1
|
Butler JM, Whitlow SM, Rogers LS, Putland RL, Mensinger AF, Maruska KP. Reproductive state-dependent plasticity in the visual system of an African cichlid fish. Horm Behav 2019; 114:104539. [PMID: 31199904 DOI: 10.1016/j.yhbeh.2019.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/28/2018] [Revised: 04/22/2019] [Accepted: 06/10/2019] [Indexed: 12/22/2022]
Abstract
Visual communication is used widely across the animal kingdom to convey crucial information about an animals' identity, reproductive status, and sex. Although it is well-demonstrated that auditory and olfactory sensitivity can change with reproductive state, fewer studies have tested for plasticity in the visual system, a surprising detail since courtship and mate choice behaviors in many species are largely dependent on visual signals. Here, we tested for reproductive state-dependent plasticity in the eye of the cichlid fish Astatotilapia burtoni using behavioral, gene expression, neural activation, and electrophysiology techniques. Males court ovulated females more intensely than gravid females, and ovulated females were more responsive to male courtship behaviors than gravid females. Using electroretinography to measure visual sensitivity in dark-adapted fish, we revealed that gravid, reproductively-ready females have increased visual sensitivity at wavelengths associated with male courtship coloration compared to non-gravid females. After ovulation was hormonally induced, female's spectral sensitivity further increased compared to pre-injection measurements. This increased sensitivity after hormone injection was absent in non-gravid females and in males, suggesting an ovulation-triggered increase in visual sensitivity. Ovulated females had higher mRNA expression levels of reproductive neuromodulatory receptors (sex-steroids; gonadotropins) in the eye than nonovulated females, whereas males had similar expression levels independent of reproductive/social state. In addition, female mate choice-like behaviors positively correlated with expression of gonadotropin system receptors in the eye. Collectively, these data provide crucial evidence linking endocrine modulation of visual plasticity to mate choice behaviors in females.
Collapse
Affiliation(s)
- Julie M Butler
- Department of Biological Sciences, Louisiana State University, USA.
| | - Sarah M Whitlow
- Department of Biological Sciences, Louisiana State University, USA
| | | | | | | | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, USA
| |
Collapse
|
2
|
Martínez-Moreno CG, Calderón-Vallejo D, Harvey S, Arámburo C, Quintanar JL. Growth Hormone (GH) and Gonadotropin-Releasing Hormone (GnRH) in the Central Nervous System: A Potential Neurological Combinatory Therapy? Int J Mol Sci 2018; 19:E375. [PMID: 29373545 PMCID: PMC5855597 DOI: 10.3390/ijms19020375] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
This brief review of the neurological effects of growth hormone (GH) and gonadotropin-releasing hormone (GnRH) in the brain, particularly in the cerebral cortex, hypothalamus, hippocampus, cerebellum, spinal cord, neural retina, and brain tumors, summarizes recent information about their therapeutic potential as treatments for different neuropathologies and neurodegenerative processes. The effect of GH and GnRH (by independent administration) has been associated with beneficial impacts in patients with brain trauma and spinal cord injuries. Both GH and GnRH have demonstrated potent neurotrophic, neuroprotective, and neuroregenerative action. Positive behavioral and cognitive effects are also associated with GH and GnRH administration. Increasing evidence suggests the possibility of a multifactorial therapy that includes both GH and GnRH.
Collapse
Affiliation(s)
- Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico.
| | - Denisse Calderón-Vallejo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Mexico.
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico.
| | - José Luis Quintanar
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Mexico.
| |
Collapse
|
3
|
Corchuelo S, Martinez ERM, Butzge AJ, Doretto LB, Ricci JMB, Valentin FN, Nakaghi LSO, Somoza GM, Nóbrega RH. Characterization of Gnrh/Gnih elements in the olfacto-retinal system and ovary during zebrafish ovarian maturation. Mol Cell Endocrinol 2017; 450:1-13. [PMID: 28400274 DOI: 10.1016/j.mce.2017.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/02/2016] [Revised: 03/15/2017] [Accepted: 04/04/2017] [Indexed: 01/13/2023]
Abstract
Gonadotropin releasing hormone (GnRH) is one of the key players of brain-pituitary-gonad axis, exerting overall control over vertebrate reproduction. In zebrafish, two variants were characterized and named as Gnrh2 and Gnrh3. In this species, Gnrh3, the hypohysiotropic form, is expressed by neurons of the olfactory-retinal system, where it is related with food detection, intra/interspecific recognition, visual acuity and retinal processing modulation. Previous studies have reported the presence of Gnrh receptors in the zebrafish retina, but not yet in the zebrafish olfactory epithelium. The current study analyzed the presence of gnrh2 and gnrh3, their receptors (gnrhr 1,2,3 and 4) and gnih (gonadotropin inhibitory hormone) transcripts, as well as the Gnrh3 protein in the olfactory epithelium (OE), olfactory bulb (OB), retina and ovary during zebrafish ovarian maturation. We found an increase of gnrh receptors transcripts in the OE at the final stages of ovarian maturation. In the OE, Gnrh3 protein was detected in the olfactory receptor neurons cilia and in the olfactory nerve fibers. Interestingly, in the OB, we found an inverse expression pattern between gnih and gnrh3. In the retina, gnrhr4 mRNA was found in the nuclei of amacrine, bipolar, and ganglion cells next to Gnrh3 positive fibers. In the ovary, gnrh3, gnrhr2 and gnrhr4 transcripts were found in perinucleolar oocytes, while gnih in oocytes at the cortical alveolus stage. Our results suggested that Gnrh/Gnih elements are involved in the neuromodulation of the sensorial system particularly at the final stages of maturation, playing also a paracrine role in the ovary.
Collapse
Affiliation(s)
- Sheryll Corchuelo
- Aquaculture Center of São Paulo State University (CAUNESP), Jaboticabal, São Paulo, Brazil
| | - Emanuel R M Martinez
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Arno J Butzge
- Aquaculture Center of São Paulo State University (CAUNESP), Jaboticabal, São Paulo, Brazil; Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Lucas B Doretto
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Juliana M B Ricci
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Fernanda N Valentin
- Aquaculture Center of São Paulo State University (CAUNESP), Jaboticabal, São Paulo, Brazil
| | - Laura S O Nakaghi
- Department of Animal Morphology and Physiology, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil.
| | - Gustavo M Somoza
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | - Rafael H Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil.
| |
Collapse
|
4
|
Choroidal Neovascular Membrane following Hormonal Stimulation for in vitro Fertilization. Eur J Ophthalmol 2015; 25:e95-7. [DOI: 10.5301/ejo.5000607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 03/05/2015] [Indexed: 11/20/2022]
Abstract
Purpose To report the onset of choroidal neovascularization (CNV) following hormonal stimulation for in vitro fertilization (IVF) in a healthy young woman. Methods A 31-year-old woman presented with visual impairment following hormonal stimulation for IVF. Clinical history was collected and best-corrected visual acuity (BCVA), complete eye examination, optical coherence tomography (OCT), fluorescein angiography (FA), and indocyanine green angiography were performed. Results Clinical history was negative with the exception of the use of medications for IVF in the previous weeks. Ocular examination revealed the presence of a CNV in the right eye, confirmed by OCT and FA, with a BCVA of 0.7 decimal units. Possible ocular and systemic diseases associated with CNV development were investigated and excluded. Treatment with 3 monthly intravitreal injections of anti-vascular endothelial growth factor (VEGF) was effective in reducing CNV size and restoring visual acuity. Conclusions This is the first report describing the development of CNV following hormonal stimulation for IVF. The development of CNV may be associated with changes of sex hormones, cytokines, and angiogenic factor levels, including VEGF, induced by hormonal stimulation.
Collapse
|
5
|
Schang AL, Bleux C, Chenut MC, Ngô-Muller V, Quérat B, Jeanny JC, Counis R, Cohen-Tannoudji J, Laverrière JN. Identification and analysis of two novel sites of rat GnRH receptor gene promoter activity: the pineal gland and retina. Neuroendocrinology 2013; 97:115-31. [PMID: 22414758 DOI: 10.1159/000337661] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/01/2011] [Accepted: 02/28/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIMS In mammals, activation of pituitary GnRH receptor (GnRHR) by hypothalamic GnRH increases the synthesis and secretion of LH and FSH, which, in turn, regulate gonadal functions. However, GnRHR gene (Gnrhr) expression is not restricted to the pituitary. METHODS To gain insight into the extrapituitary expression of Gnrhr, a transgenic mouse model that expresses the human placental alkaline phosphatase reporter gene driven by the rat Gnrhr promoter was created. RESULTS This study shows that the rat Gnrhr promoter is operative in two functionally related organs, the pineal gland, as early as embryonic day (E) 13.5, and the retina where activity was only detected at E17.5. Accordingly, Gnrhr mRNA were present in both tissues. Transcription factors known to regulate Gnrhr promoter activity such as the LIM homeodomain factors LHX3 and ISL1 were also detected in the retina. Furthermore, transient transfection studies in CHO and gonadotrope cells revealed that OTX2, a major transcription factor in both pineal and retina cell differentiation, is able to activate the Gnrhr promoter together with either CREB or PROP1, depending on the cell context. CONCLUSION Rather than using alternate promoters, Gnrhr expression is directed to diverse cell lineages through specific associations of transcription factors acting on distinct response elements along the same promoter. These data open new avenues regarding GnRH-mediated control of seasonal and circadian rhythms in reproductive physiology.
Collapse
Affiliation(s)
- Anne-Laure Schang
- Université Paris Diderot Paris 7, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Physiologie de l'Axe Gonadotrope, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhao Y, Lin MCA, Farajzadeh M, Wayne NL. Early development of the gonadotropin-releasing hormone neuronal network in transgenic zebrafish. Front Endocrinol (Lausanne) 2013; 4:107. [PMID: 24009601 PMCID: PMC3757539 DOI: 10.3389/fendo.2013.00107] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/11/2013] [Accepted: 08/07/2013] [Indexed: 12/26/2022] Open
Abstract
Understanding development of gonadotropin-releasing hormone (GnRH) neuronal circuits is fundamental to our understanding of reproduction, but not yet well understood. Most studies have been focused on GnRH neurons located in the hypothalamus and preoptic area (POA), which directly regulate the pituitary-gonadal axis. In zebrafish (Danio rerio), two forms of GnRH have been identified: GnRH2 and GnRH3. GnRH3 neurons in this species plays two roles: hypophysiotropic and neuromodulatory, depending on their location. GnRH3 neurons in the ventral telencephalon, POA, and hypothalamus control pituitary-gonadal function; in other areas (e.g., terminal nerve), they are neuromodulatory and without direct action on reproduction. To investigate the biology of GnRH neurons, a stable line of transgenic zebrafish was generated in which the GnRH3 promoter drives expression of a bright variant of green fluorescent protein (Emerald GFP, or EMD). This provides unprecedented sensitivity in detecting and imaging GnRH3 neurons during early embryogenesis in the transparent embryo. Using timelapse confocal imaging to monitor the time course of GnRH3:EMD expression in the live embryo, we describe the emergence and development of GnRH3 neurons in the olfactory region, hypothalamus, POA, and trigeminal ganglion. By 50 h post fertilization, these diverse groups of GnRH3 neurons project broadly in the central and peripheral nervous systems and make anatomical connections with each other. Immunohistochemistry of synaptic vesicle protein 2 (a marker of synaptic transmission) in this transgenic model suggests synaptic formation is occurring during early development of the GnRH3 neural network. Electrophysiology reveals early emergence of responsiveness to the stimulatory effects of kisspeptin in terminal nerve GnRH3 neurons. Overall, our findings reveal that the GnRH3 neuronal system is comprised of multiple populations of neurons as a complicated network.
Collapse
Affiliation(s)
- Yali Zhao
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Meng-Chin A. Lin
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Matthew Farajzadeh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nancy L. Wayne
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- *Correspondence: Nancy L. Wayne, Department of Physiology, Center for Health Sciences, David Geffen School of Medicine, University of California Los Angeles, Room 53-231, 10833 Le Conte Avenue, Los Angeles, CA 90095-1751, USA e-mail:
| |
Collapse
|
7
|
Dukic-Stefanovic S, Walther J, Wosch S, Zimmermann G, Wiedemann P, Alexander H, Claudepierre T. Chorionic gonadotropin and its receptor are both expressed in human retina, possible implications in normal and pathological conditions. PLoS One 2012; 7:e52567. [PMID: 23285091 PMCID: PMC3526580 DOI: 10.1371/journal.pone.0052567] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2012] [Accepted: 11/20/2012] [Indexed: 11/18/2022] Open
Abstract
Extra-gonadal role of gonadotropins has been re-evaluated over the last 20 years. In addition to pituitary secretion of luteinizing hormone (LH) and follicle stimulating hormone (FSH), the CNS has been clearly identified as a source of hCG acting locally to influence behaviour. Here we demonstrated that human retina is producing this gonadotropin that acts as a neuroactive molecule. Müller glial and retinal pigmented epithelial (RPE) cells are producing hCG that may affects neighbour cells expressing its receptor, namely cone photoreceptors. It was previously described that amacrine and retinal ganglion (RGC) cells are targets of the gonadotropin releasing hormone that control the secretion of all gonadotropins. Therefore our findings suggest that a complex neuroendocrine circuit exists in the retina, involving hCG secreting cells (glial and RPE), hCG targets (photoreceptors) and hCG-release controlling cells (amacrine and RGC). The exact physiological functions of this circuit have still to be identified, but the proliferation of photoreceptor-derived tumor induced by hCG demonstrated the need to control this neuroendocrine loop.
Collapse
MESH Headings
- Blotting, Western
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Chorionic Gonadotropin, beta Subunit, Human/genetics
- Chorionic Gonadotropin, beta Subunit, Human/metabolism
- Chorionic Gonadotropin, beta Subunit, Human/pharmacology
- Gene Expression Regulation
- Humans
- Protein Transport
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, LH/metabolism
- Retina/metabolism
- Retina/pathology
- Retinoblastoma/metabolism
- Retinoblastoma/pathology
Collapse
Affiliation(s)
| | - Jan Walther
- Department of Ophthalmology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Sebastian Wosch
- Department of Ophthalmology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Gerolf Zimmermann
- Department of Obstetrics and Gynecology, Division of Human Reproduction and Endocrinology, University of Leipzig, Leipzig, Germany
| | - Peter Wiedemann
- Department of Ophthalmology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Henry Alexander
- Department of Obstetrics and Gynecology, Division of Human Reproduction and Endocrinology, University of Leipzig, Leipzig, Germany
| | - Thomas Claudepierre
- Department of Ophthalmology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
8
|
Abstract
Gonadotrophin-releasing hormone (GnRH) is a hypothalamic hormone transported by the hypophyseal portal bloodstream to the pituitary gland, where it binds to GnRH receptors. However, GnRH receptors are expressed in multiple extrapituitary tissues, although their physiological relevance is not fully understood. GnRH agonists are employed extensively in steroid deprivation therapy, especially to suppress testosterone in prostate cancer. Because GnRH agonist treatment is associated with increased coronary heart disease and myocardial infarction, we investigated the impact of GnRH on cardiomyocyte contractile function. Cardiomyocytes were isolated from mouse hearts and mechanical and intracellular Ca(2+) properties were evaluated, including peak shortening amplitude (PS), time-to-PS (TPS), time-to-90% relengthening (TR(90) ), maximal velocity of shortening/relengthening (± dLdt), electrically-stimulated rise in Fura-2 fluorescence intensity (ΔFFI) and Ca(2+) decay. GnRH (1 ng/ml) increased PS, ± dL/dt, resting FFI and ΔFFI, and prolonged TPS, TR(90) and Ca(2+) decay time, whereas 1 pg/ml GnRH affected all these cardiomyocyte variables, except TPS, resting FFI and ΔFFI. A concentration of 1 fg/ml GnRH and the GnRH cleavage product, GnRH-[1-5] (300 pg/ml), had no effect on any cardiomyocyte parameter. The 1 pg/ml GnRH-elicited responses were attenuated by the GnRH receptor antagonist cetrorelix (10 μm), the protein kinase A (PKA) inhibitor H89 (1 μm) but not the protein kinase C inhibitor chelerythrine chloride (1 μm). These data revealed that GnRH is capable of regulating cardiac contractile function via a GnRH receptor/PKA-dependent mechanism. If present in the human heart, dysfunction of such a system may play an important role in cardiac pathology observed in men treated with GnRH agonists for prostate cancer.
Collapse
Affiliation(s)
- F Dong
- College of Health Sciences, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | |
Collapse
|
9
|
Kobayashi F, Kurihara Y, Nagasaka K, Iida H, Shindo K, Takiyama Y. [A patient with cerebellar ataxia, hypogonadotropic hypogonadism and vitelliform macular dystrophy: Boucher-Neuhäuser syndrome]. Rinsho Shinkeigaku 2010; 50:98-102. [PMID: 20196491 DOI: 10.5692/clinicalneurol.50.98] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022]
Abstract
A 28-year-old man had experienced non-progressive gait disturbance since early childhood. He was admitted because of hypogonadism and cerebellar ataxia. On admission, bilateral vitelliform macular dystrophy, fixation nystagmus, slurred speech, cerebellar ataxia, decreased tendon reflexes, and pes cavus were present. Higher brain function, auditory function, and olfactory function were not disturbed. A gene abnormality related to known hereditary spinocerebellar degeneration and Kallman syndrome was not observed. Brain MRI demonstrated cerebellar atrophy. ECD-SPECT revealed decreased blood flow in the brain stem and cerebellum. Endocrinological tests indicated that the hypogonadism seemed to be due to a primary pituitary disturbance. This is the second case of Boucher-Neuhäuser syndrome in Japan.
Collapse
Affiliation(s)
- Fumikazu Kobayashi
- Department of Neurology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | | | | | | | | | | |
Collapse
|
10
|
Falcón J, Migaud H, Muñoz-Cueto JA, Carrillo M. Current knowledge on the melatonin system in teleost fish. Gen Comp Endocrinol 2010; 165:469-82. [PMID: 19409900 DOI: 10.1016/j.ygcen.2009.04.026] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/12/2008] [Revised: 04/15/2009] [Accepted: 04/23/2009] [Indexed: 01/27/2023]
Abstract
Melatonin is a much conserved feature in vertebrates that plays a central role in the entrainment of daily and annual physiological rhythms. Investigations aiming at understanding how melatonin mediates the effects of photoperiod on crucial functions and behaviors have been very active in the last decades, particularly in mammals. In fish a clear-cut picture is still missing. Here we review the available data on (i) the sites of melatonin production in fish, (ii) the mechanisms that control its daily and annual rhythms of production and (iii) the characterization of its different receptor subtypes, their location and regulation. The in vivo and in vitro data on melatonin effects on crucial neuroendocrine regulations, including reproduction, growth, feeding and behavioral responses, are also reviewed. Finally we discuss how manipulation of the photic cues impact on fish circannual clock and annual cycle of reproduction, and how this can be used for aquaculture purposes.
Collapse
Affiliation(s)
- J Falcón
- CNRS, FRE3247 et GDR2821, Modèles en Biologie cellulaire et évolutive, Avenue Fontaulé, BP 44, F-66651 Banyuls-sur-Mer, Cedex, France.
| | | | | | | |
Collapse
|
11
|
GNRH1 mutations in patients with idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci U S A 2009; 106:11703-8. [PMID: 19567835 DOI: 10.1073/pnas.0903449106] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/22/2023] Open
Abstract
Idiopathic hypogonadotropic hypogonadism (IHH) is a condition characterized by failure to undergo puberty in the setting of low sex steroids and low gonadotropins. IHH is due to abnormal secretion or action of the master reproductive hormone gonadotropin-releasing hormone (GnRH). Several genes have been found to be mutated in patients with IHH, yet to date no mutations have been identified in the most obvious candidate gene, GNRH1 itself, which encodes the preprohormone that is ultimately processed to produce GnRH. We screened DNA from 310 patients with normosmic IHH (nIHH) and 192 healthy control subjects for sequence changes in GNRH1. In 1 patient with severe congenital nIHH (with micropenis, bilateral cryptorchidism, and absent puberty), a homozygous frameshift mutation that is predicted to disrupt the 3 C-terminal amino acids of the GnRH decapeptide and to produce a premature stop codon was identified. Heterozygous variants not seen in controls were identified in 4 patients with nIHH: 1 nonsynonymous missense mutation in the eighth amino acid of the GnRH decapeptide, 1 nonsense mutation that causes premature termination within the GnRH-associated peptide (GAP), which lies C-terminal to the GnRH decapeptide within the GnRH precursor, and 2 sequence variants that cause nonsynonymous amino-acid substitutions in the signal peptide and in GnRH-associated peptide. Our results establish mutations in GNRH1 as a genetic cause of nIHH.
Collapse
|
12
|
Albertson AJ, Talbott H, Wang Q, Jensen D, Skinner DC. The gonadotropin-releasing hormone type I receptor is expressed in the mouse cerebellum. THE CEREBELLUM 2009; 7:379-84. [PMID: 18592335 DOI: 10.1007/s12311-008-0038-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a decapeptide hypothalamic hormone that was named according to its first discovered function--at the head of the neuroendocrine reproductive axis. Numerous other organ systems express GnRH and/or its receptor, although a specific physiological role for GnRH outside of the reproductive axis has yet to be established. Several studies in lower vertebrates have reported GnRH and/or its receptor in the cerebellum. Here, we describe the presence of immunoreactive GnRH receptors in the Purkinje cells of the mammalian cerebellum for the first time. This study provides compelling anatomical evidence for a common link between the cerebellum and the hypothalamo-pituitary axis. Dysfunction of this link occurs in the rare genetic ataxia disorders--Gordon Holmes syndrome and Boucher-Neuhauser syndrome.
Collapse
Affiliation(s)
- Asher J Albertson
- Department of Zoology and Physiology & Neurobiology Program, University of Wyoming, Dept 3166, 1000 E University Avenue, Laramie, WY 82071, USA
| | | | | | | | | |
Collapse
|
13
|
Skinner DC, Albertson AJ, Navratil A, Smith A, Mignot M, Talbott H, Scanlan-Blake N. Effects of gonadotrophin-releasing hormone outside the hypothalamic-pituitary-reproductive axis. J Neuroendocrinol 2009; 21:282-92. [PMID: 19187469 PMCID: PMC2669307 DOI: 10.1111/j.1365-2826.2009.01842.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
Gonadotrophin-releasing hormone (GnRH) is a hypothalamic decapeptide with an undisputed role as a primary regulator of gonadal function. It exerts this regulation by controlling the release of gonadotrophins. However, it is becoming apparent that GnRH may have a variety of other vital roles in normal physiology. A reconsideration of the potential widespread action that this traditional reproductive hormone exerts may lead to the generation of novel therapies and provide insight into seemingly incongruent outcomes from current treatments using GnRH analogues to combat diseases such as prostate cancer.
Collapse
Affiliation(s)
- D C Skinner
- Neurobiology Program and Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Minakari M, Sameni FK, Shalmani HM, Molaee M, Zali MR. Hepatic steatosis in Iranian patients with chronic hepatitis C. Med Princ Pract 2008; 17:126-30. [PMID: 18287796 DOI: 10.1159/000112966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/22/2007] [Accepted: 03/31/2007] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To evaluate the frequency and severity of fibrosis, and also the association of various viral and host factors of steatosis in Iranian patients with hepatitis C (CHC). SUBJECTS AND METHODS Eighty treatment-naive CHC patients, age 37.6 +/- 11.77 years, were studied. Percutaneous liver biopsy was performed for all patients. Based on pathology reports, patients were divided into two groups: with and without significant steatosis. Hepatitis C virus RNA (HCV-RNA), various viral and host factors, and biochemical findings and genotyping of HCV were compared in the two groups. RESULTS Of the 80 patients, 42 (52.5%) had pathologic evidence of significant steatosis. The mean serum level of cholesterol, triglyceride, glucose, and gamma-glutamyl transpeptidase as well as the mean body mass index, viral load, stage of fibrosis and frequency of genotype 3 were significantly higher in the patients with than those without steatosis (p < 0.05). In multivariate analysis, only genotype 3 and viral load had significant association with steatosis. In patients with genotype 3 infection, the mean viral load in those with and without steatosis was 1,623,357 +/- 833,543.46 and 821,262.1 +/- 924,480 copies/ml, respectively, and the difference was statistically significant (p = 0.009). The mean viral load in patients with genotype 1 infection was not significantly different between the two groups. The mean stage of fibrosis was higher in the group that had significant steatosis (p < 0.05). CONCLUSION Steatosis is a common finding in Iranian patients with CHC. Infection with HCV genotype 3 and high viral load in these patients are associated with significant steatosis.
Collapse
Affiliation(s)
- Mohammad Minakari
- Department of Gastroenterology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | | | | | | |
Collapse
|
15
|
Repérant J, Médina M, Ward R, Miceli D, Kenigfest N, Rio J, Vesselkin N. The evolution of the centrifugal visual system of vertebrates. A cladistic analysis and new hypotheses. ACTA ACUST UNITED AC 2007; 53:161-97. [DOI: 10.1016/j.brainresrev.2006.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2006] [Revised: 08/10/2006] [Accepted: 08/21/2006] [Indexed: 12/23/2022]
|
16
|
Maruska KP, Tricas TC. Gonadotropin-Releasing Hormone and Receptor Distributions in the Visual Processing Regions of Four Coral Reef Fishes. BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:40-56. [PMID: 17389794 DOI: 10.1159/000101068] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/26/2006] [Accepted: 09/24/2006] [Indexed: 11/19/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is widely distributed in the brain of fishes where it may function as a neuromodulator of sensory processing and behavior. Immunocytochemical and neuronal label experiments were conducted on species from four families of coral reef fishes (Chaetodontidae, butterflyfish; Pomacentridae, damselfish; Gobiidae, goby; and Labridae, wrasse) to assess conservation of GnRH targets in the visual processing retina and brain. In all species, GnRH-immunoreactive (-ir) axons from the terminal nerve project principally to the boundary between the inner plexiform (IPL) and inner nuclear (INL) layers of the retina, and are less prominent in the optic nerve, ganglion cell, IPL and INL. However, the density of GnRH innervation within the retina differed among fish species with highest concentrations in the damselfish and butterflyfish and lowest in the goby and wrasse. Experiments also show that GnRH receptors are associated with GnRH-ir axons within the fish retina primarily at the IPL-INL boundary, the region of light-dark adaptation and image processing of contrast, motion or color. GnRH-ir axons overlapped central projections of retinal ganglion cell axons primarily within the stratum album centrale and stratum griseum centrale of the tectum in all species, and were concentrated in several diencephalic visual processing centers. GnRH receptors are also localized to diencephalic visual centers and the stratum griseum periventriculare of the tectum, where motion perception and coordination of motor behavioral responses in three-dimensional space occur. This work demonstrates that the basic neural substrates for peptide-sensory convergence are conserved at multiple processing levels in the visual system of several reef fishes. Species differences in GnRH innervation to the retina and GnRH receptor distributions may be related to phylogeny, their use of vision in natural behaviors, or possibly binding properties of the antibodies. Future studies are needed to characterize the exact GnRH variants and receptor types found in these species so that possible functional consequences of GnRH influence on vision can be defined.
Collapse
Affiliation(s)
- Karen P Maruska
- University of Hawaii at Manoa, Department of Zoology, Honolulu, Hawaii, USA.
| | | |
Collapse
|
17
|
Abstract
Since 1892, anatomical studies have demonstrated that the retinas of mammals, including humans, receive input from the brain via axons emerging from the optic nerve. There are only a small number of these retinopetal axons, but their branches in the inner retina are very extensive. More recently, the neurons in the brain stem that give rise to these axons have been localized, and their neurotransmitters have been identified. One set of retinopetal axons arises from perikarya in the posterior hypothalamus and uses histamine, and the other arises from perikarya in the dorsal raphe and uses serotonin. These serotonergic and histaminergic neurons are not specialized to supply the retina; rather, they are a subset of the neurons that project via collaterals to many other targets in the central nervous system, as well. They are components of the ascending arousal system, firing most rapidly when the animal is awake and active. The contributions of these retinopetal axons to vision may be predicted from the known effects of serotonin and histamine on retinal neurons. There is also evidence suggesting that retinopetal axons play a role in the etiology of retinal diseases.
Collapse
Affiliation(s)
- Matthew J Gastinger
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77225, USA
| | | | | | | |
Collapse
|
18
|
Repérant J, Ward R, Miceli D, Rio JP, Médina M, Kenigfest NB, Vesselkin NP. The centrifugal visual system of vertebrates: a comparative analysis of its functional anatomical organization. ACTA ACUST UNITED AC 2006; 52:1-57. [PMID: 16469387 DOI: 10.1016/j.brainresrev.2005.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2005] [Revised: 11/24/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
The present review is a detailed survey of our present knowledge of the centrifugal visual system (CVS) of vertebrates. Over the last 20 years, the use of experimental hodological and immunocytochemical techniques has led to a considerable augmentation of this knowledge. Contrary to long-held belief, the CVS is not a unique property of birds but a constant component of the central nervous system which appears to exist in all vertebrate groups. However, it does not form a single homogeneous entity but shows a high degree of variation from one group to the next. Thus, depending on the group in question, the somata of retinopetal neurons can be located in the septo-preoptic terminal nerve complex, the ventral or dorsal thalamus, the pretectum, the optic tectum, the mesencephalic tegmentum, the dorsal isthmus, the raphé, or other rhombencephalic areas. The centrifugal visual fibers are unmyelinated or myelinated, and their number varies by a factor of 1000 (10 or fewer in man, 10,000 or more in the chicken). They generally form divergent terminals in the retina and rarely convergent ones. Their retinal targets also vary, being primarily amacrine cells with various morphological and neurochemical properties, occasionally interplexiform cells and displaced retinal ganglion cells, and more rarely orthotopic ganglion cells and bipolar cells. The neurochemical signature of the centrifugal visual neurons also varies both between and within groups: thus, several neuroactive substances used by these neurons have been identified; GABA, glutamate, aspartate, acetylcholine, serotonin, dopamine, histamine, nitric oxide, GnRH, FMRF-amide-like peptides, Substance P, NPY and met-enkephalin. In some cases, the retinopetal neurons form part of a feedback loop, relaying information from a primary visual center back to the retina, while in other, cases they do not. The evolutionary significance of this variation remains to be elucidated, and, while many attempts have been made to explain the functional role of the CVS, opinions vary as to the manner in which retinal activity is modified by this system.
Collapse
Affiliation(s)
- J Repérant
- CNRS UMR 5166, MNHN USM 0501, Département Régulation, Développement et Diversité Moléculaire du Muséum National d'Histoire Naturelle, C. P. 32, 7 rue Cuvier, 75231 Paris cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
19
|
Hapgood JP, Sadie H, van Biljon W, Ronacher K. Regulation of expression of mammalian gonadotrophin-releasing hormone receptor genes. J Neuroendocrinol 2005; 17:619-38. [PMID: 16159375 DOI: 10.1111/j.1365-2826.2005.01353.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023]
Abstract
Gonadotrophin-releasing hormone (GnRH), acting via its cognate GnRH receptor (GnRHR), is the primary regulator of mammalian reproductive function, and hence GnRH analogues are extensively used in the treatment of hormone-dependent diseases, as well as for assisted reproductive techniques. In addition to its established endocrine role in gonadotrophin regulation in the pituitary, evidence is rapidly accumulating to support the expression and functional roles for two forms of GnRHR (GnRHR I and GnRHR II) in multiple and diverse extra-pituitary mammalian tissues and cells. These findings, together with findings indicating that mutations of the GnRHR are linked to the disease hypogonadotrophic hypogonadism and that GnRHRs play a direct role in neuronal migration and reproductive cancers, have presented new therapeutic targets and intensified research into the structure, function and mechanisms of regulation of expression of GnRHR genes. The present review focuses on the current knowledge on tissue-specific and hormonal regulation of transcription of mammalian GnRH receptor genes. Emerging insights, such as the discovery of diverse regulatory mechanisms in pituitary and extra-pituitary cell types, nonclassical mechanisms of steroid regulation, the use of composite elements for cell-specific expression, the increasing profile of hormones involved in regulation, the complexity of kinase pathways that target the GnRHR I gene, as well as species-differences, are highlighted. Although further research is necessary to understand the mechanisms of regulation of expression of GnRHR I and GnRHR II genes, the GnRHR is emerging as a potential target gene for facilitating cross-talk between neuroendocrine, immune and stress-response systems in multiple tissues via autocrine, paracrine and endocrine signalling.
Collapse
Affiliation(s)
- J P Hapgood
- Department of Biochemistry, University of Stellenbosch, Matieland, South Africa.
| | | | | | | |
Collapse
|
20
|
Médina M, Repérant J, Miceli D, Ward R, Arckens L. GnRH-immunoreactive centrifugal visual fibers in the Nile crocodile (Crocodylus niloticus). Brain Res 2005; 1052:112-7. [PMID: 16002052 DOI: 10.1016/j.brainres.2005.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2005] [Revised: 06/03/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022]
Abstract
Thin varicose centrifugal visual fibers, between 30-45 in number and displaying cGnRH-I immunoreactivity, were identified in Crocodylus niloticus. Approximately 80% of these fibers were also FMRF-amide-like immunoreactive. The cGnRH-I fibers extended from the preoptic region to the retina where they appeared to terminate in the external portion of the inner plexiform layer. The location of their neurons of origin could not be determined precisely following the intraocular injection of the retrograde axonal tracer RITC. Nevertheless, the presence of cGnRH-I-immunoreactive neurons exclusively within the complex comprising the terminal nerve and the septo-preoptic region, and of several retinopetal fibers labelled retrogradely with the axonal tracer at the septo-preoptic junction, indicates that the cGnRH-immunoreactive centrifugal visual system originates from within this complex.
Collapse
Affiliation(s)
- Monique Médina
- CNRS UMR 5166, MNHN USM0501, Département Régulations, Développement et Diversité Moléculaire du Muséum National d'Histoire Naturelle, CP32, 7 rue Cuvier, F-75231 Paris Cedex 05, France.
| | | | | | | | | |
Collapse
|
21
|
Abstract
The vertebrate retina receives efferent input from different parts of the central nervous system. Efferent fibers are thought to influence retinal information processing but their functional role is not well understood. One of the best-described retinopetal fiber systems in teleost retinae belongs to the terminal nerve complex. Gonadotropin-releasing hormone (GnRH) and molluscan cardioexcitatory tetrapeptide (FMRFamide)-containing fibers from the ganglion of the terminal nerve form a dense fiber plexus in the retina at the border of the inner nuclear and inner plexiform layer. Peptide-containing fibers surround and contact perikarya of dopaminergic interplexiform cells in teleost retina. In vitro experiments demonstrated that exogenously supplied GnRH mediates dopaminergic effects on the membrane potential and on the morphology of dendritic tips (spinules) of cone horizontal cells. These effects can be specifically blocked by GnRH-antagonists, indicating that the release of dopamine and dopamine-dependent effects on light adaptation of retinal neurons are affected by the terminal nerve complex. Recent data have shown that olfactory information has an impact on retinal physiology, but its precise role is not clear. The efferent fiber of the terminal nerve complex is one of the first retinopetal fiber systems for which the sources of the fibers, their cellular targets, and several physiological, morphological, and behavioral effects are known. The terminal nerve complex is therefore a model system for the analysis of local information processing which is influenced by a distinct fiber projection.
Collapse
Affiliation(s)
- U Behrens
- Anatomisches Institut, Universität Tübingen, Osterbergstr. 3, D 72074 Tübingen, Germany
| | | |
Collapse
|
22
|
Wirsig-Wiechmann CR, Wiechmann AF, Eisthen HL. What defines the nervus terminalis? Neurochemical, developmental, and anatomical criteria. PROGRESS IN BRAIN RESEARCH 2003; 141:45-58. [PMID: 12508560 DOI: 10.1016/s0079-6123(02)41083-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/24/2023]
Affiliation(s)
- Celeste R Wirsig-Wiechmann
- Department of Cell Biology, University of Oklahoma Health Science Center, 940 S.L. Young Boulevard, Oklahoma City, OK 73104, USA.
| | | | | |
Collapse
|