1
|
Xiao H, Zhu H, Bögler O, Mónica FZ, Kots AY, Murad F, Bian K. Soluble Guanylate Cyclase β1 Subunit Represses Human Glioblastoma Growth. Cancers (Basel) 2023; 15:1567. [PMID: 36900358 PMCID: PMC10001022 DOI: 10.3390/cancers15051567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Malignant glioma is the most common and deadly brain tumor. A marked reduction in the levels of sGC (soluble guanylyl cyclase) transcript in the human glioma specimens has been revealed in our previous studies. In the present study, restoring the expression of sGCβ1 alone repressed the aggressive course of glioma. The antitumor effect of sGCβ1 was not associated with enzymatic activity of sGC since overexpression of sGCβ1 alone did not influence the level of cyclic GMP. Additionally, sGCβ1-induced inhibition of the growth of glioma cells was not influenced by treatment with sGC stimulators or inhibitors. The present study is the first to reveal that sGCβ1 migrated into the nucleus and interacted with the promoter of the TP53 gene. Transcriptional responses induced by sGCβ1 caused the G0 cell cycle arrest of glioblastoma cells and inhibition of tumor aggressiveness. sGCβ1 overexpression impacted signaling in glioblastoma multiforme, including the promotion of nuclear accumulation of p53, a marked reduction in CDK6, and a significant decrease in integrin α6. These anticancer targets of sGCβ1 may represent clinically important regulatory pathways that contribute to the development of a therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Haijie Xiao
- Department of Biochemistry and Molecular Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA
| | - Haifeng Zhu
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Oliver Bögler
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- The National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Fabiola Zakia Mónica
- Department of Biochemistry and Molecular Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Sao Paolo 13083, Brazil
| | - Alexander Y. Kots
- Veteran Affairs Palo Alto Health Care System, Department of Veteran Affairs, Palo Alto, CA 94304, USA
| | - Ferid Murad
- Veteran Affairs Palo Alto Health Care System, Department of Veteran Affairs, Palo Alto, CA 94304, USA
| | - Ka Bian
- Veteran Affairs Palo Alto Health Care System, Department of Veteran Affairs, Palo Alto, CA 94304, USA
| |
Collapse
|
2
|
Reinhart GA, Harrison PC, Lincoln K, Chen H, Sun P, Hill J, Qian HS, McHugh MC, Clifford H, Ng KJ, Wang H, Fowler D, Gueneva-Boucheva K, Brenneman JB, Bosanac T, Wong D, Fryer RM, Sarko C, Boustany-Kari CM, Pullen SS. The Novel, Clinical-Stage Soluble Guanylate Cyclase Activator BI 685509 Protects from Disease Progression in Models of Renal Injury and Disease. J Pharmacol Exp Ther 2023; 384:382-392. [PMID: 36507845 DOI: 10.1124/jpet.122.001423] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/01/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Activation of soluble guanylate cyclase (sGC) to restore cyclic guanosine monophosphate (cGMP) and improve functionality of nitric oxide (NO) pathways impaired by oxidative stress is a potential treatment of diabetic and chronic kidney disease. We report the pharmacology of BI 685509, a novel, orally active small molecule sGC activator with disease-modifying potential. BI 685509 and human sGC α1/β1 heterodimer containing a reduced heme group produced concentration-dependent increases in cGMP that were elevated modestly by NO, whereas heme-free sGC and BI 685509 greatly enhanced cGMP with no effect of NO. BI 685509 increased cGMP in human and rat platelet-rich plasma treated with the heme-oxidant ODQ; respective EC50 values were 467 nM and 304 nM. In conscious telemetry-instrumented rats, BI 685509 did not affect mean arterial pressure (MAP) or heart rate (HR) at 3 and 10 mg/kg (p.o.), whereas 30 mg/kg decreased MAP and increased HR. Ten days of BI 685509 at supratherapeutic doses (60 or 100 mg/kg p.o., daily) attenuated MAP and HR responses to a single 100 mg/kg challenge. In the ZSF1 rat model, BI 685509 (1, 3, 10, and 30 mg/kg per day, daily) coadministered with enalapril (3 mg/kg per day) dose-dependently reduced proteinuria and incidence of glomerular sclerosis; MAP was modestly reduced at the higher doses versus enalapril. In the 7-day rat unilateral ureteral obstruction model, BI 685509 dose-dependently reduced tubulointerstitial fibrosis (P < 0.05 at 30 mg/kg). In conclusion, BI 685509 is a potent, orally bioavailable sGC activator with clear renal protection and antifibrotic activity in preclinical models of kidney injury and disease. SIGNIFICANCE STATEMENT: BI 685509 is a novel small soluble guanylate cyclase (sGC) molecule activator that exhibits an in vitro profile consistent with that of an sGC activator. BI 685509 reduced proteinuria and glomerulosclerosis in the ZSF1 rat, a model of diabetic kidney disease (DKD), and reduced tubulointerstitial fibrosis in a rat 7-day unilateral ureteral obstruction model. Thus, BI 685509 is a promising new therapeutic agent and is currently in phase II clinical trials for chronic kidney disease and DKD.
Collapse
Affiliation(s)
- Glenn A Reinhart
- Departments of Cardiometabolic Diseases Research (G.A.R., P.C.H., K.L., H.C., P.S., H.S.Q., M.C.M., H.C., K.J.N., H.W., D.F., R.M.F., C.M.B.-K., S.S.P.), Small Molecule Discovery Research (K.G.-B., J.B.B., T.B., D.W., C.S.), and Global Computational Biology and Data Sciences (J.H.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut
| | - Paul C Harrison
- Departments of Cardiometabolic Diseases Research (G.A.R., P.C.H., K.L., H.C., P.S., H.S.Q., M.C.M., H.C., K.J.N., H.W., D.F., R.M.F., C.M.B.-K., S.S.P.), Small Molecule Discovery Research (K.G.-B., J.B.B., T.B., D.W., C.S.), and Global Computational Biology and Data Sciences (J.H.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut
| | - Kathleen Lincoln
- Departments of Cardiometabolic Diseases Research (G.A.R., P.C.H., K.L., H.C., P.S., H.S.Q., M.C.M., H.C., K.J.N., H.W., D.F., R.M.F., C.M.B.-K., S.S.P.), Small Molecule Discovery Research (K.G.-B., J.B.B., T.B., D.W., C.S.), and Global Computational Biology and Data Sciences (J.H.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut
| | - Hongxing Chen
- Departments of Cardiometabolic Diseases Research (G.A.R., P.C.H., K.L., H.C., P.S., H.S.Q., M.C.M., H.C., K.J.N., H.W., D.F., R.M.F., C.M.B.-K., S.S.P.), Small Molecule Discovery Research (K.G.-B., J.B.B., T.B., D.W., C.S.), and Global Computational Biology and Data Sciences (J.H.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut
| | - Peng Sun
- Departments of Cardiometabolic Diseases Research (G.A.R., P.C.H., K.L., H.C., P.S., H.S.Q., M.C.M., H.C., K.J.N., H.W., D.F., R.M.F., C.M.B.-K., S.S.P.), Small Molecule Discovery Research (K.G.-B., J.B.B., T.B., D.W., C.S.), and Global Computational Biology and Data Sciences (J.H.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut
| | - Jon Hill
- Departments of Cardiometabolic Diseases Research (G.A.R., P.C.H., K.L., H.C., P.S., H.S.Q., M.C.M., H.C., K.J.N., H.W., D.F., R.M.F., C.M.B.-K., S.S.P.), Small Molecule Discovery Research (K.G.-B., J.B.B., T.B., D.W., C.S.), and Global Computational Biology and Data Sciences (J.H.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut
| | - Hu Sheng Qian
- Departments of Cardiometabolic Diseases Research (G.A.R., P.C.H., K.L., H.C., P.S., H.S.Q., M.C.M., H.C., K.J.N., H.W., D.F., R.M.F., C.M.B.-K., S.S.P.), Small Molecule Discovery Research (K.G.-B., J.B.B., T.B., D.W., C.S.), and Global Computational Biology and Data Sciences (J.H.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut
| | - Mark C McHugh
- Departments of Cardiometabolic Diseases Research (G.A.R., P.C.H., K.L., H.C., P.S., H.S.Q., M.C.M., H.C., K.J.N., H.W., D.F., R.M.F., C.M.B.-K., S.S.P.), Small Molecule Discovery Research (K.G.-B., J.B.B., T.B., D.W., C.S.), and Global Computational Biology and Data Sciences (J.H.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut
| | - Holly Clifford
- Departments of Cardiometabolic Diseases Research (G.A.R., P.C.H., K.L., H.C., P.S., H.S.Q., M.C.M., H.C., K.J.N., H.W., D.F., R.M.F., C.M.B.-K., S.S.P.), Small Molecule Discovery Research (K.G.-B., J.B.B., T.B., D.W., C.S.), and Global Computational Biology and Data Sciences (J.H.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut
| | - Khing Jow Ng
- Departments of Cardiometabolic Diseases Research (G.A.R., P.C.H., K.L., H.C., P.S., H.S.Q., M.C.M., H.C., K.J.N., H.W., D.F., R.M.F., C.M.B.-K., S.S.P.), Small Molecule Discovery Research (K.G.-B., J.B.B., T.B., D.W., C.S.), and Global Computational Biology and Data Sciences (J.H.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut
| | - Hong Wang
- Departments of Cardiometabolic Diseases Research (G.A.R., P.C.H., K.L., H.C., P.S., H.S.Q., M.C.M., H.C., K.J.N., H.W., D.F., R.M.F., C.M.B.-K., S.S.P.), Small Molecule Discovery Research (K.G.-B., J.B.B., T.B., D.W., C.S.), and Global Computational Biology and Data Sciences (J.H.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut
| | - Danielle Fowler
- Departments of Cardiometabolic Diseases Research (G.A.R., P.C.H., K.L., H.C., P.S., H.S.Q., M.C.M., H.C., K.J.N., H.W., D.F., R.M.F., C.M.B.-K., S.S.P.), Small Molecule Discovery Research (K.G.-B., J.B.B., T.B., D.W., C.S.), and Global Computational Biology and Data Sciences (J.H.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut
| | - Kristina Gueneva-Boucheva
- Departments of Cardiometabolic Diseases Research (G.A.R., P.C.H., K.L., H.C., P.S., H.S.Q., M.C.M., H.C., K.J.N., H.W., D.F., R.M.F., C.M.B.-K., S.S.P.), Small Molecule Discovery Research (K.G.-B., J.B.B., T.B., D.W., C.S.), and Global Computational Biology and Data Sciences (J.H.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut
| | - Jehrod B Brenneman
- Departments of Cardiometabolic Diseases Research (G.A.R., P.C.H., K.L., H.C., P.S., H.S.Q., M.C.M., H.C., K.J.N., H.W., D.F., R.M.F., C.M.B.-K., S.S.P.), Small Molecule Discovery Research (K.G.-B., J.B.B., T.B., D.W., C.S.), and Global Computational Biology and Data Sciences (J.H.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut
| | - Todd Bosanac
- Departments of Cardiometabolic Diseases Research (G.A.R., P.C.H., K.L., H.C., P.S., H.S.Q., M.C.M., H.C., K.J.N., H.W., D.F., R.M.F., C.M.B.-K., S.S.P.), Small Molecule Discovery Research (K.G.-B., J.B.B., T.B., D.W., C.S.), and Global Computational Biology and Data Sciences (J.H.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut
| | - Diane Wong
- Departments of Cardiometabolic Diseases Research (G.A.R., P.C.H., K.L., H.C., P.S., H.S.Q., M.C.M., H.C., K.J.N., H.W., D.F., R.M.F., C.M.B.-K., S.S.P.), Small Molecule Discovery Research (K.G.-B., J.B.B., T.B., D.W., C.S.), and Global Computational Biology and Data Sciences (J.H.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut
| | - Ryan M Fryer
- Departments of Cardiometabolic Diseases Research (G.A.R., P.C.H., K.L., H.C., P.S., H.S.Q., M.C.M., H.C., K.J.N., H.W., D.F., R.M.F., C.M.B.-K., S.S.P.), Small Molecule Discovery Research (K.G.-B., J.B.B., T.B., D.W., C.S.), and Global Computational Biology and Data Sciences (J.H.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut
| | - Chris Sarko
- Departments of Cardiometabolic Diseases Research (G.A.R., P.C.H., K.L., H.C., P.S., H.S.Q., M.C.M., H.C., K.J.N., H.W., D.F., R.M.F., C.M.B.-K., S.S.P.), Small Molecule Discovery Research (K.G.-B., J.B.B., T.B., D.W., C.S.), and Global Computational Biology and Data Sciences (J.H.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut
| | - Carine M Boustany-Kari
- Departments of Cardiometabolic Diseases Research (G.A.R., P.C.H., K.L., H.C., P.S., H.S.Q., M.C.M., H.C., K.J.N., H.W., D.F., R.M.F., C.M.B.-K., S.S.P.), Small Molecule Discovery Research (K.G.-B., J.B.B., T.B., D.W., C.S.), and Global Computational Biology and Data Sciences (J.H.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut
| | - Steven S Pullen
- Departments of Cardiometabolic Diseases Research (G.A.R., P.C.H., K.L., H.C., P.S., H.S.Q., M.C.M., H.C., K.J.N., H.W., D.F., R.M.F., C.M.B.-K., S.S.P.), Small Molecule Discovery Research (K.G.-B., J.B.B., T.B., D.W., C.S.), and Global Computational Biology and Data Sciences (J.H.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut
| |
Collapse
|
3
|
Dao VTV, Elbatreek MH, Deile M, Nedvetsky PI, Güldner A, Ibarra-Alvarado C, Gödecke A, Schmidt HHHW. Non-canonical chemical feedback self-limits nitric oxide-cyclic GMP signaling in health and disease. Sci Rep 2020; 10:10012. [PMID: 32561822 PMCID: PMC7305106 DOI: 10.1038/s41598-020-66639-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/22/2020] [Indexed: 12/31/2022] Open
Abstract
Nitric oxide (NO)-cyclic GMP (cGMP) signaling is a vasoprotective pathway therapeutically targeted, for example, in pulmonary hypertension. Its dysregulation in disease is incompletely understood. Here we show in pulmonary artery endothelial cells that feedback inhibition by NO of the NO receptor, the cGMP forming soluble guanylate cyclase (sGC), may contribute to this. Both endogenous NO from endothelial NO synthase and exogenous NO from NO donor compounds decreased sGC protein and activity. This effect was not mediated by cGMP as the NO-independent sGC stimulator, or direct activation of cGMP-dependent protein kinase did not mimic it. Thiol-sensitive mechanisms were also not involved as the thiol-reducing agent N-acetyl-L-cysteine did not prevent this feedback. Instead, both in-vitro and in-vivo and in health and acute respiratory lung disease, chronically elevated NO led to the inactivation and degradation of sGC while leaving the heme-free isoform, apo-sGC, intact or even increasing its levels. Thus, NO regulates sGC in a bimodal manner, acutely stimulating and chronically inhibiting, as part of self-limiting direct feedback that is cGMP independent. In high NO disease conditions, this is aggravated but can be functionally recovered in a mechanism-based manner by apo-sGC activators that re-establish cGMP formation.
Collapse
Affiliation(s)
- Vu Thao-Vi Dao
- Department of Pharmacology and Personalised Medicine, MeHNS, FHML, Maastricht University, Maastricht, The Netherlands
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Mahmoud H Elbatreek
- Department of Pharmacology and Personalised Medicine, MeHNS, FHML, Maastricht University, Maastricht, The Netherlands.
- Department for Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Martin Deile
- Primary Care Center, Altenberger Str. 27, 01277, Dresden, Germany
| | - Pavel I Nedvetsky
- Universitätsklinikum Münster, Medical Clinic D, Medical Cell Biology, Münster, Germany
| | - Andreas Güldner
- Residency Anesthesiology, Department of Anesthesiology and Critical Care Medicine, Technische Universität, Dresden, Germany
| | - César Ibarra-Alvarado
- Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| | - Axel Gödecke
- Institut für Herz- und Kreislaufphysiologie Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, MeHNS, FHML, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
4
|
A diseasome cluster-based drug repurposing of soluble guanylate cyclase activators from smooth muscle relaxation to direct neuroprotection. NPJ Syst Biol Appl 2018; 4:8. [PMID: 29423274 PMCID: PMC5799370 DOI: 10.1038/s41540-017-0039-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 12/24/2022] Open
Abstract
Network medicine utilizes common genetic origins, markers and co-morbidities to uncover mechanistic links between diseases. These links can be summarized in the diseasome, a comprehensive network of disease–disease relationships and clusters. The diseasome has been influential during the past decade, although most of its links are not followed up experimentally. Here, we investigate a high prevalence unmet medical need cluster of disease phenotypes linked to cyclic GMP. Hitherto, the central cGMP-forming enzyme, soluble guanylate cyclase (sGC), has been targeted pharmacologically exclusively for smooth muscle modulation in cardiology and pulmonology. Here, we examine the disease associations of sGC in a non-hypothesis based manner in order to identify possibly previously unrecognized clinical indications. Surprisingly, we find that sGC, is closest linked to neurological disorders, an application that has so far not been explored clinically. Indeed, when investigating the neurological indication of this cluster with the highest unmet medical need, ischemic stroke, pre-clinically we find that sGC activity is virtually absent post-stroke. Conversely, a heme-free form of sGC, apo-sGC, was now the predominant isoform suggesting it may be a mechanism-based target in stroke. Indeed, this repurposing hypothesis could be validated experimentally in vivo as specific activators of apo-sGC were directly neuroprotective, reduced infarct size and increased survival. Thus, common mechanism clusters of the diseasome allow direct drug repurposing across previously unrelated disease phenotypes redefining them in a mechanism-based manner. Specifically, our example of repurposing apo-sGC activators for ischemic stroke should be urgently validated clinically as a possible first-in-class neuroprotective therapy. Systems medicine utilizes common genetic origins and co-morbidities to uncover mechanistic links between diseases, which are summarized in the diseasome. Shared pathomechanisms may also allow for drug repurposing within these disease clusters. Here, Schmidt and co-workers show indeed that, based on this principle, a cardio-pulmonary drug can be surprisingly repurposed for a previously not recognised application as a direct neuroprotectant. They find that the cyclic GMP forming soluble guanylate cyclase becomes dysfunctional upon stroke but regains catalytic activity in the presence of specific activator compounds. This new mechanism-based therapy should be urgently validated clinically as a possible first-in-class treatment in stroke.
Collapse
|
5
|
Chalimoniuk M, Chrapusta SJ, Lukačova N, Langfort J. Endurance training upregulates the nitric oxide/soluble guanylyl cyclase/cyclic guanosine 3',5'-monophosphate pathway in the striatum, midbrain and cerebellum of male rats. Brain Res 2015; 1618:29-40. [PMID: 26006108 DOI: 10.1016/j.brainres.2015.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 12/24/2022]
Abstract
The nitric oxide/soluble guanylyl cyclase/cyclic guanosine monophosphate (NO/sGC/cGMP) brain pathway plays an important role in motor control. We studied the effects of 6-week endurance training (running) of moderate intensity on this pathway by comparing, between sedentary and endurance-trained young adult male Wistar rats, the expression of endothelial (eNOS) and neuronal (nNOS) NO synthases and of α1, α2 and β1 GC subunits, as well as cGMP levels, in the brain cortex, hippocampus, striatum, midbrain and cerebellum. Additionally, we compared the respective regional expressions of BDNF and the BDNF receptor TrkB. Twenty-four hours after the last training session, the endurance-trained rats showed 3-fold higher spontaneous locomotor activity than their sedentary counterparts in an open-field test. Forty-eight hours after the completion of the training, the trained rats showed significantly elevated BDNF and TrKB mRNAs in the hippocampus, midbrain and striatum, and significantly increased BDNF levels in the hippocampus and striatum. Simultaneously, significant increases were found in mRNA and protein levels and activities of nNOS and eNOS as well as in mRNA and protein levels of GCα2 and GCβ1, but not GCα1, in the striatum, midbrain and cerebellum; no change in these variables was found in the cortex and hippocampus except for marked elevations in cortical GCβ1 mRNA and protein. Changes in regional cGMP levels paralleled those in eNOS, nNOS and GCα2 expression and NOSs' activities. These results suggest that favorable extrapyramidal motor effects of physical training are related to the enhanced activity of the NO/sGC/cGMP pathway in certain motor control-related subcortical brain regions.
Collapse
Affiliation(s)
- Małgorzata Chalimoniuk
- Department of Cellular Signaling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Stanisław J Chrapusta
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Nadežda Lukačova
- Institute of Neurobiology, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Józef Langfort
- Department of Sports Training, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland.
| |
Collapse
|
6
|
Velázquez E, Blázquez E, Ruiz-Albusac JM. Glucagon-like peptide-2 (GLP-2) modulates the cGMP signalling pathway by regulating the expression of the soluble guanylyl cyclase receptor subunits in cultured rat astrocytes. Mol Neurobiol 2012; 46:242-50. [PMID: 22806360 DOI: 10.1007/s12035-012-8298-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/26/2012] [Indexed: 01/23/2023]
Abstract
The aim of this work was to study the effect of glucagon-like peptide-2 (GLP-2) on the cyclic guanosine monophosphate (cGMP) signalling pathway and whether insulin or epidermal growth factor (EGF) might modulate the effects of GLP-2. GLP-2 produced a dose-dependent decrease in intracellular sodium nitroprusside-induced cGMP production. However, insulin induced an increase in the levels of cGMP that was dose-dependently decreased by the addition of GLP-2. By contrast, EGF induced a decrease in cGMP production, which was further reduced by the addition of GLP-2. To assess whether variations in cGMP production might be related with changes in some component of soluble guanylyl cyclase (sGC), the expression of the α1, α2, and β1 subunits were determined by Western blot analysis. At 1 h, GLP-2 produced a decrease in the expression of both α1 and β1 in the cytosolic fraction, but at 24 h only β1was reduced. As expected, insulin induced an increase in the expression of both subunits after 1 h of incubation; this was decreased by the addition of GLP-2. Likewise, incubation with EGF for 24 h produced a decrease in the expression of both subunits that was maximal when GLP-2 was added. In addition, incubation with insulin for 1 h produced an increase in the expression of the α2 subunit, which was reduced by the addition of GLP-2. These results suggest that GLP-2 inhibits cGMP production by decreasing the cellular content of at least one subunit of the heterodimeric active form of the sGC, independently of the presence of insulin or EFG. This may open new insights into the actions of this neuropeptide.
Collapse
Affiliation(s)
- Esther Velázquez
- Department of Biochemistry and Molecular Biology, Complutense University Plaza S. Ramón y Cajal s/n, 28040 Madrid, Spain
| | | | | |
Collapse
|
7
|
Haase N, Haase T, Seeanner M, Behrends S. Nitric oxide sensitive guanylyl cyclase activity decreases during cerebral postnatal development because of a reduction in heterodimerization. J Neurochem 2009; 112:542-51. [PMID: 19895661 DOI: 10.1111/j.1471-4159.2009.06484.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soluble guanylyl cyclase (sGC) is the major physiological receptor for nitric oxide (NO) throughout the central nervous system. Three different subunits form the alpha(1)/beta(1) and alpha(2)/beta(1) heterodimeric enzymes that catalyze the reaction of GTP to the second messenger cGMP. Both forms contain a prosthetic heme group which binds NO and mediates activation by NO. A number of studies have shown that NO/cGMP signaling plays a major role in neuronal cell differentiation during development of the central nervous system. In the present work, we studied regulation and expression of sGC in brain of rats during postnatal development using biochemical methods. We consistently observed a surprising decrease in cerebral NO sensitive enzyme activity in adult animals in spite of stable expression of sGC subunits. Total hemoprotein heme content was decreased in cerebrum of adult animals, likely because of an increase in heme oxygenase activity. But the loss of sGC activity was not simply because of heme loss in intact heterodimeric enzymes. This was shown by enzyme activity determinations with cinaciguat which can be used to test heme occupancy in intact heterodimers. A reduction in heterodimerization in cerebrum of adult animals was demonstrated by co-precipitation analysis of sGC subunits. This explained the observed decrease in NO sensitive guanylyl cyclase activity in cerebrum of adult animals. We conclude that differing efficiencies in heterodimer formation may be an important reason for the lack of correlation between sGC protein expression and sGC activity that has been described previously. We suggest that heterodimerization of sGC is a regulated process that changes during cerebral postnatal development because of still unknown signaling mechanisms.
Collapse
Affiliation(s)
- Nadine Haase
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technical University Braunschweig, Braunschweig, Germany
| | | | | | | |
Collapse
|
8
|
Sharabi K, Lecuona E, Helenius IT, Beitel GJ, Sznajder JI, Gruenbaum Y. Sensing, physiological effects and molecular response to elevated CO2 levels in eukaryotes. J Cell Mol Med 2009; 13:4304-18. [PMID: 19863692 PMCID: PMC4515048 DOI: 10.1111/j.1582-4934.2009.00952.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Carbon dioxide (CO2) is an important gaseous molecule that maintains biosphere homeostasis and is an important cellular signalling molecule in all organisms. The transport of CO2 through membranes has fundamental roles in most basic aspects of life in both plants and animals. There is a growing interest in understanding how CO2 is transported into cells, how it is sensed by neurons and other cell types and in understanding the physiological and molecular consequences of elevated CO2 levels (hypercapnia) at the cell and organism levels. Human pulmonary diseases and model organisms such as fungi, C. elegans, Drosophila and mice have been proven to be important in understanding of the mechanisms of CO2 sensing and response.
Collapse
Affiliation(s)
- Kfir Sharabi
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
9
|
Haase N, Seeanner M, Haase T, Behrends S. Lack of correlation between sGC subunit expression and sGC activity in cerebral development is due to non-heterodimerizing subunits in vivo. BMC Pharmacol 2009. [PMCID: PMC3313331 DOI: 10.1186/1471-2210-9-s1-p20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Meurer S, Pioch S, Pabst T, Opitz N, Schmidt PM, Beckhaus T, Wagner K, Matt S, Gegenbauer K, Geschka S, Karas M, Stasch JP, Schmidt HHHW, Müller-Esterl W. Nitric oxide-independent vasodilator rescues heme-oxidized soluble guanylate cyclase from proteasomal degradation. Circ Res 2009; 105:33-41. [PMID: 19478201 DOI: 10.1161/circresaha.109.198234] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitric oxide (NO) is an essential vasodilator. In vascular diseases, oxidative stress attenuates NO signaling by both chemical scavenging of free NO and oxidation and downregulation of its major intracellular receptor, the alphabeta heterodimeric heme-containing soluble guanylate cyclase (sGC). Oxidation can also induce loss of the heme of sGC, as well as the responsiveness of sGC to NO. sGC activators such as BAY 58-2667 bind to oxidized/heme-free sGC and reactivate the enzyme to exert disease-specific vasodilation. Here, we show that oxidation-induced downregulation of sGC protein extends to isolated blood vessels. Mechanistically, degradation was triggered through sGC ubiquitination and proteasomal degradation. The heme-binding site ligand BAY 58-2667 prevented sGC ubiquitination and stabilized both alpha and beta subunits. Collectively, our data establish oxidation-ubiquitination of sGC as a modulator of NO/cGMP signaling and point to a new mechanism of action for sGC activating vasodilators by stabilizing their receptor, oxidized/heme-free sGC.
Collapse
Affiliation(s)
- Sabine Meurer
- Department of Pharmacology & Centre for Vascular Health, University of Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Vazquez-Padron RI, Pham SM, Mateu D, Khan S, Aitouche A. An internal ribosome entry site mediates the initiation of soluble guanylyl cyclase beta2 mRNA translation. FEBS J 2008; 275:3598-607. [PMID: 18565106 DOI: 10.1111/j.1742-4658.2008.06505.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The soluble guanylyl cyclases (sGC), the receptor for nitric oxide, are heterodimers consisting of an alpha- and beta-subunit. This study aimed to investigate the translational mechanism of the sGC beta2-subunit. Two mRNA species for sGC beta2 were isolated from human kidney. These transcripts had dissimilar 5'-untranslated regions (5'-UTRs). The most abundant sGC beta2 mRNA showed numerous upstream open reading frames (ORFs) and stable secondary structures that inhibited in vivo and in vitro translation. To evaluate whether these 5'-UTRs harbored an internal ribosome entry site (IRES) that allows translation by an alternative mechanism, we inserted these regions between the two luciferase genes of a bicistronic vector. Transfection of those genetic constructs into HeLa cells demonstrated that both sGC beta2 leaders had IRES activity in a cell-type dependent manner. Finally, the secondary structural model of the sGC beta2 5'-UTR predicts a Y-type pseudoknot that characterizes the IRES of cellular mRNAs. In conclusion, our findings suggest that sGC beta2 5'-UTRs have IRES activity that may permit sGC beta2 expression under conditions that are not optimal for scanning-dependent translation.
Collapse
|
12
|
Nedvetsky PI, Meurer S, Opitz N, Nedvetskaya TY, Müller H, Schmidt HHHW. Heat shock protein 90 regulates stabilization rather than activation of soluble guanylate cyclase. FEBS Lett 2007; 582:327-31. [PMID: 18155168 DOI: 10.1016/j.febslet.2007.12.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 12/04/2007] [Accepted: 12/12/2007] [Indexed: 01/28/2023]
Abstract
Endothelium-derived nitric oxide (NO) activates the heterodimeric heme protein soluble guanylate cyclase (sGC) to form cGMP. In different disease states, sGC levels and activity are diminished possibly involving the sGC binding chaperone, heat shock protein 90 (hsp90). Here we show that prolonged hsp90 inhibition in different cell types reduces protein levels of both sGC subunits by about half, an effect that was prevented by the proteasome inhibitor MG132. Conversely, acute hsp90 inhibition affected neither basal nor NO-stimulated sGC activity. Thus, hsp90 is a molecular stabilizer for sGC tonically preventing proteasomal degradation rather than having a role in short-term activity regulation.
Collapse
Affiliation(s)
- Pavel I Nedvetsky
- Rudolf-Buchheim-lnstitute for Pharmacology, University of Giessen, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Reyna-Neyra A, Sarkar G, Etgen AM. Regulation of soluble guanylyl cyclase activity by oestradiol and progesterone in the hypothalamus but not hippocampus of female rats. J Neuroendocrinol 2007; 19:418-25. [PMID: 17388815 DOI: 10.1111/j.1365-2826.2007.01546.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oestradiol and progesterone act in the hypothalamus to coordinate the timing of lordosis and ovulation in female rats in part through regulation of nitric oxide (NO) and cyclic guanosine monophosphate (cyclic GMP) signalling pathways. Soluble guanylyl cyclase is an enzyme that produces cyclic GMP when stimulated by NO and plays a crucial role in the display of lordosis behaviour. We examined the effects of oestradiol and progesterone on the stimulation of cyclic GMP synthesis by NO-dependent and independent activators of soluble guanylyl cyclase in preoptic-hypothalamic and hippocampal slices. Ovariectomised Sprague-Dawley rats were injected with oestradiol (2 microg oestradiol benzoate, s.c.) or vehicle for 2 days. Progesterone (500 microg, s.c.) or vehicle was injected 44 h after the first dose of oestradiol. Rats were killed 48 h after the first oestradiol or vehicle injection, and hypothalamus and hippocampus were obtained. NO-dependent activation of soluble guanylyl cyclase was induced by NO donors, sodium nitroprusside or diethylamine NONOate; NO-independent activation of soluble guanylyl cyclase was induced with 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole and 5'-cyclopropyl-2-[1-2fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]pyridine-4-ylamine. The NO-dependent activators of soluble guanylyl cyclase produced a concentration-dependent increase in cyclic GMP accumulation and induced significantly greater cyclic GMP accumulation in preoptic-hypothalamic slices from animals treated with oestradiol and progesterone than in slices from rats injected with vehicle, oestradiol or progesterone alone. Hormones did not modify soluble guanylyl cyclase activation by NO-independent stimulators or influence NO content in preoptic-hypothalamic slices. Oestradiol and progesterone did not affect activation of soluble guanylyl cyclase in hippocampal slices by any pharmacological agent, indicating a strong regional selectivity for the hormone effect. Thus, oestradiol and progesterone, administered in vivo, enhance the ability of NO to activate soluble guanylyl cyclase in brain areas modulating female reproductive function without an effect on production of NO itself.
Collapse
Affiliation(s)
- A Reyna-Neyra
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | |
Collapse
|
14
|
Stasch JP, Schmidt PM, Nedvetsky PI, Nedvetskaya TY, H.S. AK, Meurer S, Deile M, Taye A, Knorr A, Lapp H, Müller H, Turgay Y, Rothkegel C, Tersteegen A, Kemp-Harper B, Müller-Esterl W, Schmidt HH. Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J Clin Invest 2006; 116:2552-61. [PMID: 16955146 PMCID: PMC1555649 DOI: 10.1172/jci28371] [Citation(s) in RCA: 359] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 07/11/2006] [Indexed: 01/14/2023] Open
Abstract
ROS are a risk factor of several cardiovascular disorders and interfere with NO/soluble guanylyl cyclase/cyclic GMP (NO/sGC/cGMP) signaling through scavenging of NO and formation of the strong oxidant peroxynitrite. Increased oxidative stress affects the heme-containing NO receptor sGC by both decreasing its expression levels and impairing NO-induced activation, making vasodilator therapy with NO donors less effective. Here we show in vivo that oxidative stress and related vascular disease states, including human diabetes mellitus, led to an sGC that was indistinguishable from the in vitro oxidized/heme-free enzyme. This sGC variant represents what we believe to be a novel cGMP signaling entity that is unresponsive to NO and prone to degradation. Whereas high-affinity ligands for the unoccupied heme pocket of sGC such as zinc-protoporphyrin IX and the novel NO-independent sGC activator 4-[((4-carboxybutyl){2-[(4-phenethylbenzyl)oxy]phenethyl}amino) methyl [benzoic]acid (BAY 58-2667) stabilized the enzyme, only the latter activated the NO-insensitive sGC variant. Importantly, in isolated cells, in blood vessels, and in vivo, BAY 58-2667 was more effective and potentiated under pathophysiological and oxidative stress conditions. This therapeutic principle preferentially dilates diseased versus normal blood vessels and may have far-reaching implications for the currently investigated clinical use of BAY 58-2667 as a unique diagnostic tool and highly innovative vascular therapy.
Collapse
Affiliation(s)
- Johannes-Peter Stasch
- Institute of Cardiovascular Research, Bayer HealthCare, Wuppertal, Germany.
Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.
Rudolf-Buchheim-Institute for Pharmacology, Giessen, Germany.
Institute for Biochemistry II, University of Frankfurt Medical School, Frankfurt, Germany.
Helios Klinikum Erfurt, Erfurt, Germany.
Martin-Luther-University, School of Pharmacy, Halle, Germany.
Centre for Vascular Health, Monash University, Melbourne, Victoria, Australia
| | - Peter M. Schmidt
- Institute of Cardiovascular Research, Bayer HealthCare, Wuppertal, Germany.
Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.
Rudolf-Buchheim-Institute for Pharmacology, Giessen, Germany.
Institute for Biochemistry II, University of Frankfurt Medical School, Frankfurt, Germany.
Helios Klinikum Erfurt, Erfurt, Germany.
Martin-Luther-University, School of Pharmacy, Halle, Germany.
Centre for Vascular Health, Monash University, Melbourne, Victoria, Australia
| | - Pavel I. Nedvetsky
- Institute of Cardiovascular Research, Bayer HealthCare, Wuppertal, Germany.
Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.
Rudolf-Buchheim-Institute for Pharmacology, Giessen, Germany.
Institute for Biochemistry II, University of Frankfurt Medical School, Frankfurt, Germany.
Helios Klinikum Erfurt, Erfurt, Germany.
Martin-Luther-University, School of Pharmacy, Halle, Germany.
Centre for Vascular Health, Monash University, Melbourne, Victoria, Australia
| | - Tatiana Y. Nedvetskaya
- Institute of Cardiovascular Research, Bayer HealthCare, Wuppertal, Germany.
Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.
Rudolf-Buchheim-Institute for Pharmacology, Giessen, Germany.
Institute for Biochemistry II, University of Frankfurt Medical School, Frankfurt, Germany.
Helios Klinikum Erfurt, Erfurt, Germany.
Martin-Luther-University, School of Pharmacy, Halle, Germany.
Centre for Vascular Health, Monash University, Melbourne, Victoria, Australia
| | - Arun Kumar H.S.
- Institute of Cardiovascular Research, Bayer HealthCare, Wuppertal, Germany.
Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.
Rudolf-Buchheim-Institute for Pharmacology, Giessen, Germany.
Institute for Biochemistry II, University of Frankfurt Medical School, Frankfurt, Germany.
Helios Klinikum Erfurt, Erfurt, Germany.
Martin-Luther-University, School of Pharmacy, Halle, Germany.
Centre for Vascular Health, Monash University, Melbourne, Victoria, Australia
| | - Sabine Meurer
- Institute of Cardiovascular Research, Bayer HealthCare, Wuppertal, Germany.
Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.
Rudolf-Buchheim-Institute for Pharmacology, Giessen, Germany.
Institute for Biochemistry II, University of Frankfurt Medical School, Frankfurt, Germany.
Helios Klinikum Erfurt, Erfurt, Germany.
Martin-Luther-University, School of Pharmacy, Halle, Germany.
Centre for Vascular Health, Monash University, Melbourne, Victoria, Australia
| | - Martin Deile
- Institute of Cardiovascular Research, Bayer HealthCare, Wuppertal, Germany.
Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.
Rudolf-Buchheim-Institute for Pharmacology, Giessen, Germany.
Institute for Biochemistry II, University of Frankfurt Medical School, Frankfurt, Germany.
Helios Klinikum Erfurt, Erfurt, Germany.
Martin-Luther-University, School of Pharmacy, Halle, Germany.
Centre for Vascular Health, Monash University, Melbourne, Victoria, Australia
| | - Ashraf Taye
- Institute of Cardiovascular Research, Bayer HealthCare, Wuppertal, Germany.
Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.
Rudolf-Buchheim-Institute for Pharmacology, Giessen, Germany.
Institute for Biochemistry II, University of Frankfurt Medical School, Frankfurt, Germany.
Helios Klinikum Erfurt, Erfurt, Germany.
Martin-Luther-University, School of Pharmacy, Halle, Germany.
Centre for Vascular Health, Monash University, Melbourne, Victoria, Australia
| | - Andreas Knorr
- Institute of Cardiovascular Research, Bayer HealthCare, Wuppertal, Germany.
Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.
Rudolf-Buchheim-Institute for Pharmacology, Giessen, Germany.
Institute for Biochemistry II, University of Frankfurt Medical School, Frankfurt, Germany.
Helios Klinikum Erfurt, Erfurt, Germany.
Martin-Luther-University, School of Pharmacy, Halle, Germany.
Centre for Vascular Health, Monash University, Melbourne, Victoria, Australia
| | - Harald Lapp
- Institute of Cardiovascular Research, Bayer HealthCare, Wuppertal, Germany.
Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.
Rudolf-Buchheim-Institute for Pharmacology, Giessen, Germany.
Institute for Biochemistry II, University of Frankfurt Medical School, Frankfurt, Germany.
Helios Klinikum Erfurt, Erfurt, Germany.
Martin-Luther-University, School of Pharmacy, Halle, Germany.
Centre for Vascular Health, Monash University, Melbourne, Victoria, Australia
| | - Helmut Müller
- Institute of Cardiovascular Research, Bayer HealthCare, Wuppertal, Germany.
Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.
Rudolf-Buchheim-Institute for Pharmacology, Giessen, Germany.
Institute for Biochemistry II, University of Frankfurt Medical School, Frankfurt, Germany.
Helios Klinikum Erfurt, Erfurt, Germany.
Martin-Luther-University, School of Pharmacy, Halle, Germany.
Centre for Vascular Health, Monash University, Melbourne, Victoria, Australia
| | - Yagmur Turgay
- Institute of Cardiovascular Research, Bayer HealthCare, Wuppertal, Germany.
Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.
Rudolf-Buchheim-Institute for Pharmacology, Giessen, Germany.
Institute for Biochemistry II, University of Frankfurt Medical School, Frankfurt, Germany.
Helios Klinikum Erfurt, Erfurt, Germany.
Martin-Luther-University, School of Pharmacy, Halle, Germany.
Centre for Vascular Health, Monash University, Melbourne, Victoria, Australia
| | - Christiane Rothkegel
- Institute of Cardiovascular Research, Bayer HealthCare, Wuppertal, Germany.
Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.
Rudolf-Buchheim-Institute for Pharmacology, Giessen, Germany.
Institute for Biochemistry II, University of Frankfurt Medical School, Frankfurt, Germany.
Helios Klinikum Erfurt, Erfurt, Germany.
Martin-Luther-University, School of Pharmacy, Halle, Germany.
Centre for Vascular Health, Monash University, Melbourne, Victoria, Australia
| | - Adrian Tersteegen
- Institute of Cardiovascular Research, Bayer HealthCare, Wuppertal, Germany.
Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.
Rudolf-Buchheim-Institute for Pharmacology, Giessen, Germany.
Institute for Biochemistry II, University of Frankfurt Medical School, Frankfurt, Germany.
Helios Klinikum Erfurt, Erfurt, Germany.
Martin-Luther-University, School of Pharmacy, Halle, Germany.
Centre for Vascular Health, Monash University, Melbourne, Victoria, Australia
| | - Barbara Kemp-Harper
- Institute of Cardiovascular Research, Bayer HealthCare, Wuppertal, Germany.
Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.
Rudolf-Buchheim-Institute for Pharmacology, Giessen, Germany.
Institute for Biochemistry II, University of Frankfurt Medical School, Frankfurt, Germany.
Helios Klinikum Erfurt, Erfurt, Germany.
Martin-Luther-University, School of Pharmacy, Halle, Germany.
Centre for Vascular Health, Monash University, Melbourne, Victoria, Australia
| | - Werner Müller-Esterl
- Institute of Cardiovascular Research, Bayer HealthCare, Wuppertal, Germany.
Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.
Rudolf-Buchheim-Institute for Pharmacology, Giessen, Germany.
Institute for Biochemistry II, University of Frankfurt Medical School, Frankfurt, Germany.
Helios Klinikum Erfurt, Erfurt, Germany.
Martin-Luther-University, School of Pharmacy, Halle, Germany.
Centre for Vascular Health, Monash University, Melbourne, Victoria, Australia
| | - Harald H.H.W. Schmidt
- Institute of Cardiovascular Research, Bayer HealthCare, Wuppertal, Germany.
Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.
Rudolf-Buchheim-Institute for Pharmacology, Giessen, Germany.
Institute for Biochemistry II, University of Frankfurt Medical School, Frankfurt, Germany.
Helios Klinikum Erfurt, Erfurt, Germany.
Martin-Luther-University, School of Pharmacy, Halle, Germany.
Centre for Vascular Health, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Ciani E, Calvanese V, Crochemore C, Bartesaghi R, Contestabile A. Proliferation of cerebellar precursor cells is negatively regulated by nitric oxide in newborn rat. J Cell Sci 2006; 119:3161-70. [PMID: 16835271 DOI: 10.1242/jcs.03042] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The diffusible messenger, nitric oxide plays multiple roles in neuroprotection, neurodegeneration and brain plasticity. Its involvement in neurogenesis has been disputed, on the basis of results on models in vivo and in culture. We report here that pharmacological blockade of nitric oxide production in rat pups resulted, during a restricted time window of the first three postnatal days, in increased cerebellar proliferation rate, as assessed through tritiated thymidine or BrdU incorporation into DNA. This was accompanied by increased expression of Myc, a transcription factor essential for cerebellar development, and of the cell cycle regulating gene, cyclin D1. These effects were mediated downstream by the nitric oxide-dependent second messenger, cGMP. Schedules of pharmacological NO deprivation targeted to later developmental stages (from postnatal day 3 to 7), no longer increased proliferation, probably because of partial escape of the cGMP level from nitric oxide control. Though limited to a brief temporal window, the proliferative effect of neonatal nitric oxide deprivation could be traced into adulthood. Indeed, the number of BrdU-labeled surviving cells, most of which were of neuronal phenotype, was larger in the cerebellum of 60-day-old rats that had been subjected to NO deprivation during the first three postnatal days than in control rats. Experiments on cell cultures from neonatal cerebellum confirmed that nitric oxide deprivation stimulated proliferation of cerebellar precursor cells and that this effect was not additive with the proliferative action of sonic hedgehog peptide. The finding that nitric oxide deprivation during early cerebellar neurogenesis, stimulates a brief increase in cell proliferation may contribute to a better understanding of the controversial role of nitric oxide in brain development.
Collapse
Affiliation(s)
- Elisabetta Ciani
- Department of Human and General Physiology, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy
| | | | | | | | | |
Collapse
|
16
|
Ruscheweyh R, Goralczyk A, Wunderbaldinger G, Schober A, Sandkühler J. Possible sources and sites of action of the nitric oxide involved in synaptic plasticity at spinal lamina I projection neurons. Neuroscience 2006; 141:977-988. [PMID: 16725273 DOI: 10.1016/j.neuroscience.2006.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 04/03/2006] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
The synaptic long-term potentiation between primary afferent C-fibers and spinal lamina I projection neurons is a cellular model for hyperalgesia [Ikeda H, Heinke B, Ruscheweyh R, Sandkühler J (2003) Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 299:1237-1240]. In lamina I neurons with a projection to the periaqueductal gray, this long-term potentiation is dependent on nitric oxide. In the present study, we used immunohistochemistry to detect possible sources and sites of action of the nitric oxide necessary for the long-term potentiation at lamina I spino-periaqueductal gray neurons in rats. None of the three isoforms of the nitric oxide synthase was expressed in a significant number of lamina I spino-periaqueductal gray neurons or primary afferent C-fibers (as evaluated by staining of their cell bodies in the dorsal root ganglia). However, endothelial and inducible nitric oxide synthase were found throughout the spinal cord vasculature and neuronal nitric oxide synthase was present in a number of neurons in laminae II and III. The nitric oxide target soluble guanylyl cyclase was detected in most lamina I spino-periaqueductal gray neurons and in approximately 12% of the dorsal root ganglion neurons, all of them nociceptive as evaluated by coexpression of substance P. Synthesis of cyclic 3',5'-guanosine monophosphate upon stimulation by a nitric oxide donor confirmed the presence of active guanylyl cyclase in at least a portion of the spino-periaqueductal gray neuronal cell bodies. We therefore propose that nitric oxide generated in neighboring neurons or blood vessels acts on the spino-periaqueductal gray neuron and/or the primary afferent C-fiber to enable long-term potentiation. Lamina I spino-parabrachial neurons were stained for comparison and yielded similar results.
Collapse
Affiliation(s)
- R Ruscheweyh
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - A Goralczyk
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria; Neuroanatomy and Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 307, D-69120 Heidelberg, Germany
| | - G Wunderbaldinger
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - A Schober
- Neuroanatomy and Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 307, D-69120 Heidelberg, Germany
| | - J Sandkühler
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria.
| |
Collapse
|
17
|
Kwak YL, Jones KA, Warner DO, Perkins WJ. NO responsiveness in pulmonary artery and airway smooth muscle: the role of cGMP regulation. Am J Physiol Lung Cell Mol Physiol 2005; 290:L200-8. [PMID: 16113048 DOI: 10.1152/ajplung.00186.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to assess intrinsic smooth muscle mechanisms contributing to greater nitric oxide (NO) responsiveness in pulmonary vascular vs. airway smooth muscle. Canine pulmonary artery smooth muscle (PASM) and tracheal smooth muscle (TSM) strips were used to perform concentration response studies to an NO donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO). PASM exhibited a greater NO responsiveness whether PASM and TSM were contracted with receptor agonists, phenylephrine and acetylcholine, respectively, or with KCl. The >10-fold difference in NO sensitivity in PASM was observed with both submaximal and maximal contractions. This difference in NO responsiveness was not due to differences in endothelial or epithelial barriers, since these were removed, nor was it due to the presence of cGMP-independent NO-mediated relaxation in either tissue. At equal concentrations of NO, the intracellular cGMP concentration ([cGMP]i) was also greater in PASM than in TSM. Phosphodiesterase (PDE) inhibition using isobutylmethylxanthine indicated that the greater [cGMP]i in PASM was not due to greater PDE activity in TSM. Expression of soluble guanylate cyclase (sGC) subunit mRNA (2 +/- 0.2 and 1.3 +/- 0.2 attomol/microg total RNA, respectively) and protein (47.4 +/- 2 and 27.8 +/- 3.9 ng/mg soluble homogenate protein, respectively) was greater in PASM than in TSM. sGCalpha1 and sGCbeta1 mRNA expression was equal in PASM but was significantly different in TSM, suggesting independent regulation of their expression. An intrinsic smooth muscle mechanism accounting for greater NO responsiveness in PASM vs. TSM is greater sGC activity.
Collapse
MESH Headings
- Animals
- Cyclic GMP/metabolism
- Dogs
- Dose-Response Relationship, Drug
- Female
- Guanylate Cyclase
- Humans
- In Vitro Techniques
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Male
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nitric Oxide/pharmacology
- Nitric Oxide Donors/administration & dosage
- Nitric Oxide Donors/pharmacology
- Phosphoric Diester Hydrolases/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Soluble Guanylyl Cyclase
- Trachea/drug effects
- Trachea/metabolism
- Triazenes/administration & dosage
- Triazenes/pharmacology
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- Young L Kwak
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
18
|
van Staveren WCG, Markerink-van Ittersum M, Steinbusch HWM, Behrends S, de Vente J. Localization and characterization of cGMP-immunoreactive structures in rat brain slices after NO-dependent and NO-independent stimulation of soluble guanylyl cyclase. Brain Res 2005; 1036:77-89. [PMID: 15725404 DOI: 10.1016/j.brainres.2004.12.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 11/29/2004] [Accepted: 12/04/2004] [Indexed: 11/23/2022]
Abstract
Possible differences in the localization of the cGMP response were investigated in rat brain coronal slices after in vitro incubation and NO-dependent or NO-independent stimulation of soluble guanylyl cyclase (sGC). Dose-dependent stimulation of cGMP synthesis by the NO donors, sodium nitroprusside, S-nitrosoglutathione, 3-morpholinosydnonimine and diethylamino NONOate was studied in the somatoparietal cortex, the hippocampus and the thalamus. cGMP accumulation was evaluated using a radioimmunoassay and by measuring cGMP-immunofluorescence using image analysis. All four NO donors induced similar cGMP staining patterns in the somatoparietal cortex, the hippocampus and the thalamus. NO-mediated cGMP synthesis in the cortical areas colocalized predominantly with the acetylcholine transporter and occasionally with parvalbumin (GABAergic cells) or the neuronal glutamate transporter. Incubation of the slices in the combined presence of a NO donor and the NO-independent activators YC-1 or BAY 41-2272 strongly potentiated cGMP synthesis and induced abundant cGMP-immunoreactivity in cortical GABAergic and glutamatergic cells. These findings indicate that the mechanism of NO release from the NO donors used does not determine the location of the cGMP response. The results suggest that YC-1 and BAY 41-2272 trigger a NO-sensing mechanism in cells in which the sGC is otherwise not sensitive to NO.
Collapse
Affiliation(s)
- Wilma C G van Staveren
- European Graduate School of Neuroscience (EURON), Department of Psychiatry and Neuropsychology, Division Cellular Neuroscience, UNS50, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Upregulation of guanylyl cyclase expression and activity in striatum of MPTP-induced parkinsonism in mice. Biochem Biophys Res Commun 2004; 324:118-26. [PMID: 15464991 DOI: 10.1016/j.bbrc.2004.09.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Indexed: 11/15/2022]
Abstract
The aim of our study was to investigate the expression and the activity of soluble guanylyl cyclase (GC) and phosphodiesterase (PDE) activities that regulate cGMP level in the striatum, hippocampus, and brain cortex in an animal model of PD, induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We observed the increase of total activity and protein level of GC in striatum after MPTP injection. It was accompanied by an enhancement of both mRNA expression and protein level of GCbeta1 subunit. MPTP induces mRNA expression and elevates protein concentration of GCbeta1 in striatum up to 14 days after its injection, which in turn causes a marked enhancement of cGMP formation. Furthermore, the activation of GC occurs through change of maximal enzyme activity (V(max)). Simultaneously, no change in PDE activity has been detected in all investigated regions of the brain after MPTP. MPTP injection caused the elevation of GCbeta1 protein level in both the membrane and cytosol fractions being significantly higher in cytosol. Western blot analysis demonstrated about 45-67% decrease of tyrosine hydroxylase protein content in striatum. These data suggest that NO/cGMP signaling pathway may at least partially contribute to dopaminergic fiber degeneration in the striatum, the damage attributed to PD.
Collapse
|
20
|
Putnam RW, Filosa JA, Ritucci NA. Cellular mechanisms involved in CO(2) and acid signaling in chemosensitive neurons. Am J Physiol Cell Physiol 2004; 287:C1493-526. [PMID: 15525685 DOI: 10.1152/ajpcell.00282.2004] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An increase in CO(2)/H(+) is a major stimulus for increased ventilation and is sensed by specialized brain stem neurons called central chemosensitive neurons. These neurons appear to be spread among numerous brain stem regions, and neurons from different regions have different levels of chemosensitivity. Early studies implicated changes of pH as playing a role in chemosensitive signaling, most likely by inhibiting a K(+) channel, depolarizing chemosensitive neurons, and thereby increasing their firing rate. Considerable progress has been made over the past decade in understanding the cellular mechanisms of chemosensitive signaling using reduced preparations. Recent evidence has pointed to an important role of changes of intracellular pH in the response of central chemosensitive neurons to increased CO(2)/H(+) levels. The signaling mechanisms for chemosensitivity may also involve changes of extracellular pH, intracellular Ca(2+), gap junctions, oxidative stress, glial cells, bicarbonate, CO(2), and neurotransmitters. The normal target for these signals is generally believed to be a K(+) channel, although it is likely that many K(+) channels as well as Ca(2+) channels are involved as targets of chemosensitive signals. The results of studies of cellular signaling in central chemosensitive neurons are compared with results in other CO(2)- and/or H(+)-sensitive cells, including peripheral chemoreceptors (carotid body glomus cells), invertebrate central chemoreceptors, avian intrapulmonary chemoreceptors, acid-sensitive taste receptor cells on the tongue, and pain-sensitive nociceptors. A multiple factors model is proposed for central chemosensitive neurons in which multiple signals that affect multiple ion channel targets result in the final neuronal response to changes in CO(2)/H(+).
Collapse
Affiliation(s)
- Robert W Putnam
- Department of Anatomy and Physiology, Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA.
| | | | | |
Collapse
|
21
|
Ding JD, Burette A, Nedvetsky PI, Schmidt HHHW, Weinberg RJ. Distribution of soluble guanylyl cyclase in the rat brain. J Comp Neurol 2004; 472:437-48. [PMID: 15065118 DOI: 10.1002/cne.20054] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The diffusible messenger nitric oxide (NO) acts in the brain largely through activation of soluble guanylyl cyclase (sGC), a heterodimer comprising alpha and beta subunits. We used immunohistochemistry to study the distribution of both sGC subunits in the brain of adult rats. alpha and beta subunits gave similar widespread staining throughout the CNS, which was strongest in neostriatum, olfactory tubercle, and supraoptic nucleus. Double-labeling experiments showed striking cellular colocalization in most brain regions, suggesting that the two subunits may be organized into enzymatically active alpha/beta heteromers. Mismatches were observed in cerebellar cortex: Purkinje cells and Bergmann glia were positive for both subunits, whereas granule cells and interneurons in the molecular layer were strongly immunopositive for beta but only weakly stained for the alpha subunit. By using multiple labeling, we compared the localization of sGC with neuronal nitric oxide synthase (NOS-I, the NO-producing enzyme in neurons). In forebrain, the distribution of sGC and NOS-I was complementary, with only occasional colocalization. In contrast, cellular colocalization was common in midbrain and cerebellum. These data support a widespread role for the NO/sGC/cGMP pathway in the CNS and suggest that, in addition to its role as paracrine messenger, NO may also be an intracellular autocrine agent.
Collapse
Affiliation(s)
- Jin-Dong Ding
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
22
|
Seo DO, Lee S, Rivier CL. Comparison between the influence of shocks and endotoxemia on the activation of brain cells that contain nitric oxide. Brain Res 2004; 998:1-12. [PMID: 14725962 DOI: 10.1016/j.brainres.2003.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We sought to identify the brain circuitry that underlies the stimulatory role of nitric oxide (NO) role on the hypothalamic-pituitary-adrenal (HPA) axis. Specifically, we determined whether electrofootshocks (60 min) or the intravenous administration of lipopolysaccharide (LPS, 100 microg/kg)-activated neurocircuitries that express either neuronal NO synthase (nNOS), a constitutive enzyme responsible for NO formation, or L-citrulline, an amino acid that is produced in equimolar amounts with NO. Shocks significantly increased the number of cells showing Fos immunoreactivity (ir) in the paraventricular nucleus (PVN) of the hypothalamus, the lateral hypothalamus (LH), amygdaloid complex (AD) and thalamus (TH), and to a lesser extent, in the hippocampus (HP), caudate putamen (CP) and frontal cortex (FC). However, shocks did not alter the number of nNOS-positive cells nor increased citrulline signals in these brain regions. LPS significantly upregulated the number of cells with fos-like ir in the PVN, LH, AD, TH, HP, CP and FC, but only increased the number of cells positive for citrulline in the PVN, 87% of which co-expressed Fos. Thus, while shocks did not alter nNOS gene expression or citrulline levels in the brain regions studied, LPS significantly increased the number of PVN cells expressing citrulline without concomitant changes in other brain areas. Endotoxemia also upregulated significantly more PVN cells that co-expressed Fos and nNOS, compared to shocks. As NO stimulates the PVN circuitries that participate in shocks- and LPS-induced ACTH release, the lack of changes in nNOS or citrulline levels due to shocks suggests that, in this model, constitutively formed NO may modulate HPA axis activity in the absence of changes in its synthesis.
Collapse
Affiliation(s)
- Dong Ook Seo
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|