1
|
Santana NNM, Silva EHA, dos Santos SF, Costa MSMO, Nascimento Junior ES, Engelberth RCJG, Cavalcante JS. Retinorecipient areas in the common marmoset ( Callithrix jacchus): An image-forming and non-image forming circuitry. Front Neural Circuits 2023; 17:1088686. [PMID: 36817647 PMCID: PMC9932520 DOI: 10.3389/fncir.2023.1088686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
The mammalian retina captures a multitude of diverse features from the external environment and conveys them via the optic nerve to a myriad of retinorecipient nuclei. Understanding how retinal signals act in distinct brain functions is one of the most central and established goals of neuroscience. Using the common marmoset (Callithrix jacchus), a monkey from Northeastern Brazil, as an animal model for parsing how retinal innervation works in the brain, started decades ago due to their marmoset's small bodies, rapid reproduction rate, and brain features. In the course of that research, a large amount of new and sophisticated neuroanatomical techniques was developed and employed to explain retinal connectivity. As a consequence, image and non-image-forming regions, functions, and pathways, as well as retinal cell types were described. Image-forming circuits give rise directly to vision, while the non-image-forming territories support circadian physiological processes, although part of their functional significance is uncertain. Here, we reviewed the current state of knowledge concerning retinal circuitry in marmosets from neuroanatomical investigations. We have also highlighted the aspects of marmoset retinal circuitry that remain obscure, in addition, to identify what further research is needed to better understand the connections and functions of retinorecipient structures.
Collapse
Affiliation(s)
- Nelyane Nayara M. Santana
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eryck H. A. Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sâmarah F. dos Santos
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Miriam S. M. O. Costa
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Expedito S. Nascimento Junior
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rovena Clara J. G. Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S. Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil,*Correspondence: Jeferson S. Cavalcante,
| |
Collapse
|
2
|
Joye DAM, Evans JA. Sex differences in daily timekeeping and circadian clock circuits. Semin Cell Dev Biol 2021; 126:45-55. [PMID: 33994299 DOI: 10.1016/j.semcdb.2021.04.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/24/2021] [Accepted: 04/29/2021] [Indexed: 11/19/2022]
Abstract
The circadian system regulates behavior and physiology in many ways important for health. Circadian rhythms are expressed by nearly every cell in the body, and this large system is coordinated by a central clock in the suprachiasmatic nucleus (SCN). Sex differences in daily rhythms are evident in humans and understanding how circadian function is modulated by biological sex is an important goal. This review highlights work examining effects of sex and gonadal hormones on daily rhythms, with a focus on behavior and SCN circuitry in animal models commonly used in pre-clinical studies. Many questions remain in this area of the field, which would benefit from further work investigating this topic.
Collapse
Affiliation(s)
- Deborah A M Joye
- Marquette University, Department of Biomedical Sciences, Milwaukee, WI, USA
| | - Jennifer A Evans
- Marquette University, Department of Biomedical Sciences, Milwaukee, WI, USA.
| |
Collapse
|
3
|
Slow shift of dead zone after an abrupt shift of the light-dark cycle. Brain Res 2019; 1714:73-80. [DOI: 10.1016/j.brainres.2019.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/24/2019] [Accepted: 02/12/2019] [Indexed: 12/27/2022]
|
4
|
Duncan MJ. Interacting influences of aging and Alzheimer's disease on circadian rhythms. Eur J Neurosci 2019; 51:310-325. [DOI: 10.1111/ejn.14358] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/03/2019] [Accepted: 01/11/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Marilyn J. Duncan
- Department of NeuroscienceUniversity of Kentucky Medical School Lexington Kentucky
| |
Collapse
|
5
|
Vasoactive intestinal peptide controls the suprachiasmatic circadian clock network via ERK1/2 and DUSP4 signalling. Nat Commun 2019; 10:542. [PMID: 30710088 PMCID: PMC6358603 DOI: 10.1038/s41467-019-08427-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/21/2018] [Indexed: 01/02/2023] Open
Abstract
The suprachiasmatic nucleus (SCN) co-ordinates circadian behaviour and physiology in mammals. Its cell-autonomous circadian oscillations pivot around a well characterised transcriptional/translational feedback loop (TTFL), whilst the SCN circuit as a whole is synchronised to solar time by its retinorecipient cells that express and release vasoactive intestinal peptide (VIP). The cell-autonomous and circuit-level mechanisms whereby VIP synchronises the SCN are poorly understood. We show that SCN slices in organotypic culture demonstrate rapid and sustained circuit-level circadian responses to VIP that are mediated at a cell-autonomous level. This is accompanied by changes across a broad transcriptional network and by significant VIP-directed plasticity in the internal phasing of the cell-autonomous TTFL. Signalling via ERK1/2 and tuning by its negative regulator DUSP4 are critical elements of the VIP-directed circadian re-programming. In summary, we provide detailed mechanistic insight into VIP signal transduction in the SCN at the level of genes, cells and neural circuit. The suprachiasmatic nucleus (SCN) synchronises daily rhythms of behaviour and physiology to the light-dark cycle. Vasoactive intestinal peptide (VIP) is important for mediating SCN entrainment; however, the underlying mechanisms are incompletely understood. Here, the authors show that the effects of VIP on the SCN are mediated by ERK1/2 and DUSP4.
Collapse
|
6
|
Park J, Zhu H, O'Sullivan S, Ogunnaike BA, Weaver DR, Schwaber JS, Vadigepalli R. Single-Cell Transcriptional Analysis Reveals Novel Neuronal Phenotypes and Interaction Networks Involved in the Central Circadian Clock. Front Neurosci 2016; 10:481. [PMID: 27826225 PMCID: PMC5079116 DOI: 10.3389/fnins.2016.00481] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022] Open
Abstract
Single-cell heterogeneity confounds efforts to understand how a population of cells organizes into cellular networks that underlie tissue-level function. This complexity is prominent in the mammalian suprachiasmatic nucleus (SCN). Here, individual neurons exhibit a remarkable amount of asynchronous behavior and transcriptional heterogeneity. However, SCN neurons are able to generate precisely coordinated synaptic and molecular outputs that synchronize the body to a common circadian cycle by organizing into cellular networks. To understand this emergent cellular network property, it is important to reconcile single-neuron heterogeneity with network organization. In light of recent studies suggesting that transcriptionally heterogeneous cells organize into distinct cellular phenotypes, we characterized the transcriptional, spatial, and functional organization of 352 SCN neurons from mice experiencing phase-shifts in their circadian cycle. Using the community structure detection method and multivariate analytical techniques, we identified previously undescribed neuronal phenotypes that are likely to participate in regulatory networks with known SCN cell types. Based on the newly discovered neuronal phenotypes, we developed a data-driven neuronal network structure in which multiple cell types interact through known synaptic and paracrine signaling mechanisms. These results provide a basis from which to interpret the functional variability of SCN neurons and describe methodologies toward understanding how a population of heterogeneous single cells organizes into cellular networks that underlie tissue-level function.
Collapse
Affiliation(s)
- James Park
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Sidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphia, PA, USA; Department of Chemical and Biomolecular Engineering, University of DelawareNewark, NJ, USA
| | - Haisun Zhu
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Sidney Kimmel Medical College, Thomas Jefferson University Philadelphia, PA, USA
| | - Sean O'Sullivan
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Sidney Kimmel Medical College, Thomas Jefferson University Philadelphia, PA, USA
| | - Babatunde A Ogunnaike
- Department of Chemical and Biomolecular Engineering, University of Delaware Newark, NJ, USA
| | - David R Weaver
- Department of Neurobiology, University of Massachusetts Medical School Worcester, MA, USA
| | - James S Schwaber
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Sidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphia, PA, USA; Department of Chemical and Biomolecular Engineering, University of DelawareNewark, NJ, USA
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Sidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphia, PA, USA; Department of Chemical and Biomolecular Engineering, University of DelawareNewark, NJ, USA
| |
Collapse
|
7
|
Dardente H, Wyse CA, Lincoln GA, Wagner GC, Hazlerigg DG. Effects of Photoperiod Extension on Clock Gene and Neuropeptide RNA Expression in the SCN of the Soay Sheep. PLoS One 2016; 11:e0159201. [PMID: 27458725 PMCID: PMC4961288 DOI: 10.1371/journal.pone.0159201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/28/2016] [Indexed: 01/23/2023] Open
Abstract
In mammals, changing daylength (photoperiod) is the main synchronizer of seasonal functions. The photoperiodic information is transmitted through the retino-hypothalamic tract to the suprachiasmatic nuclei (SCN), site of the master circadian clock. To investigate effects of day length change on the sheep SCN, we used in-situ hybridization to assess the daily temporal organization of expression of circadian clock genes (Per1, Per2, Bmal1 and Fbxl21) and neuropeptides (Vip, Grp and Avp) in animals acclimated to a short photoperiod (SP; 8h of light) and at 3 or 15 days following transfer to a long photoperiod (LP3, LP15, respectively; 16h of light), achieved by an acute 8-h delay of lights off. We found that waveforms of SCN gene expression conformed to those previously seen in LP acclimated animals within 3 days of transfer to LP. Mean levels of expression for Per1-2 and Fbxl21 were nearly 2-fold higher in the LP15 than in the SP group. The expression of Vip was arrhythmic and unaffected by photoperiod, while, in contrast to rodents, Grp expression was not detectable within the sheep SCN. Expression of the circadian output gene Avp cycled robustly in all photoperiod groups with no detectable change in phasing. Overall these data suggest that synchronizing effects of light on SCN circadian organisation proceed similarly in ungulates and in rodents, despite differences in neuropeptide gene expression.
Collapse
Affiliation(s)
- Hugues Dardente
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
- Institute of Biological and Environmental Sciences, Zoology Building, Tillydrone Avenue, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom
- * E-mail: (DGH); (HD)
| | - Cathy A. Wyse
- Institute of Biological and Environmental Sciences, Zoology Building, Tillydrone Avenue, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom
- Veterinary school, Bearsden Road, Glasgow, G61 1QH, United Kingdom
| | - Gerald A. Lincoln
- Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - Gabriela C. Wagner
- Institute of Biological and Environmental Sciences, Zoology Building, Tillydrone Avenue, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom
- Department of Arctic and Marine Biology, Faculty of BioSciences, Fisheries and Economy, University of Tromsø, 9037, Tromsø, Norway
| | - David G. Hazlerigg
- Institute of Biological and Environmental Sciences, Zoology Building, Tillydrone Avenue, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom
- Department of Arctic and Marine Biology, Faculty of BioSciences, Fisheries and Economy, University of Tromsø, 9037, Tromsø, Norway
- * E-mail: (DGH); (HD)
| |
Collapse
|
8
|
Evans JA. Collective timekeeping among cells of the master circadian clock. J Endocrinol 2016; 230:R27-49. [PMID: 27154335 PMCID: PMC4938744 DOI: 10.1530/joe-16-0054] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/06/2016] [Indexed: 01/09/2023]
Abstract
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus is the master circadian clock that coordinates daily rhythms in behavior and physiology in mammals. Like other hypothalamic nuclei, the SCN displays an impressive array of distinct cell types characterized by differences in neurotransmitter and neuropeptide expression. Individual SCN neurons and glia are able to display self-sustained circadian rhythms in cellular function that are regulated at the molecular level by a 24h transcriptional-translational feedback loop. Remarkably, SCN cells are able to harmonize with one another to sustain coherent rhythms at the tissue level. Mechanisms of cellular communication in the SCN network are not completely understood, but recent progress has provided insight into the functional roles of several SCN signaling factors. This review discusses SCN organization, how intercellular communication is critical for maintaining network function, and the signaling mechanisms that play a role in this process. Despite recent progress, our understanding of SCN circuitry and coupling is far from complete. Further work is needed to map SCN circuitry fully and define the signaling mechanisms that allow for collective timekeeping in the SCN network.
Collapse
Affiliation(s)
- Jennifer A Evans
- Department of Biomedical SciencesMarquette University, Milwaukee, WI, USA
| |
Collapse
|
9
|
Abstract
Although impressive progress has been made in understanding the molecular basis of pacemaker function in the suprachiasmatic nucleus (SCN), fundamental questions about cellular and regional heterogeneity within the SCN, andhowthis heterogeneity might contribute toSCNpacemaker function at a tissue level, have remained unresolved. To reexamine cellular and regional heterogeneity within the SCN, the authors have focused on two key questions: which SCN cells are endogenously rhythmic and/or directly light responsive? Observations of endogenous rhythms of electrical activity, gene/protein expression, and protein phosphorylation suggest that the SCN in mammals examined to dateis composed of anatomically distinct rhythmic and nonrhythmic components. Endogenously rhythmic neurons are primarily found in rostral, dorsomedial, and ventromedial portions of the nucleus; at mid and caudal levels, the distribution of endogenously rhythmic cells in the SCN has the appearance of a “shell.” The majority of nonrhythmic cells, by contrast, are located in a central “core” region of the SCN, which is complementary to the shell. The location of light-responsive cells, defined by direct retinohypothalamic input and light-induced gene expression, largely overlaps the location of nonrhythmic cells in the SCN core, although, in hamsters and mice light-responsive cells are also present in the ventral portion of the rhythmic shell. While the relative positions of rhythmic and light-responsive components of the SCN are similar between species, the precise boundaries of these components, and neurochemical phenotype of cells within them, are variable. Intercellular communication between these components may bea key featurer esponsiblefor theuniquepace maker properties of the SCN observed at a tissue and whole animal level.
Collapse
Affiliation(s)
- Han S Lee
- Department of Cell Biology, Neurobiology and Anatomy, Neuroscience Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | | | | |
Collapse
|
10
|
Abstract
A major factor contributing to the evolution of mammals was their ability to be active during the night, a niche previously underused by terrestrial vertebrates. Diurnality subsequently reemerged multiple times in a variety of independent lineages. This paper reviews some recent data on circadian mechanisms in diurnal mammals and considers general themes that appear to be emerging from this work. Careful examination of behavioral studies suggests that although subtle differences may exist, the fundamental functions of the circadian system are the same, as seems to be the case with respect to the molecular mechanisms of the clock. This suggests that responses to signals originating in the clock must be different, either within the SCN or at its targets or downstream from them. Some features of the SCN vary from species to species, but none of these has been clearly associated with diurnality. The region immediately dorsal to the SCN, which receives substantial input from it, exhibits dramatically different rhythms in nocturnal lab rats and diurnal grass rats. This raises the possibility that it functions as a relay that transforms the signal emitted by the SCN and transmits different patterns to downstream targets in nocturnal and diurnal animals. Other direct targets of the SCN include neurons containing orexin and those containing gonadotropin-releasing hormone, and both of these populations of cells exhibit patterns of rhythmicity that are inverted in at least one diurnal compared to one nocturnal species. The patterns that emerge from the data on diurnality are discussed in terms of the implications they have for the evolution and neural substrates of a day-active way of life.
Collapse
Affiliation(s)
- Laura Smale
- Department of Psychology, Michigan State University, East Lansing Michigan, MI 48824, USA.
| | | | | |
Collapse
|
11
|
Evans JA, Leise TL, Castanon-Cervantes O, Davidson AJ. Neural correlates of individual differences in circadian behaviour. Proc Biol Sci 2016; 282:rspb.2015.0769. [PMID: 26108632 DOI: 10.1098/rspb.2015.0769] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Daily rhythms in mammals are controlled by the circadian system, which is a collection of biological clocks regulated by a central pacemaker within the suprachiasmatic nucleus (SCN) of the anterior hypothalamus. Changes in SCN function have pronounced consequences for behaviour and physiology; however, few studies have examined whether individual differences in circadian behaviour reflect changes in SCN function. Here, PERIOD2::LUCIFERASE mice were exposed to a behavioural assay to characterize individual differences in baseline entrainment, rate of re-entrainment and free-running rhythms. SCN slices were then collected for ex vivo bioluminescence imaging to gain insight into how the properties of the SCN clock influence individual differences in behavioural rhythms. First, individual differences in the timing of locomotor activity rhythms were positively correlated with the timing of SCN rhythms. Second, slower adjustment during simulated jetlag was associated with a larger degree of phase heterogeneity among SCN neurons. Collectively, these findings highlight the role of the SCN network in determining individual differences in circadian behaviour. Furthermore, these results reveal novel ways that the network organization of the SCN influences plasticity at the behavioural level, and lend insight into potential interventions designed to modulate the rate of resynchronization during transmeridian travel and shift work.
Collapse
Affiliation(s)
- Jennifer A Evans
- Morehouse School of Medicine, Neuroscience Institute, 720 Westview Drive SW, Atlanta, GA 30310, USA
| | - Tanya L Leise
- Department of Mathematics and Statistics, Amherst College, Amherst, MA 01002, USA
| | - Oscar Castanon-Cervantes
- Morehouse School of Medicine, Neuroscience Institute, 720 Westview Drive SW, Atlanta, GA 30310, USA
| | - Alec J Davidson
- Morehouse School of Medicine, Neuroscience Institute, 720 Westview Drive SW, Atlanta, GA 30310, USA
| |
Collapse
|
12
|
Evans JA, Gorman MR. In synch but not in step: Circadian clock circuits regulating plasticity in daily rhythms. Neuroscience 2016; 320:259-80. [PMID: 26861419 DOI: 10.1016/j.neuroscience.2016.01.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 11/16/2022]
Abstract
The suprachiasmatic nucleus (SCN) is a network of neural oscillators that program daily rhythms in mammalian behavior and physiology. Over the last decade much has been learned about how SCN clock neurons coordinate together in time and space to form a cohesive population. Despite this insight, much remains unknown about how SCN neurons communicate with one another to produce emergent properties of the network. Here we review the current understanding of communication among SCN clock cells and highlight a collection of formal assays where changes in SCN interactions provide for plasticity in the waveform of circadian rhythms in behavior. Future studies that pair analytical behavioral assays with modern neuroscience techniques have the potential to provide deeper insight into SCN circuit mechanisms.
Collapse
Affiliation(s)
- J A Evans
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.
| | - M R Gorman
- Department of Psychology, University of San Diego, La Jolla, CA, USA
| |
Collapse
|
13
|
Ramkisoensing A, Meijer JH. Synchronization of Biological Clock Neurons by Light and Peripheral Feedback Systems Promotes Circadian Rhythms and Health. Front Neurol 2015; 6:128. [PMID: 26097465 PMCID: PMC4456861 DOI: 10.3389/fneur.2015.00128] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022] Open
Abstract
In mammals, the suprachiasmatic nucleus (SCN) functions as a circadian clock that drives 24-h rhythms in both physiology and behavior. The SCN is a multicellular oscillator in which individual neurons function as cell-autonomous oscillators. The production of a coherent output rhythm is dependent upon mutual synchronization among single cells and requires both synaptic communication and gap junctions. Changes in phase-synchronization between individual cells have consequences on the amplitude of the SCN’s electrical activity rhythm, and these changes play a major role in the ability to adapt to seasonal changes. Both aging and sleep deprivation negatively affect the circadian amplitude of the SCN, whereas behavioral activity (i.e., exercise) has a positive effect on amplitude. Given that the amplitude of the SCN’s electrical activity rhythm is essential for achieving robust rhythmicity in physiology and behavior, the mechanisms that underlie neuronal synchronization warrant further study. A growing body of evidence suggests that the functional integrity of the SCN contributes to health, well-being, cognitive performance, and alertness; in contrast, deterioration of the 24-h rhythm is a risk factor for neurodegenerative disease, cancer, depression, and sleep disorders.
Collapse
Affiliation(s)
- Ashna Ramkisoensing
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center , Leiden , Netherlands
| | - Johanna H Meijer
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center , Leiden , Netherlands
| |
Collapse
|
14
|
Coomans CP, Ramkisoensing A, Meijer JH. The suprachiasmatic nuclei as a seasonal clock. Front Neuroendocrinol 2015; 37:29-42. [PMID: 25451984 DOI: 10.1016/j.yfrne.2014.11.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/07/2014] [Accepted: 11/09/2014] [Indexed: 12/23/2022]
Abstract
In mammals, the suprachiasmatic nucleus (SCN) contains a central clock that synchronizes daily (i.e., 24-h) rhythms in physiology and behavior. SCN neurons are cell-autonomous oscillators that act synchronously to produce a coherent circadian rhythm. In addition, the SCN helps regulate seasonal rhythmicity. Photic information is perceived by the SCN and transmitted to the pineal gland, where it regulates melatonin production. Within the SCN, adaptations to changing photoperiod are reflected in changes in neurotransmitters and clock gene expression, resulting in waveform changes in rhythmic electrical activity, a major output of the SCN. Efferent pathways regulate the seasonal timing of breeding and hibernation. In humans, seasonal physiology and behavioral rhythms are also present, and the human SCN has seasonally rhythmic neurotransmitter levels and morphology. In summary, the SCN perceives and encodes changes in day length and drives seasonal changes in downstream pathways and structures in order to adapt to the changing seasons.
Collapse
Affiliation(s)
- Claudia P Coomans
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Ashna Ramkisoensing
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Johanna H Meijer
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
15
|
Cambras T, Canal MM, Cernuda-Cernuda R, García-Fernández JM, Díez-Noguera A. Darkness during early postnatal development is required for normal circadian patterns in the adult rat. Chronobiol Int 2014; 32:178-86. [DOI: 10.3109/07420528.2014.960048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Cormier HC, Della-Maggiore V, Karatsoreos IN, Koletar MM, Ralph MR. Suprachiasmatic vasopressin and the circadian regulation of voluntary locomotor behavior. Eur J Neurosci 2014; 41:79-88. [PMID: 24893679 DOI: 10.1111/ejn.12637] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/22/2014] [Accepted: 04/25/2014] [Indexed: 11/28/2022]
Abstract
A role for arginine vasopressin in the circadian regulation of voluntary locomotor behavior (wheel running activity) was investigated in the golden hamster, Mesocricetus auratus. Spontaneous nocturnal running was suppressed in a dose-dependent manner by systemic injections of vasopressin, and also in a concentration-dependent manner by microinjections directly into the hypothalamic suprachiasmatic nucleus. Pre-injections of a vasopressin V1 receptor antagonist into the nucleus reduced the suppression of behavior by vasopressin. Ethogram analyses revealed that peripheral drug injections predominantly increased grooming, flank marking, and sleep-related behaviors. Central injections did not induce sleep, but increased grooming and periods of 'quiet vigilance' (awake but not moving). Nocturnal behavioral profiles following either peripheral or central injections were similar to those shown by untreated animals in the hour prior to the onset of nocturnal wheel running. Site control vasopressin injections into the medial preoptic area or periaqueductal gray increased flank marking and grooming, but had no significant effect on locomotion, suggesting behavioral specificity of a vasopressin target near the suprachiasmatic nucleus. Both peripheral and central administration increased FOS-like immunoreactivity in the retinorecipient core of the suprachiasmatic nucleus. The distribution of FOS-positive cells overlapped the calbindin subregion, but was more extensive, and most calbindin-positive cells did not co-express FOS. We propose a model of temporal behavioral regulation wherein voluntary behavior, such as nocturnal locomotor activity, is inhibited by the activity of neurons in the suprachiasmatic ventrolateral core that project to the posterior hypothalamus and are driven by rhythmic vasopressin input from the dorsomedial shell.
Collapse
Affiliation(s)
- Holly C Cormier
- Department of Psychology, University of Toronto, 100 St George Street, Toronto, ON, M5S 3G3, Canada
| | | | | | | | | |
Collapse
|
17
|
Photic stimulation of the suprachiasmatic nucleus via the non-visual optic system. A gene expression study in the blind Crx −/− mouse. Cell Tissue Res 2014; 358:239-48. [DOI: 10.1007/s00441-014-1910-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/23/2014] [Indexed: 12/23/2022]
|
18
|
Baidanoff FM, Plano SA, Doctorovich F, Suárez SA, Golombek DA, Chiesa JJ. N-nitrosomelatonin enhances photic synchronization of mammalian circadian rhythms. J Neurochem 2013; 129:60-71. [PMID: 24261470 DOI: 10.1111/jnc.12613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/12/2013] [Accepted: 11/19/2013] [Indexed: 12/18/2022]
Abstract
Most physiological processes in mammals are synchronized to the daily light:dark cycle by a circadian clock located in the hypothalamic suprachiasmatic nucleus. Signal transduction of light-induced phase advances of the clock is mediated through a neuronal nitric oxide synthase-guanilyl cyclase pathway. We have employed a novel nitric oxide-donor, N-nitrosomelatonin, to enhance the photic synchronization of circadian rhythms in hamsters. The intraperitoneal administration of this drug before a sub-saturating light pulse at circadian time 18 generated a twofold increase of locomotor rhythm phase-advances, having no effect over saturating light pulses. This potentiation was also obtained even when inhibiting suprachiasmatic nitric oxide synthase activity. However, N-nitrosomelatonin had no effect on light-induced phase delays at circadian time 14. The photic-enhancing effects were correlated with an increased suprachiasmatic immunoreactivity of FBJ murine osteosarcoma viral oncogene and period1. Moreover, in vivo nitric oxide release by N-nitrosomelatonin was verified by measuring nitrate and nitrite levels in suprachiasmatic nuclei homogenates. The compound also accelerated resynchronization to an abrupt 6-h advance in the light:dark cycle (but not resynchronization to a 6-h delay). Here, we demonstrate the chronobiotic properties of N-nitrosomelatonin, emphasizing the importance of nitric oxide-mediated transduction for circadian phase advances.
Collapse
Affiliation(s)
- Fernando M Baidanoff
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, Bernal, Argentina
| | | | | | | | | | | |
Collapse
|
19
|
Kallingal GJ, Mintz EM. Site-specific effects of gastrin-releasing peptide in the suprachiasmatic nucleus. Eur J Neurosci 2013; 39:630-9. [PMID: 24528136 DOI: 10.1111/ejn.12411] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/07/2013] [Indexed: 11/29/2022]
Abstract
The effects of gastrin-releasing peptide (GRP) on the circadian clock in the suprachiasmatic nucleus (SCN) are dependent on the activation of N-methyl-d-aspartate (NMDA) receptors in the SCN. In this study, the interaction between GRP, glutamate and serotonin in the regulation of circadian phase in Syrian hamsters was evaluated. Microinjection of GRP into the third ventricle induced c-fos and p-ERK expression throughout the SCN. Coadministration of an NMDA antagonist or 8-hydroxy-2-di-n-propylamino-tetralin [a serotonin (5-HT)1A,7 agonist, DPAT] with GRP limited c-fos expression in the SCN to a region dorsal to GRP cell bodies. Similar to the effects of NMDA antagonists, DPAT attenuated GRP-induced phase shifts in the early night, suggesting that the actions of serotonin on the photic phase shifting mechanism occur downstream from retinorecipient cells. c-fos and p-ERK immunoreactivity in the supraoptic (SON) and paraventricular hypothalamic nuclei also increased following ventricular microinjection of GRP. Because of this finding, a second set of experiments was designed to test a potential role for the SON in the regulation of clock function. Syrian hamsters were given microinjections of GRP into the peri-SON during the early night. GRP-induced c-fos activity in the SCN was similar to that following ventricular administration of GRP. GRP or bicuculline (a γ-aminobutyric acidA antagonist) administered near the SON during the early night elicited phase delays of circadian activity rhythms. These data suggest that GRP-induced phase-resetting is dependent on levels of glutamatergic and serotonergic neurotransmission in the SCN and implicate activity in the SON as a potential regulator of photic signaling in the SCN.
Collapse
Affiliation(s)
- George J Kallingal
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | | |
Collapse
|
20
|
Hamada Y, Saigoh K, Masumoto KH, Nagano M, Kusunoki S, Shigeyoshi Y. Circadian expression and specific localization of a sialyltransferase gene in the suprachiasmatic nucleus. Neurosci Lett 2013; 535:12-7. [DOI: 10.1016/j.neulet.2012.12.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 11/29/2012] [Accepted: 12/04/2012] [Indexed: 10/27/2022]
|
21
|
Meijer JH, Colwell CS, Rohling JHT, Houben T, Michel S. Dynamic neuronal network organization of the circadian clock and possible deterioration in disease. PROGRESS IN BRAIN RESEARCH 2012; 199:143-162. [PMID: 22877664 DOI: 10.1016/b978-0-444-59427-3.00009-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammals, the suprachiasmatic nuclei (SCNs) function as a circadian pacemaker that drives 24-h rhythms in physiology and behavior. The SCN is a multicellular clock in which the constituent oscillators show dynamics in their functional organization and phase coherence. Evidence has emerged that plasticity in phase synchrony among SCN neurons determines (i) the amplitude of the rhythm, (ii) the response to continuous light, (iii) the capacity to respond to seasonal changes, and (iv) the phase-resetting capacity. A decrease in circadian amplitude and phase-resetting capacity is characteristic during aging and can be a result of disease processes. Whether the decrease in amplitude is caused by a loss of synchronization or by a loss of single-cell rhythmicity remains to be determined and is important for the development of strategies to ameliorate circadian disorders.
Collapse
Affiliation(s)
- Johanna H Meijer
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Christopher S Colwell
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands; Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jos H T Rohling
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thijs Houben
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephan Michel
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Regulation of vasoactive intestinal polypeptide release in the suprachiasmatic nucleus circadian clock. Neuroreport 2011; 21:1055-9. [PMID: 20838260 DOI: 10.1097/wnr.0b013e32833fcba4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Timing of the mammalian circadian clock of the suprachiasmatic nucleus (SCN) is regulated by photic input from the retina. Retinorecipient units entrain rhythmicity of SCN pacemaker cells in part through their release of vasoactive intestinal polypeptide (VIP). The underlying nature of this process is conjectural, however, as in-vivo SCN VIP release has never been measured. Here, SCN microdialysis was used to investigate mechanisms regulating VIP. Hamsters under light-dark cycle of 14:10 exhibited a daily peak in synaptic VIP release near midday. Under constant darkness, this output was arrhythmic. Light and the glutamatergic agonist, N-methyl-D-aspartate, stimulated VIP release at night, whereas the serotonin (1A,7) agonist, (±)8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide, suppressed release at midday. Hence, SCN VIP activity is stimulated by photic input and inhibited by serotonin.
Collapse
|
23
|
Meijer JH, Michel S, Vanderleest HT, Rohling JHT. Daily and seasonal adaptation of the circadian clock requires plasticity of the SCN neuronal network. Eur J Neurosci 2011; 32:2143-51. [PMID: 21143668 DOI: 10.1111/j.1460-9568.2010.07522.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Circadian rhythms are an essential property of many living organisms, and arise from an internal pacemaker, or clock. In mammals, this clock resides in the suprachiasmatic nucleus (SCN) of the hypothalamus, and generates an intrinsic circadian rhythm that is transmitted to other parts of the CNS. We will review the evidence that basic adaptive functions of the circadian system rely on functional plasticity in the neuronal network organization, and involve a change in phase relation among oscillatory neurons. We will illustrate this for: (i) photic entrainment of the circadian clock to the light-dark cycle; and (ii) seasonal adaptation of the clock to changes in day length. Molecular studies have shown plasticity in the phase relation between the ventral and dorsal SCN during adjustment to a shifted environmental cycle. Seasonal adaptation relies predominantly on plasticity in the phase relation between the rostral and caudal SCN. Electrical activity is integrated in the SCN, and appears to reflect the sum of the differently phased molecular expression patterns. While both photic entrainment and seasonal adaptation arise from a redistribution of SCN oscillatory activity patterns, different neuronal coupling mechanisms are employed, which are reviewed in the present paper.
Collapse
Affiliation(s)
- Johanna H Meijer
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | |
Collapse
|
24
|
Intrinsic regulation of spatiotemporal organization within the suprachiasmatic nucleus. PLoS One 2011; 6:e15869. [PMID: 21249213 PMCID: PMC3017566 DOI: 10.1371/journal.pone.0015869] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 12/03/2010] [Indexed: 11/19/2022] Open
Abstract
The mammalian pacemaker in the suprachiasmatic nucleus (SCN) contains a population of neural oscillators capable of sustaining cell-autonomous rhythms in gene expression and electrical firing. A critical question for understanding pacemaker function is how SCN oscillators are organized into a coherent tissue capable of coordinating circadian rhythms in behavior and physiology. Here we undertake a comprehensive analysis of oscillatory function across the SCN of the adult PER2::LUC mouse by developing a novel approach involving multi-position bioluminescence imaging and unbiased computational analyses. We demonstrate that there is phase heterogeneity across all three dimensions of the SCN that is intrinsically regulated and extrinsically modulated by light in a region-specific manner. By investigating the mechanistic bases of SCN phase heterogeneity, we show for the first time that phase differences are not systematically related to regional differences in period, waveform, amplitude, or brightness. Furthermore, phase differences are not related to regional differences in the expression of arginine vasopressin and vasoactive intestinal polypeptide, two key neuropeptides characterizing functionally distinct subdivisions of the SCN. The consistency of SCN spatiotemporal organization across individuals and across planes of section suggests that the precise phasing of oscillators is a robust feature of the pacemaker important for its function.
Collapse
|
25
|
Mendoza J, Lopez-Lopez C, Revel FG, Jeanneau K, Delerue F, Prinssen E, Challet E, Moreau JL, Grundschober C. Dimorphic effects of leptin on the circadian and hypocretinergic systems of mice. J Neuroendocrinol 2011; 23:28-38. [PMID: 20874776 DOI: 10.1111/j.1365-2826.2010.02072.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hormone leptin controls food intake and body weight through its receptor in the hypothalamus, and may modulate physiological functions such as reproduction, sleep or circadian timing. In the present study, the effects of leptin on the resetting of the circadian clock, the hypothalamic suprachiasmatic nucleus (SCN) and on the activity of the hypocretinergic system were examined in vivo, with comparative analysis between male and female mice. A single leptin injection (5 mg/kg) at both the onset and offset of the activity period did not alter locomotion of mice housed under a 12 : 12 h light/dark cycle and did not shift the circadian behavioral rhythm of mice housed in constant darkness. By contrast, leptin potentiated the phase-shifting effect of a 30-min light-pulse on behavioural rhythms during the late subjective night, although only in females. This was accompanied by a higher induction of the clock genes Per1 and Per2 in the SCN. A 2-week chronic exposure to a physiological dose of leptin (100 μg/kg per day) decreased locomotor activity, expression of hypocretin receptor 1 and 2, as well as the number of hypocretin-immunoreactive neurones only in female mice, whereas the number of c-fos-positive hypocretinergic neurones was reduced in both genders. These results highlight a dimorphic effect of leptin on the hypocretinergic system and on the response of the circadian clock to light. Leptin may thus modulate the sleep/wake cycle and circadian system beside its well-established action on food intake and regulation of body weight.
Collapse
Affiliation(s)
- J Mendoza
- Department of Neurobiology of Rhythms, Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique, UPR3212 University of Strasbourg, Strasbourg, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Maruyama T, Ohbuchi T, Fujihara H, Shibata M, Mori K, Murphy D, Dayanithi G, Ueta Y. Diurnal changes of arginine vasopressin-enhanced green fluorescent protein fusion transgene expression in the rat suprachiasmatic nucleus. Peptides 2010; 31:2089-93. [PMID: 20727931 DOI: 10.1016/j.peptides.2010.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/12/2010] [Accepted: 08/12/2010] [Indexed: 10/19/2022]
Abstract
We have recently developed a new transgenic rat line expressing an arginine vasopressin (AVP)-enhanced green fluorescent protein (eGFP) fusion gene. The AVP-eGFP transgene is expressed in the paraventricular (PVN) and supraoptic (SON) nuclei and the suprachiasmatic nucleus (SCN) of the hypothalamus. Transgene expression in the PVN and SON showed an exaggerated response to salt loading and nociceptive stimulation. However, the expression of the AVP-eGFP transgene in the SCN did not change under these stressful conditions. Here, we examined daily profiles of the expression of the AVP-eGFP transgene in the SCN in comparison with the endogenous AVP and Period (Per1 and Per2) genes. While all of these genes elicited diurnal patterns of expression in the SCN, the rate of rhythmic change of transgene expression was significantly greater than that of the endogenous AVP gene. We also examined the effect of a light stimulus on the expression of the AVP-eGFP, AVP, Per1 and Per2 genes in the SCN of transgenic rats. Ninety minutes after a light stimulus, AVP-eGFP mRNA and AVP hnRNA levels in the SCN were significantly decreased, while Per2 mRNA levels were significantly increased. In addition, we observed the eGFP fluorescence in the SCN and recorded the electrophysiological properties of a dissociated SCN eGFP-positive neuron. The AVP-eGFP transgenic rat is a useful animal model to study the diurnal change and dynamics of the AVP system, and enables the facile identification of SCN AVP neurons both in vivo and in vitro.
Collapse
Affiliation(s)
- Takashi Maruyama
- Occupational Health Training Center, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Duncan MJ, Hester JM, Hopper JA, Franklin KM. The effects of aging and chronic fluoxetine treatment on circadian rhythms and suprachiasmatic nucleus expression of neuropeptide genes and 5-HT1B receptors. Eur J Neurosci 2010; 31:1646-54. [PMID: 20525077 DOI: 10.1111/j.1460-9568.2010.07186.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Age-related changes in circadian rhythms, including attenuation of photic phase shifts, are associated with changes in the central pacemaker in the suprachiasmatic nucleus (SCN). Aging decreases expression of mRNA for vasoactive intestinal peptide (VIP), a key neuropeptide for rhythm generation and photic phase shifts, and increases expression of serotonin transporters and 5-HT(1B) receptors, whose activation inhibits these phase shifts. Here we describe studies in hamsters showing that aging decreases SCN expression of mRNA for gastrin-releasing peptide, which also modulates photic phase resetting. Because serotonin innervation trophically supports SCN VIP mRNA expression, and serotonin transporters decrease extracellular serotonin, we predicted that chronic administration of the serotonin-selective reuptake inhibitor, fluoxetine, would attenuate the age-related changes in SCN VIP mRNA expression and 5-HT(1B) receptors. In situ hybridization studies showed that fluoxetine treatment does not alter SCN VIP mRNA expression, in either age group, at zeitgeber time (ZT)6 or 13 (ZT12 corresponds to lights off). However, receptor autoradiographic studies showed that fluoxetine prevents the age-related increase in SCN 5-HT(1B) receptors at ZT6, and decreases SCN 5-HT(1B) receptors in both ages at ZT13. Therefore, aging effects on SCN VIP mRNA and SCN 5-HT(1B) receptors are differentially regulated; the age-related increase in serotonin transporter sites mediates the latter but not the former. The studies also showed that aging and chronic fluoxetine treatment decrease total daily wheel running without altering the phase of the circadian wheel running rhythm, in contrast to previous reports of phase resetting by acute fluoxetine treatment.
Collapse
Affiliation(s)
- Marilyn J Duncan
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington, KY 40536, USA.
| | | | | | | |
Collapse
|
28
|
Schrader JA, Nunez AA, Smale L. Changes in and dorsal to the rat suprachiasmatic nucleus during early pregnancy. Neuroscience 2010; 171:513-23. [PMID: 20807562 DOI: 10.1016/j.neuroscience.2010.08.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/07/2010] [Accepted: 08/26/2010] [Indexed: 01/25/2023]
Abstract
Circadian rhythms in behavior and physiology change as female mammals transition from one reproductive state to another. The mechanisms responsible for this plasticity are poorly understood. The suprachiasmatic nucleus (SCN) of the hypothalamus contains the primary circadian pacemaker in mammals, and a large portion of its efferent projections terminate in the ventral subparaventricular zone (vSPZ), which also plays important roles in rhythm regulation. To determine whether these regions might mediate changes in overt rhythms during early pregnancy, we first compared rhythms in Fos and Per2 protein expression in the SCN and vSPZ of diestrous and early pregnant rats maintained in a 12:12-h light/dark (LD) cycle. No differences in the Fos rhythm were seen in the SCN core, but in the SCN shell, elevated Fos expression was maintained throughout the light phase in pregnant, but not diestrous, rats. In the vSPZ, the Fos rhythm was bimodal in diestrous rats, but this rhythm was lost in pregnant rats. Peak Per2 expression was phase-advanced by 4 h in the SCN of pregnant rats, and some differences in Per2 expression were found in the vSPZ as well. To determine whether differences in Fos expression were due to altered responsivity to light, we next characterized light-induced Fos expression in the SCN and vSPZ of pregnant and diestrous rats in the mid-subjective day and night. We found that the SCN core of the two groups responded in the same way at each time of day, whereas the rhythm of Fos responsivity in the SCN shell and vSPZ differed between diestrous and pregnant rats. These results indicate that the SCN and vSPZ are functionally re-organized during early pregnancy, particularly in how they respond to the photic environment. These changes may contribute to changes in overt behavioral and physiological rhythms that occur at this time.
Collapse
Affiliation(s)
- J A Schrader
- Department of Zoology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
29
|
Francl JM, Kaur G, Glass JD. Roles of light and serotonin in the regulation of gastrin-releasing peptide and arginine vasopressin output in the hamster SCN circadian clock. Eur J Neurosci 2010; 32:1170-9. [PMID: 20731711 DOI: 10.1111/j.1460-9568.2010.07374.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Daily timing of the mammalian circadian clock of the suprachiasmatic nucleus (SCN) is regulated by photic input from the retina via the retinohypothalamic tract. This signaling is mediated by glutamate, which activates SCN retinorecipient units communicating to pacemaker cells in part through the release of gastrin-releasing peptide (GRP). Efferent signaling from the SCN involves another SCN-containing peptide, arginine vasopressin (AVP). Little is known regarding the mechanisms regulating these peptides, as literature on in vivo peptide release in the SCN is sparse. Here, microdialysis-radioimmunoassay procedures were used to characterize mechanisms controlling GRP and AVP release in the hamster SCN. In animals housed under a 14/10-h light-dark cycle both peptides exhibited daily fluctuations of release, with levels increasing during the morning to peak around midday. Under constant darkness, this pattern persisted for AVP, but rhythmicity was altered for GRP, characterized by a broad plateau throughout the subjective night and early subjective day. Neuronal release of the peptides was confirmed by their suppression with reverse-microdialysis perfusion of calcium blockers and stimulation with depolarizing agents. Reverse-microdialysis perfusion with the 5-HT(1A,7) agonist 8-OH-DPAT ((±)-8-hydroxydipropylaminotetralin hydrobromide) during the day significantly suppressed GRP but had little effect on AVP. Also, perfusion with the glutamate agonist NMDA, or exposure to light at night, increased GRP but did not affect AVP. These analyses reveal distinct daily rhythms of SCN peptidergic activity, with GRP but not AVP release attenuated by serotonergic activation that inhibits photic phase-resetting, and activated by glutamatergic and photic stimulation that mediate this phase-resetting.
Collapse
Affiliation(s)
- Jessica M Francl
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | | | |
Collapse
|
30
|
Hundahl C, Hannibal J, Fahrenkrug J, Dewilde S, Hay-Schmidt A. Neuroglobin expression in the rat suprachiasmatic nucleus: Colocalization, innervation, and response to light. J Comp Neurol 2010; 518:1556-69. [DOI: 10.1002/cne.22290] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Nascimento ES, Souza AP, Duarte RB, Magalhães MA, Silva SF, Cavalcante JC, Cavalcante JS, Costa MS. The suprachiasmatic nucleus and the intergeniculate leaflet in the rock cavy (Kerodon rupestris): Retinal projections and immunohistochemical characterization. Brain Res 2010; 1320:34-46. [DOI: 10.1016/j.brainres.2010.01.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 01/13/2010] [Accepted: 01/13/2010] [Indexed: 11/29/2022]
|
32
|
Phase organization of circadian oscillators in extended gate and oscillator models. J Theor Biol 2010; 264:367-76. [PMID: 20144621 DOI: 10.1016/j.jtbi.2010.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/22/2010] [Accepted: 02/02/2010] [Indexed: 11/21/2022]
Abstract
The suprachiasmatic nuclei (SCN) control daily oscillations in physiology and behavior. The gate-oscillator model captures functional heterogeneity in SCN and has been successful in reproducing many features of SCN. This paper investigates the mechanism of phase organization in the gate-oscillator model and finds that only stable fixed points of the phase transition function are essential to phase organization. This obvious finding forms the basis for understanding the complex phase distribution in the gate-oscillator scheme. Extending the model with a dead zone of the phase transition function and the propagation delay of the gate signal which may represent the spatial structure of SCN, the author discusses how some features of experimentally reported phase distribution, such as the existence of anti-phase neurons and fixed phase difference between neurons, could be understood in the framework of the gate-oscillator model. The extended model shows clearly the way in which the interplay between the single-cell property and the property of the network organization influence the phase distribution of SCN neurons.
Collapse
|
33
|
Yan L. Expression of clock genes in the suprachiasmatic nucleus: effect of environmental lighting conditions. Rev Endocr Metab Disord 2009; 10:301-10. [PMID: 19777352 DOI: 10.1007/s11154-009-9121-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The suprachiasmatic nucleus (SCN) is the anatomical substrate for the principal circadian clock coordinating daily rhythms in a vast array of behavioral and physiological responses. Individual SCN neurons are cellular oscillators and are organized into a multi-oscillator network following unique spatiotemporal patterns. The rhythms generated in the SCN are generally entrained to the environmental light dark cycle, which is the most salient cue influencing the network organization of the SCN. The neural network in the SCN is a heterogeneous structure, containing two major compartments identified by applying physiological and functional criteria, namely the retinorecipient core region and the highly rhythmic shell region. Changes in the environmental lighting condition are first detected and processed by the core region, and then conveyed to the rest of the SCN, leading to adaptive responses of the entire network. This review will focus on the studies that explore the responses of the SCN network by examining the expression of clock genes, under various lighting paradigms, such as acute light exposure, lighting schedules or exposure to different light durations. The results will be discussed under the framework of functionally distinct SCN sub regions and oscillator groups. The evidence presented here suggests that the environmental lighting conditions alter the spatiotemporal organization of the cellular oscillators within the SCN, which consequently affect the overt rhythms in behavior and physiology. Thus, information on how the SCN network elements respond to environmental cues is key to understanding the human health problems that stem from circadian rhythm disruption.
Collapse
Affiliation(s)
- Lily Yan
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
34
|
Antle MC, Smith VM, Sterniczuk R, Yamakawa GR, Rakai BD. Physiological responses of the circadian clock to acute light exposure at night. Rev Endocr Metab Disord 2009; 10:279-91. [PMID: 19768549 DOI: 10.1007/s11154-009-9116-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Circadian rhythms in physiological, endocrine and metabolic functioning are controlled by a neural clock located in the suprachiasmatic nucleus (SCN). This structure is endogenously rhythmic and the phase of this rhythm can be reset by light information from the eye. A key feature of the SCN is that while it is a small structure containing on the order of about 20,000 cells, it is amazingly heterogeneous. It is likely that anatomical heterogeneity reflects an underlying functional heterogeneity. In this review, we examine the physiological responses of cells in the SCN to light stimuli that reset the phase of the circadian clock, highlighting where possible the spatial pattern of such responses. Increases in intracellular calcium are an important signal in response to light, and this increase triggers many biochemical cascades that mediate responses to light. Furthermore, only some cells in the SCN are actually endogenously rhythmic, and these cells likely do not receive strong direct input from the retina. Therefore, this review also considers how light information is conveyed from the retinorecipient cells to the endogenously rhythmic cells that track circadian phase. A number of neuropeptides, including vasoactive intestinal polypeptide, gastrin-releasing peptide and substance P, may be particularly important in relaying such signals, but other neurochemicals such as GABA and nitric oxide may participate as well. A thorough understanding of the intracellular and intercellular responses to light, as well as the spatial arrangements of such responses may help identify important pharmacological targets for therapeutic interventions to treat sleep and circadian disorders.
Collapse
Affiliation(s)
- Michael C Antle
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| | | | | | | | | |
Collapse
|
35
|
Ramanathan C, Campbell A, Tomczak A, Nunez AA, Smale L, Yan L. Compartmentalized expression of light-induced clock genes in the suprachiasmatic nucleus of the diurnal grass rat (Arvicanthis niloticus). Neuroscience 2009; 161:960-9. [PMID: 19393297 DOI: 10.1016/j.neuroscience.2009.04.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/15/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
Abstract
Photic responses of the circadian system are mediated through light-induced clock gene expression in the suprachiasmatic nucleus (SCN). In nocturnal rodents, depending on the timing of light exposure, Per1 and Per2 gene expression shows distinct compartmentalized patterns that correspond to the behavioral responses. Whether the gene- and region-specific induction patterns are unique to nocturnal animals, or are also present in diurnal species is unknown. We explored this question by examining the light-induced Per1 and Per2 gene expression in functionally distinct SCN subregions, using diurnal grass rats Arvicanthis niloticus. Light exposure during nighttime induced Per1 and Per2 expression in the SCN, showing unique spatiotemporal profiles depending on the phase of the light exposure. After a phase delaying light pulse (LP) in the early night, strong Per1 induction was observed in the retinorecipient core region of the SCN, while strong Per2 induction was observed throughout the entire SCN. After a phase advancing LP in the late night, Per1 was first induced in the core and then extended into the whole SCN, accompanied by a weak Per2 induction. This compartmentalized expression pattern is very similar to that observed in nocturnal rodents, suggesting that the same molecular and intercellular pathways underlying acute photic responses are present in both diurnal and nocturnal species. However, after an LP in early subjective day, which induces phase advances in diurnal grass rats, but not in nocturnal rodents, we did not observe any Per1 or Per2 induction in the SCN. This result suggests that in spite of remarkable similarities in the SCN of diurnal and nocturnal rodents, unique mechanisms are involved in mediating the phase shifts of diurnal animals during the subjective day.
Collapse
Affiliation(s)
- C Ramanathan
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
36
|
Tournier B, Birkenstock J, Pévet P, Vuillez P. Gene expression in the suprachiasmatic nuclei and the photoperiodic time integration. Neuroscience 2009; 160:240-7. [DOI: 10.1016/j.neuroscience.2009.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/30/2009] [Accepted: 02/02/2009] [Indexed: 10/21/2022]
|
37
|
Mendoza J, Challet E. Brain Clocks: From the Suprachiasmatic Nuclei to a Cerebral Network. Neuroscientist 2009; 15:477-88. [DOI: 10.1177/1073858408327808] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Circadian timing affects almost all life’s processes. It not only dictates when we sleep, but also keeps every cell and tissue working under a tight temporal regimen. The daily variations of physiology and behavior are controlled by a highly complex system comprising of a master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus, extra-SCN cerebral clocks, and peripheral oscillators. Here are presented similarities and differences in the molecular mechanisms of the clock machinery between the primary SCN clock and extra-SCN brain clocks. Diversity of secondary clocks in the brain, their specific sensitivities to time-giving cues, as their differential coupling to the master SCN clock, may allow more plasticity in the ability of the circadian timing system to integrate a wide range of temporal information. Furthermore, it raises the possibility that pathophysiological alterations of internal timing that are deleterious for health may result from internal desynchronization within the network of cerebral clocks.
Collapse
Affiliation(s)
- Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences,
Centre National dela Recherche Scientifique, University Louis Pasteur, Strasbourg,
France
| | - Etienne Challet
- Institute of Cellular and Integrative Neurosciences,
Centre National dela Recherche Scientifique, University Louis Pasteur, Strasbourg,
France,
| |
Collapse
|
38
|
Matějů K, Bendová Z, El-Hennamy R, Sládek M, Sosniyenko S, Sumová A. Development of the light sensitivity of the clock genesPeriod1andPeriod2, and immediate-early genec-foswithin the rat suprachiasmatic nucleus. Eur J Neurosci 2009; 29:490-501. [DOI: 10.1111/j.1460-9568.2009.06609.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Agez L, Laurent V, Guerrero HY, Pévet P, Masson-Pévet M, Gauer F. Endogenous melatonin provides an effective circadian message to both the suprachiasmatic nuclei and the pars tuberalis of the rat. J Pineal Res 2009; 46:95-105. [PMID: 19090912 DOI: 10.1111/j.1600-079x.2008.00636.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The suprachiasmatic nuclei (SCN) distribute the circadian neural message to the pineal gland which transforms it into a humoral circadian message, the nocturnal melatonin synthesis, which in turn modulates tissues expressing melatonin receptors such as the SCN or the pars tuberalis (PT). Nuclear orphan receptors (NOR), including rorbeta and rev-erbalpha, have been presented as functional links between the positive and negative loops of the molecular clock. Recent findings suggest that these NOR could be the initial targets of melatonin's chronobiotic message within the SCN. We investigated the role of these NOR in the physiological effect of endogenous melatonin on these tissues. We monitored rorbeta and rev-erbalpha mRNA expression levels by quantitative in situ hybridization after pinealectomy. Pinealectomy had no effect on NOR circadian expression rhythms in the SCN in 8-day pinealectomized (PX) animals. However in animals PX for 3 months, significant desynchronization between per1 and per2 transcription patterns appeared. These results suggest that endogenous melatonin could sustain the circadian rhythmicity and the phase relationship between the molecular partners of the SCN circadian system on a long-term basis. On the other hand, pinealectomy decreased the level and abolished the rhythmicity of NOR mRNA expression in the PT. These effects were partially prevented by daily melatonin administration in the drinking water. These results show that NOR can be regulated by the melatonin circadian rhythm in the PT and could be the link between the physiological action of melatonin and the core of the molecular circadian clock in this tissue.
Collapse
Affiliation(s)
- Laurence Agez
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UMR 7168, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Daily rhythmicity, including timing of wakefulness and hormone secretion, is mainly controlled by a master clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN clockwork involves various clock genes, with specific temporal patterns of expression that are similar in nocturnal and diurnal species (e.g. the clock gene Per1 in the SCN peaks at midday in both categories). Timing of sensitivity to light is roughly similar, during nighttime, in diurnal and nocturnal species. Molecular mechanisms of photic resetting are also comparable in both species categories. By contrast, in animals housed in constant light, exposure to darkness can reset the SCN clock, mostly during the resting period, i.e. at opposite circadian times between diurnal and nocturnal species. Nonphotic stimuli, such as scheduled voluntary exercise, food shortage, exogenous melatonin, or serotonergic receptor activation, are also capable of shifting the master clock and/or modulating photic synchronization. Comparison between day- and night-active species allows classifications of nonphotic cues in two, arousal-independent and arousal-dependent, families of factors. Arousal-independent factors, such as melatonin (always secreted during nighttime, independently of daily activity pattern) or gamma-aminobutyric acid (GABA), have shifting effects at the same circadian times in both nocturnal and diurnal rodents. By contrast, arousal-dependent factors, such as serotonin (its cerebral levels follow activity pattern), induce phase shifts only during resting and have opposite modulating effects on photic resetting between diurnal and nocturnal species. Contrary to light and arousal-independent nonphotic cues, arousal-dependent nonphotic stimuli provide synchronizing feedback signals to the SCN clock in circadian antiphase between nocturnal and diurnal animals.
Collapse
Affiliation(s)
- Etienne Challet
- Department of Neurobiology of Rhythms, Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (UMR 7168/LC2), University Louis Pasteur, 5 rue Blaise Pascal, Strasbourg, France.
| |
Collapse
|
41
|
Herwig A, Saboureau M, Pevet P, Steinlechner S. Daily torpor affects the molecular machinery of the circadian clock in Djungarian hamsters (Phodopus sungorus). Eur J Neurosci 2007; 26:2739-46. [DOI: 10.1111/j.1460-9568.2007.05927.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
42
|
Vansteensel MJ, Michel S, Meijer JH. Organization of cell and tissue circadian pacemakers: a comparison among species. ACTA ACUST UNITED AC 2007; 58:18-47. [PMID: 18061682 DOI: 10.1016/j.brainresrev.2007.10.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 10/15/2007] [Accepted: 10/19/2007] [Indexed: 10/22/2022]
Abstract
In most animal species, a circadian timing system has evolved as a strategy to cope with 24-hour rhythms in the environment. Circadian pacemakers are essential elements of the timing system and have been identified in anatomically discrete locations in animals ranging from insects to mammals. Rhythm generation occurs in single pacemaker neurons and is based on the interacting negative and positive molecular feedback loops. Rhythmicity in behavior and physiology is regulated by neuronal networks in which synchronization or coupling is required to produce coherent output signals. Coupling occurs among individual clock cells within an oscillating tissue, among functionally distinct subregions within the pacemaker, and between central pacemakers and the periphery. Recent evidence indicates that peripheral tissues can influence central pacemakers and contain autonomous circadian oscillators that contribute to the regulation of overt rhythmicity. The data discussed in this review describe coupling and synchronization mechanisms at the cell and tissue levels. By comparing the pacemaker systems of several multicellular animal species (Drosophila, cockroaches, crickets, snails, zebrafish and mammals), we will explore general organizational principles by which the circadian system regulates a 24-hour rhythmicity.
Collapse
Affiliation(s)
- Mariska J Vansteensel
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Postal zone S5-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
43
|
Gamble KL, Allen GC, Zhou T, McMahon DG. Gastrin-releasing peptide mediates light-like resetting of the suprachiasmatic nucleus circadian pacemaker through cAMP response element-binding protein and Per1 activation. J Neurosci 2007; 27:12078-87. [PMID: 17978049 PMCID: PMC6673384 DOI: 10.1523/jneurosci.1109-07.2007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 08/29/2007] [Accepted: 09/07/2007] [Indexed: 11/21/2022] Open
Abstract
Circadian rhythmicity in the primary mammalian circadian pacemaker, the suprachiasmatic nucleus (SCN) of the hypothalamus, is maintained by transcriptional and translational feedback loops among circadian clock genes. Photic resetting of the SCN pacemaker involves induction of the clock genes Period1 (Per1) and Period2 (Per2) and communication among distinct cell populations. Gastrin-releasing peptide (GRP) is localized to the SCN ventral retinorecipient zone, from where it may communicate photic resetting signals within the SCN network. Here, we tested the putative role of GRP as an intra-SCN light signal at the behavioral and cellular levels, and we also tested whether GRP actions are dependent on activation of the cAMP response element-binding protein (CREB) pathway and Per1. In vivo microinjections of GRP to the SCN regions of Per1::green fluorescent protein (GFP) mice during the late night induced Per1::GFP throughout the SCN, including a limited population of arginine vasopressin-immunoreactive (AVP-IR) neurons. Blocking spike-mediated communication with tetrodotoxin did not disrupt overall Per1::GFP induction but did reduce induction within AVP-IR neurons. In vitro GRP application resulted in persistent increases in the spike frequency of Per1::GFP-induced neurons. Blocking endogenous Per1 with antisense oligodeoxynucleotides inhibited GRP-induced increases in spike frequency. Furthermore, inhibition of CREB-mediated gene activation with decoy oligonucleotides blocked GRP-induced phase shifts of PER2::luciferase rhythms in SCN slices. Altogether, these results indicate that GRP communicates phase resetting signals within the SCN network via both spike-dependent and spike-independent mechanisms, and that activation of the CREB pathway and Per1 are key steps in mediating downstream events in GRP resetting of SCN neurons.
Collapse
Affiliation(s)
- Karen L. Gamble
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| | - Gregg C. Allen
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| | - Tongrong Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| | - Douglas G. McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
44
|
Labialle S, Yang L, Ruan X, Villemain A, Schmidt JV, Hernandez A, Wiltshire T, Cermakian N, Naumova AK. Coordinated diurnal regulation of genes from the Dlk1–Dio3 imprinted domain: implications for regulation of clusters of non-paralogous genes. Hum Mol Genet 2007; 17:15-26. [PMID: 17901046 DOI: 10.1093/hmg/ddm281] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The functioning of the genome is tightly related to its architecture. Therefore, understanding the relationship between different regulatory mechanisms and the organization of chromosomal domains is essential for understanding genome regulation. The majority of imprinted genes are assembled into clusters, share common regulatory elements, and, hence, represent an attractive model for studies of regulation of clusters of non-paralogous genes. Here, we investigated the relationship between genomic imprinting and diurnal regulation of genes from the imprinted domain of mouse chromosome 12. We compared gene expression patterns in C57BL/6 mice and congenic mice that carry the imprinted region from a Mus musculus molossinus strain MOLF/Ei. In the C57BL/6 mice, a putative enhancer/oscillator regulated the expression of only Mico1/Mico1os, whereas in the congenic mice its influence was spread onto Rtl1as, Dio3 and Dio3os, i.e. the distal part of the imprinted domain, resulting in coordinated diurnal variation in expression of five genes. Using additional congenic strains we determined that in C57BL/6 the effect of the putative enhancer/oscillator was attenuated by a linked dominant trans-acting factor located in the distal portion of chromosome 12. Our data demonstrate that (i) in adult organs, mRNA levels of several imprinted genes vary during the day, (ii) genetic variation may remove constraints on the influence of an enhancer and lead to spreading of its effect onto neighboring genes, thereby generating genotype-dependent expression patterns and (iii) different regulatory mechanisms within the same domain act independently and do not seem to interfere with each other.
Collapse
Affiliation(s)
- Stéphane Labialle
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tournier BB, Dardente H, Simonneaux V, Vivien-Roels B, Pévet P, Masson-Pévet M, Vuillez P. Seasonal variations of clock gene expression in the suprachiasmatic nuclei and pars tuberalis of the European hamster (Cricetus cricetus). Eur J Neurosci 2007; 25:1529-36. [PMID: 17425579 DOI: 10.1111/j.1460-9568.2007.05421.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In mammals, day length (photoperiod) is read and encoded in the main circadian clock, the suprachiasmatic nuclei (SCN). In turn, the SCN control the seasonal rhythmicity of various physiological processes, in particular the secretion pattern of the pineal hormone melatonin. This hormone then operates as an essential mediator for the control of seasonal physiological functions on some tissues, especially the pars tuberalis (PT). In the European hamster, both hormonal (melatonin) and behavioral (locomotor activity) rhythms are strongly affected by season, making this species an interesting model to investigate the impact of the seasonal variations of the environment. The direct (on SCN) and indirect (via melatonin on PT) effect of natural short and long photoperiod was investigated on the daily expression of clock genes, these being expressed in both tissues. In the SCN, photoperiod altered the expression of all clock genes studied. In short photoperiod, whereas Clock mRNA levels were reduced, Bmal1 expression became arrhythmic, probably resulting in the observed dramatic reduction in the rhythm of Avp expression. In the PT, Per1 and Rev-erbalpha expressions were anchored to dawn in both photoperiods. The daily profiles of Cry1 mRNA were not concordant with the daily variations in plasma melatonin although we confirmed that Cry1 expression is regulated by an acute melatonin injection in the hamster PT. The putative role of such seasonal-dependent changes in clock gene expression on the control of seasonal functions is discussed.
Collapse
Affiliation(s)
- Benjamin B Tournier
- Institut des Neurosciences Cellulaires et Intégratives, Département Neurobiologie des Rythmes, UMR 7168/LC2 CNRS-Université L. Pasteur, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Kallingal GJ, Mintz EM. Gastrin releasing peptide and neuropeptide Y exert opposing actions on circadian phase. Neurosci Lett 2007; 422:59-63. [PMID: 17597298 PMCID: PMC1993851 DOI: 10.1016/j.neulet.2007.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/01/2007] [Accepted: 06/05/2007] [Indexed: 11/18/2022]
Abstract
Microinjection of gastrin releasing peptide (GRP) into the third ventricle or the suprachiasmatic nucleus (SCN) induces circadian phase shifts similar to those produced by light. Administration of GRP during the day does not alter circadian phase. In contrast, neuropeptide Y (NPY) induces phase shifts of circadian rhythms during the day but has little effect when administered at night, similar to the effects of most non-photic stimuli. NPY inhibits the phase shifting effects of light, and GRP is thought to be part of the photic signaling system within the SCN. This experiment was designed to test whether GRP and NPY inhibit each other's effects on circadian phase. Adult male Syrian hamsters equipped with guide cannulas aimed at the SCN were housed in constant darkness until stable free-running rhythms of wheel running activity were apparent. Microinjection of GRP during the early subjective night induced phase delays that were blocked by simultaneous administration of NPY. During the middle of the subjective day, microinjection of NPY caused phase advances that were blocked by simultaneous administration of GRP. These data suggest that GRP and NPY oppose each other's effects on the circadian clock, and that the actions of NPY on the photic phase shifting mechanism in the SCN occur at least in part downstream from retinorecipient cells.
Collapse
Affiliation(s)
| | - Eric M. Mintz
- School of Biomedical Sciences, Kent State University, Kent, OH 44242
- Department of Biological Sciences, Kent State University, Kent, OH 44242
| |
Collapse
|
47
|
Mendoza J, Pévet P, Challet E. Circadian and photic regulation of clock and clock-controlled proteins in the suprachiasmatic nuclei of calorie-restricted mice. Eur J Neurosci 2007; 25:3691-701. [PMID: 17610588 DOI: 10.1111/j.1460-9568.2007.05626.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In mammals, behavioural and physiological rhythms as well as clock gene expression in the central suprachiasmatic clock (SCN) are phase-shifted by a timed calorie restriction (T-CR; animals receiving at midday 66% of their daily food intake). The molecular mechanism of SCN depends on feedback loops involving clock genes and their protein products. To understand how T-CR mediates its synchronizing effects, we examined the rhythmic expression of three clock proteins, PERIOD (PER) 1, 2 and CLOCK, and one clock-controlled protein (i.e. vasopressin; AVP) in the SCN of mice either fed ad libitum (AL) or with T-CR. Moreover, we evaluated expression of these proteins in the SCN of AL and T-CR mice following a 1-h light pulse. The results indicate that, while PER1 and AVP rhythms were phase-advanced in T-CR mice, the PER2 rhythm showed an increased amplitude. CLOCK was expressed constitutively in AL mice while in T-CR it was significantly reduced, especially after feeding time. A light pulse produced a delayed increase in PER1 and a larger increase in PER2 expression in the SCN of T-CR mice than in AL animals. In addition, light exposure triggered an increase in AVP-ir cells in both AL and T-CR mice, and also of CLOCK expression but in T-CR mice only. The circadian changes in clock and clock-controlled proteins and their acute responses to light in the SCN of T-CR mice demonstrate that metabolic cues induced by a calorie restriction modulate the translational regulation of the SCN clock.
Collapse
Affiliation(s)
- Jorge Mendoza
- Institut de Neurosciences Cellulaires et Intégratives, Département de Neurobiologie des Rythmes, UMR7168/LC2, CNRS et Université Louis Pasteur, 5 rue Blaise Pascal, 67084 Strasbourg cedex, France.
| | | | | |
Collapse
|
48
|
Li H, Sun NL, Wang J, Liu AJ, Su DF. Circadian expression of clock genes and angiotensin II type 1 receptors in suprachiasmatic nuclei of sinoaortic-denervated rats. Acta Pharmacol Sin 2007; 28:484-92. [PMID: 17376287 DOI: 10.1111/j.1745-7254.2007.00543.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIM To investigate whether the circadian expression of central clock genes and angiotensin II type 1 (AT1) receptors was altered in sinoaortic-denervated (SAD) rats. METHODS Male Sprague-Dawley rats underwent sinoaortic denervation or a sham operation at the age of 12 weeks. Four weeks after the operation, blood pressure and heart period were measured in the conscious state in a group of sham-operated (n=10) and SAD rats (n=9). Rest SAD and sham-operated rats were divided into 6 groups (n=6 in each group). The suprachiasmatic nuclei (SCN) tissues were taken every 4 h throughout the day from each group for the determination of the mRNA expression of clock genes (Per2 and Bmal1) and the AT1 receptor by RT-PCR; the protein expression of Per2 and Bmal1 was determined by Western blotting. RESULTS Blood pressure levels in the SAD rats were similar to those of the sham-operated rats. However, blood pressure variabilities significantly increased in the SAD rats compared with the sham-operated rats. The circadian variation of clock genes in the SCN of the sham-operated rats was characterized by a marked increase in the mRNA and protein expression during dark periods. Per2 and Bmal1 mRNA levels were significantly lower in the SAD rats, especially during dark periods. Western blot analysis confirmed an attenuation of the circadian rhythm of the 2 clock proteins in the SCN of the SAD rats. AT1 receptor mRNA expressions in the SCN were abnormally upregulated in the light phase, changed to a 12-h cycle in the SAD rats. CONCLUSION The circadian variation of the 2 central clock genes was attenuated in the SAD rats. Arterial baroreflex dysfunction also induced a disturbance in the expression of AT1 receptors in the SCN.
Collapse
Affiliation(s)
- Hui Li
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, China
| | | | | | | | | |
Collapse
|
49
|
Antle MC, Foley NC, Foley DK, Silver R. Gates and oscillators II: zeitgebers and the network model of the brain clock. J Biol Rhythms 2007; 22:14-25. [PMID: 17229921 PMCID: PMC3281756 DOI: 10.1177/0748730406296319] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Circadian rhythms in physiology and behavior are regulated by the SCN. When assessed by expression of clock genes, at least 2 distinct functional cell types are discernible within the SCN: nonrhythmic, light-inducible, retinorecipient cells and rhythmic autonomous oscillator cells that are not directly retinorecipient. To predict the responses of the circadian system, the authors have proposed a model based on these biological properties. In this model, output of rhythmic oscillator cells regulates the activity of the gate cells. The gate cells provide a daily organizing signal that maintains phase coherence among the oscillator cells. In the absence of external stimuli, this arrangement yields a multicomponent system capable of producing a self-sustained consensus rhythm. This follow-up study considers how the system responds when the gate cells are activated by an external stimulus, simulating a response to an entraining (or phase-setting) signal. In this model, the authors find that the system can be entrained to periods within the circadian range, that the free-running system can be phase shifted by timed activation of the gate, and that the phase response curve for activation is similar to that observed when animals are exposed to a light pulse. Finally, exogenous triggering of the gate over a number of days can organize an arrhythmic system, simulating the light-dependent reappearance of rhythmicity in a population of disorganized, independent oscillators. The model demonstrates that a single mechanism (i.e., the output of gate cells) can account for not only free-running and entrained rhythmicity but also other circadian phenomena, including limits of entrainment, a PRC with both delay and advance zones, and the light-dependent reappearance of rhythmicity in an arrhythmic animal.
Collapse
Affiliation(s)
- Michael C Antle
- Department of Psychology, University of Calgary, Calgary, AB, Canada.
| | | | | | | |
Collapse
|
50
|
Miyakawa K, Uchida A, Shiraki T, Teshima K, Takeshima H, Shibata S. ORL1 receptor-mediated down-regulation of mPER2 in the suprachiasmatic nucleus accelerates re-entrainment of the circadian clock following a shift in the environmental light/dark cycle. Neuropharmacology 2007; 52:1055-64. [PMID: 17196226 DOI: 10.1016/j.neuropharm.2006.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 11/10/2006] [Accepted: 11/10/2006] [Indexed: 09/30/2022]
Abstract
The circadian pacemaker in the suprachiasmatic nucleus (SCN) generates the near 24-h period of the circadian rhythm and is entrained to the 24-h daily cycle by periodic environmental signals, such as the light/dark cycle (photic signal), and can be modulated by various drugs (non-photic signals). The mechanisms by which non-photic signals modulate the circadian clock are not well understood in mice. In mice, many reportedly non-photic stimuli have little effect on the circadian rhythm in vivo. Herein, we investigated the molecular mechanism in W-212393-induced phase advance using mice. W-212393 caused a significant phase advance of locomotor activity rhythm in mice at subjective day. Injection of W-212393 during subjective day elicited down-regulation of mPER2 protein in the SCN shell region, but not mPer2 mRNA. Administration of W-212393 during subjective day failed to produce phase advance in mPer2-mutant mice as well as in ORL1 receptor deficient mice. Furthermore, we show that such inhibition of mPER2 accelerates re-entrainment of the circadian clock following an abrupt shift in the environmental light/dark cycle, such as occurs with transmeridian flight. The present results suggest that post-translational down-regulation of mPER2 protein in the shell region of mouse SCN may be involved in W-212393-induced non-photic phase advance.
Collapse
Affiliation(s)
- Kazuko Miyakawa
- Department of Electrical Engineering and Bioscience, School of Science and Engineering, Waseda University, 2-7-5 Higashifushimi, Nishitokyo, Tokyo 202-0021, Japan
| | | | | | | | | | | |
Collapse
|