1
|
Puri S, Kenyon BM, Hamrah P. Immunomodulatory Role of Neuropeptides in the Cornea. Biomedicines 2022; 10:1985. [PMID: 36009532 PMCID: PMC9406019 DOI: 10.3390/biomedicines10081985] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/21/2022] Open
Abstract
The transparency of the cornea along with its dense sensory innervation and resident leukocyte populations make it an ideal tissue to study interactions between the nervous and immune systems. The cornea is the most densely innervated tissue of the body and possesses both immune and vascular privilege, in part due to its unique repertoire of resident immune cells. Corneal nerves produce various neuropeptides that have a wide range of functions on immune cells. As research in this area expands, further insights are made into the role of neuropeptides and their immunomodulatory functions in the healthy and diseased cornea. Much remains to be known regarding the details of neuropeptide signaling and how it contributes to pathophysiology, which is likely due to complex interactions among neuropeptides, receptor isoform-specific signaling events, and the inflammatory microenvironment in disease. However, progress in this area has led to an increase in studies that have begun modulating neuropeptide activity for the treatment of corneal diseases with promising results, necessitating the need for a comprehensive review of the literature. This review focuses on the role of neuropeptides in maintaining the homeostasis of the ocular surface, alterations in disease settings, and the possible therapeutic potential of targeting these systems.
Collapse
Affiliation(s)
- Sudan Puri
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Departments of Immunology and Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Cornea Service, Tufts New England Eye Center, Boston, MA 02111, USA
| |
Collapse
|
2
|
A New Gal in Town: A Systematic Review of the Role of Galanin and Its Receptors in Experimental Pain. Cells 2022; 11:cells11050839. [PMID: 35269462 PMCID: PMC8909084 DOI: 10.3390/cells11050839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
Galanin is a neuropeptide expressed in a small percentage of sensory neurons of the dorsal root ganglia and the superficial lamina of the dorsal horn of the spinal cord. In this work, we systematically reviewed the literature regarding the role of galanin and its receptors in nociception at the spinal and supraspinal levels, as well as in chronic pain conditions. The literature search was performed in PubMed, Web of Science, Scopus, ScienceDirect, OVID, TRIP, and EMBASE using "Galanin" AND "pain" as keywords. Of the 1379 papers that were retrieved in the initial search, we included a total of 141 papers in this review. Using the ARRIVE guidelines, we verified that 89.1% of the works were of good or moderate quality. Galanin shows a differential role in pain, depending on the pain state, site of action, and concentration. Under normal settings, galanin can modulate nociceptive processing through both a pro- and anti-nociceptive action, in a dose-dependent manner. This peptide also plays a key role in chronic pain conditions and its antinociceptive action at both a spinal and supraspinal level is enhanced, reducing animals' hypersensitivity to both mechanical and thermal stimulation. Our results highlight galanin and its receptors as potential therapeutic targets in pain conditions.
Collapse
|
3
|
An K, Cui Y, Zhong X, Li K, Zhang J, Liu H, Wen Z. Immortalized Bone Mesenchymal Stromal Cells With Inducible Galanin Expression Produce Controllable Pain Relief in Neuropathic Rats. Cell Transplant 2022; 31:9636897221103861. [PMID: 35726855 PMCID: PMC9218486 DOI: 10.1177/09636897221103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Management of chronic pain is one of the most difficult problems in modern practice. Grafted human telomerase reverse transcriptase–immortalized bone marrow mesenchymal stromal cells (hTERT-BMSCs) with inducible galanin (GAL) expression have been considered to be a potentially safe and controllable approach for the alleviation of chronic pain. Therefore, in this study, we aimed to assess the feasibility of hTERT-BMSCs/Tet-on/GAL cells secreting GAL under the transcriptional control of doxycycline (Dox) for controllable pain relief. After transplanted into the subarachnoid space of neuropathic rats induced by spared nerve injury of sciatic nerve, their analgesic actions were investigated by behavioral tests. The results showed that the pain-related behaviors, mechanical allodynia, and thermal hyperalgesia were significantly alleviated during 1 to 7 weeks after grafts of hTERT-BMSCs/Tet-on/GAL cells without motor incoordination. Importantly, these effects could be reversed by GAL receptor antagonist M35 and regulated by Dox induction as compared with control. Moreover, the GAL level in cerebrospinal fluid and spinal GAL receptor 1 (GalR1) expression were correlated with Dox administration, but not GAL receptor 2 (GalR2). Meanwhile, spinal protein kinase Mζ (PKMζ) expression was also inhibited significantly. Taken together, these data suggest that inducible release of GAL from transplanted cells was able to produce controllable pain relief in neuropathic rats via inhibiting the PKMζ activation and activating its GalR1 rather than GalR2. This provides a promising step toward a novel stem cell–based strategy for pain therapy.
Collapse
Affiliation(s)
- Ke An
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yingpeng Cui
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaolong Zhong
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Anesthesiology, Guangzhou First people's Hospital, Guangzhou, China
| | - Kunhe Li
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinjun Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Huiping Liu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhishuang Wen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
The Influence of an Adrenergic Antagonist Guanethidine (GUA) on the Distribution Pattern and Chemical Coding of Dorsal Root Ganglia (DRG) Neurons Supplying the Porcine Urinary Bladder. Int J Mol Sci 2021; 22:ijms222413399. [PMID: 34948196 PMCID: PMC8708101 DOI: 10.3390/ijms222413399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Although guanethidine (GUA) was used in the past as a drug to suppress hyperactivity of the sympathetic nerve fibers, there are no available data concerning the possible action of this substance on the sensory component of the peripheral nervous system supplying the urinary bladder. Thus, the present study was aimed at disclosing the influence of intravesically instilled GUA on the distribution, relative frequency, and chemical coding of dorsal root ganglion neurons associated with the porcine urinary bladder. The investigated sensory neurons were visualized with a retrograde tracing method using Fast Blue (FB), while their chemical profile was disclosed with single-labeling immunohistochemistry using antibodies against substance P (SP), calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase activating polypeptide (PACAP), galanin (GAL), neuronal nitric oxide synthase (nNOS), somatostatin (SOM), and calbindin (CB). After GUA treatment, a slight decrease in the number of FB+ neurons containing SP was observed when compared with untreated animals (34.6 ± 6.5% vs. 45.6 ± 1.3%), while the number of retrogradely traced cells immunolabeled for GAL, nNOS, and CB distinctly increased (12.3 ± 1.0% vs. 7.4 ± 0.6%, 11.9 ± 0.6% vs. 5.4 ± 0.5% and 8.6 ± 0.5% vs. 2.7 ± 0.4%, respectively). However, administration of GUA did not change the number of FB+ neurons containing CGRP, PACAP, or SOM. The present study provides evidence that GUA significantly modifies the sensory innervation of the porcine urinary bladder wall and thus may be considered a potential tool for studying the plasticity of this subdivision of the bladder innervation.
Collapse
|
5
|
Komuro Y, Galas L, Morozov YM, Fahrion JK, Raoult E, Lebon A, Tilot AK, Kikuchi S, Ohno N, Vaudry D, Rakic P, Komuro H. The Role of Galanin in Cerebellar Granule Cell Migration in the Early Postnatal Mouse during Normal Development and after Injury. J Neurosci 2021; 41:8725-8741. [PMID: 34462307 PMCID: PMC8528496 DOI: 10.1523/jneurosci.0900-15.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 11/21/2022] Open
Abstract
Galanin, one of the most inducible neuropeptides, is widely present in developing brains, and its expression is altered by pathologic events (e.g., epilepsy, ischemia, and axotomy). The roles of galanin in brain development under both normal and pathologic conditions have been hypothesized, but the question of how galanin is involved in fetal and early postnatal brain development remains largely unanswered. In this study, using granule cell migration in the cerebellum of early postnatal mice (both sexes) as a model system, we examined the role of galanin in neuronal cell migration during normal development and after brain injury. Here we show that, during normal development, endogenous galanin participates in accelerating granule cell migration via altering the Ca2+ and cAMP signaling pathways. Upon brain injury induced by the application of cold insults, galanin levels decrease at the lesion sites, but increase in the surroundings of lesion sites. Granule cells exhibit the following corresponding changes in migration: (1) slowing down migration at the lesion sites; and (2) accelerating migration in the surroundings of lesion sites. Experimental manipulations of galanin signaling reduce the lesion site-specific changes in granule cell migration, indicating that galanin plays a role in such deficits in neuronal cell migration. The present study suggests that manipulating galanin signaling may be a potential therapeutic target for acutely injured brains during development.SIGNIFICANCE STATEMENT Deficits in neuronal cell migration caused by brain injury result in abnormal development of cortical layers, but the underlying mechanisms remain to be determined. Here, we report that on brain injury, endogenous levels of galanin, a neuropeptide, are altered in a lesion site-specific manner, decreasing at the lesion sites but increasing in the surroundings of lesion sites. The changes in galanin levels positively correlate with the migration rate of immature neurons. Manipulations of galanin signaling ameliorate the effects of injury on neuronal migration and cortical layer development. These results shed a light on galanin as a potential therapeutic target for acutely injured brains during development.
Collapse
Affiliation(s)
- Yutaro Komuro
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Ludovic Galas
- Regional Platform for Cell Imaging of Normandy, INSERM, Université de Rouen Normandie, 76000 Rouen, France
| | - Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Jennifer K Fahrion
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Emilie Raoult
- Regional Platform for Cell Imaging of Normandy, INSERM, Université de Rouen Normandie, 76000 Rouen, France
| | - Alexis Lebon
- Regional Platform for Cell Imaging of Normandy, INSERM, Université de Rouen Normandie, 76000 Rouen, France
| | - Amanda K Tilot
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Shin Kikuchi
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Nobuhiko Ohno
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Aichi 444-8787, Japan
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - David Vaudry
- Regional Platform for Cell Imaging of Normandy, INSERM, Université de Rouen Normandie, 76000 Rouen, France
- Neuropeptides, Neuronal Death and Cell Plasticity Team, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, INSERM U1239, Université de Rouen Normandie, 76000 Rouen, France
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut 06510
| | - Hitoshi Komuro
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
6
|
Liu F, Yajima T, Wang M, Shen JF, Ichikawa H, Sato T. Effects of trigeminal nerve injury on the expression of galanin and its receptors in the rat trigeminal ganglion. Neuropeptides 2020; 84:102098. [PMID: 33069139 DOI: 10.1016/j.npep.2020.102098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 11/24/2022]
Abstract
In the spinal nervous system, the expression of galanin (GAL) and galanin receptors (GALRs) that play important roles in the transmission and modulation of nociceptive information can be affected by nerve injury. However, in the trigeminal nervous system, the effects of trigeminal nerve injury on the expression of GAL are controversy in the previous studies. Besides, little is known about the effects of trigeminal nerve injury on the expression of GALRs. In the present study, the effects of trigeminal nerve injury on the expression of GAL and GALRs in the rat trigeminal ganglion (TG) were investigated by using quantitative real-time reverse transcription-polymerase chain reaction and immunohistochemistry. To identify the nerve-injured and nerve-uninjured TG neurons, activating transcription factor 3 (ATF3, the nerve-injured neuron marker) was stained by immunofluorescence. The levels of GAL mRNA in the rostral half and caudal half of the TG dramatically increased after transection of infraorbital nerve (ION) and inferior alveolar nerve (IAN), respectively. Immunohistochemical labeling of GAL and ATF3 revealed that GAL level was elevated in both injured and adjacent uninjured small and medium-sized TG neurons after ION/IAN transection. In addition, the levels of GAL2R-like immunoreactivity were reduced in both injured and adjacent uninjured TG neurons after ION/IAN transection, while levels of GAL1R and GAL3R-like immunoreactivity remained unchanged. Furthermore, the number of small to medium-sized TG neurons co-expressing GAL- and GAL1R/GAL2R/GAL3R-like immunoreactivity was significantly increased after ION/IAN transection. In line with previous studies in other spinal neuron systems, these results suggest that GAL and GALRs play functional roles in orofacial neuropathic pain and trigeminal nerve regeneration after trigeminal nerve injury.
Collapse
Affiliation(s)
- Fei Liu
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo machi, Sendai 980-8575, Japan; State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department II of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province 610041, China.
| | - Takehiro Yajima
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo machi, Sendai 980-8575, Japan
| | - Min Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department II of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department II of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Hiroyuki Ichikawa
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo machi, Sendai 980-8575, Japan
| | - Tadasu Sato
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo machi, Sendai 980-8575, Japan
| |
Collapse
|
7
|
Šípková J, Kramáriková I, Hynie S, Klenerová V. The galanin and galanin receptor subtypes, its regulatory role in the biological and pathological functions. Physiol Res 2017; 66:729-740. [PMID: 28730831 DOI: 10.33549/physiolres.933576] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The multitalented neuropeptide galanin was first discovered 30 years ago but initially no biologic activity was found. Further research studies discovered the presence of galanin in the brain and some peripheral tissues, and galanin was identified as a modulator of neurotransmission in the central and peripheral nervous system. Over the last decade there were performed very intensive studies of the neuronal actions and also of nonneuronal actions of galanin. Other galanin family peptides have been described, namely galanin, galanin-like peptide, galanin-message associated peptide and alarin. The effect of these peptides is mediated through three galanin receptors subtypes, GalR1, GalR2 and GalR3 belonging to G protein coupled receptors, and signaling via multiple transduction pathways, including inhibition of cyclic AMP/protein kinase A (GalR1, GalR3) and stimulation of phospholipase C (GalR2). This also explains why one specific molecule of galanin can be responsible for different roles in different tissues. The present review summarizes the information currently available on the relationship between the galaninergic system and known pathological states. The research of novel galanin receptor specific agonists and antagonists is also very promising for its future role in pharmacological treatment. The galaninergic system is important target for current and future biomedical research.
Collapse
Affiliation(s)
- J Šípková
- Laboratory of Neuropharmacology, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
8
|
Freimann K, Kurrikoff K, Langel Ü. Galanin receptors as a potential target for neurological disease. Expert Opin Ther Targets 2015. [PMID: 26220265 DOI: 10.1517/14728222.2015.1072513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Galanin is a 29/30 amino acid long neuropeptide that is widely expressed in the brains of many mammals. Galanin exerts its biological activities through three different G protein-coupled receptors, GalR1, GalR2 and GalR3. The widespread distribution of galanin and its receptors in the CNS and the various physiological and pharmacological effects of galanin make the galanin receptors attractive drug targets. AREAS COVERED This review provides an overview of the role of galanin and its receptors in the CNS, the involvement of the galaninergic system in various neurological diseases and the development of new galanin receptor-specific ligands. EXPERT OPINION Recent advances and novel approaches in migrating the directions of subtype-selective ligand development and chemical modifications of the peptide backbone highlight the importance of the galanin neurochemical system as a potential target for drug development.
Collapse
Affiliation(s)
- Krista Freimann
- a 1 University of Tartu, Institute of Technology , Tartu, Estonia +372 737 4871 ;
| | - Kaido Kurrikoff
- b 2 University of Tartu, Institute of Technology , Tartu, Estonia
| | - Ülo Langel
- c 3 University of Tartu, Institute of Technology , Tartu, Estonia.,d 4 Stockholm University, Arrhenius Laboratories for Natural Science, Department of Neurochemistry , Stockholm, Sweden
| |
Collapse
|
9
|
Lang R, Gundlach AL, Holmes FE, Hobson SA, Wynick D, Hökfelt T, Kofler B. Physiology, signaling, and pharmacology of galanin peptides and receptors: three decades of emerging diversity. Pharmacol Rev 2015; 67:118-75. [PMID: 25428932 DOI: 10.1124/pr.112.006536] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Galanin was first identified 30 years ago as a "classic neuropeptide," with actions primarily as a modulator of neurotransmission in the brain and peripheral nervous system. Other structurally-related peptides-galanin-like peptide and alarin-with diverse biologic actions in brain and other tissues have since been identified, although, unlike galanin, their cognate receptors are currently unknown. Over the last two decades, in addition to many neuronal actions, a number of nonneuronal actions of galanin and other galanin family peptides have been described. These include actions associated with neural stem cells, nonneuronal cells in the brain such as glia, endocrine functions, effects on metabolism, energy homeostasis, and paracrine effects in bone. Substantial new data also indicate an emerging role for galanin in innate immunity, inflammation, and cancer. Galanin has been shown to regulate its numerous physiologic and pathophysiological processes through interactions with three G protein-coupled receptors, GAL1, GAL2, and GAL3, and signaling via multiple transduction pathways, including inhibition of cAMP/PKA (GAL1, GAL3) and stimulation of phospholipase C (GAL2). In this review, we emphasize the importance of novel galanin receptor-specific agonists and antagonists. Also, other approaches, including new transgenic mouse lines (such as a recently characterized GAL3 knockout mouse) represent, in combination with viral-based techniques, critical tools required to better evaluate galanin system physiology. These in turn will help identify potential targets of the galanin/galanin-receptor systems in a diverse range of human diseases, including pain, mood disorders, epilepsy, neurodegenerative conditions, diabetes, and cancer.
Collapse
Affiliation(s)
- Roland Lang
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Andrew L Gundlach
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Fiona E Holmes
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Sally A Hobson
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - David Wynick
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Tomas Hökfelt
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Barbara Kofler
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| |
Collapse
|
10
|
Metcalf CS, Klein BD, McDougle DR, Zhang L, Smith MD, Bulaj G, White HS. Analgesic properties of a peripherally acting and GalR2 receptor-preferring galanin analog in inflammatory, neuropathic, and acute pain models. J Pharmacol Exp Ther 2014; 352:185-93. [PMID: 25347995 DOI: 10.1124/jpet.114.219063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
There are ongoing efforts to develop pain therapeutics with novel mechanisms of action that avoid common side effects associated with other analgesics. The anticonvulsant neuropeptide galanin is a potent regulator of neuronal excitability and has a well established role in pain modulation, making it a potential target for novel therapies. Our previous efforts focused on improving blood-brain-barrier penetration and enhancing the metabolic stability of galanin analogs to protect against seizures. More recently, we designed peripherally acting galanin analogs that reduce pain-related behaviors by acting in the periphery and exhibit preferential binding toward galanin receptor (GalR)2 over GalR1. In this study, we report preclinical studies of a monodisperse oligoethylene glycol-containing galanin analog, NAX 409-9 (previously reported as GalR2-dPEG24), in rodent analgesic and safety models. Results obtained with NAX 409-9 in these tests were compared with the representative analgesics gabapentin, ibuprofen, acetylsalicylic acid, acetaminophen, and morphine. In mice that received intraplantar carrageenan, NAX 409-9 increased paw withdrawal latency with an ED50 of 6.6 mg/kg i.p. NAX 409-9 also increased the paw withdrawal threshold to mechanical stimulation following partial sciatic nerve ligation in rats (2 mg/kg). Conversely, NAX 409-9 had no effect in the tail flick or hot plate assays (up to 24 mg/kg). Importantly, NAX 409-9 did not negatively affect gastrointestinal motility (4-20 mg/kg), respiratory rate (40-80 mg/kg), or bleed time (20 mg/kg). These studies illustrate that this nonbrain-penetrating galanin analog reduces pain behaviors in several models and does not produce some of the dose-limiting toxicities associated with other analgesics.
Collapse
Affiliation(s)
- Cameron S Metcalf
- Neuroadjuvants, Inc., Salt Lake City, Utah (C.S.M., B.D.K., D.R.M.); and Departments of Pharmacology and Toxicology (B.D.K., M.D.S., H.S.W.) and Medicinal Chemistry (L.Z., G.B.), College of Pharmacy, University of Utah, Salt Lake City, Utah
| | - Brian D Klein
- Neuroadjuvants, Inc., Salt Lake City, Utah (C.S.M., B.D.K., D.R.M.); and Departments of Pharmacology and Toxicology (B.D.K., M.D.S., H.S.W.) and Medicinal Chemistry (L.Z., G.B.), College of Pharmacy, University of Utah, Salt Lake City, Utah
| | - Daniel R McDougle
- Neuroadjuvants, Inc., Salt Lake City, Utah (C.S.M., B.D.K., D.R.M.); and Departments of Pharmacology and Toxicology (B.D.K., M.D.S., H.S.W.) and Medicinal Chemistry (L.Z., G.B.), College of Pharmacy, University of Utah, Salt Lake City, Utah
| | - Liuyin Zhang
- Neuroadjuvants, Inc., Salt Lake City, Utah (C.S.M., B.D.K., D.R.M.); and Departments of Pharmacology and Toxicology (B.D.K., M.D.S., H.S.W.) and Medicinal Chemistry (L.Z., G.B.), College of Pharmacy, University of Utah, Salt Lake City, Utah
| | - Misty D Smith
- Neuroadjuvants, Inc., Salt Lake City, Utah (C.S.M., B.D.K., D.R.M.); and Departments of Pharmacology and Toxicology (B.D.K., M.D.S., H.S.W.) and Medicinal Chemistry (L.Z., G.B.), College of Pharmacy, University of Utah, Salt Lake City, Utah
| | - Grzegorz Bulaj
- Neuroadjuvants, Inc., Salt Lake City, Utah (C.S.M., B.D.K., D.R.M.); and Departments of Pharmacology and Toxicology (B.D.K., M.D.S., H.S.W.) and Medicinal Chemistry (L.Z., G.B.), College of Pharmacy, University of Utah, Salt Lake City, Utah
| | - H Steve White
- Neuroadjuvants, Inc., Salt Lake City, Utah (C.S.M., B.D.K., D.R.M.); and Departments of Pharmacology and Toxicology (B.D.K., M.D.S., H.S.W.) and Medicinal Chemistry (L.Z., G.B.), College of Pharmacy, University of Utah, Salt Lake City, Utah
| |
Collapse
|
11
|
Zhang L, Klein BD, Metcalf CS, Smith MD, McDougle DR, Lee HK, White HS, Bulaj G. Incorporation of monodisperse oligoethyleneglycol amino acids into anticonvulsant analogues of galanin and neuropeptide y provides peripherally acting analgesics. Mol Pharm 2013; 10:574-85. [PMID: 23259957 DOI: 10.1021/mp300236v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Delivery of neuropeptides into the central and/or peripheral nervous systems supports development of novel neurotherapeutics for the treatment of pain, epilepsy and other neurological diseases. Our previous work showed that the combination of lipidization and cationization applied to anticonvulsant neuropeptides galanin (GAL) and neuropeptide Y (NPY) improved their penetration across the blood-brain barrier yielding potent antiepileptic lead compounds, such as Gal-B2 (NAX 5055) or NPY-B2. To dissect peripheral and central actions of anticonvulsant neuropeptides, we rationally designed, synthesized and characterized GAL and NPY analogues containing monodisperse (discrete) oligoethyleneglycol-lysine (dPEG-Lys). The dPEGylated analogues Gal-B2-dPEG(24), Gal-R2-dPEG(24) and NPY-dPEG(24) displayed analgesic activities following systemic administration, while avoiding penetration into the brain. Gal-B2-dPEG(24) was synthesized by a stepwise deprotection of orthogonal 4-methoxytrityl and allyloxycarbonyl groups, and subsequent on-resin conjugations of dPEG(24) and palmitic acids, respectively. All the dPEGylated analogues exhibited substantially decreased hydrophobicity (expressed as logD values), increased in vitro serum stabilities and pronounced analgesia in the formalin and carrageenan inflammatory pain assays following systemic administration, while lacking apparent antiseizure activities. These results suggest that discrete PEGylation of neuropeptides offers an attractive strategy for developing neurotherapeutics with restricted penetration into the central nervous system.
Collapse
Affiliation(s)
- Liuyin Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah , Salt Lake City, Utah 84108, United States
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Peripheral galanin receptor 2 as a target for the modulation of pain. PAIN RESEARCH AND TREATMENT 2012; 2012:545386. [PMID: 22315681 PMCID: PMC3270467 DOI: 10.1155/2012/545386] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/19/2011] [Indexed: 11/18/2022]
Abstract
The neuropeptide galanin is widely expressed in the nervous system and has an important role in nociception. It has been shown that galanin can facilitate and inhibit nociception in a dose-dependent manner, principally through the central nervous system, with enhanced antinociceptive actions after nerve injury. However, following nerve injury, expression of galanin within the peripheral nervous system is dramatically increased up to 120-fold. Despite this striking increase in the peripheral nervous system, few studies have investigated the role that galanin plays in modulating nociception at the primary afferent nociceptor. Here, we summarise the recent work supporting the role of peripherally expressed galanin with particular reference to the dual actions of the galanin receptor 2 in neuropathic pain highlighting this as a potential target analgesic.
Collapse
|
13
|
Abstract
Since the discovery of galanin in 1983, one of the most frequently suggested physiological function for this peptide is pain modulation at the level of the spinal cord. This notion, initially based on the preferential distribution of galanin in dorsal spinal cord, has been supported by results from a large number of morphological, molecular, and functional studies. It is generally agreed that spinally applied galanin produces a biphasic, dose-dependent effect on spinal nociception through activation of GalR1 (inhibitory) or GalR2 (excitatory) receptors. Galanin also appears to have an endogenous inhibitory role, particularly after peripheral nerve injury when the synthesis of galanin is increased in sensory neurons. In recent years, small molecule ligands of galanin receptors have been developed, which may lead to the development of analgesic drugs, which affects the galanin system at the spinal cord level.
Collapse
|
14
|
Mitsukawa K, Lu X, Bartfai T. Galanin, galanin receptors, and drug targets. EXPERIENTIA SUPPLEMENTUM (2012) 2010; 102:7-23. [PMID: 21299058 DOI: 10.1007/978-3-0346-0228-0_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Galanin, a neuropeptide widely expressed in the central and peripheral nervous systems and in the endocrine system, has been shown to regulate numerous physiological and pathological processes through interactions with three G-protein-coupled receptors, GalR1 through GalR3. Over the past decade, some of the receptor subtype-specific effects have been elucidated through pharmacological studies using subtype selective ligands, as well as through molecular approaches involving knockout animals. In this chapter, we summarize the current data which constitute the basis of targeting GalR1, GalR2, and GalR3 for the treatment of various human diseases and pathological conditions, including seizure, Alzheimer's disease, mood disorders, anxiety, alcohol intake in addiction, metabolic diseases, pain and solid tumors.
Collapse
Affiliation(s)
- K Mitsukawa
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
15
|
An K, Xu Y, Yang H, Shu HH, Xiang HB, Tian YK. Subarachnoid transplantation of immortalized galanin-overexpressing astrocytes attenuates chronic neuropathic pain. Eur J Pain 2009; 14:595-601. [PMID: 20004601 DOI: 10.1016/j.ejpain.2009.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 10/06/2009] [Accepted: 10/20/2009] [Indexed: 10/20/2022]
Abstract
Treatment of chronic neuropathic pain resulted from peripheral nerve injury is one of the most difficult problems in modern clinical practice. The use of cell lines as biologic "minipumps" to chronically deliver anti-nociceptive molecules into the pain-processing centers of spinal cord is a newly developing technique for the treatment of pain. Moreover, spinal administration of exogenous galanin (GAL) is a useful target for the treatment of chronic pain after nerve injury. Because of better histocompatibility, lower immunogenicity and reproducibility, immortalized astrocytes (IAST) have been served as a promising cellular vehicle to deliver therapeutic molecules into CNS. In this study, the rat IAST was transfected with rat preprogalanin cDNA and the galanin-synthesizing and secreting cell line, IAST/GAL, was isolated. After cells were transplanted into the subarachnoid space of rats with chronic neuropathic pain induced by spared nerve injury (SNI) of sciatic nerve, their analgesic potential was evaluated by behavioral tests. The results showed that IAST/GAL transfected with preprogalanin gene could express and secrete significantly higher level of GAL protein in vitro and in vivo as compared with control cells. In addition, the pain-related behaviors, thermal hyperalgesia and mechanical allodynia were significantly alleviated during the 1-7 weeks after grafts of IAST/GAL cells, which could be reversed by galanin receptor antagonist M35 temporarily. Taken together, these data suggest that subarachnoid transplant of immortalized galanin-overexpressing astrocytes near the pain-processing centers was able to reverse the development of chronic neuropathic pain, which offers an adjunct approach to currently used therapies for the pain management.
Collapse
Affiliation(s)
- Ke An
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | | | | | | | | | | |
Collapse
|
16
|
White HS, Scholl EA, Klein BD, Flynn SP, Pruess TH, Green BR, Zhang L, Bulaj G. Developing novel antiepileptic drugs: characterization of NAX 5055, a systemically-active galanin analog, in epilepsy models. Neurotherapeutics 2009; 6:372-80. [PMID: 19332332 PMCID: PMC4402707 DOI: 10.1016/j.nurt.2009.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 01/09/2009] [Indexed: 11/25/2022] Open
Abstract
The endogenous neuropeptide galanin and its associated receptors galanin receptor 1 and galanin receptor 2 are highly localized in brain limbic structures and play an important role in the control of seizures in animal epilepsy models. As such, galanin receptors provide an attractive target for the development of novel anticonvulsant drugs. Our efforts to engineer galanin analogs that can penetrate the blood-brain-barrier and suppress seizures, yielded NAX 5055 (Gal-B2), a systemically-active analog that maintains low nanomolar affinity for galanin receptors and displays a potent anticonvulsant activity. In this report, we show that NAX 5055 is active in three models of epilepsy: 1) the Frings audiogenic seizure-susceptible mouse, 2) the mouse corneal kindling model of partial epilepsy, and 3) the 6 Hz model of pharmacoresistant epilepsy. NAX 5055 was not active in the traditional maximal electroshock and subcutaneous pentylenetetrazol seizure models. Unlike most antiepileptic drugs, NAX 5055 showed high potency in the 6 Hz model of epilepsy across all three different stimulation currents; i.e., 22, 32 and 44 mA, suggesting a potential use in the treatment of pharmacoresistant epilepsy. Furthermore, NAX 5055 was found to be biologically active after intravenous, intraperitoneal, and subcutaneous administration, and efficacy was associated with a linear pharmacokinetic profile. The results of the present investigation suggest that NAX 5055 is a first-in-class neurotherapeutic for the treatment of epilepsy in patients refractory to currently approved antiepileptic drugs.
Collapse
Affiliation(s)
- H Steve White
- Department of Pharmacology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sun YG, Gu XL, Yu LC. The neural pathway of galanin in the hypothalamic arcuate nucleus of rats: activation of beta-endorphinergic neurons projecting to periaqueductal gray matter. J Neurosci Res 2007; 85:2400-6. [PMID: 17600376 DOI: 10.1002/jnr.21396] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have previously shown that microinjection of galanin into the arcuate nucleus of hypothalamus (ARC) produced antinociceptive effects in rats (Sun et al., 2003a). In this study, the neural pathway of galanin from ARC to midbrain periaqueductal gray (PAG) in nociceptive modulation was investigated. The hindpaw withdrawal latencies (HWLs) with noxious thermal and mechanical stimulation were assessed by the hotplate and the Randall Selitto tests. Intra-ARC administration of 0.1, 0.5, or 1 nmol of galanin induced significant increases in HWLs of rats. The galanin-induced increases in HWLs were inhibited by injection of 10 microg of the opioid receptor antagonist naloxone or 1 nmol of the mu-opioid receptor antagonist beta-funaltrexamine (beta-FNA) into PAG, suggesting that the antinociceptive effects induced by intra-ARC injection of galanin occur via the neural pathway from ARC to PAG. Furthermore, our results demonstrate that the galaninergic fibers directly innervated the beta-endorphinergic neurons in ARC by immunofluorescent methods. Taken together, our results suggest that galanin produces antinociceptive effects in the ARC of rats by activating the beta-endorphinergic pathway from ARC to PAG.
Collapse
Affiliation(s)
- Yan-Gang Sun
- Neurobiology Laboratory and National Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | | | | |
Collapse
|
18
|
Gu XL, Sun YG, Yu LC. Involvement of galanin in nociceptive regulation in the arcuate nucleus of hypothalamus in rats with mononeuropathy. Behav Brain Res 2007; 179:331-5. [PMID: 17383023 DOI: 10.1016/j.bbr.2007.02.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 02/08/2007] [Accepted: 02/22/2007] [Indexed: 12/28/2022]
Abstract
The hindpaw withdrawal latencies (HWLs) to noxious thermal and mechanical stimulation increased significantly after intra-hypothalamic arcuate nucleus (ARC) injection of galanin in mononeuropathic rats, while intra-ARC injection of the putative antagonist of galanin receptors markedly reduced the HWLs. The number of galaninergic neurons in the ARC increased in rats with mononeuropathy than that in normal rats. The results demonstrated that both endogenous and exogenous galanin were involved in the regulation of nociception in the ARC of rats with peripheral nerve injury.
Collapse
Affiliation(s)
- Xing-Long Gu
- Neurobiology Laboratory and National Laboratory of Biomembrane and Membrane Biotechnology, Center for Brain and Cognitive Science, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | | | | |
Collapse
|
19
|
Holmes FE, Mahoney SA, Wynick D. Use of genetically engineered transgenic mice to investigate the role of galanin in the peripheral nervous system after injury. Neuropeptides 2005; 39:191-9. [PMID: 15944011 DOI: 10.1016/j.npep.2005.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2005] [Accepted: 01/05/2005] [Indexed: 10/25/2022]
Abstract
The neuropeptide galanin is present at high levels within the dorsal root ganglia (DRG) and spinal cord during development and after peripheral nerve damage in the adult. This pattern of expression suggests that it may play a role in the adaptive response of the peripheral nervous system (PNS) to injury. Several experimental paradigms have demonstrated that galanin modulates pain transmission, particularly after nerve injury. In our laboratory we have used a transgenic approach to further elucidate the functions of galanin within the somatosensory system. We have generated mice which over-express galanin (either inducibly after nerve injury, or constitutively), and knock-out (KO) mice, in which galanin is absent in all cells, throughout development and in the adult. Analysis of the nociceptive behaviour of the galanin over-expressing animals, before and after nerve injury, supports the view that galanin is an inhibitory neuromodulator of spinal cord transmission. In apparent contradiction to these findings, galanin KO animals fail to develop allodynia and hyperalgesia after nerve injury. However, further studies have shown that galanin is critical for the developmental survival of a subset of small diameter, unmyelinated sensory neurons that are likely to be nociceptors. This finding may well explain the lack of neuropathic pain-like behaviour after injury in the KO animals. Furthermore, the developmental survival role played by galanin is recapitulated in the adult where the peptide is required for optimal neuronal regeneration after injury, and in the hippocampus where it plays a neuroprotective role after excitotoxic injury.
Collapse
Affiliation(s)
- F E Holmes
- LINE, DHB, University of Bristol, Whitson Street, Bristol BS1 3NY, UK
| | | | | |
Collapse
|
20
|
An K, Tian Y, Yang H, Gao F, Wang P. Immortalized rat astrocyte strain genetically modified by rat preprogalanin gene. Curr Med Sci 2005; 25:144-6, 197. [PMID: 16116957 DOI: 10.1007/bf02873561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Indexed: 12/23/2022]
Abstract
To construct an immortalized rat astrocyte strain genetically modified by rat preprogalanin gene (IAST/GAL) and detect its galanin (GAL) expression and secretion, a cDNA fragment of rat GAL in plasmid of pBS KS(+)-GAL was inserted into eukaryotic expression vector pcDNA3.1 (+) by DNA recombinant technology, then the restriction enzyme digestion and DNA sequencing were carried out to evaluate the recombinant. The pcDNA3.1 (+)-GAL and pcDNA3.1 (+) construct were transfected into immortalized rat astrocyte strain (IAST) by lipofectamine and the population of cells which stably integrated the construct was selected with 600 microg/mL G418. Individual clones were screened and expanded into clonal cell strains. Detection of Neo gene was used to validate the success of the transfection. Immunocytochemical staining, RT-PCR and radioimmunoassay were used to detect the expression and secretion level of GAL. The recombinant had been successfully constructed by restriction enzyme digestion and DNA sequencing. Detection of Neo gene showed that the pcDNA3.1 (+)-GAL and pcDNA3.1 (+) have been successfully transfected into IAST. After selection by using G418, IAST/GAL and IAST/Neo cell strains were obtained. IAST/GAL, IAST/Neo and IAST were immunostained positively for GAL, but the GAL average optical density of IAST/GAL was significantly higher than that of IAST/Neo and IAST (P< 0.01). The level of GAL mRNA expression and the supernatant concentration of GAL in cultured IAST/GAL were significantly higher than those of IAST and IAST/Neo (P<0.01), but no significant differences were found between the IAST and IAST/Neo (P>0.05). It was concluded that IAST/GAL strain was constructed successfully and it might provide a basis for the further study of pain therapy.
Collapse
Affiliation(s)
- Ke An
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | |
Collapse
|
21
|
Wrenn CC, Kinney JW, Marriott LK, Holmes A, Harris AP, Saavedra MC, Starosta G, Innerfield CE, Jacoby AS, Shine J, Iismaa TP, Wenk GL, Crawley JN. Learning and memory performance in mice lacking the GAL-R1 subtype of galanin receptor. Eur J Neurosci 2004; 19:1384-96. [PMID: 15016096 DOI: 10.1111/j.1460-9568.2004.03214.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neuropeptide galanin induces performance deficits in a wide range of cognitive tasks in rodents. Three G-protein-coupled galanin receptor subtypes, designated GAL-R1, GAL-R2 and GAL-R3, have been cloned. The present study examined the role of GAL-R1 in cognition by testing mice with a null mutation in Galr1 on several different types of learning and memory tasks. Assessments of general health, neurological reflexes, sensory abilities and motor functions were conducted as control measures. Mutant mice were unimpaired in social transmission of food preference and the Morris water maze. In tests of fear conditioning, mutant mice were unimpaired in a delay version of cued fear conditioning. However, mice homozygous for the null mutation were impaired in a trace version of cued fear conditioning. Mutant mice were unimpaired in contextual fear conditioning, whether training was by the delay or trace protocol. General health, neurological reflexes, sensory abilities and motor functions did not differ across genotypes, indicating that the trace fear conditioning deficit was not an artifact of procedural disabilities. The findings of normal performance on several cognitive tasks and a selective deficit in trace cued fear conditioning in homozygous GAL-R1 mutant mice are discussed in terms of hypothesized roles of the GAL-R1 subtype. The generally normal phenotype of GAL-R1 null mutants supports the use of this line for identification of the receptor subtypes that mediate the cognitive deficits produced by exogenous galanin.
Collapse
Affiliation(s)
- Craige C Wrenn
- Laboratory of Behavioural Neuroscience, National Institute of Mental Health, Bethesda, MD 20892-1375, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mahoney SA, Hosking R, Wynick D. The galanin antagonist M35 has intrinsic agonistic activity in the dorsal root ganglion. Neuroreport 2003; 14:1649-52. [PMID: 14502094 DOI: 10.1097/00001756-200308260-00022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The chimeric peptide M35 (galanin(1-3)-bradykinin(2-9)amide) is a high-affinity galanin receptor ligand which acts as a galanin receptor antagonist in many experimental models such as the flexor reflex and chronic constriction injury in rat. However, more recently there have been conflicting reports that M35 may act as a galanin receptor agonist in certain systems. Here we demonstrate that in the absence of endogenous galanin M35 has an agonistic effect, significantly enhancing neurite outgrowth from cultured adult mouse dorsal root ganglion neurons, albeit at a lower potency than galanin peptide itself. However, in the presence of galanin its agonistic activity is masked and thus it appears to act as a galanin receptor antagonist.
Collapse
Affiliation(s)
- Sally-Ann Mahoney
- University Research Centre for Neuroendocrinology, University of Bristol, UK
| | | | | |
Collapse
|
23
|
Sun YG, Gu XL, Lundeberg T, Yu LC. An antinociceptive role of galanin in the arcuate nucleus of hypothalamus in intact rats and rats with inflammation. Pain 2003; 106:143-50. [PMID: 14581121 DOI: 10.1016/s0304-3959(03)00316-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the arcuate nucleus of hypothalamus (ARC), galaninergic fibers form synaptic contacts with proopiomelanocortin neurons, which are involved in pain modulation. The present study assessed the role of exogenous and endogenous galanin in the modulation of nociception in the ARC of rats. The hindpaw withdrawal latency (HWL) to thermal and mechanical stimulation was assessed by the hot-plate test and the Randall Selitto Test. Intra-ARC injection of galanin dose-dependently increased the HWLs in intact rats, indicating an antinociceptive role of exogenous galanin in the ARC. The antinociceptive effect of galanin was blocked by following intra-ARC injection of galantide, a putative galanin receptor antagonist, suggesting that the antinociceptive effect of galanin is mediated by galanin receptors. Moreover, intra-ARC injection of galanin increased the HWL in rats with inflammation. Intra-ARC administration of galantide alone reduced the HWLs in rats with inflammation, while there were no influences of galantide on the HWL in intact rats. Taken together, the results show that galanin has an antinociceptive role in the ARC of intact rats and rats with inflammation.
Collapse
Affiliation(s)
- Yan-Gang Sun
- Neurobiology Laboratory, College of Life Sciences, National Laboratory of Biomembrane and Membrane Biotechnology and Center for Brain and Cognitive Science, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
24
|
Holmes FE, Bacon A, Pope RJP, Vanderplank PA, Kerr NCH, Sukumaran M, Pachnis V, Wynick D. Transgenic overexpression of galanin in the dorsal root ganglia modulates pain-related behavior. Proc Natl Acad Sci U S A 2003; 100:6180-5. [PMID: 12721371 PMCID: PMC156346 DOI: 10.1073/pnas.0937087100] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Indexed: 11/18/2022] Open
Abstract
The neuropeptide galanin is expressed in the dorsal root ganglia (DRG) and spinal cord and is thought to be involved in the modulation of pain processing. However, its mechanisms of action are complex and poorly understood, as both facilitatory and inhibitory effects have been described. To understand further the role played by galanin in nociception, we have generated two transgenic lines that overexpress galanin in specific populations of primary afferent DRG neurons in either an inducible or constitutive manner. In the first line, a previously defined enhancer region from the galanin locus was used to target galanin to the DRG (Gal-OE). Transgene expression recapitulates the spatial endogenous galanin distribution pattern in DRG neurons and markedly overexpresses the peptide in the DRG after nerve injury but not in the uninjured state. In the second line, an enhancer region of the c-Ret gene was used to constitutively and ectopically target galanin overexpression to the DRG (Ret-OE). The expression of this second transgene does not alter significantly after nerve injury. Here, we report that intact Ret-OE, but not Gal-OE, animals have significantly elevated mechanical and thermal thresholds. After nerve damage, using a spared nerve-injury model, mechanical allodynia is attenuated markedly in both the Gal-OE and Ret-OE mice compared with WT controls. These results support an inhibitory role for galanin in the modulation of nociception both in intact animals and in neuropathic pain states.
Collapse
Affiliation(s)
- Fiona E Holmes
- University Research Centre for Neuroendocrinology, University of Bristol, Marlborough Street, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Flatters SJL, Fox AJ, Dickenson AH. In vivo and in vitro effects of peripheral galanin on nociceptive transmission in naive and neuropathic states. Neuroscience 2003; 116:1005-12. [PMID: 12617941 DOI: 10.1016/s0306-4522(02)00947-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Galanin is widely distributed in the nervous system and is consistently upregulated in both dorsal root ganglion and spinal neurones by peripheral nerve injury. This study investigates the peripheral effects of galanin on nociceptive neurones using in vitro and in vivo electrophysiological techniques in naive and neuropathic rats. Using an in vitro skin-nerve preparation recording from single nociceptive fibres, galanin (1 microM) significantly inhibited firing induced by noxious heat in 65% of fibres examined. In the remaining 35% of fibres, galanin (1 microM) induced a facilitation of the responses to noxious heat. To examine the effect of peripheral galanin in vivo, extracellular recordings from convergent dorsal horn neurones were made in anaesthetised naive sham-operated and spinal nerve-ligated (SNL) rats. Injection of galanin (0.1-10 microg) into hindpaw receptive fields inhibited responses to innocuous mechanical, noxious mechanical and noxious heat stimuli in a proportion of neurones in each animal group and facilitated the remaining neurones. However, a higher proportion of neurones (80-90%) was inhibited by peripheral galanin administration in SNL rats compared with naive (45-55%) and sham (70-80%) rats. These results show that galanin can have both excitatory and inhibitory effects on peripheral sensory neurones, perhaps reflecting differential receptor activation, and that the proportion of these receptors may change following peripheral neuropathy.
Collapse
Affiliation(s)
- S J L Flatters
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | |
Collapse
|
26
|
Yoon YS, Hwang IK, Lee IS, Suh JG, Shin JW, Kang TC, Oh YS, Won MH. Galanin-immunoreactive cells and their relation to calcitonin gene-related peptide-, substance P- and somatostatin-immunoreactive cells in rat lumbar dorsal root ganglia. Anat Histol Embryol 2003; 32:110-5. [PMID: 12797533 DOI: 10.1046/j.1439-0264.2003.00425.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report upon the distribution of galanin-immunoreactive (GAL-IR) cells in the lumbar dorsal root ganglia (DRG) of the rat, and upon the distribution of GAL-IR cells, which also contain calcitonin gene-related peptide (CGRP)-, substance P (SP)- and somatostatin (SOM)-immunoreactivity. Neuropeptide-immunoreactive lumbar DRG cells were 55.8% for CGRP, 12.7% for SP, and 6.5% for GAL in lumbar DRG cells. There was no significant difference between the right and left DRGs (L1-L6) for any neuropeptide-immunoreactive cell (P < 0.01). In terms of size distribution, CGRP-immunoreactive cells were identified below 1500 microm2, and SP-, and GAL-IR cells below 600 microm2. Neuropeptide immunoreactive cells showed various immunoreactivities in the cytoplasm according to each neuropeptide. CGRP and SP immunoreactive cells were colocalized with GAL immunoreactive cells in the serial sections about 83.3 and 60% respectively, but SOM colocalizing with GAL-IR cells were not in evidence. The current results confirm and extend previous results, and show that neuropeptides can coexist in single sensory neurones of the rat DRG. In addition, our results demonstrate that the normal distribution of some neurotransmitters modulating sensory action in Wistar Kyoto rat, make this model more prone to develop neuropathic pain than Sprague-Dawley rat.
Collapse
Affiliation(s)
- Y S Yoon
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Galanin, a 29-amino-acid peptide expressed in dorsal root ganglia (DRG) and spinal dorsal horn interneurones, is regulated by nerve injury and peripheral inflammation. The functional significance of such regulation has been subject to intense studies, including the analysis of galanin null mice, with the production of apparently conflicting results. Here, we suggest that upregulation of galanin in DRG neurones following nerve injury results in antinociception via stimulation of galanin GAL1 receptors on dorsal horn neurones, and that the pro-nociceptive effect of galanin is related to presynaptic galanin GAL2 receptors on primary afferents. A selective GAL1 receptor agonist could therefore be valuable for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Hong-Xiang Liu
- Dept of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
28
|
Chapter IV Localization of galanin receptor subtypes in the rat CNS. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0924-8196(02)80006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
29
|
Liu HX, Brumovsky P, Schmidt R, Brown W, Payza K, Hodzic L, Pou C, Godbout C, Hökfelt T. Receptor subtype-specific pronociceptive and analgesic actions of galanin in the spinal cord: selective actions via GalR1 and GalR2 receptors. Proc Natl Acad Sci U S A 2001; 98:9960-4. [PMID: 11481429 PMCID: PMC55560 DOI: 10.1073/pnas.161293598] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2001] [Indexed: 11/18/2022] Open
Abstract
Galanin is a 29-aa neuropeptide with a complex role in pain processing. Several galanin receptor subtypes are present in dorsal root ganglia and spinal cord with a differential distribution. Here, we describe a generation of a specific galanin R2 (GalR2) agonist, AR-M1896, and its application in studies of a rat neuropathic pain model (Bennett). The results show that in normal rats mechanical and cold allodynia of the hindpaw are induced after intrathecal infusion of low-dose galanin (25 ng per 0.5 microl/h). The same effect is seen with equimolar doses of AR-M1896 or AR-M961, an agonist both at GalR1 and GalR2 receptors. In allodynic Bennett model rats, the mechanical threshold increased dose-dependently after intrathecal injection of a high dose of AR-M961, whereas no effect was observed in the control or AR-M1896 group. No effect of either of the two compounds was observed in nonallodynic Bennett model rats. These data indicate that a low dose of galanin has a nociceptive role at the spinal cord level mediated by GalR2 receptors, whereas the antiallodynic effect of high-dose galanin on neuropathic pain is mediated by the GalR1 receptors. Thus, a selective GalR1 agonist may be used to treat neuropathic pain.
Collapse
MESH Headings
- Analgesics, Non-Narcotic/administration & dosage
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Non-Narcotic/therapeutic use
- Animals
- Causalgia/chemically induced
- Causalgia/drug therapy
- Causalgia/physiopathology
- Cold Temperature/adverse effects
- Dose-Response Relationship, Drug
- Galanin/administration & dosage
- Galanin/chemistry
- Galanin/pharmacology
- Galanin/physiology
- Galanin/therapeutic use
- Galanin/toxicity
- Ganglia, Spinal/chemistry
- Ganglia, Spinal/drug effects
- Hindlimb/innervation
- Hyperesthesia/chemically induced
- Hyperesthesia/drug therapy
- Hyperesthesia/etiology
- Hyperesthesia/physiopathology
- Infusion Pumps, Implantable
- Male
- Models, Animal
- Nerve Tissue Proteins/agonists
- Nerve Tissue Proteins/physiology
- Pain Threshold/drug effects
- Peptide Fragments/chemistry
- Peptide Fragments/pharmacology
- Protein Isoforms/agonists
- Protein Isoforms/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Galanin
- Receptors, Neuropeptide/agonists
- Receptors, Neuropeptide/physiology
- Sciatic Nerve/injuries
- Sciatica/drug therapy
- Sciatica/etiology
- Sciatica/physiopathology
- Spinal Cord/chemistry
- Spinal Cord/physiopathology
- Stress, Mechanical
- Substrate Specificity
Collapse
Affiliation(s)
- H X Liu
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|