1
|
Seckler JM, Shen J, Lewis THJ, Abdulameer MA, Zaman K, Palmer LA, Bates JN, Jenkins MW, Lewis SJ. NADPH diaphorase detects S-nitrosylated proteins in aldehyde-treated biological tissues. Sci Rep 2020; 10:21088. [PMID: 33273578 PMCID: PMC7713249 DOI: 10.1038/s41598-020-78107-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/19/2020] [Indexed: 11/25/2022] Open
Abstract
NADPH diaphorase is used as a histochemical marker of nitric oxide synthase (NOS) in aldehyde-treated tissues. It is thought that the catalytic activity of NOS promotes NADPH-dependent reduction of nitro-blue tetrazolium (NBT) to diformazan. However, it has been argued that a proteinaceous factor other than NOS is responsible for producing diformazan in aldehyde-treated tissues. We propose this is a NO-containing factor such as an S-nitrosothiol and/or a dinitrosyl-iron (II) cysteine complex or nitrosated proteins including NOS. We now report that (1) S-nitrosothiols covalently modify both NBT and TNBT, but only change the reduction potential of NBT after modification, (2) addition of S-nitrosothiols or β- or α-NADPH to solutions of NBT did not elicit diformazan, (3) addition of S-nitrosothiols to solutions of NBT plus β- or α-NADPH elicited rapid formation of diformazan in the absence or presence of paraformaldehyde, (4) addition of S-nitrosothiols to solutions of NBT plus β- or α-NADP did not produce diformazan, (5) S-nitrosothiols did not promote NADPH-dependent reduction of tetra-nitro-blue tetrazolium (TNBT) in which all four phenolic rings are nitrated, (6) cytoplasmic vesicles in vascular endothelial cells known to stain for NADPH diaphorase were rich in S-nitrosothiols, and (7) procedures that accelerate decomposition of S-nitrosothiols, markedly reduced NADPH diaphorase staining in tissue sections subsequently subjected to paraformaldehyde fixation. Our results suggest that NADPH diaphorase in aldehyde-fixed tissues is not enzymatic but is due to the presence of NO-containing factors (free SNOs or nitrosated proteins such as NOS), which promote NADPH-dependent reduction of NBT to diformazan.
Collapse
Affiliation(s)
- James M Seckler
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jinshan Shen
- Department of Pharmacology, University of Iowa, Iowa City, IA, 52242, USA
| | - Tristan H J Lewis
- Department of Pharmacology and Physiology, University of Georgia, Athens, GA, 30602, USA
| | - Mohammed A Abdulameer
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Khalequz Zaman
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lisa A Palmer
- Department of Pediatrics, University of Virginia, Charlottesville, VA, 801366, USA
| | - James N Bates
- Department of Anesthesia, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael W Jenkins
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Bioengineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Stephen J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
2
|
Zalecki M, Juranek J, Pidsudko Z, Mogielnicka-Brzozowska M, Kaleczyc J, Franke-Radowiecka A. Inferior vagal ganglion galaninergic response to gastric ulcers. PLoS One 2020; 15:e0242746. [PMID: 33227035 PMCID: PMC7682887 DOI: 10.1371/journal.pone.0242746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/06/2020] [Indexed: 01/17/2023] Open
Abstract
Galanin is a neuropeptide widely expressed in central and peripheral nerves and is known to be engaged in neuronal responses to pathological changes. Stomach ulcerations are one of the most common gastrointestinal disorders. Impaired stomach function in peptic ulcer disease suggests changes in autonomic nerve reflexes controlled by the inferior vagal ganglion, resulting in stomach dysfunction. In this paper, changes in the galaninergic response of inferior vagal neurons to gastric ulceration in a pig model of the disease were analyzed based on the authors' previous studies. The study was performed on 24 animals (12 control and 12 experimental). Gastric ulcers were induced by submucosal injections of 40% acetic acid solution into stomach submucosa and bilateral inferior vagal ganglia were collected one week afterwards. The number of galanin-immunoreactive perikarya in each ganglion was counted to determine fold-changes between both groups of animals and Q-PCR was applied to verify the changes in relative expression level of mRNA encoding both galanin and its receptor subtypes: GalR1, GalR2, GalR3. The results revealed a 2.72-fold increase in the number of galanin-immunoreactive perikarya compared with the controls. Q-PCR revealed that all studied genes were expressed in examined ganglia in both groups of animals. Statistical analysis revealed a 4.63-fold increase in galanin and a 1.45-fold increase in GalR3 mRNA as compared with the controls. No differences were observed between the groups for GalR1 or GalR2. The current study confirmed changes in the galaninergic inferior vagal ganglion response to stomach ulcerations and demonstrated, for the first time, the expression of mRNA encoding all galanin receptor subtypes in the porcine inferior vagal ganglia.
Collapse
Affiliation(s)
- Michal Zalecki
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
- * E-mail:
| | - Judyta Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Zenon Pidsudko
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| | - Jerzy Kaleczyc
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Amelia Franke-Radowiecka
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
3
|
Ryu V, Gallaher Z, Czaja K. Plasticity of nodose ganglion neurons after capsaicin- and vagotomy-induced nerve damage in adult rats. Neuroscience 2010; 167:1227-38. [PMID: 20197082 DOI: 10.1016/j.neuroscience.2010.02.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 02/19/2010] [Accepted: 02/19/2010] [Indexed: 11/25/2022]
Abstract
Previous reports show that vagal afferent innervation of the stomach eventually regenerates from surviving nodose ganglion (NG) neurons after subdiaphragmatic vagotomy. Systemic capsaicin treatment destroys gastric vagal afferent neurons expressing vanilloid receptor 1 (VR1). However, it is not known whether gastric innervation lost after neuronal destruction can be restored. Here, we report that capsaicin-induced damage of NG neurons innervating the stomach in adult rats is followed by restoration of vagal afferent projections. Specifically, we compared measures of neuronal plasticity in NG and vagi after subdiaphragmatic vagotomy or capsaicin treatment. The numbers of VR1-immunoreactive neurons projecting to the stomach were significantly reduced 10 days after either capsaicin treatment or vagotomy. However, the VR1-immunoreactive afferent innervation of the stomach was restored to levels exceeding those of vagotomized rats by 37 days after capsaicin, whereas neither total afferent innervation nor VR1-immunoreactive innervation reached control levels, even by 67 days after vagotomy. Capsaicin treatment significantly increased NG neuronal nitric oxide synthase (nNOS) immunoreactivity at 10 days after capsaicin, and this increase was sustained for the duration of the study, indicating higher nNOS demand in restoration of vagal projections. Vagotomy was associated with a much smaller increase in the number of nNOS-immunoreactive NG neurons, detectable only at 10 days after surgery. The number of nNOS-immunopositive gastric-projecting neurons was dramatically reduced 10 days after either capsaicin treatment or vagotomy but returned to the control level in both groups at 67 days. We found a significantly higher number of growth cones in capsaicin-treated animals compared with controls. Capsaicin significantly increased the number of nNOS-immunopositive and nNOS-immunonegative growth cones in NG at all time points. Vagotomy did not increase the number of nNOS(-) growth cones in NG. We conclude that capsaicin treatment may result in more significant restorative capacities than vagotomy, mainly because of sprouting of capsaicin-insensitive nerve fibers.
Collapse
Affiliation(s)
- V Ryu
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, College of Veterinary Medicine, Washington State University, Pullman, WA 99163-6520, USA
| | | | | |
Collapse
|
4
|
Young CN, Fisher JP, Gallagher KM, Whaley-Connell A, Chaudhary K, Victor RG, Thomas GD, Fadel PJ. Inhibition of nitric oxide synthase evokes central sympatho-excitation in healthy humans. J Physiol 2009; 587:4977-86. [PMID: 19723781 DOI: 10.1113/jphysiol.2009.177204] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Animal studies have indicated that nitric oxide is a key signalling molecule involved in the tonic restraint of central sympathetic outflow from the brainstem. Extension of these findings to humans has been difficult because systemic infusion of nitric oxide synthase (NOS) inhibitors increases blood pressure due to inhibition of endothelial NOS, resulting in activation of the arterial baroreflex and subsequent inhibition of central sympathetic outflow. To overcome this confounding inhibitory influence of the baroreflex, in the current study we directly measured skin sympathetic nerve activity (SNA), which is not under baroreceptor control. Healthy, normotensive humans were studied before, during a 60 min intravenous infusion of the NOS inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME; 4 mg kg(1)), and for 120 min following the infusion (i.e. 180 min total). Skin SNA and arterial blood pressure (BP) were continuously measured. BP was increased from baseline at the end of the l-NAME infusion (14 +/- 2 mmHg; P < 0.05) and remained significantly elevated for the remainder of the experiment (18 +/- 3 mmHg; P < 0.05). Similarly, systemic NOS inhibition produced time-dependent increases in skin SNA, such that skin SNA was elevated at the end of the l-NAME infusion (total activity, 200 +/- 22% baseline; P = 0.08) and was further increased at the end of the study protocol (total activity, 350 +/- 41% baseline; P < 0.05). Importantly, skin SNA remained unchanged during time and hypertensive (phenylephrine) control experiments. These findings indicate that pharmacological inhibition of NOS causes sympathetic activation and support a role of nitric oxide in central sympathetic control in humans.
Collapse
Affiliation(s)
- Colin N Young
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Lin LH. Glutamatergic neurons say NO in the nucleus tractus solitarii. J Chem Neuroanat 2009; 38:154-65. [PMID: 19778681 DOI: 10.1016/j.jchemneu.2009.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 02/06/2009] [Accepted: 02/09/2009] [Indexed: 01/13/2023]
Abstract
Both glutamate and nitric oxide (NO) may play an important role in cardiovascular reflex and respiratory signal transmission in the nucleus tractus solitarii (NTS). Pharmacological and physiological data have shown that glutamate and NO may be linked in mediating cardiovascular regulation by the NTS. Through tract tracing, multiple-label immunofluorescent staining, confocal microscopic, and electronic microscopic methods, we and other investigators have provided anatomical evidence that supports a role for glutamate and NO as well as an interaction between glutamate and NO in cardiovascular regulation in the NTS. This review article focuses on summarizing and discussing these anatomical findings. We utilized antibodies to markers of glutamatergic neurons and to neuronal NO synthase (nNOS), the enzyme that synthesizes NO in NTS neurons, to study the anatomical relationship between glutamate and NO in rats. Not only were glutamatergic markers and nNOS both found in similar subregions of the NTS and in vagal afferents, they were also frequently colocalized in the same neurons and fibers in the NTS. In addition, glutamatergic markers and nNOS were often present in fibers that were in close apposition to each other. Furthermore, N-methyl-d-aspartate (NMDA) type glutamate receptors and nNOS were often found on the same NTS neurons. Similarly, alpha-amino-3-hydroxy-5-methylisoxozole-proprionic acid (AMPA) type glutamate receptors also frequently colocalized with nNOS in NTS neurons. These findings support the suggestion that the interaction between glutamate and NO may be mediated both through NMDA and AMPA receptors. Finally, by applying tracer to the cut aortic depressor nerve (ADN) to identify nodose ganglion (NG) neurons that transmit cardiovascular signals to the NTS, we observed colocalization of vesicular glutamate transporters (VGluT) and nNOS in the ADN neurons. Thus, taken together, these neuroanatomical data support the hypothesis that glutamate and NO may interact with each other to regulate cardiovascular and likely other visceral functions through the NTS.
Collapse
Affiliation(s)
- Li-Hsien Lin
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
6
|
de Albuquerque RF, Aparecida Del Bel E, Brentegani LG, Moura de Oliveira MT, Mardegan Issa JP. Trigeminal nitric oxide synthase expression correlates with new bone formation during distraction osteogenesis. Calcif Tissue Int 2008; 82:309-15. [PMID: 18330484 DOI: 10.1007/s00223-008-9107-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 01/18/2008] [Indexed: 01/18/2023]
Abstract
Nitric oxide synthase (NOS) has been reported to be involved with both bone healing and bone metabolism. The aim of this study was to test the null hypothesis that there is no correlation between new bone formation during mandibular distraction osteogenesis and NOS expression in the trigeminal ganglion of rats. Newly formed tissue during distraction osteogenesis and trigeminal NOS expression measured by the NADPH-diaphorase (NADPH-d) reaction were evaluated in 72 male Wistar rats by histomorphometric and histochemical methods. In animals submitted to 0.5 mm/day distraction osteogenesis, the percentage of bone tissue was higher in the basal area of the mandibles compared with the center and significantly increased through the experimental periods (P < 0.05). At the sixth postoperative week, the difference in bone formation between the continuous and acute distraction osteogenesis groups was the highest. Significant correlation between new bone formation by distraction osteogenesis and NADPH-d-reactive neurons was found, varying according to neuronal cell size (r = -0.6, P = 0.005, small cells strongly stained; r = 0.5, P = 0.018, large cells moderately stained). The results suggest that NOS may play a role in the bone healing process via neurogenic pathways, and the phenomenon seems to be neuronal cell morphotype-dependent. Further studies are now warranted to investigate the mechanistic link between the expression of trigeminal NOS and mandibular new bone formation by distraction osteogenesis.
Collapse
Affiliation(s)
- Rubens Ferreira de Albuquerque
- Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Av. Café S/N, CEP 14040-904, Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
7
|
Chang HM, Wu UI, Lin TB, Lan CT, Chien WC, Huang WL, Shieh JY. Total sleep deprivation inhibits the neuronal nitric oxide synthase and cytochrome oxidase reactivities in the nodose ganglion of adult rats. J Anat 2007; 209:239-50. [PMID: 16879602 PMCID: PMC2100318 DOI: 10.1111/j.1469-7580.2006.00594.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sleep disorders are a form of stress associated with increased sympathetic activity, and they are a risk factor for the occurrence of cardiovascular disease. Given that nitric oxide (NO) may play an inhibitory role in the regulation of sympathetic tone, this study set out to determine the NO synthase (NOS) reactivity in the primary cardiovascular afferent neurons (i.e. nodose neurons) following total sleep deprivation (TSD). TSD was performed by the disc-on-water method. Following 5 days of TSD, all experimental animals were investigated for quantitative nicotinamine adenine dinucleotide phosphate-diaphorase (NADPH-d, a co-factor of NOS) histochemistry, neuronal NOS immunohistochemistry and neuronal NOS activity assay. In order to evaluate the endogenous metabolic activity of nodose neurons, cytochrome oxidase (COX) reactivity was further tested. All the above-mentioned reactivities were objectively assessed by computerized image analysis. The clinical significance of the reported changes was demonstrated by alterations of mean arterial blood pressure (MAP). The results indicated that in normal untreated rats, numerous NADPH-d/NOS- and COX-reactive neurons were found in the nodose ganglion (NG). Following TSD, however, both the labelling and staining intensity of NADPH-d/NOS as well as COX reactivity were drastically reduced in the NG compared with normal untreated ganglions. MAP was significantly higher in TSD rats (136+/-4 mmHg) than in normal untreated rats (123+/-2 mmHg). NO may serve as an important sympathoinhibition messenger released by the NG neurons, and decrease of NOS immunoexpression following TSD may account for the decrease in NOS content. In association with the reduction of NOS activity, a defect in NOS expression in the primary cardiovascular afferent neurons would enhance clinical hypertension, which might serve as a potential risk factor in the development of TSD-relevant cardiovascular disturbances.
Collapse
Affiliation(s)
- Hung-Ming Chang
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, and Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
8
|
Lacolley P, Owen JR, Sandock K, Lewis THJ, Bates JN, Robertson TP, Lewis SJ. 5-HT activates vagal afferent cell bodies in vivo: Role of 5-HT2 and 5-HT3 receptors. Neuroscience 2006; 143:273-87. [PMID: 17029799 DOI: 10.1016/j.neuroscience.2006.07.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 07/11/2006] [Accepted: 07/15/2006] [Indexed: 10/24/2022]
Abstract
Occipital artery (OA) injections of 5-HT elicit pronounced reductions in heart rate and mean arterial blood pressure (MAP) in urethane-anesthetized rats by activation of vagal afferent cell bodies in the ipsilateral nodose ganglion. In contrast, internal carotid artery (ICA) and i.v. injections elicit similar cardiovascular responses by activation of peripheral vagal afferent terminals. The aim of this study was to examine the roles of 5-HT3 and 5-HT2 receptors in the 5-HT-induced activation of vagal afferent cell bodies and peripheral afferent terminals in urethane-anesthetized rats. OA, ICA and i.v. injections of 5-HT elicited dose-dependent reductions in heart rate and MAP that were virtually abolished after i.v. administration of the 5-HT3 receptor antagonists, MDL 7222 or ICS 205-930. The responses elicited by the OA injections of 5-HT were markedly diminished after i.v. injection of the 5-HT2 receptor antagonists, xylamidine or ketanserin, whereas the responses elicited by i.v. or ICA injections of 5-HT were not affected. The present findings suggest that (1) 5-HT3 and 5-HT2 receptor antagonists gain ready access to nodose ganglion cells upon i.v. administration, and (2) functional 5-HT3 and 5-HT2 receptors exist on the cell bodies of vagal afferent neurons mediating the cardiovascular responses elicited by OA injections of 5-HT. These findings also support a wealth of evidence that 5-HT3 receptors exist on the peripheral terminals of vagal afferents, and although they do not discount the possibility that 5-HT2 receptors exist on peripheral vagal afferent terminals, it appears that activation of these receptors does not have pronounced effects on 5-HT3 receptor activity on terminals that mediate the hemodynamic responses to 5-HT.
Collapse
Affiliation(s)
- P Lacolley
- Department of Pharmacology, University of Iowa, Iowa City, IA 55242, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Lacolley P, Owen JR, Sandock K, Lewis THJ, Bates JN, Robertson TP, Lewis SJ. Occipital artery injections of 5-HT may directly activate the cell bodies of vagal and glossopharyngeal afferent cell bodies in the rat. Neuroscience 2006; 143:289-308. [PMID: 17029801 DOI: 10.1016/j.neuroscience.2006.08.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 06/23/2006] [Accepted: 08/04/2006] [Indexed: 11/25/2022]
Abstract
The primary objective of this study was to determine whether circulating factors gain direct access to and affect the activity of vagal afferent cell bodies in the nodose ganglia and glossopharyngeal afferents cell bodies in the petrosal ganglia, of the rat. We found that the occipital and internal carotid arteries provided the sole blood supply to the nodose ganglia, and that i.v. injections of the tracer, Basic Blue 9, elicited strong cytoplasmic staining in vagal and glossopharyngeal afferent cell bodies that was prevented by prior ligation of the occipital but not the internal carotid arteries. We also found that occipital artery injections of 5-HT elicited pronounced dose-dependent reductions in heart rate and diastolic arterial blood pressure that were (1) virtually abolished after application of the local anesthetic, procaine, to the ipsilateral nodose and petrosal ganglia, (2) markedly attenuated after transection of the ipsilateral vagus between the nodose ganglion and brain and virtually abolished after subsequent transection of the ipsilateral glossopharyngeal nerve between the petrosal ganglion and the brain, (3) augmented after ipsilateral transection of the aortic depressor and carotid sinus nerves, and (4) augmented after transection of all ipsilateral glossopharyngeal and vagal afferent nerves except for vagal cardiopulmonary afferents. These findings suggest that blood-borne 5-HT in the occipital artery gains direct access to and activates the cell bodies of vagal cardiopulmonary afferents of the rat and glossopharyngeal afferents of undetermined modalities.
Collapse
Affiliation(s)
- P Lacolley
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Yao ST, Lawrence AJ. A comparative autoradiographic study of the density of [3H]SR95531, [3H]MK-801 and [3H]cGMP binding in the locus coeruleus and central pontine grey of spontaneously hypertensive and Wistar-Kyoto rats. Naunyn Schmiedebergs Arch Pharmacol 2005; 371:434-9. [PMID: 15937680 DOI: 10.1007/s00210-005-1057-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 03/03/2005] [Indexed: 10/25/2022]
Abstract
The Spontaneously Hypertensive rat (SHR) has been previously shown to have a host of neurochemical differences compared with their normotensive counterpart, the Wistar-Kyoto (WKY) rat. Using quantitative receptor autoradiography, the density of GABA(A) and NMDA receptors and [3H]cGMP binding within the locus coeruleus (LC) and central pontine grey (CGPn) were compared in the SHR and WKY rat using the radioligands [3H]SR95531, [3H]MK-801 and [3H]cGMP respectively. It was found that [3H]SR95531 binding was significantly greater in both the LC and CGPn of the SHR compared with the WKY rat (unpaired t test; P < 0.05). Greater binding densities of [3H]MK-801 and [3H]cGMP were also observed in the LC of the SHR compared with the WKY rat; however, no differences in the binding density of these two ligands were observed in the CGPn. It is suggested that these neurochemical differences within the LC of the SHR may relate to phenotypic differences between SHR and WKY rats that have previously been reported.
Collapse
Affiliation(s)
- Song T Yao
- Department of Pharmacology, Monash University, Clayton, Victoria, 3800, Australia.
| | | |
Collapse
|
11
|
|
12
|
Kasparov S, Paton J, Wang S, Deuchars J. Nitroxergic Modulation in the NTS. ADVANCES IN VAGAL AFFERENT NEUROBIOLOGY 2005. [DOI: 10.1201/9780203492314.ch9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Davies SL, Loescher AR, Clayton NM, Bountra C, Robinson PP, Boissonade FM. nNOS expression following inferior alveolar nerve injury in the ferret. Brain Res 2004; 1027:11-7. [PMID: 15494152 DOI: 10.1016/j.brainres.2004.08.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2004] [Indexed: 10/26/2022]
Abstract
Damage to the inferior alveolar nerve (IAN) may result in permanent painful dysaesthesia, and there is compelling evidence to suggest that ectopic activity from the injury site plays a crucial role in the initiation of this disorder. The aim of this study was to determine whether neuronal nitric oxide synthase (nNOS), a regulator of neuronal excitability, could be involved in the development of the abnormal activity. In seven ferrets, the left IAN was exposed and a retrograde tracer, fluorogold, was applied to the nerve for the identification of cell bodies in the trigeminal ganglion with axons in the IAN. In four animals, the nerve was sectioned distal to the injection site, and three served as controls. After 3 days, the animals were perfused with fixative, and the left and right IANs and trigeminal ganglia were processed using indirect immunofluorescence for nNOS. Image analysis was used to quantify the percentage area of staining (PAS) at the injury site. In the ganglia, counts were made of positively labelled cells in the fluorogold population. At the injury site, PAS was significantly greater in injured nerves than in either contralateral or control nerves, and contralateral PAS was elevated compared to control. In the ganglia, the proportion of nNOS-labelled cells was significantly reduced following injury. These results indicate a possible translocation of the nNOS protein from the cell body to the site of nerve injury, where it accumulates. Thus, nNOS could play a role in the development of ectopic activity at a site of trigeminal nerve injury.
Collapse
Affiliation(s)
- Shelley L Davies
- Department of Oral and Maxillofacial Surgery, School of Clinical Dentistry, The University of Sheffield, Sheffield, UK.
| | | | | | | | | | | |
Collapse
|
14
|
Chianca DA, Lin LH, Dragon DN, Talman WT. NMDA receptors in nucleus tractus solitarii are linked to soluble guanylate cyclase. Am J Physiol Heart Circ Physiol 2004; 286:H1521-7. [PMID: 15020305 DOI: 10.1152/ajpheart.00236.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We sought to test the hypothesis that cardiovascular responses to activation of ionotropic, but not metabotropic, glutamate receptors in the nucleus tractus solitarii (NTS) depend on soluble guanylate cyclase (sGC) and that inhibition of sGC would attenuate baroreflex responses to changes in arterial pressure. In adult male Sprague-Dawley rats anesthetized with chloralose, the ionotropic receptor agonists N-methyl-d-aspartate (NMDA) and dl-α-amino-3-hydroxy-5-methylisoxazole-propionic acid (AMPA) and the metabotropic receptor agonist trans-dl-amino-1,3-cyclopentane-dicarboxylic acid (ACPD) were microinjected into the NTS before and after microinjection of sGC inhibitors at the same site. Inhibition of sGC produced significant dose-dependent attenuation of cardiovascular responses to NMDA but did not alter responses produced by injection of AMPA or ACPD. Bilateral inhibition of sGC did not alter arterial pressure, nor did it attenuate baroreflex responses to pharmacologically induced changes in arterial pressure. This study links sGC with NMDA, but not AMPA or metabotropic, receptors in cardiovascular signal transduction through NTS.
Collapse
|
15
|
Abstract
Because inhibition of neuronal nitric oxide synthase in the nucleus tractus solitarii blocks cardiovascular responses to activation of local glutamate receptors, and because glutamate is a neurotransmitter of baroreceptor afferent nerves, we sought to test the hypothesis that neuronal nitric oxide synthase inhibition would block baroreflex transmission and cause hypertension. We determined reflex heart rate responses to intravenous phenylephrine and sodium nitroprusside in 5 anesthetized rats before and after bilateral microinjection (100 nL) of the neuronal nitric oxide synthase inhibitor AR-R 17477 (7.5 nmol) into the nucleus tractus solitarii. The inhibitor significantly increased mean arterial pressure without affecting heart rate, and it significantly reduced the gain of the baroreflex. After administration of the inhibitor, reflex responses of heart rate to changes in mean arterial pressure were always less than those responses to the same, or less, change in mean arterial pressure in the same animal without administration of the inhibitor. Microinjection of saline (100 nL) bilaterally into the nucleus tractus solitarii did not lead to hypertension or change baroreflex responses. These data support the hypothesis and suggest that neuronal nitric oxide synthase is critical to transmission of baroreflex signals through the nucleus tractus solitarii.
Collapse
Affiliation(s)
- William T Talman
- Department of Neurology, Laboratory of Neurobiology, VAMC and University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
16
|
Atkinson L, Batten TFC, Corbett EKA, Sinfield JK, Deuchars J. Subcellular localization of neuronal nitric oxide synthase in the rat nucleus of the solitary tract in relation to vagal afferent inputs. Neuroscience 2003; 118:115-22. [PMID: 12676143 DOI: 10.1016/s0306-4522(02)00946-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the nucleus of the solitary tract (NTS), nitric oxide (NO) modulates neuronal circuits controlling autonomic functions. A proposed source of this NO is via nitric oxide synthase (NOS) present in vagal afferent fibre terminals, which convey visceral afferent information to the NTS. Here, we first determined with electron microscopy that neuronal NOS (nNOS) is present in both presynaptic and postsynaptic structures in the NTS. To examine the relationship of nNOS to vagal afferent fibres the anterograde tracer biotinylated dextran amine was injected into the nodose ganglion and detected in brainstem sections using peroxidase-based methods. nNOS was subsequently visualised using a pre-embedding immunogold procedure. Ultrastructural examination revealed nNOS immunoreactivity in dendrites receiving vagal afferent input. However, although nNOS-immunoreactive terminals were frequently evident in the NTS, none were vagal afferent in origin. Dual immunofluorescence also confirmed lack of co-localisation. Nevertheless, nNOS immunoreactivity was observed in vagal afferent neurone cell bodies of the nodose ganglion. To determine if these labelled cells in the nodose ganglion were indeed vagal afferent neurones nodose ganglion sections were immunostained following application of cholera toxin B subunit to the heart. Whilst some cardiac-innervating neurones were also nNOS immunoreactive, nNOS was never detected in the central terminals of these neurones. These data show that nNOS is present in the NTS in both pre- and postsynaptic structures. However, these presynaptic structures are unlikely to be of vagal afferent origin. The lack of nNOS in vagal afferent terminals in the NTS, yet the presence in some vagal afferent cell bodies, suggests it is selectively targeted to specific regions of the same neurones.
Collapse
Affiliation(s)
- L Atkinson
- School of Biomedical Sciences, University of Leeds, LS2 9NQ, Leeds, UK
| | | | | | | | | |
Collapse
|
17
|
Fong AY, Krstew EV, Barden J, Lawrence AJ. Immunoreactive localisation of P2Y1 receptors within the rat and human nodose ganglia and rat brainstem: comparison with [alpha 33P]deoxyadenosine 5'-triphosphate autoradiography. Neuroscience 2002; 113:809-23. [PMID: 12182888 DOI: 10.1016/s0306-4522(02)00237-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study employed standard peroxidase immunohistochemistry to map the distribution of P2Y(1) receptors in the rat brainstem and nodose ganglia and characterised the binding profile of [alpha(33)P]dATP. Binding of [alpha(33)P]dATP was fully displaceable by adenosine 5'-triphosphate (ATP), and was found on both human and rat nodose ganglia, and throughout the rat brainstem, including the nucleus tractus solitarius and ventrolateral medulla. [Alpha(33)P]dATP binding in the human nodose ganglia was significantly displaced by both 2-methylthio ATP and alpha,beta-methylene ATP, but not by uridine 5'-triphosphate, pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid, 8,8'-(carbonylbis(imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino))bis(1,3,5-naphtalenetrisulfonic) acid (NF279) or N-ethylcarboxamidoadenosine. [Alpha(33)P]dATP binding in the rat nodose ganglia and brainstem was significantly displaced by only 2-methylthio ATP, suggesting that [alpha(33)P]dATP is binding to P2Y receptors in the rat. Binding of [alpha(33)P]dATP was also significantly displaced by alpha,beta-methylene adenosine 5'-diphosphate, suggesting a component of the binding is to endogenous ecto-5'-nucleotidase, however, almost all binding could be displaced by a combination of receptor agonists (2-methylthio ATP, uridine 5'-triphosphate and alpha,beta-methylene ATP), suggesting preferential binding to receptors. Immunoreactivity to P2Y(1) receptor (P2Y(1)-IR) exhibited similar distribution patterns to [alpha(33)P]dATP binding, with a clear topographic profile. Particularly dense P2Y(1)-IR labeling was evident in cells and fibres of the dorsal vagal complex. Immunolabeling was also present in the dorsal motor nucleus of the vagus and nucleus ambiguus, indicating the possibility of P2Y(1) receptors on vagal efferents. Unilateral vagal ligation was also performed to examine the transport of P2Y(1) receptor, using both immunohistochemistry and [alpha(33)P]dATP autoradiography. Accumulations of both P2Y(1)-IR and [alpha(33)P]dATP binding were apparent adjacent to both ligatures, suggesting bi-directional transport of P2Y(1) receptors along the rat vagus nerve. This current study represents the first description of P2Y(1) receptor distribution within the rodent brainstem and nodose ganglion and also characterises [alpha(33)P]dATP binding to P2Y receptors.
Collapse
Affiliation(s)
- A Y Fong
- Department of Pharmacology, P.O. Box 13E, Monash University, Wellington Road, Clayton, Vic 3800, Australia
| | | | | | | |
Collapse
|
18
|
Abstract
To assess whether diabetes alters the content and/or expression of neuroactive agents and protooncogenes in afferent neurons of the vagus nerve, the nodose ganglia of streptozotocin (STZ)-induced diabetic rats were studied at 8, 16, and 24 weeks after induction of diabetes. Neuronal nitric oxide synthase (nNOS), tyrosine hydroxylase (TH), the immediate early gene c-Jun, vasoactive intestinal peptide (VIP) and calcitonin gene related peptide (CGRP) content and expression were measured in nodose ganglia of control, diabetic, and diabetic+insulin-treated rats using immunocytochemistry and reverse transcription-polymerase chain reaction (RT-PCR). The numbers of nNOS-immunoreactive (ir) neurons were increased in the nodose ganglion of diabetic compared to control rats at the 8- and 16-week time points. However, no change was noted in the nNOS mRNA content of the diabetic nodose ganglion at either time point. Moreover, no alterations in the numbers of vagal efferent NOS-containing neurons (labeled with NADPH-diaphorase histochemistry) were noted in the dorsal motor nucleus of the vagus (DMV) or the nucleus ambiguous (NA) of control, diabetic, and diabetic+insulin-treated rats at any time point. Neither the numbers of TH-ir neurons nor the content of TH mRNA was altered in the diabetic rats at the 8- and 16-week time points. However, 24 weeks of diabetes resulted in a reduction in the numbers of TH-ir neurons in the diabetic nodose ganglia when compared to control, an effect not seen in diabetic rats receiving insulin. The number of nodose ganglion neurons labeled for the protooncogene, c-Jun, was small yet slightly increased in the diabetic nodose ganglia at the 8-week time point and was reversed with insulin treatment. The increase in c-Jun-ir neurons was not found at 16 or 24 weeks of diabetes. VIP-ir and CGRP-ir were unchanged at any of the time points. These data show that diabetes affects the content of some, but not all, neuroactive agents in the nodose ganglion and may reflect a modest level of diabetes-induced damage and/or alterations in axonal transport in the vagus nerve.
Collapse
Affiliation(s)
- Jen Regalia
- Department of Pharmacology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | | | |
Collapse
|