1
|
Inhibitory effects of vibegron, a β 3-adrenoceptor agonist, on the myogenic contractile and mechanosensitive afferent activities in an obstructed rat bladder. Eur J Pharmacol 2022; 933:175272. [PMID: 36108733 DOI: 10.1016/j.ejphar.2022.175272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/05/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
To determine the role of β3-adrenoceptor agonists on bladder sensory facilitation related to bladder myogenic contractile activities in bladder hyperactivity, we investigated the effects of vibegron, a β3-adrenoceptor agonist, on the bladder and sensory function by evaluating cystometry and mechanosensitive single-unit afferent activities (SAAs), respectively, in a male rat model of bladder outlet obstruction (BOO). BOO was created by partial ligation of the urethra. Ten days after the surgical procedure, cystometric and SAA measurements were taken under two distinct conditions: a conscious-restrained condition, in which the bladder was constantly filled with saline, and a urethane-anesthetized condition involving an isovolumetric process with saline. For each measurement, vibegron (3 mg/kg) or its vehicle was administered intravenously after the data were reproducibly stable. In addition, the expression of β3-adrenoceptor and substance P (SP), a sensory neuropeptide, in the bladder was further evaluated following immunohistochemical procedures. Number of non-voiding contractions (NVCs) in cystometry was decreased after vibegron-administration, which was a significant change from vehicle group. Number of microcontractions and SAAs of Aδ- and C-fibers were significantly decreased by vibegron-administration. Furthermore, β3-adrenocepor and SP were co-expressed in the suburothelium layer of the bladder. These findings indicated that vibegron showed inhibitory effects on NVCs and microcontractions of the bladder, and SAAs of the Aδ- and C-fibers in BOO rats. The study suggested that vibegron can partly inhibit the mechanosensitive afferent transduction via Aδ- and C-fibers by suppressing bladder myogenic contractile activities in the rat bladder hyperactivity associated with BOO.
Collapse
|
2
|
Aizawa N, Fujita T. The TRPM8 channel as a potential therapeutic target for bladder hypersensitive disorders. J Smooth Muscle Res 2022; 58:11-21. [PMID: 35354708 PMCID: PMC8961290 DOI: 10.1540/jsmr.58.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the lower urinary tract, transient receptor potential (TRP) channels are primarily involved in physiological function, especially in cellular sensors responding to chemical and physical stimuli. Among TRP channels, TRP melastatin 8 (TRPM8) channels, responding to cold temperature and/or chemical agents, such as menthol or icilin, are mainly expressed in the nerve endings of the primary afferent neurons and in the cell bodies of dorsal root ganglia innervating the urinary bladder (via Aδ- and C-fibers); this suggests that TRPM8 channels primarily contribute to bladder sensory (afferent) function. Storage symptoms of overactive bladder, benign prostatic hyperplasia, and interstitial cystitis are commonly related to sensory function (bladder hypersensitivity); thus, TRPM8 channels may also contribute to the pathophysiology of bladder hypersensitivity. Indeed, it has been reported in a pharmacological investigation using rodents that TRPM8 channels contribute to the pathophysiological bladder afferent hypersensitivity of mechanosensitive C-fibers. Similar findings have also been reported in humans. Therefore, a TRPM8 antagonist would be a promising therapeutic target for bladder hypersensitive disorders, including urinary urgency or nociceptive pain. In this review article, the functional role of the TRPM8 channel in the lower urinary tract and the potential of its antagonist for the treatment of bladder disorders was described.
Collapse
Affiliation(s)
- Naoki Aizawa
- Department of Pharmacology and Toxicology, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Tomoe Fujita
- Department of Pharmacology and Toxicology, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| |
Collapse
|
3
|
Effect of Electroacupuncture on Bladder Dysfunction via Regulation of MLC and MLCK Phosphorylation in a Rat Model of Type 2 Diabetes Mellitus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5558890. [PMID: 34221075 PMCID: PMC8213478 DOI: 10.1155/2021/5558890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/31/2021] [Indexed: 12/21/2022]
Abstract
Previous studies observed have reported that electroacupuncture (EA) is effective in relieving diabetic bladder dysfunction (DBD); however, little is known about the mechanism. Therefore, we explored the effects and mechanisms of EA on DBD in streptozotocin–high-fat diet- (STZ–HFD-) induced diabetic rats. The Sprague-Dawley male rats were divided randomly into four groups: normal group, diabetes mellitus group (DM group), DM with EA treatment group (EA group), and DM with sham EA treatment group (sham EA group). After 8 weeks of EA treatment, the body weight, serum glucose, bladder weight, and cystometrogram were evaluated. The bladder wall thickness was examined by abdominal ultrasound imaging. After the transabdominal ultrasound measurements, hematoxylin-eosin (HE) staining was used to observe the bladder mucosa layer. The bladder detrusor smooth muscle cells (SMCs) and fibroblasts were observed under transmission electron microscopy (TEM). The phospho-myosin light chain (p-MLC), phospho-myosin light chain kinase (p-MLCK), and phospho-myosin phosphatase target subunit 1 (p-MYPT1) levels in the bladder were examined using Western blot. The bladder weight, serum glucose, bladder wall thickness, volume threshold for micturition, and postvoid residual (PVR) volume in the diabetic rats were significantly higher than those in the control animals. EA treatment significantly reduced the bladder weight, bladder wall thickness, volume threshold for micturition, and PVR volume in diabetic rats. EA caused a significant increase in the MLC dephosphorylation and MLCK phosphorylation levels in the group compared to the sham EA and model groups. EA reduced the infiltration of inflammatory cells in the bladder mucosa layer of diabetic rats. In addition, EA repaired the damaged bladder detrusor muscle of diabetic rats by reducing mitochondrial damage of the SMCs and fibroblasts. Therefore, EA could reduce the bladder hypertrophy to ameliorate DBD by reversing the impairment in the mucosa layer and detrusor SMCs, which might be mainly mediated by the regulation of p-MLC and p-MLCK levels.
Collapse
|
4
|
Huesing C, Qualls‐Creekmore E, Lee N, François M, Torres H, Zhang R, Burk DH, Yu S, Morrison CD, Berthoud H, Neuhuber W, Münzberg H. Sympathetic innervation of inguinal white adipose tissue in the mouse. J Comp Neurol 2021; 529:1465-1485. [PMID: 32935348 PMCID: PMC7960575 DOI: 10.1002/cne.25031] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022]
Abstract
Adipose tissue plays an important role in metabolic homeostasis and its prominent role as endocrine organ is now well recognized. Adipose tissue is controlled via the sympathetic nervous system (SNS). New viral, molecular-genetic tools will soon allow a more detailed study of adipose tissue innervation in metabolic function, yet, the precise anatomical extent of preganglionic and postganglionic inputs to the inguinal white adipose tissue (iWAT) is limited. Furthermore, several viral, molecular-genetic tools will require the use of cre/loxP mouse models, while the available studies on sympathetic iWAT innervation were established in larger species. In this study, we generated a detailed map for the sympathetic innervation of iWAT in male and female mice. We adapted iDISCO tissue clearing to process large, whole-body specimens for an unprecedented view of the natural abdominal SNS. Combined with pseudorabies virus retrograde tracing from the iWAT, we defined the preganglionic and postganglionic sympathetic input to iWAT. We used fluorescence-guided anatomical dissections of sympathetic nerves in reporter mice to further clarify that postganglionic axons connect to iWAT via lateral cutaneous rami (dorsolumbar iWAT portion) and the lumbar plexus (inguinal iWAT portion). Importantly, these rami carry axons that branch to iWAT, as well as axons that travel further to innervate the skin and vasculature, and their functional impact will require consideration in denervation studies. Our study may serve as a comprehensive map for future experiments that employ virally driven neuromodulation techniques to predict anatomy-based viral labeling.
Collapse
Affiliation(s)
- Clara Huesing
- Neurobiology of Nutrition and Metabolism DepartmentPennington Biomedical Research Center, Louisiana State University SystemBaton RougeLouisianaUSA
| | - Emily Qualls‐Creekmore
- Neurobiology of Nutrition and Metabolism DepartmentPennington Biomedical Research Center, Louisiana State University SystemBaton RougeLouisianaUSA
| | - Nathan Lee
- Neurobiology of Nutrition and Metabolism DepartmentPennington Biomedical Research Center, Louisiana State University SystemBaton RougeLouisianaUSA
| | - Marie François
- Neurobiology of Nutrition and Metabolism DepartmentPennington Biomedical Research Center, Louisiana State University SystemBaton RougeLouisianaUSA
| | - Hayden Torres
- Neurobiology of Nutrition and Metabolism DepartmentPennington Biomedical Research Center, Louisiana State University SystemBaton RougeLouisianaUSA
| | - Rui Zhang
- Neurobiology of Nutrition and Metabolism DepartmentPennington Biomedical Research Center, Louisiana State University SystemBaton RougeLouisianaUSA
| | - David H. Burk
- Neurobiology of Nutrition and Metabolism DepartmentPennington Biomedical Research Center, Louisiana State University SystemBaton RougeLouisianaUSA
| | - Sangho Yu
- Neurobiology of Nutrition and Metabolism DepartmentPennington Biomedical Research Center, Louisiana State University SystemBaton RougeLouisianaUSA
| | - Christopher D. Morrison
- Neurobiology of Nutrition and Metabolism DepartmentPennington Biomedical Research Center, Louisiana State University SystemBaton RougeLouisianaUSA
| | - Hans‐Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism DepartmentPennington Biomedical Research Center, Louisiana State University SystemBaton RougeLouisianaUSA
| | - Winfried Neuhuber
- Institute for Anatomy and Cell Biology, Friedrich‐Alexander UniversityErlangenGermany
| | - Heike Münzberg
- Neurobiology of Nutrition and Metabolism DepartmentPennington Biomedical Research Center, Louisiana State University SystemBaton RougeLouisianaUSA
| |
Collapse
|
5
|
Wiedmann NM, Wong AW, Keast JR, Osborne PB. Sex differences in c-Fos and EGR-1/Zif268 activity maps of rat sacral spinal cord following cystometry-induced micturition. J Comp Neurol 2020; 529:311-326. [PMID: 32415681 PMCID: PMC7818477 DOI: 10.1002/cne.24949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022]
Abstract
Storage and voiding of urine from the lower urinary tract (LUT) must be timed precisely to occur in appropriate behavioral contexts. A major part of the CNS circuit that coordinates this activity is found in the lumbosacral spinal cord. Immediate early gene (IEG) activity mapping has been widely used to investigate the lumbosacral LUT-related circuit, but most reports focus on the effects of noxious stimulation in anesthetized female rats. Here we use c-Fos and EGR-1 (Zif268) activity mapping of lumbosacral spinal cord to investigate cystometry-induced micturition in awake female and male rats. In females, after cystometry c-Fos neurons in spinal cord segments L5-S2 were concentrated in the sacral parasympathetic nucleus (SPN), dorsal horn laminae II-IV, and dorsal commissural nucleus (SDCom). Comparisons of cystometry and control groups in male and female revealed sex differences. Activity mapping suggested dorsal horn laminae II-IV was activated in females but showed net inhibition in males. However, inhibition in male rats was not detected by EGR-1 activity mapping, which showed low coexpression with c-Fos. A class of catecholamine neurons in SPN and SDCom neurons were also more strongly activated by micturition in females. In both sexes, most c-Fos neurons were identified as excitatory by their absence of Pax2 expression. In conclusion, IEG mapping in awake male and female rats has extended our understanding of the functional molecular anatomy of the LUT-related circuit in spinal cord. Using this approach, we have identified sex differences that were not detected by previous studies in anesthetized rats.
Collapse
Affiliation(s)
- Nicole M Wiedmann
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Agnes W Wong
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Janet R Keast
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Peregrine B Osborne
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Igawa Y, Aizawa N, Michel MC. β 3 -Adrenoceptors in the normal and diseased urinary bladder-What are the open questions? Br J Pharmacol 2019; 176:2525-2538. [PMID: 30868554 DOI: 10.1111/bph.14658] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/31/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
β3 -Adrenoceptor agonists are used in the treatment of overactive bladder syndrome. Although the relaxant response to adrenergic stimulation in human detrusor smooth muscle cells is mediated mainly via β3 -adrenoceptors, the plasma concentrations of the therapeutic dose of mirabegron, the only clinically approved β3 -adrenoceptor agonist, are considerably lower than the EC50 for causing direct relaxation of human detrusor, suggesting a mechanism of action other than direct relaxation of detrusor smooth muscle. However, the site and mechanism of action of β3 -adrenoceptor agonists in the bladder have not been firmly established. Postulated mechanisms include prejunctional suppression of ACh release from the parasympathetic nerves during the storage phase and inhibition of micro-contractions through β3 -adrenoceptors on detrusor smooth muscle cells or suburothelial interstitial cells. Implications of possible desensitization of β3 -adrenoceptors in the bladder upon prolonged agonist exposure and possible causes of rarely observed cardiovascular effects of mirabegron are also discussed. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Yasuhiko Igawa
- Department of Continence Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Naoki Aizawa
- Department of Continence Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
7
|
Ni J, Wang X, Cao N, Si J, Gu B. Efficacy of different spinal nerve roots for neuromodulation of micturition reflex in rats. Oncotarget 2018; 9:13382-13389. [PMID: 29568364 PMCID: PMC5862585 DOI: 10.18632/oncotarget.23950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022] Open
Abstract
Electrical stimulation of peripheral nerves controlling the bladder is an alternative, nondestructive medical treatment for urinary incontinence and retention. In this study, we aimed to identify the most efficient sensory and motor spinal nerve roots involved in the micturition reflex. Unilateral L5-S2 dorsal and ventral roots were electrically stimulated, and bladder reflex contractions were recorded under isovolumetric conditions. Repeated stimulation of the L6 and S1 dorsal roots not only abolished bladder reflex contractions but also induced a poststimulation inhibitory effect, whereas repeated stimulation of the L5 and S2 dorsal roots had no effect. Only the L6 ventral root directly caused bladder contraction when ventral roots L5-S2 were stimulated in sequence. Upon retrograde tracing using pseudorabies virus (PRV), the sacral parasympathetic nucleus of the L6 segment had more PRV-positive cells than the other segments, though the S1 segment of the dorsal root ganglia had the highest density of PRV-positive neurons. These results suggest the L6 ventral root is most efficient in producing detrusor muscle contraction, and the S1 dorsal root best inhibits the micturition reflex.
Collapse
Affiliation(s)
- Jianshu Ni
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaohu Wang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Nailong Cao
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiemin Si
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Baojun Gu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
8
|
Liu X, Liu K, Zhi M, Mo Q, Gao X, Liu Z. Effects of electroacupuncture at BL33 on detrusor smooth muscle activity in a rat model of urinary retention. Acupunct Med 2017; 35:437-444. [PMID: 29109130 PMCID: PMC5738530 DOI: 10.1136/acupmed-2016-011355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2017] [Indexed: 01/25/2023]
Abstract
Background Detrusor smooth muscle (DSM) underactivity may lead to urinary retention (UR). Electroacupuncture (EA) at BL33 may be effective in improving DSM contractions. Objectives This study aimed to investigate: (1) the effect of EA at BL33; and (2) the effect of different manipulation methods at BL33 on the modulation of DSM contractions in UR rats. Methods 30 male Sprague-Dawley rats were anaesthetised with urethane and modelled by urethral outlet obstruction. First, 2 Hz EA at BL33, SP6 and LI4 wasrandomly applied to the UR rats for 5 min to observe the immediate effects (n=10); second, manual acupuncture (MA) (n=10) and 100 Hz EA (n=10) were applied with the same programme. DSM electromyography (EMG) and cystometrogram data were evaluated. Results (1) 2 Hz EA at BL33 and SP6 significantly increased DSM discharging frequency (0.80±0.10 Hz, P<0.001, and 0.22±0.14 Hz, P=0.038), shortened micturation intervals (65.67±20.65 s, P=0.008, and 35.62±15.84 s, P=0.042), prolonged the duration of voiding (2.13±0.61 s, P=0.005, and 0.47±0.16 s, P=0.015), and reduced residual pressure (−0.91±0.31 mmHg, P=0.019, and −0.66±0.27 mmHg, P=0.046). EA at LI4 was not associated with any functional effects (P>0.05). Compared with SP6, EA at BL33 had greater positive effects on DSM discharging frequency, duration of discharging, and duration of voiding (all P<0.05). (2) No statistically significant differences were shown between MA, 2 Hz EA and 100 Hz EA interventions when stimulating at BL33, SP6 or LI4. Conclusions EA at BL33 improved DSM contractions to a greater degree than EA at SP6 or LI4. There were no differences in effect when stimulating using 2 Hz EA, 100 Hz EA and MA.
Collapse
Affiliation(s)
- Xiaoxu Liu
- Department of Acupuncture, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Kun Liu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mujun Zhi
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Qian Mo
- Guiyang University of Chinese Medicine, Guiyang, Guizhou, China
| | - Xinyan Gao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhishun Liu
- Department of Acupuncture, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Naitou K, Nakamori H, Shiina T, Ikeda A, Nozue Y, Sano Y, Yokoyama T, Yamamoto Y, Yamada A, Akimoto N, Furue H, Shimizu Y. Stimulation of dopamine D2-like receptors in the lumbosacral defaecation centre causes propulsive colorectal contractions in rats. J Physiol 2016; 594:4339-50. [PMID: 26999074 DOI: 10.1113/jp272073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/13/2016] [Indexed: 12/24/2022] Open
Abstract
KEY POINTS The pathophysiological roles of the CNS in bowel dysfunction in patients with irritable bowel syndrome and Parkinson's disease remain obscure. In the present study, we demonstrate that dopamine in the lumbosacral defaecation centre causes strong propulsive motility of the colorectum. The effect of dopamine is a result of activation of sacral parasympathetic preganglionic neurons via D2-like dopamine receptors. Considering that dopamine is a neurotransmitter of descending pain inhibitory pathways, our results highlight the novel concept that descending pain inhibitory pathways control not only pain, but also the defaecation reflex. In addition, severe constipation in patients with Parkinson's disease can be explained by reduced parasympathetic outflow as a result of a loss of the effect of dopaminergic neurons. ABSTRACT We have recently demonstrated that intrathecally injected noradrenaline caused propulsive contractions of the colorectum. We hypothesized that descending pain inhibitory pathways control not only pain, but also the defaecation reflex. Because dopamine is one of the major neurotransmitters of descending pain inhibitory pathways in the spinal cord, we examined the effects of the intrathecal application of dopamine to the spinal defaecation centre on colorectal motility. Colorectal intraluminal pressure and expelled volume were recorded in vivo in anaesthetized rats. Slice patch clamp and immunohistochemistry were used to confirm the existence of dopamine-sensitive neurons in the sacral parasympathetic nuclei. Intrathecal application of dopamine into the L6-S1 spinal cord, where the lumbosacral defaecation centre is located, caused propulsive contractions of the colorectum. Inactivation of spinal neurons using TTX blocked the effect of dopamine. Although thoracic spinal transection had no effect on the enhancement of colorectal motility by intrathecal dopamine, the severing of the pelvic nerves abolished the enhanced motility. Pharmacological experiments revealed that the effect of dopamine is mediated primarily by D2-like dopamine receptors. Neurons labelled with retrograde dye injected at the colorectum showed an inward current in response to dopamine in slice patch clamp recordings. Furthermore, immunohistochemical analysis revealed that neurons immunoreactive to choline acetyltransferase express D2-like dopamine receptors. Taken together, our findings demonstrate that dopamine activates sacral parasympathetic preganglionic neurons via D2-like dopamine receptors and causes propulsive motility of the colorectum in rats. The present study supports the hypothesis that descending pain inhibitory pathways regulate defaecation reflexes.
Collapse
Affiliation(s)
- Kiyotada Naitou
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Hiroyuki Nakamori
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Takahiko Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Azusa Ikeda
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Yuuta Nozue
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Yuuki Sano
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Takuya Yokoyama
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Akihiro Yamada
- Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Nozomi Akimoto
- Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Hidemasa Furue
- Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Yasutake Shimizu
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
10
|
Deuchars SA, Lall VK. Sympathetic preganglionic neurons: properties and inputs. Compr Physiol 2016; 5:829-69. [PMID: 25880515 DOI: 10.1002/cphy.c140020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The sympathetic nervous system comprises one half of the autonomic nervous system and participates in maintaining homeostasis and enabling organisms to respond in an appropriate manner to perturbations in their environment, either internal or external. The sympathetic preganglionic neurons (SPNs) lie within the spinal cord and their axons traverse the ventral horn to exit in ventral roots where they form synapses onto postganglionic neurons. Thus, these neurons are the last point at which the central nervous system can exert an effect to enable changes in sympathetic outflow. This review considers the degree of complexity of sympathetic control occurring at the level of the spinal cord. The morphology and targets of SPNs illustrate the diversity within this group, as do their diverse intrinsic properties which reveal some functional significance of these properties. SPNs show high degrees of coupled activity, mediated through gap junctions, that enables rapid and coordinated responses; these gap junctions contribute to the rhythmic activity so critical to sympathetic outflow. The main inputs onto SPNs are considered; these comprise afferent, descending, and interneuronal influences that themselves enable functionally appropriate changes in SPN activity. The complexity of inputs is further demonstrated by the plethora of receptors that mediate the different responses in SPNs; their origins and effects are plentiful and diverse. Together these different inputs and the intrinsic and coupled activity of SPNs result in the rhythmic nature of sympathetic outflow from the spinal cord, which has a variety of frequencies that can be altered in different conditions.
Collapse
Affiliation(s)
- Susan A Deuchars
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
11
|
Abstract
Spinal cord injury (SCI) results not only in motor and sensory deficits but also in autonomic dysfunctions. The disruption of connections between higher brain centers and the spinal cord, or the impaired autonomic nervous system itself, manifests a broad range of autonomic abnormalities. This includes compromised cardiovascular, respiratory, urinary, gastrointestinal, thermoregulatory, and sexual activities. These disabilities evoke potentially life-threatening symptoms that severely interfere with the daily living of those with SCI. In particular, high thoracic or cervical SCI often causes disordered hemodynamics due to deregulated sympathetic outflow. Episodic hypertension associated with autonomic dysreflexia develops as a result of massive sympathetic discharge often triggered by unpleasant visceral or sensory stimuli below the injury level. In the pelvic floor, bladder and urethral dysfunctions are classified according to upper motor neuron versus lower motor neuron injuries; this is dependent on the level of lesion. Most impairments of the lower urinary tract manifest in two interrelated complications: bladder storage and emptying. Inadequate or excessive detrusor and sphincter functions as well as detrusor-sphincter dyssynergia are examples of micturition abnormalities stemming from SCI. Gastrointestinal motility disorders in spinal cord injured-individuals are comprised of gastric dilation, delayed gastric emptying, and diminished propulsive transit along the entire gastrointestinal tract. As a critical consequence of SCI, neurogenic bowel dysfunction exhibits constipation and/or incontinence. Thus, it is essential to recognize neural mechanisms and pathophysiology underlying various complications of autonomic dysfunctions after SCI. This overview provides both vital information for better understanding these disorders and guides to pursue novel therapeutic approaches to alleviate secondary complications.
Collapse
Affiliation(s)
- Shaoping Hou
- Spinal Cord Research Center, Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | |
Collapse
|
12
|
Chen YB, Huang FS, Fen B, Yin JB, Wang W, Li YQ. Inhibitory effects of endomorphin-2 on excitatory synaptic transmission and the neuronal excitability of sacral parasympathetic preganglionic neurons in young rats. Front Cell Neurosci 2015; 9:206. [PMID: 26074773 PMCID: PMC4446531 DOI: 10.3389/fncel.2015.00206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/12/2015] [Indexed: 01/23/2023] Open
Abstract
The function of the urinary bladder is partly controlled by parasympathetic preganglionic neurons (PPNs) of the sacral parasympathetic nucleus (SPN). Our recent work demonstrated that endomorphin-2 (EM-2)-immunoreactive (IR) terminals form synapses with μ-opioid receptor (MOR)-expressing PPNs in the rat SPN. Here, we examined the effects of EM-2 on excitatory synaptic transmission and the neuronal excitability of the PPNs in young rats (24–30 days old) using a whole-cell patch-clamp approach. PPNs were identified by retrograde labeling with the fluorescent tracer tetramethylrhodamine-dextran (TMR). EM-2 (3 μM) markedly decreased both the amplitude and the frequency of the spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs) of PPNs. EM-2 not only decreased the resting membrane potentials (RMPs) in 61.1% of the examined PPNs with half-maximal response at the concentration of 0.282 μM, but also increased the rheobase current and reduced the repetitive action potential firing of PPNs. Analysis of the current–voltage relationship revealed that the EM-2-induced current was reversed at −95 ± 2.5 mV and was suppressed by perfusion of the potassium channel blockers 4-aminopyridine (4-AP) or BaCl2 or by the addition of guanosine 5′-[β-thio]diphosphate trilithium salt (GDP-β-S) to the pipette solution, suggesting the involvement of the G-protein-coupled inwardly rectifying potassium (GIRK) channel. The above EM-2-invoked inhibitory effects were abolished by the MOR selective antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), indicating that the effects of EM-2 on PPNs were mediated by MOR via pre- and/or post-synaptic mechanisms. EM-2 activated pre- and post-synaptic MORs, inhibiting excitatory neurotransmitter release from the presynaptic terminals and decreasing the excitability of PPNs due to hyperpolarization of their membrane potentials, respectively. These inhibitory effects of EM-2 on PPNs at the spinal cord level may explain the mechanism of action of morphine treatment and morphine-induced bladder dysfunction in the clinic.
Collapse
Affiliation(s)
- Ying-Biao Chen
- Department of Anatomy, Histology and Embryology, Fujian Medical University Fuzhou, China
| | - Fen-Sheng Huang
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China ; Division of Medical Biophysics, Institute of Neuroscience and Physiology, Göteborg University Göteborg, Sweden
| | - Ban Fen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Jun-Bin Yin
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Wei Wang
- Department of Anatomy, Histology and Embryology, Fujian Medical University Fuzhou, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, Fujian Medical University Fuzhou, China ; Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China ; Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| |
Collapse
|
13
|
Aizawa N, Homma Y, Igawa Y. Effects ofL-arginine, mirabegron, and oxybutynin on the primary bladder afferent nerve activities synchronized with reflexic, rhythmic bladder contractions in the rat. Neurourol Urodyn 2014; 34:368-74. [DOI: 10.1002/nau.22571] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/20/2014] [Indexed: 01/23/2023]
Affiliation(s)
- Naoki Aizawa
- Department of Continence Medicine; The University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Yukio Homma
- Department of Urology; The University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Yasuhiko Igawa
- Department of Continence Medicine; The University of Tokyo Graduate School of Medicine; Tokyo Japan
| |
Collapse
|
14
|
Polysynaptic connections between Barrington's nucleus and sacral preganglionic neurons. Neurosci Res 2013; 75:150-6. [DOI: 10.1016/j.neures.2012.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/12/2012] [Accepted: 11/29/2012] [Indexed: 01/23/2023]
|
15
|
Ranson RN, Connelly JH, Santer RM, Watson AHD. Nuclear expression of PG-21, SRC-1, and pCREB in regions of the lumbosacral spinal cord involved in pelvic innervation in young adult and aged rats. Anat Cell Biol 2012; 45:241-58. [PMID: 23301192 PMCID: PMC3531588 DOI: 10.5115/acb.2012.45.4.241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 11/29/2022] Open
Abstract
In rats, ageing results in dysfunctional patterns of micturition and diminished sexual reflexes that may reflect degenerative changes within spinal circuitry. In both sexes the dorsal lateral nucleus and the spinal nucleus of the bulbospongiosus, which lie in the L5-S1 spinal segments, contain motor neurons that innervate perineal muscles, and the external anal and urethral sphincters. Neurons in the sacral parasympathetic nucleus of these segments provide autonomic control of the bladder, cervix and penis and other lower urinary tract structures. Interneurons in the dorsal gray commissure and dorsal horn have also been implicated in lower urinary tract function. This study investigates the cellular localisation of PG-21 androgen receptors, steroid receptor co-activator one (SRC-1) and the phosphorylated form of c-AMP response element binding protein (pCREB) within these spinal nuclei. These are components of signalling pathways that mediate cellular responses to steroid hormones and neurotrophins. Nuclear expression of PG-21 androgen receptors, SRC-1 and pCREB in young and aged rats was quantified using immunohistochemistry. There was a reduction in the number of spinal neurons expressing these molecules in the aged males while in aged females, SRC-1 and pCREB expression was largely unchanged. This suggests that the observed age-related changes may be linked to declining testosterone levels. Acute testosterone therapy restored expression of PG-21 androgen receptor in aged and orchidectomised male rats, however levels of re-expression varied within different nuclei suggesting a more prolonged period of hormone replacement may be required for full restoration.
Collapse
Affiliation(s)
- Richard N Ranson
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK. ; School of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
16
|
Zimmerman AL, Sawchuk M, Hochman S. Monoaminergic modulation of spinal viscero-sympathetic function in the neonatal mouse thoracic spinal cord. PLoS One 2012; 7:e47213. [PMID: 23144807 PMCID: PMC3489886 DOI: 10.1371/journal.pone.0047213] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 09/10/2012] [Indexed: 11/27/2022] Open
Abstract
Descending serotonergic, noradrenergic, and dopaminergic systems project diffusely to sensory, motor and autonomic spinal cord regions. Using neonatal mice, this study examined monoaminergic modulation of visceral sensory input and sympathetic preganglionic output. Whole-cell recordings from sympathetic preganglionic neurons (SPNs) in spinal cord slice demonstrated that serotonin, noradrenaline, and dopamine modulated SPN excitability. Serotonin depolarized all, while noradrenaline and dopamine depolarized most SPNs. Serotonin and noradrenaline also increased SPN current-evoked firing frequency, while both increases and decreases were seen with dopamine. In an in vitro thoracolumbar spinal cord/sympathetic chain preparation, stimulation of splanchnic nerve visceral afferents evoked reflexes and subthreshold population synaptic potentials in thoracic ventral roots that were dose-dependently depressed by the monoamines. Visceral afferent stimulation also evoked bicuculline-sensitive dorsal root potentials thought to reflect presynaptic inhibition via primary afferent depolarization. These dorsal root potentials were likewise dose-dependently depressed by the monoamines. Concomitant monoaminergic depression of population afferent synaptic transmission recorded as dorsal horn field potentials was also seen. Collectively, serotonin, norepinephrine and dopamine were shown to exert broad and comparable modulatory regulation of viscero-sympathetic function. The general facilitation of SPN efferent excitability with simultaneous depression of visceral afferent-evoked motor output suggests that descending monoaminergic systems reconfigure spinal cord autonomic function away from visceral sensory influence. Coincident monoaminergic reductions in dorsal horn responses support a multifaceted modulatory shift in the encoding of spinal visceral afferent activity. Similar monoamine-induced changes have been observed for somatic sensorimotor function, suggesting an integrative modulatory response on spinal autonomic and somatic function.
Collapse
Affiliation(s)
- Amanda L. Zimmerman
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Michael Sawchuk
- Department of Physiology, Emory University, Atlanta, Georgia, United States of America
| | - Shawn Hochman
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Department of Physiology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
17
|
Aizawa N, Homma Y, Igawa Y. Effects of mirabegron, a novel β3-adrenoceptor agonist, on primary bladder afferent activity and bladder microcontractions in rats compared with the effects of oxybutynin. Eur Urol 2012; 62:1165-73. [PMID: 22981677 DOI: 10.1016/j.eururo.2012.08.056] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/27/2012] [Indexed: 01/15/2023]
Abstract
BACKGROUND Mirabegron is the first β3-adrenoceptor agonist that is clinically effective for overactive bladder. OBJECTIVE The effects of mirabegron on primary bladder mechanosensitive single-unit afferent activities (SAAs) and bladder microcontractions were evaluated and compared with the effects of oxybutynin. DESIGN, SETTING, AND PARTICIPANTS Female Sprague-Dawley rats were anesthetized. The SAAs generated from left L6 dorsal roots were identified by electrical stimulation of the left pelvic nerve and bladder distension. Nerves with conduction velocities (CVs) >2.5 m/s were designated as Aδ-fibers, and nerves with CVs<2.5 m/s were designated as C-fibers. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Two measurements were performed in separate animals. First, after measuring the baselines of SAA during constant filling cystometry, the procedure was repeated with each intravenous administration of mirabegron at three doses-0.1, 0.3, and 1.0mg/kg-cumulatively. Second, the bladder was filled with saline until the intravesical pressure reached 30 cm H(2)O and was kept under an isovolumetric condition; then the recording was performed for 5 min with vehicle and mirabegron or oxybutynin administrated intravenously. RESULTS AND LIMITATIONS A total of 74 single-unit afferent fibers were isolated from 55 rats (Aδ-fibers: n=34; C-fibers: n=40). SAAs of both Aδ-fibers and C-fibers in response to bladder filling significantly decreased after mirabegron administration in a dose-dependent manner, which was more remarkable for Aδ-fibers. During an isovolumetric condition of the bladder, the mean bladder pressure and the number of microcontractions decreased after mirabegron administration, whereas these parameters did not change with oxybutynin administration. SAAs of Aδ-fibers were significantly decreased by mirabegron administration at both 0.3 and 1mg/kg, whereas SAAs of C-fibers decreased only at 1mg/kg. In contrast, oxybutynin (1mg/kg) did not alter either type of SAA. CONCLUSIONS The present study demonstrates that mirabegron can inhibit mechanosensitive bladder afferent activity, especially of Aδ-fibers, which may be related to suppression of bladder microcontractions.
Collapse
Affiliation(s)
- Naoki Aizawa
- Department of Continence Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
18
|
Elkelini MS, Abuzgaya A, Hassouna MM. Mechanisms of action of sacral neuromodulation. Int Urogynecol J 2011; 21 Suppl 2:S439-46. [PMID: 20972548 DOI: 10.1007/s00192-010-1273-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The lower urinary tract dysfunction encompasses voiding, postvoiding, and storage symptoms. Conventional treatment modalities include pharmacotherapy and behavioural therapy. Sacral neuromodulation (SNM) is a safe and minimally invasive treatment modality that has recently gained wide acceptance in the management of urinary urge incontinence, urge frequency, and nonobstructive urinary retention, in particular, among those patients with conditions refractory to conventional methods. We searched multiple electronic databases through June 30, 2009 for eligible studies. We examined published clinical and experimental studies concerning the mechanisms of action of SNM. In the first part of the manuscript, we describe the anatomy and functions of the lower urinary tract including the reflexes involved in its functions and then review the pathophysiology of major types of the lower urinary tract dysfunction. In the second part, we discuss different ways for SNM to control various types of voiding dysfunction. The lower urinary tract dysfunctions affect millions of people worldwide and have a severe impact on their quality of life. SNM offers a safe and minimally invasive modality in the treatment of voiding dysfunctions, especially in patients with conditions refractory to conventional therapies.
Collapse
Affiliation(s)
- Mohamed S Elkelini
- Division of Urology, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
19
|
Aizawa N, Igawa Y, Nishizawa O, Wyndaele JJ. Effects of Nitric Oxide on the Primary Bladder Afferent Activities of the Rat With and Without Intravesical Acrolein Treatment. Eur Urol 2011; 59:264-71. [DOI: 10.1016/j.eururo.2010.10.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 10/15/2010] [Indexed: 01/13/2023]
|
20
|
Aizawa N, Igawa Y, Andersson KE, Iijima K, Nishizawa O, Wyndaele JJ. Effects of intravesical instillation of ATP on rat bladder primary afferent activity and its relationship with capsaicin-sensitivity. Neurourol Urodyn 2010; 30:163-8. [PMID: 20665548 DOI: 10.1002/nau.20940] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 03/25/2010] [Indexed: 11/12/2022]
Abstract
AIMS Previous studies have suggested that ATP has a role in mechano-afferent transduction, at least partly mediated by nerves other than capsaicin (Cap)-sensitive nerves. We investigated the direct effect of ATP on single fiber activity (SFA) of the primary bladder afferent nerves and its relationship with Cap-sensitivity. METHODS Female Sprague-Dawley rats were used. On the basis of conduction velocities, SFA was grouped as Aδ- or C-fibers. First, SFA and intravesical pressure were measured during filling as the baseline. Then, Cap (10(-5) M) was instilled intravesically and the SFA response was monitored. To desensitize Cap-sensitive nerves, resiniferatoxin (RTX) (10(-6) M) was administered intravesically, and then Cap was again administered to confirm the desensitization effect. Thereafter, ATP (10(-3) M) or its vehicle was instilled intravesically and another filling cycles recorded. RESULTS Thirty-two single afferent fibers were discriminated. Aδ-fibers did not respond to intravesical instillation of Cap, RTX or ATP. Based on Cap-sensitivity, C-fibers could be divided into two subtypes: Cap-sensitive (n=8) and Cap-insensitive (n=16). In the Cap-sensitive C-fibers, the response to bladder filling mostly disappeared after RTX desensitization, no matter if the bladder was filled with vehicle or ATP. On the other hand, in the Cap-insensitive C-fibers, even after RTX-treatment, the response was preserved and more enhanced when the bladder was filled with ATP compared to vehicle. CONCLUSIONS Mechanosensitive bladder afferents can be classified as (1) Aδ-fibers, (2) Cap-insensitive, and (3) Cap-sensitive C-fibers. The activation of the bladder afferents induced by intravesical application of ATP is mediated mainly through Cap-insensitive C-fibers.
Collapse
Affiliation(s)
- Naoki Aizawa
- Department of Urology, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Birder L, de Groat W, Mills I, Morrison J, Thor K, Drake M. Neural control of the lower urinary tract: peripheral and spinal mechanisms. Neurourol Urodyn 2010; 29:128-39. [PMID: 20025024 PMCID: PMC2910109 DOI: 10.1002/nau.20837] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review deals with individual components regulating the neural control of the urinary bladder. This article will focus on factors and processes involved in the two modes of operation of the bladder: storage and elimination. Topics included in this review include: (1) The urothelium and its roles in sensor and transducer functions including interactions with other cell types within the bladder wall ("sensory web"), (2) The location and properties of bladder afferents including factors involved in regulating afferent sensitization, (3) The neural control of the pelvic floor muscle and pharmacology of urethral and anal sphincters (focusing on monoamine pathways), (4) Efferent pathways to the urinary bladder, and (5) Abnormalities in bladder function including mechanisms underlying comorbid disorders associated with bladder pain syndrome and incontinence.
Collapse
Affiliation(s)
- L Birder
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | |
Collapse
|
22
|
The dysfunctional bladder following spinal cord injury: From concept to clinic. CURRENT BLADDER DYSFUNCTION REPORTS 2009. [DOI: 10.1007/s11884-009-0028-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Vaucher L, Bolyakov A, Paduch DA. Evolving techniques to evaluate ejaculatory function. Curr Opin Urol 2009; 19:606-14. [DOI: 10.1097/mou.0b013e3283318ee2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Zinck NDT, Downie JW. Plasticity in the injured spinal cord: can we use it to advantage to reestablish effective bladder voiding and continence? PROGRESS IN BRAIN RESEARCH 2006; 152:147-62. [PMID: 16198699 DOI: 10.1016/s0079-6123(05)52010-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Micturition is coordinated at the level of the spinal cord and the brainstem. Spinal cord injury therefore directly interrupts spinal neuronal pathways to the brainstem and results in bladder areflexia. Some time after injury, however, dyssynergic bladder and sphincter function emerges. The changes mediating the appearance of bladder function after spinal cord injury are currently unknown. Primary afferent neurons have been shown to sprout in response to spinal cord injury. Sprouting primary afferents have been linked to the pathophysiology of centrally manifested disorders, such as autonomic dysreflexia and neuropathic pain. It is proposed that sprouting of bladder primary afferents contributes to disordered bladder functioning after spinal cord injury. During development of the central nervous system, the levels of specific neuronal growth-promoting and guidance molecules are high. After spinal cord injury, some of these molecules are upregulated in the bladder and spinal cord, suggesting that axonal outgrowth is occurring. Sprouting in lumbosacral spinal cord is likely not restricted to neurons involved in the micturition reflex. Furthermore, sprouting of some afferents may be contributing to bladder function after injury, whereas sprouting of others might be hindering emergence of function. Thus selective manipulation of sprouting targeting afferents that are contributing to emergence of bladder function after injury is critical. Further research regarding the role that neuronal sprouting plays in the emergence of bladder function may contribute to improved treatment of bladder dyssynergia after spinal cord injury.
Collapse
Affiliation(s)
- Natasha D T Zinck
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, 5850 College St., Halifax, NS B3H 1X5, Canada.
| | | |
Collapse
|
25
|
Mitsui T, Fischer I, Shumsky JS, Murray M. Transplants of fibroblasts expressing BDNF and NT-3 promote recovery of bladder and hindlimb function following spinal contusion injury in rats. Exp Neurol 2005; 194:410-31. [PMID: 16022868 DOI: 10.1016/j.expneurol.2005.02.022] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 02/11/2005] [Accepted: 02/20/2005] [Indexed: 11/19/2022]
Abstract
We examined whether fibroblasts, genetically modified to express BDNF and NT-3 (Fb-BDNF/NT3) and transplanted into a thoracic spinal injury site, would enhance recovery of bladder function and whether this treatment would be associated with reorganization of lumbosacral spinal circuits implicated in bladder function. Rats received modified-moderate contusion injuries at T8/9, and 9 days later, Fb-BDNF/NT3 or unmodified fibroblasts (OP-controls) were delivered into the cord. Fb-BDNF/NT3 rats recovered from areflexic bladder earlier, showed decreased micturition pressure and fewer episodes of detrusor hyperreflexia, compared to OP-controls. There were also improvements in hindlimb function in the Fb-BDNF/NT3 group although locomotion on a more challenging substrate (grid) and tail withdrawal latency in response to a thermal stimulus showed persisting deficits, little recovery, and no differences between the groups. Immunocytochemistry at L6-S1 revealed changes in density of afferent and descending projections to L6-S1 cord. The density of small dorsal root axons increased in the superficial layers of the dorsal horn in OP-controls but not in Fb-BDNF/NT3, suggesting sprouting of primary afferents following injury that was inhibited by Fb-BDNF/NT-3. In contrast, the trophic factor secreting transplants stimulated sprouting and/or sparing of descending modulatory pathways projecting to the lumbosacral spinal cord. No differences in synaptophysin immunoreactivity were seen in the dorsal horn which suggested that synaptic density was similar but achieved by sprouting of different systems in the two operated groups. Fb-BDNF/NT3 transplanted into injured spinal cord thus improved both bladder and hindlimb function, and this was associated with reorganization of spinal circuitry.
Collapse
Affiliation(s)
- Takahiko Mitsui
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | | | | | |
Collapse
|
26
|
Cruz CD, Avelino A, McMahon SB, Cruz F. Increased spinal cord phosphorylation of extracellular signal-regulated kinases mediates micturition overactivity in rats with chronic bladder inflammation. Eur J Neurosci 2005; 21:773-81. [PMID: 15733095 DOI: 10.1111/j.1460-9568.2005.03893.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spinal processing of somatosensory and viscerosensory information is greatly facilitated in some persistent pain states. Growing evidence suggests that the so-called central sensitization depends in part on intracellular activation and signalling via specific MAP kinases. Here we studied the expression of phosphorylated extracellular signal-regulated kinases 1 and 2 (phosphoERK), the active form of these kinases, in spinal neurons following innocuous and noxious distension of non-inflamed and cyclophosphamide (CYP)-inflamed rat urinary bladders. Additionally, we investigated the nature of bladder primary afferents responsible for spinal ERK activation. Finally, we used a specific inhibitor of ERK phosphorylation to study the influence of these kinases on the bladder reflex activity of normal and inflamed bladders. Results indicated that, in non-inflamed rats, noxious but not innocuous bladder distension significantly increased spinal phosphoERK immunoreactivity from its normal very low level. However, in CYP-inflamed rats, innocuous and noxious bladder distension significantly increased the number of spinal neurons immunoreactive to phosphoERK. ERK activation was rapid (within minutes) and transient. Desensitization of vanilloid-sensitive afferents by intravesical resiniferatoxin, a capsaicin analogue, did not decrease phosphoERK immunoreactivity in normal or CYP-inflamed rats. ERK inhibition by intrathecal PD 98059 had no effect on bladder reflex contractions of non-inflamed bladders but significantly decreased its frequency in inflamed animals. Our results suggest that spinal ERK intervene in acute and chronic inflammatory pain perception and mediate bladder reflex overactivity accompanying chronic bladder inflammation. In addition, bladder noxious input conveyed in vanilloid-resistant primary afferents is important to spinal ERK phosphorylation in both noninflamed and CYP-inflamed animals.
Collapse
Affiliation(s)
- Célia D Cruz
- Institute of Histology and Embryology, Faculty of Medicine of Porto and IBMC, Alameda Hernâni Monteiro, Portugal.
| | | | | | | |
Collapse
|
27
|
Holstege G. Central nervous system control of ejaculation. World J Urol 2005; 23:109-14. [PMID: 15875196 DOI: 10.1007/s00345-004-0484-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 10/15/2004] [Indexed: 10/25/2022] Open
Abstract
An overview is given of the regions in the spinal cord that are active during ejaculation. Motoneurons involved are the preganglionic sympathetic motoneurons in the upper lumbar spinal cord and the motoneurons in the nucleus of Onuf, located in the upper sacral cord. The first group is involved in the so-called emission phase of ejaculation, the last group in the expulsion phase. Both groups receive afferents from premotor interneurons in the so-called intermediomedial cell groups located at about the same level as the motoneurons themselves. A concept is put forward in which these premotor cell groups represent the central spinal pattern generators for ejaculation, one for the emission phase and one for the expulsion phase. Clinical observations in patients suffering from transection of the spinal cord indicate that the ejaculation motoneurons as well as their spinal central pattern generators are under strong influence of descending pathways originating in supraspinal parts of the brain. The various pathways possibly involved in ejaculation control are reviewed. Finally, the results of the brain activation of a PET-scan study in human males, ejaculating after penile stimulation by their female partner are discussed. Especially the ventral tegmental area and the cerebellum seem to be activated during ejaculation, while the amygdala region is deactivated. Apparently, a general lack of fear is necessary for ejaculation to occur.
Collapse
Affiliation(s)
- Gert Holstege
- Department of Anatomy and Embryology, Faculty of Medical Sciences, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
28
|
Ranson RN, Priestley DJ, Santer RM, Watson AHD. Changes in the substance P-containing innervation of the lumbosacral spinal cord in male Wistar rats as a consequence of ageing. Brain Res 2005; 1036:139-44. [PMID: 15725411 DOI: 10.1016/j.brainres.2004.12.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 12/09/2004] [Accepted: 12/11/2004] [Indexed: 01/01/2023]
Abstract
Quantitative image analysis was used to determine age-related changes in the substance P-containing innervation of autonomic and somatic nuclei in the lumbosacral spinal cord, which are associated with the control of micturition and sexual reflexes. In the upper lumbar segments (L1-L2), significant declines in the distribution density of substance P-containing processes were observed in the dorsal grey commissure, the intermediolateral cell column and the ventral horn. More caudally, at levels corresponding to L5 through S1, significant reductions were seen in the dorsal grey commissure and within the sacral parasympathetic nucleus. In contrast to these observations, the substance P-immunoreactive innervation of the dorsolateral nucleus remained robust in aged animals and was not significantly different from young adults. It is possible that these distinct age-related patterns of change in substance P-containing innervation, are reflected in the urinary/sexual dysfunction's in aged animals.
Collapse
Affiliation(s)
- Richard N Ranson
- Cardiff School of Biosciences, Biomedical Sciences Buildings, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK.
| | | | | | | |
Collapse
|
29
|
Nason MW, Mason P. Modulation of sympathetic and somatomotor function by the ventromedial medulla. J Neurophysiol 2004; 92:510-22. [PMID: 14973310 DOI: 10.1152/jn.00089.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ventromedial medulla is implicated in a variety of functions including nociceptive and cardiovascular modulation and the control of thermoregulation. To determine whether single microinjections into the ventromedial medulla elicit changes in one or multiple functional systems, the GABA(A) receptor antagonist bicuculline was microinjected (70 nl, 5-50 ng) into the ventromedial medulla of lightly anesthetized rats, and cardiovascular, respiratory, and nociceptive measures were recorded. Bicuculline microinjection into either the midline raphe or the laterally adjacent reticular nucleus simultaneously increased interscapular brown adipose tissue temperature, heart rate, blood pressure, expired [CO(2)], and respiration rate and elicited shivering. Bicuculline microinjection also decreased the noxious stimulus-evoked changes in heart rate and blood pressure, decreased the frequency of heat-evoked sighs, and suppressed the cortical desynchronization evoked by noxious stimulation. Although bicuculline suppressed the motor withdrawal evoked by noxious tail heat, it enhanced the motor withdrawal evoked by noxious paw heat, evidence for specifically patterned nociceptive modulation. Saline microinjections into midline or lateral sites had no effect on any measured variable. All bicuculline microinjections, midline or lateral, evoked the same set of physiological effects, consistent with the lack of a topographical organization within the ventromedial medulla. Furthermore, as predicted by the isodendritic morphology of cells in the ventromedial medulla, midline bicuculline microinjection increased the number of c-fos immunoreactive cells in both midline raphe and lateral reticular nuclei. In summary, 70-nl microinjections into ventromedial medulla activate cells in multiple nuclei and elicit increases in sympathetic and somatomotor tone and a novel pattern of nociceptive modulation.
Collapse
Affiliation(s)
- Malcolm W Nason
- Committee on Neurobiology and Department of Neurobiology, Pharmacology and Physiology, University of Chicago, IL 60637, USA
| | | |
Collapse
|
30
|
Pikov V, McCreery DB. Mapping of spinal cord circuits controlling the bladder and external urethral sphincter functions in the rabbit. Neurourol Urodyn 2004; 23:172-9. [PMID: 14983431 DOI: 10.1002/nau.20008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AIMS A primary purpose of this study was to evaluate the rabbit as a model for studying the spinal circuitry controlling the bladder emptying. We aimed to map the locations of the neuronal circuitry controlling the external urethral sphincter (EUS) and the detrusor by stimulating at different spinal cord locations with a microelectrode, while recording the responses from these muscles. METHODS Spinal cord microstimulation was performed in the intermediate zone of the gray matter at the L7-S4 spinal cord levels in eight rabbits with empty and full bladders. Bladder activity was measured as intravesical pressure (IVP) changes and EUS activity was measured via electromyographic (EMG) electrodes positioned within the urethra. RESULTS Under both bladder conditions, EUS activation was produced from similar locations in the spinal cord comprising a continuous area in the intermediate zone of the S2-S3 spinal cord. This region extended 25 mm in the rostrocaudal dimension, at least 1 mm lateral to the midline, and 0.5-1 mm in the dorsoventral dimension at a depth of 2-3 mm beneath the dorsal surface. No locations in the intermediate zone produced EUS inhibition. The S2-S3 spinal region, stimulation of which produced the strongest EUS activation, also produced modest bladder contractions. CONCLUSIONS Overall, the results indicate that spinal cord networks controlling bladder and EUS activation in the rabbit are overlapping and clustered into columns extending rostrocaudally. The lack of spinal locations producing EUS inhibition and large bladder contractions make the rabbit an unattractive model for studies of neuroprosthetic spinal control of micturition.
Collapse
Affiliation(s)
- Victor Pikov
- Neural Engineering Program, Huntington Medical Research Institutes, Fairmount Avenue, Pasadena, California 91105, USA.
| | | |
Collapse
|
31
|
Vera PL, Meyer-Siegler KL. Anatomical location of macrophage migration inhibitory factor in urogenital tissues, peripheral ganglia and lumbosacral spinal cord of the rat. BMC Neurosci 2003; 4:17. [PMID: 12908877 PMCID: PMC184455 DOI: 10.1186/1471-2202-4-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2003] [Accepted: 08/08/2003] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Previous work suggested that macrophage migration inhibitory factor (MIF) may be involved in bladder inflammation. Therefore, the location of MIF was determined immunohistochemically in the bladder, prostate, major pelvic ganglia, sympathetic chain, the L6-S1 dorsal root ganglia (DRG) and the lumbosacral spinal cord of the rat. RESULTS In the pelvic organs, MIF immunostaining was prominent in the epithelia. MIF was widely present in neurons in the MPG and the sympathetic chain. Some of those neurons also co-localized tyrosine hydroxylase (TH). In the DRGs, some of the neurons that stained for MIF also stained for Substance P. In the lumbosacral spinal cord, MIF immunostaining was observed in the white mater, the dorsal horn, the intermediolateral region and in the area around the central canal. Many cells were intensely stained for MIF and glial fibrillary acidic protein (GFAP) suggesting they were glial cells. However, some cells in the lumbosacral dorsal horn were MIF positive, GFAP negative cells suggestive of neurons. CONCLUSIONS Therefore, MIF, a pro-inflammatory cytokine, is localized to pelvic organs and also in neurons of the peripheral and central nervous tissues that innervate those organs. Changes in MIF's expression at the end organ and at peripheral and central nervous system sites suggest that MIF is involved in pelvic viscera inflammation and may act at several levels to promote inflammatory changes.
Collapse
Affiliation(s)
- Pedro L Vera
- Research & Development (151), Bay Pines VA Medical Center, Bay Pines, FL 33744, USA
- Department of Surgery, Urology Division, University of South Florida, Tampa, FL. 33612, USA
| | - Katherine L Meyer-Siegler
- Research & Development (151), Bay Pines VA Medical Center, Bay Pines, FL 33744, USA
- Department of Surgery, Urology Division, University of South Florida, Tampa, FL. 33612, USA
| |
Collapse
|
32
|
Ranson RN, Dodds AL, Smith MJ, Santer RM, Watson AHD. Age-associated changes in the monoaminergic innervation of rat lumbosacral spinal cord. Brain Res 2003; 972:149-58. [PMID: 12711088 DOI: 10.1016/s0006-8993(03)02521-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effects of ageing on the innervation patterns of lumbosacral spinal nuclei involved in controlling lower urinary tract functions, including micturition, were studied using immunohistochemistry for serotonin (5-HT) and tyrosine hydroxylase (TH) in male Wistar rats of 3 and 24 months. Quantitative image analysis revealed significant age-associated declines in the innervation of most regions including the intermediolateral cell nucleus, sacral parasympathetic nucleus, dorsal grey commissure and in the ventral horn including the dorsolateral nucleus which in the rat is one of the component nuclei homologous to Onuf's nucleus in man. Notable exceptions to this generalised decline were observed in the 5-HT innervation of the sacral parasympathetic nucleus, which was maintained, and in the region of the dorsolateral motor nucleus where TH-like immunoreactivity did not significantly decline. These results suggest that the changes in micturition characteristics observed in aged rats may in part be a consequence of the alterations in, and decline of, aminergic inputs to both autonomic and somatic spinal nuclei associated with bladder function.
Collapse
Affiliation(s)
- Richard N Ranson
- Cardiff School of Biosciences, Biomedical Sciences Building, Cardiff University, Museum Avenue, Cardiff CF10 3US, Wales, UK.
| | | | | | | | | |
Collapse
|
33
|
Abstract
To store and expel urine at appropriate intervals, the lower urinary tract requires extensive input and control from the peripheral autonomic, somatic, and central nervous systems. Neurological disorders, such as cerebrovascular disease and Parkinson's disease, often cause functional disturbances of the lower urinary tract.
Collapse
Affiliation(s)
- Mike B Siroky
- Boston University School of Medicine, 80 East Concord Street, Boston, MA 02118, USA.
| |
Collapse
|
34
|
Sasaki M. Bladder contractility-related neurons in Barrington's nucleus: axonal projections to the spinal cord in the cat. J Comp Neurol 2002; 449:355-63. [PMID: 12115671 DOI: 10.1002/cne.10290] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Barrington's nucleus projects directly to the sacral parasympathetic nucleus. The purpose of this study was to clarify whether neurons in Barrington's nucleus that increase their firing during bladder contractions project to the spinal cord and, if so, to which level(s) the axon reaches. Single units were recorded in Barrington's nucleus of cat with glass microelectrodes, and the termination level of descending axons was determined by antidromic stimulation of the spinal cord. Thirty-nine neurons projecting to the spinal cord were located in rostral parts of the dorsolateral pontine tegmentum, medial and ventral to the mesencephalic trigeminal tract. This finding is consistent with previous neuronal tracing studies. All neurons increased their firing rates during contraction associated with micturition. In 19 examined neurons, the most caudal level of the descending axon distributed between the L7 and the S3 level. Stimulation of the axon at this most caudal level resulted in antidromic spike latencies ranging between 19.5 msec and 45.0 msec. These antidromic latencies were much smaller than previously reported orthodromic conduction times between neurons in Barrington's nucleus and sacral preganglionic neurons innervating the bladder. The mean conduction velocity of the descending axon from the cell body to the border between Th13 and the L1 ranged between 7.2 m/sec and 27.7 m/sec. The decrease of the mean conduction velocity was observed at the lumbar as well as at the sacral segments, suggesting that axons issue collaterals to the lumbar level as well as to the sacral level.
Collapse
Affiliation(s)
- Mitsuyoshi Sasaki
- Department of Physiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160, Japan.
| |
Collapse
|
35
|
Nadelhaft I, Vera PL. Separate urinary bladder and external urethral sphincter neurons in the central nervous system of the rat: simultaneous labeling with two immunohistochemically distinguishable pseudorabies viruses. Brain Res 2001; 903:33-44. [PMID: 11382385 DOI: 10.1016/s0006-8993(01)02349-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work examines the distribution, in the central nervous system, of virus-labeled neurons from the rat urinary bladder and the external urethral sphincter simultaneously within the same tissue sections. Two immunohistochemically distinct pseudorabies virus strains were injected into male Sprague--Dawley rats (approximately 280 g). One virus was injected into the bladder and the other into the external urethral sphincter. After incubation intervals of 2, 2.5 and 3 days, sections from the spinal cord and brain were treated immunohistochemically to detect cells which were labeled separately by each virus or were labeled by both viruses. The major result of these experiments is that each strain of virus labeled a separate population of neurons and that some neurons were labeled by both strains. In the lumbosacral cord, 3 days post-infection, neurons labeled by virus from the external urethral sphincter were found in Onuf's nucleus, the dorsal gray commissure, and the superficial dorsal horn. Neurons labeled by virus from the urinary bladder were found in the L6--S1 and L1--L2 spinal cord segments within the dorsal gray commissure, the intermediolateral area and the superficial dorsal horn. Double-labeled interneurons were mainly located in the dorsal gray commissure although some were also found in the intermediolateral area and the superficial dorsal horn. In the medulla, external urethral sphincter neurons and bladder neurons and double-labeled neurons were found in the reticular region and the raphe. More rostrally, bladder neurons were located in the pontine micturition center and external urethral sphincter neurons were found in the locus coeruleus and subcoeruleus. A very small number of double-labeled neurons were found in the pontine micturition center and the locus coeruleus or subcoeruleus.
Collapse
Affiliation(s)
- I Nadelhaft
- Veteran's Administration Medical Center, R&D Service (151), Bay Pines, FL 33744, USA.
| | | |
Collapse
|