1
|
Inoue M, Baba T, Takahashi F, Terao M, Yanai S, Shima Y, Saito D, Sugihara K, Miura T, Takada S, Suyama M, Ohkawa Y, Morohashi KI. Tmsb10 triggers fetal Leydig differentiation by suppressing the RAS/ERK pathway. Commun Biol 2022; 5:974. [PMID: 36109592 PMCID: PMC9478096 DOI: 10.1038/s42003-022-03941-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Leydig cells in fetal testes play crucial roles in masculinizing fetuses through androgen production. Gene knockout studies have revealed that growth factors are implicated in fetal Leydig cell (FLC) differentiation, but little is known about the mechanisms regulating this process. We investigate this issue by characterizing FLC progenitor cells using single-cell RNA sequencing. The sequence datasets suggest that thymosin β10 (Tmsb10) is transiently upregulated in the progenitors. While studying the function of Tmsb10, we reveal that platelet-derived growth factor (PDGF) regulates ciliogenesis through the RAS/ERK and PI3K/AKT pathways, and thereby promotes desert hedgehog (DHH)-dependent FLC differentiation. Tmsb10 expressed in the progenitor cells induces their differentiation into FLCs by suppressing the RAS/ERK pathway. Through characterizing the transiently expressed Tmsb10 in the FLC progenitors, this study unveils the molecular process of FLC differentiation and shows that it is cooperatively induced by DHH and PDGF. Investigation of fetal Leydig progenitors shows that thymosin β10 (Tmsb10) suppresses the RAS/ERK pathway, inducing progenitor differentiation into fetal Leydig cells.
Collapse
|
2
|
Zhang GH, Murthy KD, Binti Pare R, Qian YH. Protective effect of Tβ4 on central nervous system tissues and its developmental prospects. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220934559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tissue repair and regeneration in the central nervous system (CNS) remains a serious medical problem. CNS diseases such as traumatic and neurological brain injuries have a high mortality and disability rate, thereby bringing a considerable amount of economic burden to society and families. How to treat traumatic and neurological brain injuries has always been a serious issue faced by neurosurgeons. The global incidence of traumatic and neurological brain injuries has gradually increased and become a global challenge. Thymosin β4 (Tβ4) is the main G-actin variant molecule in eukaryotic cells. During the development of the CNS, Tβ4 regulates neurogenesis, tangential expansion, tissue growth, and cerebral hemisphere folding. In addition, Tβ4 has anti-apoptotic and anti-inflammatory properties. It promotes angiogenesis, wound healing, stem/progenitor cell differentiation, and other characteristics of cell migration and survival, providing a scientific basis for the repair and regeneration of injured nerve tissue. This review provides evidence to support the role of Tβ4 in the protection and repair of nervous tissue in CNS diseases, especially with the potential to control brain inflammatory processes, and thus open up new therapeutic applications for a series of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gui-hong Zhang
- School of Medicine, Xi’an International University, Xi’an, China
- Department of Biomedical Science and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Kota Kinabalu, Malaysia
| | - Krishna Dilip Murthy
- Department of Biomedical Science and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Kota Kinabalu, Malaysia
| | - Rahmawati Binti Pare
- Department of Biomedical Science and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Kota Kinabalu, Malaysia
| | - Yi-hua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| |
Collapse
|
3
|
Expression of Thymosin β4 in Ameloblasts during Mouse Tooth Development. Appl Microsc 2016. [DOI: 10.9729/am.2016.46.1.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
4
|
Nemolato S, Cabras T, Messana I, Gerosa C, Faa G, Castagnola M. Do β-Thymosins Play a Role in Human Nephrogenesis? CURRENT CLINICAL PATHOLOGY 2014. [DOI: 10.1007/978-1-4939-0947-6_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Kim YC, Kim BG, Lee JH. Thymosin β10 expression driven by the human TERT promoter induces ovarian cancer-specific apoptosis through ROS production. PLoS One 2012; 7:e35399. [PMID: 22623951 PMCID: PMC3356296 DOI: 10.1371/journal.pone.0035399] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/16/2012] [Indexed: 11/18/2022] Open
Abstract
Thymosin β(10) (Tβ(10)) regulates actin dynamics as a cytoplasm G-actin sequestering protein. Previously, we have shown that Tβ(10) diminishes tumor growth, angiogenesis, and proliferation by disrupting actin and by inhibiting Ras. However, little is known about its mechanism of action and biological function. In the present study, we establish a new gene therapy model using a genetically modified adenovirus, referred to as Ad.TERT.Tβ(10), that can overexpress the Tβ(10) gene in cancer cells. This was accomplished by replacing the native Tβ(10) gene promoter with the human TERT promoter in Ad.TERT.Tβ(10). We investigated the cancer suppression activity of Tβ(10) and found that Ad.TERT.Tβ(10) strikingly induced cancer-specific expression of Tβ(10) as well as apoptosis in a co-culture model of human primary ovarian cancer cells and normal fibroblasts. Additionally, Ad.TERT.Tβ(10) decreased mitochondrial membrane potential and increased reactive oxygen species (ROS) production. These effects were amplified by co-treatment with anticancer drugs, such as paclitaxel and cisplatin. These findings indicate that the rise in ROS production due to actin disruption by Tβ(10) overexpression increases apoptosis of human ovarian cancer cells. Indeed, the cancer-specific overexpression of Tβ(10) by Ad.TERT.Tβ(10) could be a valuable anti-cancer therapeutic for the treatment of ovarian cancer without toxicity to normal cells.
Collapse
Affiliation(s)
- Young-Chae Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Korea
| | | | | |
Collapse
|
6
|
Fanni D, Gerosa C, Nemolato S, Locci A, Marinelli V, Cabras T, Messana I, Fanos V, Castagnola M, Faa G. Thymosin beta 10 expression in developing human salivary glands. Early Hum Dev 2011; 87:779-83. [PMID: 21733645 DOI: 10.1016/j.earlhumdev.2011.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 05/27/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
Abstract
Thymosin beta 10 (Tβ10) is a member of beta-thymosins (Tβs), a family of low molecular mass peptides abundant in many cell types. In previous studies, Tβs have been shown to play essential roles in many cellular functions, including cytokinesis, migration and endocytosis. Recently, Tβ10 has been found in high quantities in the saliva of human newborns, while it disappeared in the adults. On the basis of these data, it seemed of some interest to study the influence of Tβ10 during the development of the human salivary glands. To this end, we analyzed, using immunocytochemistry, the expression of Tβ10 in samples of the major and minor salivary glands obtained, at autopsy, from 2 human fetuses and 4 newborns, ranging from 13 up to 33weeks of gestation. Tβ10 immunoreactivity was detected in all salivary glands examined, with marked differences from one gland to the next, the parotid glands showing the highest Tβ10 reactivity and minor salivary glands the lowest reactivity. Marked changes were observed in Tβ10 expression and localization during embryogenesis. Tβ10 was mainly localized extracellularly in the youngest human fetuses (13weeks), in the cytoplasm of immature duct cells at 20weeks, in acinar cells and in the duct lumen in 33weeks old fetuses. Our data show, for the first time, a strong expression of Tβ10 in the human salivary glands during the initial phases of the physiological development, present at the 13th week of gestation, and suggesting a role for the peptide in the salivary glands' organogenesis.
Collapse
Affiliation(s)
- Daniela Fanni
- Department of Pathology, University of Cagliari, Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Maltman DJ, Brand S, Belau E, Paape R, Suckau D, Przyborski SA. Top-down label-free LC-MALDI analysis of the peptidome during neural progenitor cell differentiation reveals complexity in cytoskeletal protein dynamics and identifies progenitor cell markers. Proteomics 2011; 11:3992-4006. [DOI: 10.1002/pmic.201100024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 05/26/2011] [Accepted: 06/10/2011] [Indexed: 12/19/2022]
|
8
|
Paulussen M, Arckens L. Striking neuronal thymosin beta 4 expression in the deep layers of the mouse superior colliculus after monocular deprivation. Brain Struct Funct 2011; 217:81-91. [DOI: 10.1007/s00429-011-0330-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 05/11/2011] [Indexed: 11/30/2022]
|
9
|
Gerosa C, Fanni D, Nemolato S, Locci A, Marinelli V, Cabras T, Messana I, Castagnola M, Monga G, Fanos V, Faa G. Thymosin beta-10 expression in developing human kidney. J Matern Fetal Neonatal Med 2011; 23 Suppl 3:125-8. [PMID: 20836742 DOI: 10.3109/14767058.2010.510645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Thymosin beta-10 (Tβ10) is a member of beta-thymosins (Tβs), a family of low molecular mass peptides, which play essential roles in many cellular functions, including apoptosis, cell proliferation, cell migration, and endocytosis. The report that the Tβ10 gene is expressed at high levels in embryonic human brain as well in human kidney induced us to study Tβ10 reactivity in the preterm kidney in order to verify, at tissue level, the expression of this peptide during renal embryogenesis. To this end, we analyzed, using immunocytochemistry, the expression of Tβ10 in samples of human kidney obtained, at autopsy, from 8 fetuses, 12 preterm infants, ranging from 25 to 36 weeks of gestation and 3 at term newborns. Tβ10 immunoreactivity was detected in 20 out of 22 kidneys examined, and was mainly localized in proximal and distal tubular structures, in the cytoplasm and occasionally in the nuclei of ductal cells. In 11 cases, we also detected a focal and mild reactivity for the peptide in glomeruli. In 13 kidneys, we also observed immunostaining for Tβ10 inside the "comma-shaped bodies" and the "S-shaped bodies" during active glomerulogenesis. Our data show, for the first time, the expression of Tβ10 in the human kidney during the initial phases of its physiological development, mainly restricted in the proximal and the distal tubuli. Further studies are needed in order to better characterize the role of Tβ10 in kidney embryogenesis.
Collapse
Affiliation(s)
- Clara Gerosa
- Department of Pathology, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Thymosin β4 induces the expression of vascular endothelial growth factor (VEGF) in a hypoxia-inducible factor (HIF)-1α-dependent manner. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1244-51. [PMID: 20691219 DOI: 10.1016/j.bbamcr.2010.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 07/23/2010] [Accepted: 07/27/2010] [Indexed: 12/15/2022]
Abstract
Thymosin β4 has multi-functional roles in cell physiology, but little is known about its mechanism(s) of action. We previously reported that thymosin β4 stimulated angiogenesis through the induction of vascular endothelial growth factor (VEGF). To identify the mechanism of VEGF induction by thymosin β4, we have used a luciferase assay system with VEGF in the 5' promoter region. We also analyzed the effect of thymosin β4 on VEGF mRNA stability and on the expression and stability of hypoxia-inducible factor (HIF)-1α. We found that thymosin β4 induces VEGF expression by an increase in the stability of HIF-1α protein. Analysis of the expression patterns of thymosin β4 and HIF-1α in colon cancer tissue microarray showed that thymosin β4 and HIF-1α co-localized in these biopsies. These data show that thymosin β4 induces the expression of VEGF indirectly by increasing the protein stability of HIF-1α.
Collapse
|
11
|
Sribenja S, Li M, Wongkham S, Wongkham C, Yao Q, Chen C. Advances in Thymosin β10 Research: Differential Expression, Molecular Mechanisms, and Clinical Implications in Cancer and Other Conditions. Cancer Invest 2009; 27:1016-22. [DOI: 10.3109/07357900902849640] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Paulussen M, Landuyt B, Schoofs L, Luyten W, Arckens L. Thymosin beta 4 mRNA and peptide expression in phagocytic cells of different mouse tissues. Peptides 2009; 30:1822-32. [PMID: 19631707 DOI: 10.1016/j.peptides.2009.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/15/2009] [Accepted: 07/15/2009] [Indexed: 11/18/2022]
Abstract
Thymosin beta 4 (Tbeta4) is a peptide of 43 amino acids, mainly recognized as a regulator of actin polymerization by sequestering G-actin. Meanwhile, the peptide has been implicated in lymphocyte maturation, carcinogenesis, apoptosis, angiogenesis, blood coagulation and wound healing. The peptide is also involved in lesion-induced neuroplasticity through microglia upregulation and it participates in the growth of neuronal processes. However, its precise cellular localization throughout the entire body of the mouse has not been documented. We therefore initiated a detailed investigation of the tissue distribution and cellular expression of the Tbeta4 peptide and its precursor mRNA by immunocytochemistry and in situ hybridization, respectively. In the brain, Tbeta4 was clearly present in neurons of the olfactory bulb, neocortex, hippocampus, striatum, amygdala, piriform cortex and cerebellum, and in microglia across the entire brain. We further localized Tbeta4 in cells, typically with many processes, inside thymus, spleen, lung, kidney, liver, adrenal gland, stomach and intestine. Remarkably, Tbeta4 was thus associated with microglia and macrophages, the differentiated phagocytic cells residing in every tissue. Motility and phagocytosis, two important activities of macrophages, depend on actin, which can explain the presence of Tbeta4 in these cells.
Collapse
Affiliation(s)
- Melissa Paulussen
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Woman and Child, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
13
|
Expression of thymosin β10 and its role in non–small cell lung cancer. Hum Pathol 2009; 40:117-24. [DOI: 10.1016/j.humpath.2008.06.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 06/15/2008] [Accepted: 06/20/2008] [Indexed: 11/15/2022]
|
14
|
Zou K, Liu J, Zhu N, Lin J, Liang Q, Brown WT, Shen Y, Zhong N. Identification of FMRP-associated mRNAs using yeast three-hybrid system. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:769-77. [PMID: 18163424 DOI: 10.1002/ajmg.b.30678] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fragile X syndrome, one of the most common forms of inherited mental retardation, results from the absence of the fragile X mental retardation protein (FMRP), which is encoded by the fragile X mental retardation gene 1 (FMR1). FMRP is an RNA-binding protein involved in translational regulation of targeted mRNAs. Identification of targeted mRNAs associated with FMRP is important to understand the function of FMRP and the pathogenic basis of the fragile X syndrome. Employing a yeast three-hybrid system and a human fetal hippocampus cDNA library, we identified 22 candidate target mRNAs, and 18 of them were confirmed to be associated with FMRP in vitro by gel retardation. Some of these mRNAs code for structural proteins, enzymes or proteins involved in cellular processes, especially in the development and function of neural system. To further investigate the role of FMRP in regulating targeted gene expression, we analyzed the expression profile of TXNRD1, one of the candidate mRNAs, after knocking down the expression of endogenous FMRP by siRNA. The results showed that endogenous TXNRD1 translation increased along with depletion of FMRP, which suggested FMRP negatively regulates TXNRD1 translation.
Collapse
Affiliation(s)
- Ke Zou
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Tsinghua University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
The promotive effects of thymosin beta4 on neuronal survival and neurite outgrowth by upregulating L1 expression. Neurochem Res 2008; 33:2269-80. [PMID: 18461449 DOI: 10.1007/s11064-008-9712-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 04/08/2008] [Indexed: 10/22/2022]
Abstract
Thymosin beta(4) (Tbeta4) is a major actin-sequestering peptide widely distributed in mammalian tissues including the nervous system. The presence of this peptide in the nervous system likely plays a role in synaptogensis, axon growth, cell migration, and plastic changes in dendritic spine. However, the effects of Tbeta4 on the survival of neurons and axonal outgrowth have still not been fully understood. So far it is not clear if the effects of Tbeta4 are associated with L1 functions. In the present study, we hypothesized that Tbeta4-induced up-regulation of L1 synthesis could be involved in the survival and axon outgrowth of cultured spinal cord neurons. To test this hypothesis, primarily cultured neurons were prepared from the mouse spinal cord and treated with various concentrations of Tbeta4 ranging from 0.1 to 10 microg/ml. The analysis of L1 mRNA expression and protein synthesis in neurons was then carried out using RT-PCR and western blot assays, respectively. After the addition of Tbeta4 to cultures, cells were then treated with antibodies against distinct domains of L1-Fc. Subsequently, beta-tubulin III and L1 double-labeled indirect immunofluorescence was carried out. Meanwhile, L1 immunofluorescent reactivity was analyzed and compared in cells treated with Tbeta4. Furthermore, the number of beta-tubulin III-positive cells and neurite lengths were measured. We found that Tbeta4 enhanced L1 expression in a dose-dependent manner, and the highest L1 mRNA and protein synthesis in cells increased by more than 2.1- and 2.3-fold in the presence of Tbeta4 at identical concentrations, respectively. Moreover, it also dose dependently enhanced neurite outgrowth and neuronal survival. Compared to conditions without Tbeta4, the length of neurite and neuronal survival increased markedly in presence of 0.5, 1, and 5 microg/ml Tbeta4, respectively, whereas the effects of Tbeta4 were significantly attenuated or inhibited in the process of L1-Fc antibodies treatment. These above results indicate that the promotive effect of Tbeta4 on the survival and neurite outgrowth of cultured spinal cord neurons might be mediated, at least in part via a stimulation of the production of L1 in the neurons.
Collapse
|
16
|
Cierniewski CS, Malinowski M, Bednarek R, Cierniewska-Cieslak A. Adhesive and proteolytic phenotype of migrating endothelial cells induced by thymosin beta-4. Ann N Y Acad Sci 2007; 1112:123-39. [PMID: 17495245 DOI: 10.1196/annals.1415.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The early stages of angiogenesis are usually accompanied by the occurrence of vascular leakage, and the deposition of fibrin in extravascular spaces. Initially, the fibrin network acts as a sealing matrix, but later on also as a scaffolding for invading endothelial cells. This process is induced by angiogenic growth factors, particularly by vascular endothelial growth factor (VEGF). Angiogenesis involves proteolytic activities, in particular cell-bound urokinase/plasmin and matrix metalloproteinase (MMPs) activities that modulate the fibrin structure and affect adhesion and migration of endothelial cells. Recent data show that formation of new vessels may be stimulated by thymosin beta-4 (Tbeta-4), but it is still not clear whether Tbeta-4 alone is angiogenic or the angiogenic potential of Tbeta-4 is mediated by VEGF. In this report to further characterize Tbeta-4 angiogenic activity, we produced its mutants that were deprived of the N-terminal tetrapeptide AcSDKP (Tbeta-4((AcSDKPT/4A))), the actin-binding sequence KLKKTET (Tbeta-4((KLKKTET/7A))) and with the nuclear localization sequence damaged by a point mutation Lys16Ala (Tbeta-4((K16A))). Then we tested their activity to induce expression and release of MMPs as well as plasminogen activators inhibitor type-1 (PAI-1). We also analyzed their effect on migration and proliferation of endothelial cells in three-dimensional (3D) fibrin matrix as well as on their ability to stimulate the outgrowth of human endothelial cells in capillary-like tubular structures. Our data demonstrate that increased intracellular expression of Tbeta-4 and its mutants is necessary and sufficient to induce PAI-1 gene expression in endothelial cells. Similarly, they stimulate expression and release of MMP-1, -2, and -3. As evaluated by using specific inhibitors to these MMPs, they modified specifically the structure of fibrin and thus facilitated migration of endothelial cells. To sum up, our data show that the mechanism by which Tbeta-4 induced transition of endothelial cells from quiescent to proangiogenic phenotype is characterized by increased expression of PAI-1 and MMPs did not require the presence of the N-terminal sequence AcSDKP, and depended only partially on its ability to bind G-actin or to enter the nucleus.
Collapse
Affiliation(s)
- Czeslaw S Cierniewski
- Department of Molecular and Medical Biophysics, Medical University, 6/8 Mazowiecka Street, Lodz 92-215, Poland.
| | | | | | | |
Collapse
|
17
|
Gómez-Márquez J. Function of prothymosin alpha in chromatin decondensation and expression of thymosin beta-4 linked to angiogenesis and synaptic plasticity. Ann N Y Acad Sci 2007; 1112:201-9. [PMID: 17495247 DOI: 10.1196/annals.1415.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Prothymosin alpha (ProTalpha) is an abundant highly acidic protein found in the nuclei of virtually all mammalian cells. The expression of this protein is increased in proliferating mammalian cells. However, the function of this molecule is still controversial. Here I present a model explaining the role of this protein in chromatin decondensation through its interaction with histone H1. beta-thymosins are a family of small actin-binding peptides widely distributed in eukaryotic cells. Here I will focus on thymosin beta-4, the most abundant member of this family. In particular, I will discuss its expression in the mammalian development of cardiovascular and nervous systems as well as its implications in neuronal plasticity.
Collapse
Affiliation(s)
- Jaime Gómez-Márquez
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago, Spain.
| |
Collapse
|
18
|
Sun W, Kim H. Neurotrophic roles of the beta-thymosins in the development and regeneration of the nervous system. Ann N Y Acad Sci 2007; 1112:210-8. [PMID: 17468233 DOI: 10.1196/annals.1415.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Beta-thymosins (Tbetas) are polypeptides abundant in the cytosol, nucleus, and extracellular space of many cell types. In the nervous system, the expression of Tbetas is regulated during the development of the central nervous system and following neuronal insults in cell-type and brain-region dependent manners, which may be related to the function of Tbetas in the growth and regeneration of the nervous system. Supporting such a proposition, overexpression of Tbetas in neurons has been shown to modify the axonal branches in vivo and neurite branches in vitro. These neurite-modifying functions have been suggested to be due to the activity of Tbetas to bind actin. In addition, we recently observed that Tbetas suppressed the apoptotic neuronal death in chick embryos, and these functions might be mediated by the extracellularly secreted form(s) of Tbetas. These results suggest that Tbetas play neurotrophic roles in the neuroprotection and neuronal growth/regeneration via their cytosolic actin-remodeling activity and extracellular antiapoptotic activity. Even though further verification is required, we also observed that Tbeta15 was translocated into the injured neuronal nuclei, and this event appeared to be an eliminatory process of the injured cells. Therefore, treatment with Tbetas or their related peptides appear to be beneficial for neuronal diseases by preventing neuronal death or promoting neuronal regeneration.
Collapse
Affiliation(s)
- Woong Sun
- Department of Anatomy, BK21 Program, College of Medicine, Korea University, 126-1 Anam-Dong, Sungbuk-Gu, Seoul, Korea 136-705, Korea.
| | | |
Collapse
|
19
|
Choi SY, Kim DK, Eun B, Kim K, Sun W, Kim H. Anti-apoptotic function of thymosin-β in developing chick spinal motoneurons. Biochem Biophys Res Commun 2006; 346:872-8. [PMID: 16782066 DOI: 10.1016/j.bbrc.2006.05.207] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 05/29/2006] [Indexed: 10/24/2022]
Abstract
Thymosin-betas (Tbetas) are water-soluble peptides abundantly present in the cytoplasm and extracellular compartment. The functions of Tbetas appear to be pleiotrophic, including actin-remodeling, wound healing, angiogenesis, etc. In the present study, we present the evidence that Tbetas have anti-apoptotic activity on developing chick motoneurons (MNs) in vivo. Using in ovo electroporation, we introduced three isoforms of Tbeta (Tbeta4, Tbeta10, and Tbeta15) and found the significantly diminished normal and limb bud removal (LBR)-induced programmed cell death. Such anti-apoptotic activity is independent of Tbeta's actin remodeling activity. On the other hand, overexpression of Tbetas substantially reduced early cell death initiation signal, such as phosphorylation of c-Jun. Collectively, these results suggest that Tbetas may prevent apoptosis of neurons via blockade of early apoptogenic signals independent of actin remodeling action.
Collapse
Affiliation(s)
- So Yoen Choi
- Department of Anatomy, Division of Brain Korea 21 Biomedical Science, College of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | | | | | | | | | | |
Collapse
|
20
|
Mu H, Ohashi R, Yang H, Wang X, Li M, Lin P, Yao Q, Chen C. Thymosin beta10 inhibits cell migration and capillary-like tube formation of human coronary artery endothelial cells. ACTA ACUST UNITED AC 2006; 63:222-30. [PMID: 16496302 DOI: 10.1002/cm.20117] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Thymosin beta10 is a cytoplasm G-actin sequestering protein whose functions are largely unknown. To determine the direct effects of exogenous thymosin beta10 on angiogenic potentials as endothelial cell migration and capillary-like tube formation, human coronary artery endothelial cells (HCAECs) were incubated with increasing doses of thymosin beta10 (25-100 ng/ml). By using a modified Boyden chamber assay, thymosin beta10 inhibited cell migration in a dose- and time-dependent manner with the maximal effect being a 36% reduction at 100 ng/ml as compared to controls (P < 0.01). In addition, thymosin beta10 (100 ng/ml) significantly inhibited the capillary-like tube-formation of HCAECs on Matrigel, showing a 21% reduction of the total tube length as compared to negative controls (P < 0.01). Furthermore, by using real time PCR analysis, thymosin beta10 significantly decreased mRNA levels of vascular endothelial growth factor (VEGF), VEGF receptor-1 (VEGFR-1) and integrin alphaV after 24 h treatment in HCAECs. By contrast, thymosin beta4 significantly increased HCAEC migration. These results indicate that thymosin beta10, but not thymosin beta4, have direct inhibitive effects on endothelial migration and tube formation that might be mediated via downregulation of VEGF, VEGFR-1 and integrin alphaV in HCAECs. This study suggests a potential therapeutic application of thymosin beta10 to the diseases with excessive angiogenesis such as cancer.
Collapse
Affiliation(s)
- Hong Mu
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kim Y, Kim EH, Hong S, Rhyu IJ, Choe J, Sun W, Kim H. Expression of thymosin beta in the rat brain following transient global ischemia. Brain Res 2006; 1085:177-82. [PMID: 16566908 DOI: 10.1016/j.brainres.2006.01.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 01/10/2006] [Accepted: 01/16/2006] [Indexed: 10/24/2022]
Abstract
Thymosin beta (Tbeta) isoforms play an important role in the organization of the cytoskeleton by sequestering G-actin during development of the mammalian brain. In this study, we examined changes in the expression of Tbeta4 and Tbeta15 after transient global ischemia. Tbeta15 mRNA increased gradually in the dentate gyrus (DG) of the hippocampal formation from 3 h after reperfusion and peaked 9 h later. Similarly, a significant increase in Tbeta4 mRNA level was observed in the DG 12 h after reperfusion. Tbeta4 and Tbeta15 proteins were found in different cell types in control brains; Tbeta15 was expressed in a subset of doublecortin (DCX)-positive cells in the DG, whereas Tbeta4-IR was observed in DG neurons and nearby microglial cells. After ischemia, Tbeta15-IR was found in DG neurons and Tbeta4-IR in the reactivated microglial cells. Interestingly, Tbeta15-IR accumulated in the nuclei of CA1 neurons, which are vulnerable to ischemic insults. These results suggest that Tbeta4 and Tbeta15 function in different cellular contexts during ischemia-induced responses.
Collapse
Affiliation(s)
- Younghwa Kim
- Department of Anatomy, College of Medicine, Brain Korea 21, Korea University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Hsiao HL, Su Y. Identification of the positive and negative cis-elements involved in modulating the constitutive expression of mouse thymosin beta4 gene. Mol Cell Biochem 2005; 272:75-84. [PMID: 16010974 DOI: 10.1007/s11010-005-7638-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We previously showed that the -278 to +410 region of mouse thymosin beta4 (mT,beta4) gene supports high levels of reporter gene expression in NIH3T3 cells. This region contains part of the 5'-flanking sequences (-278 to -1), the intact first exon (+1 to +133), and portion of the first intron (+134 to +410). However, the size of this exon is much longer than those of its rat and human counterparts. To resolve the question regarding this size discrepancy, transcription start site for the mTbeta4 gene was re-examined by primer extension and bioinformatics analyses. We found that the first exon of mTbeta4 gene spans 56 bp with its cap site situated in a putative initiator highly similar to the consensus mammalian sequence. In addition, a TATA box-like motif and two consecutive downstream promoter elements were also found. To delineate the cis-elements involved in modulating the constitutive expression of mTbeta4 gene, transient transfection assay was performed. Interestingly, expression level of the reporter gene driven by the -117 to +56 region of mTbeta4 gene was approximately 8-fold higher than that directed by the SV40 promoter and significant promoter activity was found to be associated with the smaller (-56 to +56) fragment. A nuclear protein-bound silencer was located in the region between the -167 and -118 and an enhancer whose effect did not seem to be dependent on protein binding was identified in the downstream (-117 to -88) region. However, neither of these cis-elements affected reporter expression driven by a SV40 promoter. Intriguingly, mTbeta4 promoter functioned well in human colorectal (SW480) and cervical (HeLa) carcinoma cells. Taken together, our findings not only provide crucial information for further elucidation of the transcriptional regulation of mTbeta4 gene but also raise the possibility of utilizing its promoter to produce large quantity of recombinant proteins in mammalian cells.
Collapse
Affiliation(s)
- Hung-Liang Hsiao
- Institute of Pharmacology, College of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
23
|
Akhter M, Kobayashi I, Kiyoshima T, Matsuo K, Yamaza H, Wada H, Honda JY, Ming X, Sakai H. Possible functional involvement of thymosin beta 4 in developing tooth germ of mouse lower first molar. Histochem Cell Biol 2005; 124:207-13. [PMID: 16133119 DOI: 10.1007/s00418-005-0040-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2005] [Indexed: 12/01/2022]
Abstract
We examined the detailed in situ expression pattern of thymosin beta 4 (Tbeta4) in the developing mouse mandibular first molar. Tbeta4 mRNA was expressed in the presumptive dental epithelium at embryonic day 10.5 (E10.5) and in the thickened dental epithelium at E12. An in situ signal was observed in the invaginated epithelial bud at E13, in the enamel organ at E14 and E14.5, and in the primary enamel knot (PEK) at E14.5. The signal was localized in the epithelial cells of the outer layer of the enamel organ at E15 and E15.5. No signal was found in the PEK at these stages. Tbeta4 mRNA was expressed in the inner enamel epithelium, cervical loop and dental lamina at E16 and E17. The expression of Tbeta4 mRNA was observed in the polarized inner epithelial cells at E18, newborn day 1 (N1) and N2. However, the signal intensity decreased markedly at N3. We herein report for the first time that Tbeta4 is distinctly expressed in developing tooth germ, and it may also play functional roles in the initiation, growth and differentiation of tooth germ.
Collapse
Affiliation(s)
- Merina Akhter
- Laboratory of Oral Pathology and Medicine, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Choe J, Sun W, Yoon SY, Rhyu IJ, Kim EH, Kim H. Effect of thymosin β15 on the branching of developing neurons. Biochem Biophys Res Commun 2005; 331:43-9. [PMID: 15845355 DOI: 10.1016/j.bbrc.2005.03.130] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Indexed: 11/30/2022]
Abstract
The thymosin betas (Tbetas) are polypeptide regulators of actin dynamics that are critical for the growth and branching of neurites in developing neurons. We found that mRNAs for Tbeta4, Tbeta10, and Tbeta15 were highly expressed in the developing rat brain during neuritogenesis, supporting a role for the Tbetas in this process. Overexpression of the Tbetas increased the number of neurite branches per neuron in cultured hippocampal and cerebral cortex neurons, and Tbeta15 had the greatest effect. Actin binding activity appears to be essential for the branch-promoting activity of Tbetas because two mutants of Tbeta15 lacking monomeric actin binding activity failed to stimulate branch formation. We also found that transfection of siRNA against Tbeta15 reduced branching. Taken together, these data suggest that the three Tbetas, and especially Tbeta15, stimulate neurite branching during brain development.
Collapse
Affiliation(s)
- Jeehyung Choe
- Department of Anatomy and Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine, 126-1, 5-Ka, Anam-Dong, Sungbuk-Gu, Seoul 136-705, Republic of Korea
| | | | | | | | | | | |
Collapse
|
25
|
Lee SH, Son MJ, Oh SH, Rho SB, Park K, Kim YJ, Park MS, Lee JH. Thymosin β10 Inhibits Angiogenesis and Tumor Growth by Interfering with Ras Function. Cancer Res 2005. [DOI: 10.1158/0008-5472.137.65.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Thymosin β10 is a monomeric actin sequestering protein that regulates actin dynamics. Previously, we and others have shown that thymosin β10 acts as an actin-mediated tumor suppressor. In this study, we show that thymosin β10 is not only a cytoskeletal regulator, but that it also acts as a potent inhibitor of angiogenesis and tumor growth by its interaction with Ras. We found that overexpressed thymosin β10 significantly inhibited vascular endothelial growth factor–induced endothelial cell proliferation, migration, invasion, and tube formation in vitro. Vessel sprouting was also inhibited ex vivo. We further show that thymosin β10 directly interacted with Ras. This interaction resulted in inhibition of the Ras downstream mitogen-activated protein kinase/extracellular signal-regulated kinase kinase signaling pathway, leading to decreased vascular endothelial growth factor production. Thymosin β10 injected into a xenograft model of human ovarian cancer in nude mice markedly inhibited tumor growth and reduced tumor vascularity. In contrast, a related thymosin family member, thymosin β4, did not bind to Ras and showed positive effects on angiogenesis. These findings show that the inhibition of Ras signal transduction by thymosin β10 results in antiangiogenic and antitumor effects, suggesting that thymosin β10 may be valuable in anticancer therapy.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- 1Molecular Therapy Research Center, Samsung Medical Center, School of Medicine, Sung Kyun Kwan University, Seoul, Korea and
| | - Myung Jin Son
- 1Molecular Therapy Research Center, Samsung Medical Center, School of Medicine, Sung Kyun Kwan University, Seoul, Korea and
- 2Department of Molecular Biology, Pusan National University, Busan, Korea
| | - Sun-Hee Oh
- 1Molecular Therapy Research Center, Samsung Medical Center, School of Medicine, Sung Kyun Kwan University, Seoul, Korea and
| | - Seung-Bae Rho
- 1Molecular Therapy Research Center, Samsung Medical Center, School of Medicine, Sung Kyun Kwan University, Seoul, Korea and
| | - Kyungsook Park
- 1Molecular Therapy Research Center, Samsung Medical Center, School of Medicine, Sung Kyun Kwan University, Seoul, Korea and
| | - Yung-Jin Kim
- 2Department of Molecular Biology, Pusan National University, Busan, Korea
| | - Mi-Sun Park
- 1Molecular Therapy Research Center, Samsung Medical Center, School of Medicine, Sung Kyun Kwan University, Seoul, Korea and
| | - Je-Ho Lee
- 1Molecular Therapy Research Center, Samsung Medical Center, School of Medicine, Sung Kyun Kwan University, Seoul, Korea and
| |
Collapse
|
26
|
Malaspina A, de Belleroche J. Spinal cord molecular profiling provides a better understanding of amyotrophic lateral sclerosis pathogenesis. ACTA ACUST UNITED AC 2004; 45:213-29. [PMID: 15210305 DOI: 10.1016/j.brainresrev.2004.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2004] [Indexed: 12/11/2022]
Abstract
Research efforts in amyotrophic lateral sclerosis (ALS) have not yet provided a comprehensive explanation of the disease pathogenesis, which is emerging as a complex interaction between multiple factors. Gene expression studies traditionally based on single mRNA specie analysis have recently progressed to allow entire transcriptional profiles of affected tissues to be obtained through array-based methods. This experimental approach has significantly improved our understanding of the molecular changes occurring in ALS, although its limitations in the detection of low-abundance transcripts in tissues with a high level of complexity are becoming increasingly recognized. In this paper, experimental findings based on an expression study in post-mortem spinal cord from sporadic ALS individuals will be discussed in light of recently published data using array analysis in an animal model of the disease. Previous expression data obtained using conventional techniques are also compared. Through the analysis of the information arising from ALS post-mortem and animal model tissues studies, we have identified a pattern of molecular events in which factors implicated in the immune response, cytoprotection and growth-differentiation are differentially regulated in a time-dependent way from early to advanced stages of disease progression.
Collapse
Affiliation(s)
- Andrea Malaspina
- Department of Neuromuscular Diseases, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College London, Charing Cross Hospital, London W14 8RF, UK.
| | | |
Collapse
|
27
|
Boon K, Edwards JB, Siu IM, Olschner D, Eberhart CG, Marra MA, Strausberg RL, Riggins GJ. Comparison of medulloblastoma and normal neural transcriptomes identifies a restricted set of activated genes. Oncogene 2003; 22:7687-94. [PMID: 14576832 DOI: 10.1038/sj.onc.1207043] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over 1.4 million transcript tags expressed in 20 different human medulloblastomas were counted using serial analysis of gene expression. Digital gene expression profiles in the medulloblastoma were compared to multiple regions of the normal human brain, revealing 30 transcripts with high expression in multiple tumors and little or no expression in the normal cerebellum and other adult and pediatric brain regions. Using independent medulloblastoma samples and normal tissue, real-time PCR verified eight of nine selected genes as candidate tumor-associated antigens. Differential protein expression for CD24, prolactin and Topo2A was further confirmed by immunohistochemical analysis using medulloblastoma and normal brain sections and a tissue microarray. The genes highly expressed in the medulloblastoma include PRAME, a cancer-testis antigen and potential targets for immunotherapy.
Collapse
Affiliation(s)
- Kathy Boon
- Department of Pathology, Duke University Medical Center, Box 3156, Durham NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yang S, Liu ZW, Zhou WX, Zhang YX. Thymosin alpha-1 modulates excitatory synaptic transmission in cultured hippocampal neurons in rats. Neurosci Lett 2003; 350:81-4. [PMID: 12972158 DOI: 10.1016/s0304-3940(03)00862-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Thymosin alpha-1 (Talpha1) not only possesses immunoregulatory properties in periphery but also is expressed in the central nervous system (CNS) and affects the function of the CNS. To further elucidate the role of Talpha1 in the CNS, the whole-cell recording technique was used to observe the effect of Talpha1 on the spontaneous excitatory synaptic transmission in cultured rat hippocampal neurons. The results showed that acute treatment with Talpha1 significantly enhanced the frequency of AMPA-mediated spontaneous excitatory postsynaptic current (sEPSC) at the concentrations of 1 and 10 microg/ml and also enhanced the frequency of AMPA-mediated miniature excitatory postsynaptic current (mEPSC) at 10 microg/ml. However, the amplitude of both sEPSC and mEPSC were not changed by Talpha1. Those results suggested that Talpha1 involves in the regulation of excitatory synaptic transmission in hippocampal neurons, which contribute to its neurophysiological function in the CNS.
Collapse
Affiliation(s)
- Sheng Yang
- DBeijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Haidian District, Beijing 100850, China
| | | | | | | |
Collapse
|
29
|
Neuhaus T, Lutz C, Stier S, Totzke G, Gruenewald E, Fronhoffs S, Sachinidis A, Vetter H, Ko YD. The use of suppression subtractive hybridization for the study of SDF-1α induced gene-expression in human endothelial cells. Mol Cell Probes 2003; 17:245-52. [PMID: 14580399 DOI: 10.1016/j.mcp.2003.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stromal cell-derived factor-1 (SDF-1), the only ligand of the CXCR4 receptor, is mainly known as a chemotactic factor for hematopoietic progenitor cells. However, studies of knock-out mice have shown malformation of different organ-systems suggesting that SDF-1 may have a role in angiogenesis and cardiac and cerebral development. However, the underlying mechanisms of its action are largely unknown. Therefore, we performed suppression subtractive hybridization (SSH) in order to identify genes that are differentially expressed after stimulation of human arterial endothelial cells (HUAEC) with SDF-1. Using SSH we found ten genes, with varied functions, whose mRNA expression is induced by SDF-1alpha in HUAEC. We show that SSH is a reliable method for identifying differentially expressed genes and that SDF-1alpha may have more functions than previously reported.
Collapse
Affiliation(s)
- Thomas Neuhaus
- Medizinische Universitäts-Poliklinik Bonn, Wilhelmstr 35-37, Bonn 53111, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mattila PK, Salminen M, Yamashiro T, Lappalainen P. Mouse MIM, a tissue-specific regulator of cytoskeletal dynamics, interacts with ATP-actin monomers through its C-terminal WH2 domain. J Biol Chem 2003; 278:8452-9. [PMID: 12482861 DOI: 10.1074/jbc.m212113200] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The WH2 (WASP homology domain-2) is a small actin monomer-binding motif and is found in many proteins that regulate the actin cytoskeleton, including the beta-thymosins, ciboulot, WASP, and verprolin/WIP (WASP-interacting protein). In sequence database searches we identified a novel mouse protein containing a WH2 domain in its C-terminal region. This mouse gene also shows strong sequence homology to human MIM (Missing in Metastasis), a cDNA fragment that is present in non-metastatic but absent in metastatic bladder cancer cell lines. Northern blot and in situ hybridizations show that MIM is strongly expressed in the developing neurons and skeletal and cardiac muscles in mouse embryos. In adult mice, the strongest expression of MIM mRNA is in liver, outer layers of the kidney, and in the Purkinje cells of the brain. Recombinant MIM protein interacts with actin monomers and inhibits actin filament nucleation in vitro. However, the MIM/ATP-G-actin complex can participate in actin filament assembly at the barbed end. MIM binds ATP-G-actin with a higher affinity (K(D) = 0.06 microm) than ADP-G-actin (K(D) = 0.3 microm) and inhibits the nucleotide exchange on actin monomers. Site-directed mutagenesis demonstrates that the actin monomer-binding site resides in the C-terminal WH2 domain of MIM. Overexpression of mouse MIM in NIH 3T3 cells results in the disappearance of actin stress fibers and appearance of abnormal actin filament structures. These data show that MIM is an ATP-G-actin binding protein that regulates cytoskeletal dynamics in specialized mammalian cell-types.
Collapse
Affiliation(s)
- Pieta K Mattila
- Program in Cellular Biotechnology, Institute of Biotechnology, P. O. Box 56, University of Helsinki, Finland
| | | | | | | |
Collapse
|
31
|
Neutral amino acid transporter ASCT1 is preferentially expressed in L-Ser-synthetic/storing glial cells in the mouse brain with transient expression in developing capillaries. J Neurosci 2003. [PMID: 12533615 DOI: 10.1523/jneurosci.23-02-00550.2003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nonessential amino acid L-Ser plays an essential role in neuronal survival and differentiation, through preferential expression of the L-Ser biosynthetic enzyme 3-phosphoglycerate dehydrogenase (3PGDH), in particular in glial cells but not in neurons. To seek the molecular candidates responsible for glia-borne L-Ser transport, we performed histochemical analyses on amino acid transporter ASCT1, which prefers small neutral amino acids, such as Ala, Ser, Cys, and Thr, and mediates their obligatory exchange. At early developmental stages, neuroepithelial cells constituting the ventricular zone expressed ASCT1 mRNA and protein ubiquitously. Thereafter, ASCT1 expression was gradually downregulated in neuronal populations during the late embryonic and neonatal periods, whereas its high expression was transmitted to radial glial cells and then to astrocytes. High levels of ASCT1 were also detected in the olfactory ensheathing glia. The preferential glial expression of ASCT1 was consistent with that of 3PGDH, and their extensive colocalization was demonstrated at the cellular level. Moreover, high cellular contents of L-Ser were revealed in these glial cells by using a specific antibody to L-Ser. These results strongly suggest that a large amount of L-Ser is synthesized and stored in these glial cells and is released through ASCT1 in exchange for other extracellular substrates. In addition, we observed prominent expression of ASCT1 in capillary endothelial cells of embryonic and neonatal brains. Therefore, ASCT1 appears to be regulated to meet metabolic demands by differentiating and mature neurons through the transport of glia- and blood-borne small neutral amino acids.
Collapse
|
32
|
Gómez-Márquez J, Anadón R. The beta-thymosins, small actin-binding peptides widely expressed in the developing and adult cerebellum. CEREBELLUM (LONDON, ENGLAND) 2002; 1:95-102. [PMID: 12882358 DOI: 10.1007/bf02941895] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The beta-thymosins are a highly conserved family of small polar peptides known to bind monomeric actin and inhibit its polymerization. The beta-thymosins show a high degree of sequence conservation among all vertebrate classes and they have been also identified in some invertebrate phyla. The most abundant beta-thymosins in mammals are thymosin beta4 (Tbeta4) and thymosin beta10 (Tbeta10), two ubiquitous small (43 amino acids) peptides sharing a high degree of sequence homology. Both beta-thymosins are present in virtually all mammalian tissues and cells studied, showing distinct patterns of expression in several tissues. The beta-thymosins are expressed in the developing and mature nervous system, indicating their participation with other actin-binding peptides in the control of actin polymerization. In the rat cerebellum the temporal and cellular patterns of expression of Tbeta4 and Tbeta10 are different, suggesting that each beta-thymosin could play a specific physiological function during cerebellum development. The possible roles of beta-thymosins in the developing mammalian cerebellum are discussed.
Collapse
Affiliation(s)
- Jaime Gómez-Márquez
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, Spain.
| | | |
Collapse
|
33
|
Naito T, Yoshioka H, Yasuda Y. Migration and Proliferation of Motile Immature Glial Cells in the Developing Cerebral Cortex of Infantile Rat. Acta Histochem Cytochem 2002. [DOI: 10.1267/ahc.35.407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Takeshi Naito
- Department of Pediatrics, Kyoto Prefectural University of Medicine
- Cell Biology Section, Division of Basic Research, Louis Pasteur Center for Medical Research
| | - Hiroshi Yoshioka
- Department of Pediatrics, Kyoto Prefectural University of Medicine
| | - Yuko Yasuda
- Cell Biology Section, Division of Basic Research, Louis Pasteur Center for Medical Research
| |
Collapse
|