology, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, Taiwan.
| | - I-Hua Wei
- Department of Anatomy, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan.
| |
Collapse
|
14
|
Mekaj AY, Morina AA, Bytyqi CI, Mekaj YH, Duci SB. Application of topical pharmacological agents at the site of peripheral nerve injury and methods used for evaluating the success of the regenerative process. J Orthop Surg Res 2014; 9:94. [PMID: 25303779 PMCID: PMC4198735 DOI: 10.1186/s13018-014-0094-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022] Open
Abstract
Traumatic injuries of the peripheral nerves are very common. Surgical repair of the damaged nerve is often complicated by scar tissue formation around the damaged nerve itself. The main objective of this study is to present the recent data from animal experimental studies where pharmacological topical agents are used at the site of peripheral nerve repair. Some of the most commonly topical agents used are tacrolimus (FK506), hyaluronic acid and its derivatives, and melatonin, whereas methylprednisolone and vitamin B12 have been used less. These studies have shown that the abovementioned substances have neuroprotective and neuroregenerative properties though different mechanisms. The successes of the regenerative process of the nerve repair in experimental research, using topical agents, can be evaluated using variety of methods such as morphological, electrophysiologic, and functional evaluation. However, most authors agree that despite good microsurgical repair and topical application of these substances, full regeneration and functional recovery of the nerve injured are almost never achieved.
Collapse
Affiliation(s)
| | | | | | - Ymer H Mekaj
- Institute of Pathophysiology, Faculty of Medicine, University of Prishtina, Rrethi i spitalit p,n,, Prishtina 10000, Kosovo.
| | | |
Collapse
|
15
|
Kaya Y, Sarikcioglu L, Yildirim FB, Aslan M, Demir N. Does circadian rhythm disruption induced by light-at-night has beneficial effect of melatonin on sciatic nerve injury? J Chem Neuroanat 2013; 53:18-24. [PMID: 23969081 DOI: 10.1016/j.jchemneu.2013.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/29/2013] [Accepted: 08/09/2013] [Indexed: 12/21/2022]
Abstract
Melatonin stimulates peripheral nerve regeneration. However, the precise effect of Melatonin on nerve repair in dark period have not been clarified. The aim of the present study was to investigate the effect of melatonin on sciatic nerve injury after melatonin was given to rats in the morning or evening by means of combined analysis. This is the first study to investigate the influence of melatonin on sciatic nerve in cut injury two different times of the day. 60 adult female Wistar rats were divided into 4 groups: control (Group 1), sham-operated (Group 2), sciatic nerve cut+melatonin treatment in light (Group 3), sciatic nerve cut+melatonin treatment in dark (Group 4). Melatonin was administered intraperitoneally at dose of 50 mg/kg/day for six weeks. Recovery of function was analyzed by structural (biochemical properties of the antioxidant levels and ultrastructural analysis) and functional analyses (Sciatic function index, pinch test). The data demonstrated beneficial effect of melatonin in light period. However significant beneficial effect of melatonin was detected on the recovery of the cut sciatic nerve in dark period. Melatonin treatment was unable to influence on the recovery of the cut sciatic nerve in dark period. This means that the effect of melatonin the recovery of the cut injured sciatic nerve depends on the time of treatment may be attributed to its circadian rhythm.
Collapse
Affiliation(s)
- Yasemin Kaya
- Department of Anatomy, Akdeniz University Faculty of Medicine, 07070 Antalya, Turkey.
| | | | | | | | | |
Collapse
|
16
|
Wei IH, Tu HC, Huang CC, Tsai MH, Tseng CY, Shieh JY. (-)-Epigallocatechin gallate attenuates NADPH-d/nNOS expression in motor neurons of rats following peripheral nerve injury. BMC Neurosci 2011; 12:52. [PMID: 21627848 PMCID: PMC3121620 DOI: 10.1186/1471-2202-12-52] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 06/01/2011] [Indexed: 01/19/2023] Open
Abstract
Background Oxidative stress and large amounts of nitric oxide (NO) have been implicated in the pathophysiology of neuronal injury and neurodegenerative disease. Recent studies have shown that (-)-epigallocatechin gallate (EGCG), one of the green tea polyphenols, has potent antioxidant effects against free radical-mediated lipid peroxidation in ischemia-induced neuronal damage. The purpose of this study was to examine whether EGCG would attenuate neuronal expression of NADPH-d/nNOS in the motor neurons of the lower brainstem following peripheral nerve crush. Thus, young adult rats were treated with EGCG (10, 25, or 50 mg/kg, i.p.) 30 min prior to crushing their hypoglossal and vagus nerves for 30 seconds (left side, at the cervical level). The treatment (pre-crush doses of EGCG) was continued from day 1 to day 6, and the animals were sacrificed on days 3, 7, 14 and 28. Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry and neuronal nitric oxide synthase (nNOS) immunohistochemistry were used to assess neuronal NADPH-d/nNOS expression in the hypoglossal nucleus and dorsal motor nucleus of the vagus. Results In rats treated with high dosages of EGCG (25 or 50 mg/kg), NADPH-d/nNOS reactivity and cell death of the motor neurons were significantly decreased. Conclusions The present evidence indicated that EGCG can reduce NADPH-d/nNOS reactivity and thus may enhance motor neuron survival time following peripheral nerve injury.
Collapse
Affiliation(s)
- I-Hua Wei
- Department of Anatomy and Cell Biology, College of Medicine, China Medical University, Taichung, Taiwan.
| | | | | | | | | | | |
Collapse
|
17
|
Wu UI, Mai FD, Sheu JN, Chen LY, Liu YT, Huang HC, Chang HM. Melatonin inhibits microglial activation, reduces pro-inflammatory cytokine levels, and rescues hippocampal neurons of adult rats with acute Klebsiella pneumoniae meningitis. J Pineal Res 2011; 50:159-70. [PMID: 21062353 DOI: 10.1111/j.1600-079x.2010.00825.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Acute bacterial meningitis caused by Klebsiella pneumoniae (K. pneumoniae) is a major health threat with a high mortality rate and severe neuro-cognitive sequelae. The intense pro-inflammatory cytokine released from calcium-mediated microglial activation plays an important role in eliciting neuronal damage in the hippocampal region. Considering melatonin possesses anti-inflammatory and immuno-modulatory properties, the present study determined whether melatonin can effectively decrease inflammatory responses and prevent hippocampal damage in animals subjected to K. pneumoniae. Adult rats inoculated with K. pneumoniae received a melatonin injection immediately thereafter at doses of 5, 25, 50, or 100 mg/kg. Following 24 h of survival, all experimental animals were processed for time-of-flight secondary ion mass spectrometry (for detecting glial calcium intensity), isolectin-B4 histochemistry (reliable marker for microglial activation), pro-inflammatory cytokine measurement as well as cytochrome oxidase and in situ dUTP end-labeling (representing neuronal bio-energetic status and apoptotic changes, respectively). Results indicate that in K. pneumoniae-infected rats, numerous calcium-enriched microglia, enhanced pro-inflammatory cytokine, and various apoptotic neurons with low bio-energetic activity were detected in hippocampus. Following melatonin administration, however, all parameters including glial calcium intensity, microglial activation, pro-inflammatory cytokine levels, and number of apoptotic neurons were successfully decreased with maximal change observed at a melatonin dose of 100 mg/kg. Enzymatic data corresponded well with above findings in which all surviving neurons displayed high bio-energetic activity. As effectively reducing glia-mediated inflammatory response is neuro-protective to hippocampal neurons, the present study supports the clinical use of melatonin as a potential therapeutic agent to counteract K. pneumoniae meningitis-induced neuro-cognitive damage.
Collapse
Affiliation(s)
- Un-In Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
18
|
Wu YC, Wang YJ, Tseng GF. Ascorbic acid and α-tocopherol supplement starting prenatally enhances the resistance of nucleus tractus solitarius neurons to hypobaric hypoxic challenge. Brain Struct Funct 2011; 216:105-22. [PMID: 21287201 DOI: 10.1007/s00429-010-0300-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 12/30/2010] [Indexed: 12/15/2022]
Abstract
Hypobaric hypoxia, encountered at high altitude, could result in severe consequences. Ascorbic acid (AA) and α-tocopherol (αTC), the two readily available over-the-counter antioxidants, are known to protect nervous tissue against oxidative stress. Here we study whether AA or αTC supplement starting prenatally protects animals against hypobaric hypoxic challenge at adulthood. Expressions of c-fos and the NR1 subunit of the N-methyl-D-aspartate receptors in the nucleus tractus solitarius (NTS) subserving cardiorespiratory functions were investigated. AA and αTC supplement reduced the number of c-fos immunoreactive neurons and intensity of NR1 expression in young and adult animals under normoxia. The treatment, in addition, attenuated the activation of NTS neurons, in terms of c-fos and NR1 expressions, and reduced the anxiety behaviors of adult rats subjected to hypobaric hypoxic challenge. Reduction of c-fos immunoreactive neurons was found concentrated in the chemoreceptor, baroreceptor, and tracheobronchial tree NTS subnuclei that receive corresponding afferents. The protective effect was not found in normal adult animals supplemented with AA or αTC a week before hypobaric hypoxic challenge. In short, prenatal and sustained AA or αTC supplement altered NTS substrate and ameliorated animals' reactions to hypobaric hypoxic insult, suggesting that this may be considered to protect animals from hypoxic insults from young to adult.
Collapse
Affiliation(s)
- Ya-Chieh Wu
- Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, Taiwan
| | | | | |
Collapse
|
19
|
Moreno-López B, Sunico CR, González-Forero D. NO orchestrates the loss of synaptic boutons from adult "sick" motoneurons: modeling a molecular mechanism. Mol Neurobiol 2010; 43:41-66. [PMID: 21190141 DOI: 10.1007/s12035-010-8159-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 12/02/2010] [Indexed: 12/14/2022]
Abstract
Synapse elimination is the main factor responsible for the cognitive decline accompanying many of the neuropathological conditions affecting humans. Synaptic stripping of motoneurons is also a common hallmark of several motor pathologies. Therefore, knowledge of the molecular basis underlying this plastic process is of central interest for the development of new therapeutic tools. Recent advances from our group highlight the role of nitric oxide (NO) as a key molecule triggering synapse loss in two models of motor pathologies. De novo expression of the neuronal isoform of NO synthase (nNOS) in motoneurons commonly occurs in response to the physical injury of a motor nerve and in the course of amyotrophic lateral sclerosis. In both conditions, this event precedes synaptic withdrawal from motoneurons. Strikingly, nNOS-synthesized NO is "necessary" and "sufficient" to induce synaptic detachment from motoneurons. The mechanism involves a paracrine/retrograde action of NO on pre-synaptic structures, initiating a downstream signaling cascade that includes sequential activation of (1) soluble guanylyl cyclase, (2) cyclic guanosine monophosphate-dependent protein kinase, and (3) RhoA/Rho kinase (ROCK) signaling. Finally, ROCK activation promotes phosphorylation of regulatory myosin light chain, which leads to myosin activation and actomyosin contraction. This latter event presumably contributes to the contractile force to produce ending axon retraction. Several findings support that this mechanism may operate in the most prevalent neurodegenerative diseases.
Collapse
Affiliation(s)
- Bernardo Moreno-López
- Grupo de NeuroDegeneración y NeuroReparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Plaza Falla, 9, 11003 Cádiz, Spain.
| | | | | |
Collapse
|
20
|
Moreno-López B. Local isoform-specific NOS inhibition: a promising approach to promote motor function recovery after nerve injury. J Neurosci Res 2010; 88:1846-57. [PMID: 20143424 DOI: 10.1002/jnr.22353] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Physical injury to a nerve is the most frequent cause of acquired peripheral neuropathy, which is responsible for loss of motor, sensory and/or autonomic functions. Injured axons in the peripheral nervous system maintain the capacity to regenerate in adult mammals. However, after nerve transection, stumps of damaged nerves must be surgically joined to guide regenerating axons into the distal nerve stump. Even so, severe functional limitations persist after restorative surgery. Therefore, the identification of molecules that regulate degenerative and regenerative processes is indispensable in developing therapeutic tools to accelerate and improve functional recovery. Here, I consider the role of nitric oxide (NO) synthesized by the three major isoforms of NO synthases (NOS) in motor neuropathy. Neuronal NOS (nNOS) seems to be the primary source of NO that is detrimental to the survival of injured motoneurons. Endothelial NOS (eNOS) appears to be the major source of NO that interferes with axonal regrowth, at least soon after injury. Finally, NO derived from inducible NOS (iNOS) or nNOS is critical to the process of lipid breakdown for Wallerian degeneration and thereby benefits axonal regrowth. Specific inhibitors of these isoforms can be used to protect injured neurons from degeneration and promote axonal regeneration. A cautious proposal for the treatment of acquired motor neuropathy using therapeutic tools that locally interfere with eNOS/nNOS activities seems to merit consideration.
Collapse
|
21
|
The Potential Role of Nitric Oxide Synthase in Survival and Regeneration of Magnocellular Neurons of Hypothalamo-Neurohypophyseal System. Neurochem Res 2009; 34:1907-13. [DOI: 10.1007/s11064-009-9965-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 03/25/2009] [Indexed: 12/21/2022]
|
22
|
Sunico CR, Portillo F, González-Forero D, Kasparov S, Moreno-López B. Evidence for a detrimental role of nitric oxide synthesized by endothelial nitric oxide synthase after peripheral nerve injury. Neuroscience 2008; 157:40-51. [PMID: 18824216 DOI: 10.1016/j.neuroscience.2008.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 12/17/2022]
Abstract
Physical injury to a nerve is the most common cause of acquired peripheral neuropathy. Identification of molecules involved in degenerative and regenerative processes is a key step toward development of therapeutic tools in order to accelerate motor, sensory and/or autonomic function recovery. We have studied the role of nitric oxide (NO) using as a model the severe crushing of a motor nerve in adult rats. This type of injury up-regulates the three isoforms of nitric oxide synthase (NOS) in the affected nerve. Chronic systemic inhibition of NOS accelerated the onset of functional muscle reinnervation evaluated by the recording of compound muscle action potential evoked by electrical stimulation of the injured nerve. Besides, it increased the number of back-labeled motoneurons by application, 2 days after injury, of a retrograde marker 10 mm distal to the crushing site. These effects were mimicked by chronic specific inhibition of the endothelial isoform of nitric oxide synthase (eNOS), but not by specific inhibitors of the neuronal or inducible isoform. Next, we intraneurally injected a replication-deficient adenoviral vector directing the expression of a dominant negative mutant of eNOS (Ad-TeNOS). A single injection of Ad-TeNOS on the day of crushing significantly accelerated functional recovery of neuromuscular junction and increased axonal regeneration. Moreover, Ad-TeNOS did not compromise motoneuron viability or stability of reestablished neuromuscular junctions. Taken together, these results suggest that NO of endothelial origin slows down muscle reinnervation by means of detrimental actions on axonal regeneration after peripheral nerve injury. These experiments identify eNOS as a potential therapeutic target for treatment of traumatic nerve injuries and highlight the potential of gene therapy in treating injuries of this type using viral vectors to suppress the activity of eNOS.
Collapse
Affiliation(s)
- C R Sunico
- Area de Fisiología, Facultad de Medicina, Universidad de Cádiz, Plaza Falla, 9, 11003 Cádiz, Spain
| | | | | | | | | |
Collapse
|
23
|
Chang HM, Huang YL, Lan CT, Wu UI, Hu ME, Youn SC. Melatonin preserves superoxide dismutase activity in hypoglossal motoneurons of adult rats following peripheral nerve injury. J Pineal Res 2008; 44:172-80. [PMID: 18289169 DOI: 10.1111/j.1600-079x.2007.00505.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Peripheral nerve injury (PNI) produces functional changes in lesioned neurons in which oxidative stress is considered to be the main cause of neuronal damage. As superoxide dismutase (SOD) is an important antioxidative enzyme involved in redox regulation of oxidative stress, the present study determined whether melatonin would exert its beneficial effects by preserving the SOD reactivity following PNI. Adult rats subjected to hypoglossal nerve transection were intraperitoneally injected with melatonin at ones for 3, 7, 14, 30 and 60 days successively. The potential neuroprotective effects of melatonin were quantitatively demonstrated by neuronal nitric oxide synthase (nNOS), mitochondrial manganese SOD (Mn-SOD), and cytosolic copper-zinc SOD (Cu/Zn-SOD) immunohistochemistry. The functional recovery of the lesioned neurons was evaluated by choline acetyltransferase (ChAT) immunohistochemistry along with the electromyographic (EMG) recordings of denervation-induced fibrillation activity. The results indicate that following PNI, the nNOS immunoreactivity was significantly increased in lesioned neurons peaking at 14 days. The up-regulation of nNOS temporally coincided with the reduction of ChAT and SOD in which the Cu/Zn-SOD showed a greater diminution than Mn-SOD. However, following melatonin administration, the nNOS augmentation was successfully suppressed and the activities of Mn-SOD, Cu/Zn-SOD, and ChAT were effectively preserved at all postaxotomy periods. EMG data also showed a decreased fibrillation in melatonin-treated groups, suggesting a potential effect of melatonin in promoting functional recovery. In association with its significant capacity in preserving SOD reactivity, melatonin is suggested to serve as a powerful therapeutic agent for treating PNI-relevant oxidative damage.
Collapse
Affiliation(s)
- Hung-Ming Chang
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | | | | | | | | | | |
Collapse
|
24
|
Shokouhi G, Tubbs RS, Shoja MM, Hadidchi S, Ghorbanihaghjo A, Roshangar L, Farahani RM, Mesgari M, Oakes WJ. Neuroprotective effects of high-dose vs low-dose melatonin after blunt sciatic nerve injury. Childs Nerv Syst 2008; 24:111-7. [PMID: 17503055 DOI: 10.1007/s00381-007-0366-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 04/21/2007] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Melatonin, the secretory product of the pineal gland, has potent antioxidant properties. The aim of this study was to compare the effects of low-dose (10 mg/kg) vs high-dose (50 mg/kg) melatonin on early lipid peroxidation levels and ultrastructural changes in experimental blunt sciatic nerve injury (SNI). We believe this to be the first study to assess the dose-dependent neuroprotective effects of melatonin after a blunt peripheral nerve injury. MATERIALS AND METHODS Rats were randomly allocated into 5 groups of 10 animals each. The SNI only rats underwent a nerve injury procedure. The SNI plus vehicle group received SNI and intraperitoneal injection of vehicle (diluted ethanol) as a placebo. The SNI plus low-dose or high-dose melatonin groups received intraperitoneal melatonin at doses of 10 mg/kg or 50 mg/kg, respectively. Controls had no operation, melatonin or vehicle injection. SNI was induced by clamping the sciatic nerve at the upper border of the quadratus femoris for 2 min. RESULTS Sciatic nerve samples were harvested 6 h after nerve injury and processed for biochemical and ultrastructural analysis. Trauma increased the lipid peroxidation of the sciatic nerve by 3.6-fold (153.85 +/- 18.73 in SNI only vs 41.73 +/- 2.23 in control rats, P < 0.01). Low (P = 0.02) and high (P < 0.01) doses of melatonin attenuated the nerve lipid peroxidation by 25% and 57.25%, respectively (65.76 +/- 2.47 in high-dose vs 115.08 +/- 7.03 in low-dose melatonin groups). DISCUSSION Although low-dose melatonin reduced trauma-induced myelin breakdown and axonal changes in the sciatic nerve, high-dose melatonin almost entirely neutralized any ultrastructural changes. CONCLUSION Our results suggest that melatonin, especially at a dose of 50 mg/kg, has a potent neuroprotective effect and can preserve peripheral neural fibers from lipid peroxidative damage after blunt trauma. With further investigations, we hope that these data may prove useful to clinicians who treat patients with nerve injuries.
Collapse
Affiliation(s)
- Ghaffar Shokouhi
- Department of Neurosurgery and Anatomy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wei IH, Huang CC, Tseng CY, Chang HM, Tu HC, Tsai MH, Wen CY, Shieh JY. Mild hypoxic preconditioning attenuates injury-induced NADPH-d/nNOS expression in brainstem motor neurons of adult rats. J Chem Neuroanat 2007; 35:123-32. [PMID: 17942275 DOI: 10.1016/j.jchemneu.2007.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 08/21/2007] [Accepted: 08/24/2007] [Indexed: 01/30/2023]
Abstract
Excessive production of nitric oxide (NO) might have detrimental effects on the hypoxia-related neuropathology. This study aimed to test if mild hypoxic preconditioning (MHPC) would attenuate the pathological changes in the brainstem motoneurons having a different functional component after peripheral nerve crush injury (PNCI). Prior to PNCI treatment, young adult rats were caged in the mild hypoxic altitude chamber with 79Torr of the partial oxygen concentration ( pO(2)) (i.e., 0.5atm at 5500m in height) for 4 weeks to adapt the environmental changes. After that, all the animals having successfully crushed both the hypoglossal and vagus nerves (left-side) were allowed to survive for 3, 7, 14, 30 and 60 successive days in normoxic condition. Nicotinamine adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry and neuronal nitric oxide synthase (nNOS) immunohistochemistry revealed that MHPC reduces NADPH-d/nNOS expression in the hypoglossal nucleus (HN) and the dorsal motor nucleus of the vagus (DMN) at different time points after PNCI. The morphological findings were further ascertained by Western blot analysis of nNOS and nitrite assay for NO production. Both the morphological and quantitative results peaked at 7 days in HN, whereas for those in DMN were progressively increased up to 60 days following PNCI. The staining intensity of NADPH-d/nNOS(+) neurons, expression of nNOS protein, NO production levels as well as the neuronal loss in HN and DMN of MHPC rats following PNCI were attenuated, especially for those having a longer survival period over 14 days. The MHPC treatment might induce minute amounts of NO to alter the state of milieu of the experimental animals to protect against the PNCI.
Collapse
Affiliation(s)
- I-Hua Wei
- Department of Anatomy and Cell Biology, College of Medicine, China Medical University, Taichung, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hwang BH, Chang HM, Gu ZH, Suzuki R. c-fos gene expression is increased in the paraventricular hypothalamic nucleus of Sprague-Dawley rats with visceral pain induced by acetic acid without detectable changes of corticotrophin-releasing factor mRNA: a quantitative approach with an image analysis system. Anat Rec (Hoboken) 2007; 290:406-13. [PMID: 17514764 DOI: 10.1002/ar.20495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study is the first of its kind to demonstrate that c-Fos immunoreactivity (ir) together with c-fos mRNA in their immediately adjacent tissue sections of a discrete brain region can be reliably measured. The c-fos gene expression in the paraventricular hypothalamic nucleus (PVN) of Sprague-Dawley rats for an animal model for visceral or somatovisceral pain induced by 2% acetic acid (AA) was used in this study. Specifically, c-fos mRNA signals were measured by quantitative autoradiography after in situ hybridization using c-fos oligodeoxynucleotide probe, and c-Fos-ir signals were represented by c-Fos immunostaining, as detected using c-Fos antibody in a regular immunohistochemistry. Signals from both c-Fos-ir and c-fos mRNA in the PVN were measured from their immediately adjacent cryostat sections. For the measurement of c-Fos-ir, it was carried out by reading 10 rectangles (1,000 microm(2)/rectangle) on each PVN section with c-Fos immunostaining. Specific signals were obtained from subtracting the nonspecific background signal from the total signals using a computer-assisted image analysis system. Results indicated that the AA treatment induced a significant increase of both c-Fos-ir and c-fos mRNA in the PVN. Interestingly, there was no increase of corticotrophin-releasing factor (CRF) mRNA expression in the PVN and central nucleus of the amygdala of Sprague-Dawley rats subjected to the AA treatment. In summary, this study has demonstrated that c-Fos-ir in the PVN with an anatomical resolution can be semiquantitatively measured after immunohistochemistry using an image analysis system, and that increased c-fos mRNA in the PVN 1 hr after the AA treatment is associated with no changes of the CRF mRNA expression.
Collapse
Affiliation(s)
- Bang H Hwang
- Department of Anatomy and Cell Biology, School of Medicine, Indiana University, Indianapolis, Indiana 46202, USA.
| | | | | | | |
Collapse
|
27
|
Rogério F, Teixeira SA, Júnior HJ, Maria CCJ, Vieira AS, de Rezende ACS, Pereira GAG, Muscará MN, Langone F. mRNA and protein expression and activities of nitric oxide synthases in the lumbar spinal cord of neonatal rats after sciatic nerve transection and melatonin administration. Neurosci Lett 2006; 407:182-7. [PMID: 16978780 DOI: 10.1016/j.neulet.2006.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 08/15/2006] [Accepted: 08/16/2006] [Indexed: 11/27/2022]
Abstract
Sciatic axotomy in 2-day-old rats (P2) causes lumbar motoneuron loss, which could be associated with nitric oxide (NO) production. NO may be produced by three isoforms of synthase (NOS): neuronal (nNOS), endothelial (eNOS) and inducible (iNOS). We investigated NOS expression and NO synthesis in the lumbar enlargement of rats after sciatic nerve transection at P2 and treatment with the antioxidant melatonin (sc; 1 mg/kg). At time points ranging from P2 to P7, expression of each isoform was assessed by RT-PCR and immunohistochemistry; catalytic rates of calcium-dependent (nNOS, eNOS) and independent (iNOS) NOS were measured by the conversion of [3H]L-arginine to [3H]L-citrulline. All NOS isoforms were expressed and active in unlesioned animals. nNOS and iNOS were detected in some small cells in the parenchyma. Only endothelial cells were positive for eNOS. No NOS isoform was detected in motoneurons. Axotomy did not change these immunohistochemical findings, nNOS and iNOS mRNA expression and calcium-independent activity at all survival times. However, sciatic nerve transection reduced eNOS mRNA levels at P7 and increased calcium-dependent activity at 1 and 6 h. Melatonin did not alter NOS expression. Despite having no action on NOS activity in unlesioned controls the neurohormone enhanced calcium-dependent activity at 1 and 72 h and reduced calcium-independent catalysis at 72 h in lesioned rats. These results suggest that NOS isoforms are constitutive in the neonatal lumbar enlargement and are not overexpressed after sciatic axotomy. Changes in NO synthesis induced by axotomy and melatonin administration in the current model are discussed considering some beneficial and deleterious effects that NO may have.
Collapse
Affiliation(s)
- Fábio Rogério
- Department of Physiology and Biophysics, State University of Campinas, UNICAMP, 13083-970 Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhou L, Wu W. Antisense oligos to neuronal nitric oxide synthase aggravate motoneuron death induced by spinal root avulsion in adult rat. Exp Neurol 2005; 197:84-92. [PMID: 16246329 DOI: 10.1016/j.expneurol.2005.08.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 08/02/2005] [Accepted: 08/11/2005] [Indexed: 10/25/2022]
Abstract
The present study used nitric oxide synthase (nNOS) antisense oligos (nNOS AS-ODN) to assess the role of nNOS in motoneuron death induced by spinal root avulsion. A right seventh cervical (C7) spinal root avulsion was performed on adult male Sprague-Dawley rats. Two weeks later, FITC-labeled random oligos (FITC-R-ODN), nNOS AS-ODN, R-ODN or TE buffer was applied to the lesioned side of the C7 spinal segment and refreshed every 3 days. FITC-R-ODN was first detected inside the injured motoneurons at 10 h, accumulated to a maximum by 24 h and faded out from 72 h. Following avulsion, nNOS AS-ODN decreased the number of nNOS-positive motoneurons in the lesioned segment compared either with buffer (P < 0.001 at 15 days, 3 and 4 weeks post-injury) or with R-ODN control (P = 0.002 at 15 days, P < 0.001 at 3 and 4 weeks post-injury). Interestingly, nNOS AS-ODN also decreased the number of surviving motoneurons compared either with buffer (P = 0.005 at 15 days, P < 0.001 at 3 or 4 weeks) or with R-ODN control (P < 0.001 at 3 or 4 weeks). Meanwhile, there were no significant differences between R-ODN and buffer control either in the number of nNOS-positive motoneurons (P = 0.245 at 15 days, P = 0.089 at 3 weeks and P = 0.162 at 4 weeks) or in the number of surviving motoneurons (P = 0.426 at 15 days, P = 0.321 at 3 weeks or P = 0.344 at 4 weeks). These findings indicate that nNOS AS-ODN, applied from 2 weeks after avulsion, aggravates the motoneuron death due to root avulsion by specifically down-regulating nNOS gene expression and that the expression of nNOS in adult spinal motoneurons in response to root avulsion may play a beneficial role in the survival of injured neurons.
Collapse
Affiliation(s)
- Lihua Zhou
- Department of Anatomy, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | | |
Collapse
|
29
|
Xu M, Yip GWC, Gan LT, Ng YK. Distinct roles of oxidative stress and antioxidants in the nucleus dorsalis and red nucleus following spinal cord hemisection. Brain Res 2005; 1055:137-42. [PMID: 16095570 DOI: 10.1016/j.brainres.2005.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 07/01/2005] [Accepted: 07/08/2005] [Indexed: 11/22/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of neurodegeneration after the acute central nervous system injury. We reported previously that increased nitric oxide (NO) production following spinal cord hemisection tends to lead to neurodegeneration in neurons of the nucleus dorsalis (ND) that normally lacks expression of neuronal NO synthase (nNOS) in opposition to those in the red nucleus (RN) that constitutively expresses nNOS. We wondered whether oxidative stress could be a mechanism underlying this NO involved neurodegeneration. In the present study, we examined oxidative damage evaluated by the presence of 4-hydroxynonenal (HNE) and iron accumulation and expression of putative antioxidant enzymes heme oxygenase-1 (HO-1) and superoxide dismutase (SOD) in neurons of the ND and RN after spinal cord hemisection. We found that HNE expression was induced in neurons of the ipsilateral ND from 1 to 14 days following spinal cord hemisection. Concomitantly, iron staining was seen from 7 to 14 days after lesion. HO-1, however, was only transiently induced in ipsilateral ND neurons between 3 and 7 days after lesion. In contrast to the ND neurons, HNE was undetectable and iron level was unaltered in the RN neurons after spinal cord hemisection. HO-1, SOD-Cu/Zn and SOD-Mn were constitutively expressed in RN neurons, and lesion to the spinal cord did not change their expression. These results suggest that oxidative stress is involved in the degeneration of the lesioned ND neurons; whereas constitutive antioxidant enzymes may protect the RN neurons from oxidative damage.
Collapse
Affiliation(s)
- Mei Xu
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | |
Collapse
|
30
|
Chang HM, Tseng CY, Wei IH, Lue JH, Wen CY, Shieh JY. Melatonin restores the cytochrome oxidase reactivity in the nodose ganglia of acute hypoxic rats. J Pineal Res 2005; 39:206-14. [PMID: 16098100 DOI: 10.1111/j.1600-079x.2005.00238.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study aimed to elucidate whether melatonin would exert beneficial effects on the neuronal functions of the nodose ganglion (NG) following acute hypoxic insult. The cytochrome oxidase (COX) and the nicotinamine adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry along with the nitric oxide synthase (NOS) immunofluorescence were used to examine the metabolic stage and nitric oxide production in nodose neurons respectively. Adult rats were injected intraperitoneally with melatonin at 5 or 100 mg/kg. Hypoxia was achieved by placing the rats into an altitude chamber (PO2 = 43 torr) for 4 hr. The results show that in normal untreated rats, nearly all and about 43% of the NG neurons displayed COX and NOS/NADPH-d reactivities with various staining intensities respectively. However, COX reactivity was drastically decreased while NOS/NADPH-d reactivity was significantly upregulated following hypoxia treatment. In melatonin pretreated rats, the hypoxia-induced reduction of COX reactivity was obviously prevented and the augmentation of NOS/NADPH-d reactivity was successfully suppressed. The deficit in the metabolic stage and the over-activation of NOS would contribute to the generation of oxidative stress. By effectively preventing the metabolic disruption, melatonin may have potential utility in therapeutic treatment of neuronal dysfunctions where oxidative stress is a participant.
Collapse
Affiliation(s)
- Hung-Ming Chang
- Department of Anatomy, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
31
|
Nishida S. Metabolic effects of melatonin on oxidative stress and diabetes mellitus. Endocrine 2005; 27:131-6. [PMID: 16217126 DOI: 10.1385/endo:27:2:131] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 06/13/2005] [Indexed: 01/18/2023]
Abstract
Melatonin, which is synthesized in the pineal gland and other tissues, has a variety of physiological, immunological, and biochemical functions. It is a direct scavenger of free radicals and has indirect antioxidant effects due to its stimulation of the expression and activity of antioxidative enzymes such as glutathione peroxidase, superoxide dismutase and catalase, and NO synthase, in mammalian cells. Melatonin also reduces serum lipid levels in mammalian species, and helps to prevent oxidative stress in diabetic subjects. Long-term melatonin administration to diabetic rats reduced their hyperlipidemia and hyperinsulinemia, and restored their altered ratios of polyunsaturated fatty acid in serum and tissues. It was recently reported that melatonin enhanced insulin-receptor kinase and IRS-1 phosphorylation, suggesting the potential existence of signaling pathway cross-talk between melatonin and insulin. Because TNF-alpha has been shown to impair insulin action by suppressing insulin receptor-tyrosine kinase activity and its IRS-1 tyrosine phosphorylation in peripheral tissues such as skeletal muscle cells, it was speculated that melatonin might counteract TNF-alpha-associated insulin resistance in type 2 diabetes. This review will focus on the physiological and metabolic effects of melatonin and highlight its potential use for the treatment of cholesterol/lipid and carbohydrate disorders.
Collapse
Affiliation(s)
- Shigeru Nishida
- Department of Biochemistry, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| |
Collapse
|
32
|
Wei IH, Huang CC, Chang HM, Tseng CY, Tu HC, Wen CY, Shieh JY. Neuronal NADPH-d/NOS expression in the nodose ganglion of severe hypoxic rats with or without mild hypoxic preconditioning. J Chem Neuroanat 2005; 29:149-56. [PMID: 15652701 DOI: 10.1016/j.jchemneu.2004.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2004] [Revised: 09/20/2004] [Accepted: 11/22/2004] [Indexed: 12/25/2022]
Abstract
This study aimed to test the hypothesis that mild hypoxic preconditioning (MHPC)-induced NOS expression would attenuate the neuropathological changes in the nodose ganglion (NG) of severe hypoxic exposure (SHE) rats. Thus, the young adult rats were caged in the altitude chamber for 4 weeks prior to SHE for 4 h to gain hypoxic preconditioning. The altitude chamber was used to set the height at the level from 5500 m (0.50 atm; pO2=79 Torr) to 10,000 m (0.27 atm; pO2=43 Torr) for MHPC and SHE, respectively. The experimental animals were allowed to survive for 0, 7, 14, 30 and 60 successive days, respectively. Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry and neuronal nitric oxide synthase (nNOS) immunohistochemistry were used to detect NADPH-d/nNOS reactivity in the NG at various time points following hypoxic exposure. The present results showed that about 38% of the neurons in the NG displayed NADPH-d/nNOS positive [NADPH-d/nNOS(+)] in normoxic rats. In SHE rats, a peak in the percentage (71%) and staining intensity (230%) of NADPH-d/nNOS(+) nodose neurons at 0 day, which then gradually decreased at 7-60 days. About 25% of the nodose neurons died 60 days after SHE. However, in MHPC rats subjected to SHE, NADPH-d/nNOS(+) neurons peaked in the percentage (51%) and staining intensity (171%) at 0 day, which then decreased at 7-60 days. In addition, neuronal survival was markedly increased by MHPC. These results suggested that MHPC might have a neuroprotective effect that reduces the susceptibility of the nodose neurons to NOS mediated neuropathy subsequent to SHE.
Collapse
Affiliation(s)
- I-Hua Wei
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
33
|
Noseda R, Hernández A, Valladares L, Mondaca M, Laurido C, Soto-Moyano R. Melatonin-induced inhibition of spinal cord synaptic potentiation in rats is MT2 receptor-dependent. Neurosci Lett 2004; 360:41-4. [PMID: 15082174 DOI: 10.1016/j.neulet.2004.01.080] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Revised: 01/22/2004] [Accepted: 01/26/2004] [Indexed: 11/30/2022]
Abstract
Systemically administered melatonin has been reported to produce antinociception and to inhibit spinal nociceptive transmission in rats. The present study was designed to investigate in anesthetized rats (i) whether intrathecally administered melatonin can depress synaptic potentiation (wind-up) in the spinal cord, and (ii) whether this effect is prevented by intrathecal (i.t.) administration of the MT2 receptor antagonist luzindole. Results showed that melatonin i.t. (10, 30 and 90 microg) induced dose-dependent inhibition of wind-up activity (ED50=52.06 microg i.t.), an effect that was prevented by 100 microg i.t. of luzindole. Since wind-up is dependent on NMDA receptor activation, the results suggest that melatonin can interfere with the NMDA-mediated glutamatergic component of pain transmission in rat spinal cord by acting on MT2 receptors.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Laboratory of Hormones and Receptors, Institute of Nutrition and Food Technology (INTA), University of Chile, P.O. Box 138-11, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
34
|
Wei IH, Wu YC, Wen CY, Shieh JY. Green tea polyphenol (−)-epigallocatechin gallate attenuates the neuronal NADPH-d/nNOS expression in the nodose ganglion of acute hypoxic rats. Brain Res 2004; 999:73-80. [PMID: 14746923 DOI: 10.1016/j.brainres.2003.11.056] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent studies have shown that (-)-epigallocatechin gallate (EGCG), one of the green tea polyphenols, has a potent antioxidant property. Nitric oxide (NO) plays an important role in the neuropathogenesis induced by brain ischemia/reperfusion and hypoxia. This study aimed to explore the potential neuroprotective effect of EGCG on the ganglionic neurons of the nodose ganglion (NG) in acute hypoxic rats. Thus, the young adult rats were pretreated with EGCG (10, 25, or 50 mg/kg, i.p.) 30 min before they were exposed to the altitude chamber at 10,000 m with the partial pressure of oxygen set at the level of 0.27 atm (pO2=43 Torr) for 4 h. All the animals examined were allowed to survive for 3, 7, and 14 successive days, respectively, except for those animals sacrificed immediately following hypoxic exposure. Nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry and neuronal nitric oxide synthase (nNOS) immunohistochemistry were carried out to detect the neuronal NADPH-d/nNOS expression in the NG. The present results show a significant increase in the expression of NADPH-d/nNOS reactivity in neurons of the NG at various time intervals following hypoxia. However, the hypoxia-induced increase in NADPH-d/nNOS expression was significantly depressed only in the hypoxic rats treated with high dosages of EGCG (25 or 50 mg/kg). These data suggest that EGCG may attenuate the oxidative stress following acute hypoxia.
Collapse
Affiliation(s)
- I-Hua Wei
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | | | | | | |
Collapse
|
35
|
Mondaca M, Hernández A, Valladares L, Sierralta W, Noseda R, Soto-Moyano R. Involvement of melatonin metabolites in the long-term inhibitory effect of the hormone on rat spinal nociceptive transmission. Pharmacol Biochem Behav 2004; 77:275-9. [PMID: 14751455 DOI: 10.1016/j.pbb.2003.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is evidence that melatonin and its metabolites could bind to nuclear sites in neurones, suggesting that this hormone is able to exert long-term functional effects in the central nervous system via genomic mechanisms. This study was designed to investigate (i) whether systemically administered melatonin can exert long-term effects on spinal cord windup activity, and (ii) whether blockade of melatonin degradation with eserine could prevent this effect. Rats receiving melatonin (10 mg/kg ip), the same dose of melatonin plus eserine (0.5 mg/kg ip), or saline were studied. Seven days after administration of the drugs or saline, spinal windup of rats was assessed in a C-fiber reflex response paradigm. Results show that rats receiving melatonin exhibited a reduction in spinal windup activity. This was not observed in the animals receiving melatonin plus eserine or saline, suggesting a role for melatonin metabolites in long-term changes of nociceptive transmission in the rat spinal cord.
Collapse
Affiliation(s)
- Mauricio Mondaca
- Institute of Nutrition and Food Technology (INTA), University of Chile, P.O. Box 138-11, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
36
|
Teixeira A, Morfim MP, de Cordova CAS, Charão CCT, de Lima VR, Creczynski-Pasa TB. Melatonin protects against pro-oxidant enzymes and reduces lipid peroxidation in distinct membranes induced by the hydroxyl and ascorbyl radicals and by peroxynitrite. J Pineal Res 2003; 35:262-8. [PMID: 14521632 DOI: 10.1034/j.1600-079x.2003.00085.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have investigated the action of melatonin against lipid peroxidation in membranes including brain homogenates (BH), brain and liver microsomes (MIC), and phosphatidylcholine (PC) liposomes, as well as its effect on the activity of pro-oxidant enzymes such as constitutive neuronal nitric oxide synthase (cnNOS), xanthine oxidase (XO) and myeloperoxidase (MPO). The liposomes were reconstituted by a dialysis method, lipid peroxidation was monitored using the thiobarbituric reactive substances (TBARS) method and enzyme activities were measured spectrophotometrically. The ascorbyl and hydroxyl free radicals were generated by the reaction of ascorbic acid + FeSO4 and H2O2 + FeCl2, respectively, and peroxynitrite using a mixture of NaNO2 in an alkaline medium. Melatonin protected against lipid peroxidation induced by distinct reactive oxygen species (ROS) in all membranes tested although with different potency, in the following order BH < MIC < PC. The K0.5 for enzyme inhibition by melatonin was determined for nNOS (2.0 +/- 0.1 mm), for XO (0.8 +/- 0.1 mm) and for MPO (0.063 +/- 0.003 mm), the latter one with high affinity. Melatonin showed a weak effect as a nitrogen monoxide (NO) scavenger in the presence of sodium nitroprusside (NO donor) and low reactivity with 1,1-diphenyl-2-picryl hydrazyl (DPPH). These results demonstrate the antioxidant action of melatonin, principally that related to the activity of pro-oxidant enzymes such as XO and MPO.
Collapse
Affiliation(s)
- Adriana Teixeira
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | | | | | | | | |
Collapse
|
37
|
Chang HM, Liao WC, Lue JH, Wen CY, Shieh JY. Upregulation of NMDA receptor and neuronal NADPH-d/NOS expression in the nodose ganglion of acute hypoxic rats. J Chem Neuroanat 2003; 25:137-47. [PMID: 12663061 DOI: 10.1016/s0891-0618(02)00101-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Nitric oxide may serve as a neuronal messenger in the regulation of cardiorespiratory function via the N-methyl-D-aspartate (NMDA) receptor-mediated neuronal nitric oxide synthase (nNOS) activation. Since hypoxic stress would drastically influence the cardiorespiratory function, the present study aimed to examine if the expression of nNOS and NMDA receptor subunit 1 (NMDAR1) in the nodose ganglion (NG) would alter under different extents of hypoxia treatment. The nicotinamine adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry, nNOS and NMDAR1 immunofluorescence were used to examine nNOS and NMDAR1 expression in the NG following exposing of adult rats in the altitude chamber (0.27 atm, PO(2)=43 torr) for 2 and 4 h. The present results showed that NADPH-d, nNOS and NMDAR1 reactivities were co-localized in the NG under normoxic and hypoxic environment. Quantitative evaluation revealed that about 43% of neurons in the NG showed positive response for NADPH-d/nNOS and NMDAR1 reactivities. However, in animals subjected to hypoxia, both the percentage and the staining intensity of NADPH-d/nNOS and NMDAR1 labeled neurons were drastically increased. The percentage of NADPH-d/nNOS and NMDAR1-immunoreactive neurons in the NG was raised to 68% as well as 77%, respectively, following 2 and 4 h of hypoxic exposure. The magnitude of up-regulation was positively correlated with the duration of hypoxic periods. No significant cell loss was observed under this experimental paradigm. These findings suggest that different extents of hypoxia might induce the higher expression of nNOS and NMDAR1 in the NG, which could contribute to the neuronal integration as responding to the different physiological demands under hypoxic stress.
Collapse
Affiliation(s)
- Hung-Ming Chang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | | | | | | | | |
Collapse
|
38
|
Storr M, Koppitz P, Sibaev A, Saur D, Kurjak M, Franck H, Schusdziarra V, Allescher HD. Melatonin reduces non-adrenergic, non-cholinergic relaxant neurotransmission by inhibition of nitric oxide synthase activity in the gastrointestinal tract of rodents in vitro. J Pineal Res 2002; 33:101-8. [PMID: 12153444 DOI: 10.1034/j.1600-079x.2002.02909.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aim of the present study was to investigate the effects of melatonin on non-adrenergic, non-cholinergic (NANC) relaxant neurotransmission in the gastrointestinal tract, which is mainly mediated by nitrergic and peptidergic mechanisms. Melatonin (10(-7)-10(-3) M) had no effect on the basal tonus of the rat gastric fundus smooth muscle. Relaxant responses following electrical stimulation(40 V; 0.5 ms pulse duration; 10 s stimulation duration) under NANC conditions on a 5-hydroxytryptamine (5-HT, 10(-7) M) contraction plateau were elicited at frequencies in the range of 0.5-16 Hz. Melatonin significantly reduced these inhibitory NANC responses (16 Hz without melatonin: -103 +/- 6.3%; melatonin 10(-5) M: -80.4 +/- 7.5%; melatonin 10(-4) M: -39.1 +/- 17.1%). Intracellular recording was carried out in a mouse colonic preparation. Electrical neural stimulation of the mouse colonic neurons caused biphasic intracellular hyperpolarization in smooth-muscle cells. The initial fast component is apamin-sensitive, and the following slow component is dependent on nitrergic mechanisms, as it is abolished in the presence of NG-nitro-L-arginine (L-NNA). Melatonin significantly reduced the nitric oxide-dependent slow component of neurally transmitted hyperpolarization, whereas the initial fast component was left unchanged. In a synaptosomal preparation of the enteric nervous system of rat intestine, enzymatic nitric oxide synthase (NOS) activity was significantly reduced by melatonin at concentrations ranging from 10(-7) to 10(-4) M (basal preparation including cofactors: 61.2 +/- 9.4 fmol/mg; melatonin 10(-4) M: 39.2 +/- 6.9 fmol/mg). Reverse transcriptase-polymerase chain reaction (RT-PCR) studies were conducted to investigate the melatonin receptors (mt(1), MT(2) and MT(3)) present in the esophagus, stomach and ileum of the rat. The presence of mt1 mRNA expression alone, but not of mRNA expression for MT(2) or MT(3), was demonstrated in the tissues. In conclusion, this study demonstrates that melatonin reduces the functional inhibitory NANC response. It shows that this effect may be the result of a reduction of the nitrergic component of the smooth-muscle inhibitory junction potential (IJP) and related to direct inhibition of NOS activity in enteric synaptosomes. The presence of mt1 receptor transcripts adds supportive evidence for a possible physiological role of melatonin within the enteric nervous system.
Collapse
MESH Headings
- Adrenergic Agents/pharmacology
- Animals
- Atropine/pharmacology
- Digestive System/enzymology
- Digestive System/physiopathology
- Electric Stimulation
- Enteric Nervous System/drug effects
- Enteric Nervous System/metabolism
- Enzyme Inhibitors/pharmacology
- Female
- In Vitro Techniques
- Male
- Melatonin/pharmacology
- Melatonin/physiology
- Membrane Potentials/drug effects
- Metallothionein 3
- Mice
- Mice, Inbred BALB C
- Muscarinic Antagonists/pharmacology
- Muscle Relaxation/drug effects
- Muscle, Smooth/drug effects
- Neurotransmitter Agents/metabolism
- Nitric Oxide Synthase/antagonists & inhibitors
- Rats
- Rats, Wistar
- Receptors, Cell Surface/drug effects
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Melatonin
- Rodentia
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Synaptosomes/drug effects
- Synaptosomes/metabolism
Collapse
Affiliation(s)
- M Storr
- Department of Internal Medicine II, Technical University of Munich, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yu WHA. Spatial and temporal correlation of nitric oxide synthase expression with CuZn-superoxide dismutase reduction in motor neurons following axotomy. Ann N Y Acad Sci 2002; 962:111-21. [PMID: 12076968 DOI: 10.1111/j.1749-6632.2002.tb04061.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Axotomized neurons expressing neuronal nitric oxide synthase (nNOS) may use nitric oxide (NO), known for its antioxidant activities and ability to scavenge free radicals, to protect against oxidative stress. This hypothesis was tested by immunohistochemical examination of superoxide dismutase (SOD) in neurons of the hypoglossal nucleus (HGN) and dorsal motor nucleus of the vagus nerve (DMV) one day to ten weeks after unilateral hypoglossal nerve crush or avulsion combined with vagus nerve crush in adult rats, and also in neurons of the anterior horn (AH) one week after unilateral sciatic nerve crush or avulsion. In the HGN, emergence of nNOS coincided temporally with reduction of CuZn-SOD immunoreactivity (ir), and the level of reduction correlated with that of nNOS induction, differing only in magnitude between nerve crush and nerve avulsion. The two nerve lesion models further revealed the concurrence of nNOS abatement with recovery of CuZn-SOD ir, and absence of nNOS abatement with persistent low CuZn-SOD ir. In the AH, reduced CuZn-SOD ir was localized in the segments containing nNOS positive neurons as a result of sciatic nerve avulsion. CuZn-SOD ir was unchanged in the absence of nNOS induction following sciatic nerve crush. DMV neurons were devoid of CuZn-SOD ir. However, increased Mn-SOD ir one and two weeks post crush was similar to that in HGN neurons. DMV neurons lacked both nNOS abatement and CuZn-SOD ir, which may explain their particular vulnerability to cell death from axotomy in comparison with other peripheral neurons. These data suggest that axotomy-induced nNOS expression is causally linked to oxidative stress, and that NO is neuroprotective, but can become neurodestructive when produced in excess.
Collapse
Affiliation(s)
- Wan-Hua Amy Yu
- Department of Cell Biology and Anatomical Sciences, City University of New York Medical School, New York, New York 10031, USA.
| |
Collapse
|
40
|
Tunçtan B, Weigl Y, Dotan A, Peleg L, Zengil H, Ashkenazi I, Abacioğlu N. Circadian variation of nitric oxide synthase activity in mouse tissue. Chronobiol Int 2002; 19:393-404. [PMID: 12025932 DOI: 10.1081/cbi-120002915] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Endogenous nitric oxide (NO) is an important mediator in the processes that control biological clocks and circadian rhythms. The present study was designed to elucidate if NO synthase (NOS) activity in the brain, kidney, testis, aorta, and lungs and plasma NOx levels in mice are controlled by an endogenous circadian pacemaker. Male BALB/c mice were exposed to two different lighting regimens of either light-dark 14:10 (LD) or continuous lighting (LL). At nine different equidistant time points (commencing at 09:00h) blood samples and tissues were taken from mice. The plasma and tissue homogenates were used to measure the levels of NO2 + NO3- (NOx) and total protein. The NOx concentrations were determined by a commercial nitric oxide synthase assay kit, and protein content was assessed in each homogenate tissue sample by the Lowry method. Nitric oxide synthase activity was calculated as pmol/mg protein/h. The resulting patterns were analyzed by the single cosinor method for pre-adjusted periods and by curve-fitting programs to elucidate compound rhythmicity. The NOS activity in kidneys of mice exposed to LD exhibited a circadian rhythm, but no rhythmicity was detected in mice exposed to LL. Aortic NOS activity displayed 24h rhythmicity only in LL. Brain, testis, and lung NOS activity and plasma NOx levels displayed 24h rhythms both in LD and LL. Acrophase values of NOS activity in brain, kidney, testis, and lungs were at midnight corresponding to their behavioral activities. Compound rhythms were also detected in many of the examined patterns. The findings suggest that NOS activity in mouse brain, aorta, lung, and testis are regulated by an endogenous clock, while in kidney the rhythm in NOS activity is synchronized by the exogenous signals.
Collapse
Affiliation(s)
- Bahar Tunçtan
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | | | | | | | | | | | | |
Collapse
|
41
|
Kilic E, Hermann DM, Isenmann S, Bähr M. Effects of pinealectomy and melatonin on the retrograde degeneration of retinal ganglion cells in a novel model of intraorbital optic nerve transection in mice. J Pineal Res 2002; 32:106-11. [PMID: 12071467 DOI: 10.1034/j.1600-079x.2002.1823.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The effects of pinealectomy and of intraperitoneally administered melatonin on the retrograde degeneration of retinal ganglion cells (RGCs) were examined in a novel model of optic nerve (ON) transection in C57BL/16J mice. RGCs were prelabeled with the fluorescent tracer 1,1'-dioctadecyl-3,3,3',3'-tetramethyl indocarbocyanine perchlorate (Di-I), and the ON was cut inside the orbital cavity 7 days later. The degree of RGC injury was assessed by counting viable Di-I labeled RGCs in various locations of the retina. In unlesioned control eyes, a mean ganglion cell density of 1,891 +/- 30/mm2 (mean +/- S.E.M.) was determined. The cell density markedly declined at 14 days after axotomy (295 +/- 9 cells/mm2; 15.6% of contralateral). Sham-pinealectomy did not influence the density of RGCs at 14 days after ON transection (382 +/- 37 cells/mm2). In pinealectomized animals, on the other hand, the RGC number was significantly reduced as compared with untreated and sham-pinealectomized animals (91 +/- 33 RGCs/mm2). The effect of pinealectomy was reversed after i.p. administration of melatonin (4 mg/kg bw bolus followed by continuous infusion of 8 mg/kg bw/day) (286 +/- 27 cells/mm2). In nonpinealectomized animals, on the contrary, i.p. melatonin did not influence the RGC density (344 +/- 20 cells/mm2). The present results suggest that endogenous melatonin prevents the delayed degeneration of adult central nervous system (CNS) neurons in vivo, and that exogenous substitution of melatonin may be useful to protect injured neurons against cell death under conditions of melatonin deficiency, e.g. in the aged brain, when melatonin synthesis and secretion have decreased.
Collapse
Affiliation(s)
- Ertugrul Kilic
- Department of Neurology, University of Tübingen, Germany.
| | | | | | | |
Collapse
|
42
|
Chang HM, Ling EA, Chen CF, Lue H, Wen CY, Shieh JY. Melatonin attenuates the neuronal NADPH-d/NOS expression in the nodose ganglion of acute hypoxic rats. J Pineal Res 2002; 32:65-73. [PMID: 12071470 DOI: 10.1034/j.1600-079x.2002.1816.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Excessive production of nitric oxide (NO) may play a detrimental role in the process of hypoxia-related neuropathology. This study explored whether treatment with melatonin would attenuate the neuropathological changes in the vagal ganglia following a severe hypoxic insult. Thirty minutes prior to hypoxia treatment, young adult rats were pre-treated with melatonin at 5. 25 or 100 mg/kg injected intraperitoneally. Hypoxia was achieved by subjecting the rats to a barometric pressure of 0.2 atm (PO2 = 43 Torr) for 4 hr in an altitude chamber. Nicotinamine adenine dinucleotide phosphatediaphorase (NADPH-d) histochemistry combined with the neuronal nitric oxide synthase (nNOS) immunohistochemistry were used to detect the NADPH-d/nNOS reactivity in the nodose ganglion (NG) at various time points following the hypoxic exposure. In normal untreated rats, about 43% of the neurons in the NG displayed NADPH-d/nNOS reactivity. Following hypoxic exposure, both the percentage and the staining intensity of NADPH-d/nNOS positive neurons in the NG were markedly increased, but these were reduced in longer surviving animals. Quantitative analysis of cell counts revealed that about 17% of the neurons died at 14 days after hypoxia treatment. However, in hypoxic rats given different doses of melatonin pretreatment, neuronal death as well as the frequency and staining intensity of NADPH-d/nNOS reactivity of the nodose neurons were significantly decreased. The effect of melatonin on neuronal survival and NADPH-d/ nNOS expression was dose-dependent. It is therefore suggested that melatonin exerts a neuroprotective effect and may serve as a potential therapeutic strategy for prevention and/or reducing the susceptibility of nodose neurons to NO-mediated hypoxic neuropathy.
Collapse
Affiliation(s)
- Hung-Ming Chang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei
| | | | | | | | | | | |
Collapse
|
43
|
Rogério F, de Souza Queiroz L, Teixeira SA, Oliveira ALR, de Nucci G, Langone F. Neuroprotective action of melatonin on neonatal rat motoneurons after sciatic nerve transection. Brain Res 2002; 926:33-41. [PMID: 11814404 DOI: 10.1016/s0006-8993(01)03286-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The neuronal isoform of nitric oxide synthase (nNOS), a NADPH-dependent diaphorase, is considered to play a role in motoneuron death induced by sciatic nerve transection in neonatal rats. Neuronal loss in these circumstances has been correlated with nitric oxide (NO) production and NADPH-diaphorase positivity in motoneurons after axotomy. In the present study we looked for a possible protective effect of melatonin, an antioxidant agent and inhibitor of nNOS, on spinal motoneurons after axonal injury. Neonatal Wistar rats (P2) were submitted to sciatic nerve transection and allowed to survive to P7. Melatonin at doses of 1, 5, 10, 50 and 100 mg/kg was given subcutaneously before and at intervals after the surgery. Controls operated in the same way received dilution vehicle or no treatment. The animals were killed by perfusion of fixative and the spinal cord was examined in serial paraffin sections. The motoneurons of the sciatic pool were counted in the axotomized and contralateral sides. Immunohistochemistry for nNOS and glial fibrillary acidic protein was used to evaluate nNOS expression in the axotomized cells and the astrocytic response. We found that melatonin at doses of 1-50 mg/kg decreased neuronal death. Astrocytic hypertrophy in melatonin treated animals was less intense. There were no differences in nNOS expression between treated and control rats, and surviving motoneurons of the sciatic pool did not express the enzyme, suggesting that nNOS may not be involved in neuronal death or survival in these experimental conditions. Possible mechanisms of melatonin neuroprotection, which was equally effective at doses of 1-50 mg/kg, are discussed. Doses of 50 and 100 mg/kg caused failure to thrive, seizures or death. The fact that neuroprotective doses were far smaller than toxic ones should encourage testing of melatonin in neurologic diseases.
Collapse
Affiliation(s)
- Fábio Rogério
- Department of Physiology and Biophysics, State University of Campinas, Unicamp, 13083-970, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Laurido C, Pelissie T, Soto-Moyano R, Valladares L, Flores F, Hernández A. Effect of melatonin on rat spinal cord nociceptive transmission. Neuroreport 2002; 13:89-91. [PMID: 11924900 DOI: 10.1097/00001756-200201210-00021] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Melatonin has been shown to exert potent antinociception but the sites and mechanisms of action underlying this effect have not yet been clarified. The effect of melatonin on spinal cord nociceptive transmission was studied in rats by assessing wid-up activity in a C-fiber reflex responses paradigm evoked by repetitive (0.6 Hz) electric stimulation. Intraperitoneal administration of 1.25, 2.5, 5.0 and 10.0 mg/kg melatonin induced a dose-dependent inhibition of spinal wind-up activity, the higher dose of the drug used being able to depress completely the C reflex gain. Results indicate that melatonin markedly depresses spinal wind-up in rats, probably through hyperpolarization of dorsal horn neurons consecutive to melatonin binding to membrane receptors, and/or via intracellular interference with a NMDA receptor-dependent nitric oxide generating pathway.
Collapse
Affiliation(s)
- Claudio Laurido
- Department of Biological Sciences, Faculty of Chemistry and Biology, University of Santiago of Chile
| | | | | | | | | | | |
Collapse
|
45
|
Morgan WW, Nelson JF. Chronic administration of pharmacological levels of melatonin does not ameliorate the MPTP-induced degeneration of the nigrostriatal pathway. Brain Res 2001; 921:115-21. [PMID: 11720717 DOI: 10.1016/s0006-8993(01)03106-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An extensive literature suggests that melatonin may protect from the degenerative effects of central neurotoxins by acting as a free radical scavenger. The purpose of this study was to determine if melatonin would protect male C57BL6 mice from the toxicity of methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to nigral dopamine (DA) neurons. Melatonin was initially dissolved in dimethyl sulfoxide (DMSO), diluted to 16 microg/ml and then provided in the drinking water for 4 weeks. Control mice drank the same final concentration of the DMSO diluent. One week before the termination of the experiment, randomly selected mice from the melatonin-treated and the DMSO-treated groups received two, three or four doses of 2.5 mg/kg MPTP free base administered subcutaneously at 2-h intervals. Additional DMSO-treated and melatonin-treated mice did not receive MPTP. Following tissue collection, melatonin concentration was measured in blood plasma collected from each animal and found to be 20-fold higher in melatonin-treated compared to DMSO-treated mice. Tyrosine hydroxylase (TH) activity and the levels of DA and dihydroxyphenylacetic acid (DOPAC) were not different in striata collected from melatonin-treated versus DMSO-treated mice which did not receive MPTP. Treatment with MPTP significantly reduced striatal TH activity, DA and DOPAC, but there were no significant differences in the reductions in any of these parameters observed in the melatonin-treated versus the DMSO-treated control mice that received the same total dosage of MPTP. These results show that the long-term administration of a high pharmacological dose of melatonin was ineffective in protecting nigral dopaminergic neurons from the neurotoxic effects of MPTP.
Collapse
Affiliation(s)
- W W Morgan
- Department of Cellular and Structural Biology, Mail Code 7762, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | | |
Collapse
|