1
|
Shi X, Bai H, Wang J, Wang J, Huang L, He M, Zheng X, Duan Z, Chen D, Zhang J, Chen X, Wang J. Behavioral Assessment of Sensory, Motor, Emotion, and Cognition in Rodent Models of Intracerebral Hemorrhage. Front Neurol 2021; 12:667511. [PMID: 34220676 PMCID: PMC8248664 DOI: 10.3389/fneur.2021.667511] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/20/2021] [Indexed: 11/15/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the second most common type of stroke and has one of the highest fatality rates of any disease. There are many clinical signs and symptoms after ICH due to brain cell injury and network disruption resulted from the rupture of a tiny artery and activation of inflammatory cells, such as motor dysfunction, sensory impairment, cognitive impairment, and emotional disturbance, etc. Thus, researchers have established many tests to evaluate behavioral changes in rodent ICH models, in order to achieve a better understanding and thus improvements in the prognosis for the clinical treatment of stroke. This review summarizes existing protocols that have been applied to assess neurologic function outcomes in the rodent ICH models such as pain, motor, cognition, and emotion tests. Pain tests include mechanical, hot, and cold pain tests; motor tests include the following 12 types: neurologic deficit scale test, staircase test, rotarod test, cylinder test, grid walk test, forelimb placing test, wire hanging test, modified neurologic severity score, beam walking test, horizontal ladder test, and adhesive removal test; learning and memory tests include Morris water maze, Y-maze, and novel object recognition test; emotion tests include elevated plus maze, sucrose preference test, tail suspension test, open field test, and forced swim test. This review discusses these assessments by examining their rationale, setup, duration, baseline, procedures as well as comparing their pros and cons, thus guiding researchers to select the most appropriate behavioral tests for preclinical ICH research.
Collapse
Affiliation(s)
- Xiaoyu Shi
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huiying Bai
- Zhengzhou University Hospital Outpatient Surgery Center, Zhengzhou, China
| | - Junmin Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiarui Wang
- Keieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, MD, United States
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Meimei He
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuejun Zheng
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zitian Duan
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Danyang Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiaxin Zhang
- Saint John Paul the Great Catholic High School, Dumfries, VA, United States
| | - Xuemei Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jian Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Kalisvaart ACJ, Wilkinson CM, Gu S, Kung TFC, Yager J, Winship IR, van Landeghem FKH, Colbourne F. An update to the Monro-Kellie doctrine to reflect tissue compliance after severe ischemic and hemorrhagic stroke. Sci Rep 2020; 10:22013. [PMID: 33328490 PMCID: PMC7745016 DOI: 10.1038/s41598-020-78880-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
High intracranial pressure (ICP) can impede cerebral blood flow resulting in secondary injury or death following severe stroke. Compensatory mechanisms include reduced cerebral blood and cerebrospinal fluid volumes, but these often fail to prevent raised ICP. Serendipitous observations in intracerebral hemorrhage (ICH) suggest that neurons far removed from a hematoma may shrink as an ICP compliance mechanism. Here, we sought to critically test this observation. We tracked the timing of distal tissue shrinkage (e.g. CA1) after collagenase-induced striatal ICH in rat; cell volume and density alterations (42% volume reduction, 34% density increase; p < 0.0001) were highest day one post-stroke, and rebounded over a week across brain regions. Similar effects were seen in the filament model of middle cerebral artery occlusion (22% volume reduction, 22% density increase; p ≤ 0.007), but not with the Vannucci-Rice model of hypoxic-ischemic encephalopathy (2.5% volume increase, 14% density increase; p ≥ 0.05). Concerningly, this 'tissue compliance' appears to cause sub-lethal damage, as revealed by electron microscopy after ICH. Our data challenge the long-held assumption that 'healthy' brain tissue outside the injured area maintains its volume. Given the magnitude of these effects, we posit that 'tissue compliance' is an important mechanism invoked after severe strokes.
Collapse
Affiliation(s)
- Anna C J Kalisvaart
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Cassandra M Wilkinson
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Sherry Gu
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Tiffany F C Kung
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Jerome Yager
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Ian R Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Frank K H van Landeghem
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta Hospital, Edmonton, Canada
| | - Frederick Colbourne
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.
| |
Collapse
|
3
|
Mello TG, Rosado-de-Castro PH, Campos RMP, Vasques JF, Rangel-Junior WS, Mattos RSDARD, Puig-Pijuan T, Foerster BU, Gutfilen B, Souza SAL, Boltze J, Paiva FF, Mendez-Otero R, Pimentel-Coelho PM. Intravenous Human Umbilical Cord-Derived Mesenchymal Stromal Cell Administration in Models of Moderate and Severe Intracerebral Hemorrhage. Stem Cells Dev 2020; 29:586-598. [PMID: 32160799 DOI: 10.1089/scd.2019.0176] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is as a life-threatening condition that can occur in young adults, often causing long-term disability. Recent preclinical data suggest mesenchymal stromal cell (MSC)-based therapies as promising options to minimize brain damage after ICH. However, therapeutic evidence and mechanistic insights are still limited, particularly when compared with other disorders such as ischemic stroke. Herein, we employed a model of collagenase-induced ICH in young adult rats to investigate the potential therapeutic effects of an intravenous injection of human umbilical cord Wharton's jelly-derived MSCs (hUC-MSCs). Two doses of collagenase were used to cause moderate or severe hemorrhages. Magnetic resonance imaging showed that animals treated with hUC-MSCs after moderate ICH had smaller residual hematoma volumes than vehicle-treated rats, whereas the cell therapy failed to decrease the hematoma volume in animals with a severe ICH. Functional assessments (rotarod and elevated body swing tests) were performed for up to 21 days after ICH. Enduring neurological impairments were seen only in animals subjected to severe ICH, but the cell therapy did not induce statistically significant improvements in the functional recovery. The biodistribution of Technetium-99m-labeled hUC-MSCs was also evaluated, showing that most cells were found in organs such as the spleen and lungs 24 h after transplantation. Nevertheless, it was possible to detect a weak signal in the brain, which was higher in the ipsilateral hemisphere of rats subjected to a severe ICH. These data indicate that hUC-MSCs have moderately beneficial effects in cases of less severe brain hemorrhages in rats by decreasing the residual hematoma volume, and that optimization of the therapy is still necessary.
Collapse
Affiliation(s)
- Tanira Giara Mello
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Engenharia Nuclear, Comissão Nacional de Energia Nuclear, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Paulo Henrique Rosado-de-Castro
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil.,Departamento de Radiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Juliana Ferreira Vasques
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | | | | | - Teresa Puig-Pijuan
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Bernd Uwe Foerster
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Bianca Gutfilen
- Departamento de Radiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio Augusto Lopes Souza
- Departamento de Radiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Pedro Moreno Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Matwee LK, Alaverdashvili M, Muir GD, Farthing JP, Bater SA, Paterson PG. Preventing protein-energy malnutrition after cortical stroke enhances recovery of symmetry in forelimb use during spontaneous exploration. Appl Physiol Nutr Metab 2020; 45:1015-1021. [PMID: 32272025 DOI: 10.1139/apnm-2019-0865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein-energy malnutrition (PEM) commonly arises after stroke. We investigated the effects of preventing PEM on spontaneous recovery of forelimb use, infarct size, and the acute phase response in the chronic post-stroke period. Male, adult, Sprague-Dawley rats were acclimatized to control diet (12.5% protein), tested for pre-stroke forelimb use symmetry in the cylinder test, and exposed to photothrombotic cortical stroke or sham surgery. Food intake was monitored daily, and body weight weekly. Forelimb use was tested on day 4 after surgery, before assignment to control diet or PEM (0.5% protein), with subsequent testing on days 16 and 29. Blood, brain, and liver were collected on day 30. The low protein diet resulted in PEM, measured by decreased body weight (p < 0.001) and food intake (p = 0.016) and increased liver lipid (p < 0.001). Stroke (p = 0.016) and PEM (p = 0.001) independently elicited increases in serum α-2-macroglobulin concentration, whereas PEM alone decreased albumin (p < 0.001). PEM reduced recovery of forelimb use symmetry during exploration on days 16 (p = 0.024) and 29 (p = 0.013) but did not influence infarct size (p = 0.775). Stroke reduced reliance on the stroke-affected forelimb to initiate exploration up until day 29 (p < 0.001); PEM had no influence (p ≥ 0.463). Preventing post-stroke PEM appears to yield direct benefits for certain types of motor recovery. Novelty Preventing post-stroke malnutrition benefits certain types of motor recovery. An acute phase response may contribute to the poorer recovery with malnutrition.
Collapse
Affiliation(s)
- Larisa K Matwee
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Mariam Alaverdashvili
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Gillian D Muir
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Jonathan P Farthing
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| | - Sarah A Bater
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Phyllis G Paterson
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
5
|
Wang Z, Lu G, Sze J, Liu Y, Lin S, Yao H, Zhang J, Xie D, Liu Q, Kung HF, Lin MCM, Poon WS. Plasma miR-124 Is a Promising Candidate Biomarker for Human Intracerebral Hemorrhage Stroke. Mol Neurobiol 2017; 55:5879-5888. [PMID: 29101647 PMCID: PMC5994210 DOI: 10.1007/s12035-017-0808-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 10/12/2017] [Indexed: 11/24/2022]
Abstract
Stroke causes death or long-term disabilities and threatens the general health of the population worldwide. Recent studies have suggested that miRNAs are dysregulated and can be used as biomarkers for diagnosis and prognosis in stroke. The intracerebral hemorrhage (ICH) accounts for 15% of all the stroke cases. However, at present, little is known regarding the functions and clinical implications of miRNAs in ICH. In the present study, we established the collagenase-induced rat ICH model to mimic human ICH syndrome. We profiled the expression of 728 rat miRNAs at different time points in rat brain tissues and plasma post-ICH and identified a set human brain-enriched miRNAs that had changed expression level in the plasma of rat ICH. Among them, the expression levels of miR-124 displayed significantly synchronous alterations in rat plasma and brain tissue during ICH progression. They were significantly elevated at the acute injury phase (day 1 and 2), gradually decreased during the delayed recovery phase (day 7, 14 and 30), and finally restored to normal levels at late recovery phase (day 60). We further determined the plasma expression profile of miR-124 from human ICH patients. Similar to the pattern observed in rat ICH model, our results indicated that immediately after patients reached the hospital, the average plasma concentrations of miR-124 increased more than 100-fold in 24 h, then decreased gradually on day 2, 7, 14 and to near normal level on day 30. Taken together, these results strongly suggested that plasma concentration of miR-124 is a promising candidate biomarker for the early detection and predictive prognosis of human ICH.
Collapse
Affiliation(s)
- Zifeng Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gang Lu
- Brain Tumor Centre and Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Johnny Sze
- Brain Tumor Centre and Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Yao Liu
- Brain Tumor Centre and Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Sheng Lin
- Laboratory of Medical Genetics, Shenzhen Research Institute of Population and Family Planning, Shenzhen, China
| | - Hong Yao
- Jiangsu Eng. Laboratory of Cancer Biotherapy, Xuzhou Medical College, Xuzhou, China
| | - Ji Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Quentin Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hsiang-Fu Kung
- Brain Tumor Centre and Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Marie Chia-Mi Lin
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China.
| | - Wai Sang Poon
- Brain Tumor Centre and Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China.
| |
Collapse
|
6
|
Williamson MR, Colbourne F. Evidence for Decreased Brain Parenchymal Volume After Large Intracerebral Hemorrhages: a Potential Mechanism Limiting Intracranial Pressure Rises. Transl Stroke Res 2017; 8:386-396. [PMID: 28281221 PMCID: PMC5493716 DOI: 10.1007/s12975-017-0530-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/26/2017] [Accepted: 03/01/2017] [Indexed: 12/11/2022]
Abstract
Potentially fatal intracranial pressure (ICP) rises commonly occur after large intracerebral hemorrhages (ICH). We monitored ICP after infusing 100-160 μL of autologous blood (vs. 0 μL control) into the striatum of rats in order to test the validity of this common model with regard to ICP elevations. Other endpoints included body temperature, behavioral impairment, lesion volume, and edema. Also, we evaluated hippocampal CA1 sector and somatosensory cortical neuron morphology to assess whether global ischemic injury occurred. Despite massive blood infusions, ICP only modestly increased (160 μL 10.8 ± 2.1 mmHg for <36 h vs. control 3.4 ± 0.5 mmHg), with little peri-hematoma edema at 3 days. Body temperature was not affected. Behavioral deficits and tissue loss were infusion volume-dependent. There was no histological evidence of hippocampal or cortical injury, indicating that cell death was confined to the hematoma and closely surrounding tissue. Surprisingly, the most severe hemorrhages significantly increased cell density (~15-20%) and reduced cell body size (~30%) in regions outside the injury site. Additionally, decreased cell size and increased density were observed after collagenase-induced ICH. Parenchymal volume is seemingly reduced after large ICH. Thus, in addition to well-known compliance mechanisms (e.g., displacement of cerebrospinal fluid and cerebral blood), reduced brain parenchymal volume appears to limit ICP rises in rodents with very large mass lesions.
Collapse
Affiliation(s)
- Michael R Williamson
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Frederick Colbourne
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada.
| |
Collapse
|
7
|
Wowk S, Fagan KJ, Ma Y, Nichol H, Colbourne F. Examining potential side effects of therapeutic hypothermia in experimental intracerebral hemorrhage. J Cereb Blood Flow Metab 2017; 37:2975-2986. [PMID: 27899766 PMCID: PMC5536807 DOI: 10.1177/0271678x16681312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/27/2016] [Accepted: 10/30/2016] [Indexed: 11/16/2022]
Abstract
Studies treating intracerebral hemorrhage (ICH) with therapeutic hypothermia (TH) have shown inconsistent benefits. We hypothesized that TH's anti-inflammatory effects may be responsible as inflammatory cells are essential for removing degrading erythrocytes. Here, we subjected rats to a collagenase-induced striatal ICH followed by whole-body TH (∼33℃ for 11-72 h) or normothermia. We used X-ray fluorescence imaging to spatially quantify total and peri-hematoma iron three days post-injury. At three and seven days, we measured non-heme iron levels. Finally, hematoma volume was quantified on one, three, and seven days. In the injured hemisphere, total iron levels were elevated ( p < 0.001) with iron increasing in the peri-hematoma region ( p = 0.007). Non-heme iron increased from three to seven days (p < 0.001). TH had no effect on any measure of iron ( p ≥ 0.479). At one and three days, TH did not affect hematoma volume ( p ≥ 0.264); however, at seven days there was a four-fold increase in hematoma volume in 40% of treated animals ( p = 0.032). Thus, even when TH does not interfere with initial increases in total and non-heme iron or its containment, TH can cause re-bleeding post-treatment. This serious complication could partly account for the intermittent protection previously observed. This also raises serious concerns for clinical usage of TH for ICH.
Collapse
Affiliation(s)
- Shannon Wowk
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kelly J Fagan
- Department of Biology, MacEwan University, Edmonton, Canada
| | - Yonglie Ma
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Helen Nichol
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
| | - Frederick Colbourne
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Guo C, Geng Y, Song F, Huo Y, Wu X, Lv J, Ge A, Fan W. Mild hypothermia protects rat neuronal injury after intracerebral hemorrhage via attenuating endoplasmic reticulum response induced neuron apoptosis. Neurosci Lett 2016; 635:17-23. [DOI: 10.1016/j.neulet.2016.10.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/06/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022]
|
9
|
Kathirvelu B, Carmichael ST. Intracerebral hemorrhage in mouse models: therapeutic interventions and functional recovery. Metab Brain Dis 2015; 30:449-59. [PMID: 24810632 PMCID: PMC4226812 DOI: 10.1007/s11011-014-9559-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/28/2014] [Indexed: 12/11/2022]
Abstract
There has been strong pre-clinical research on mechanisms of initial cell death and tissue injury in intracerebral hemorrhage (ICH). This data has led to the evaluation of several therapeutics for neuroprotection or the mitigation of early tissue damage. Most of these studies have been done in the rat. Also, there has been little study of the mechanisms of tissue repair and recovery. This review examines the testing of candidate therapeutics in mouse models of ICH for their effect on tissue protection and repair. This review will help the readers compare it to the extensively researched rat model of ICH and thus enhance work that are pending in mouse model.
Collapse
Affiliation(s)
- Balachandar Kathirvelu
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA,
| | | |
Collapse
|
10
|
Wowk S, Ma Y, Colbourne F. Mild Therapeutic Hypothermia Does Not Reduce Thrombin-Induced Brain Injury. Ther Hypothermia Temp Manag 2014; 4:180-7. [DOI: 10.1089/ther.2014.0014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shannon Wowk
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Yonglie Ma
- Department of Psychology, University of Alberta, Edmonton, Canada
| | - Frederick Colbourne
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Psychology, University of Alberta, Edmonton, Canada
| |
Collapse
|
11
|
Tang XN, Liu L, Koike MA, Yenari MA. Mild hypothermia reduces tissue plasminogen activator-related hemorrhage and blood brain barrier disruption after experimental stroke. Ther Hypothermia Temp Manag 2014; 3:74-83. [PMID: 23781399 DOI: 10.1089/ther.2013.0010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Therapeutic hypothermia has shown neuroprotective promise, but whether it can be used to improve outcome in stroke has yet to be determined in patients. Recombinant tissue plasminogen activator (rt-PA) is only given to a minority of patients with acute ischemic stroke, and is not without risk, namely significant brain hemorrhage.We explored whether mild hypothermia, in combination with rt-PA, influences the safety of rt-PA. Mice were subjected to middle cerebral artery occlusion (MCAO) using a filament model, followed by 24 hours reperfusion.Two paradigms were studied. In the first paradigm, cooling and rt-PA treatment began at the same time upon reperfusion, whereas in the second paradigm, cooling began soon after ischemia onset, and rt-PA began after rewarming and upon reperfusion. Experimental groups included: tPA treatment at normothermia (37°C), rt-PA treatment at hypothermia (33°C), no rt-PA at normothermia, and no rt-PA treatment at hypothermia. Infarct size, neurological deficit scores, blood brain barrier (BBB) permeability, brain hemorrhage, and expression of endogenous tissue plasminogen activator (tPA) and its inhibitor, plasminogen activator inhibitor (PAI-1) were assessed. For both paradigms, hypothermia reduced infarct size and neurological deficits compared to normothermia, regardless of whether rt-PA was given. rt-PA treatment increased brain hemorrhage and BBB disruption compared to normothermia, and this was prevented by cooling. However, mortality was higher when rt-PA and cooling were administered at the same time, beginning 1–2 hours post MCAO. Endogenous tPA expression was reduced in hypothermic mice, whereas PAI-1 levels were unchanged by cooling. In the setting of rt-PA treatment, hypothermia reduces brain hemorrhage, and BBB disruption, suggesting that combination therapy with mild hypothermia and rt-PA appears safe.
Collapse
|
12
|
[Intensive care management [corrected] of patients with intracerebral hemorrhage]. DER NERVENARZT 2011; 82:431-2, 434-6, 438-46. [PMID: 21431439 DOI: 10.1007/s00115-010-3072-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Approximately 10-15% of acute strokes are caused by non-aneurysmatic intracerebral hemorrhage (ICH) and incidences are expected to increase due to an aging population. Studies from the 1990s estimated mortality of ICH to be as high as 50%. However, these figures may partly be attributed to the fact that patients suffering from ICH frequently received only supportive therapy and the poor prognosis may therefore be more a self-fulfilling prophecy. Recently it has been shown that treatment in a specialized neurological intensive care unit alone was associated with better outcomes after ICH. In recent years considerable efforts have been undertaken in order to develop new therapies for ICH and to assess them in randomized controlled trials. Apart from admission status, hemorrhage volume is considered to be the main prognostic factor and impeding the spread of the hematoma is thus a basic therapeutic principle. The use of activated factor VIIa (aFVIIa) to stop hematoma enlargement has been assessed in two large randomized controlled trials, however the promising results of the dose-finding study could not be confirmed in a phase III trial. Although hemostatic therapy with aFVIIa reduced growth of the hematoma it failed to improve clinical outcome. Similar results were found in a randomized controlled trial on blood pressure management in acute ICH. The link between reduction of hematoma growth and improved outcome is therefore still lacking. Likewise the value of surgical hematoma evacuation remains uncertain. In the largest randomized controlled trial on surgical treatment in ICH so far, only a small subgroup of patients with superficial hemorrhages seemed to benefit from hematoma evacuation. Whether improved intensive care can contribute to improved outcome after ICH will be shown by data obtained in the coming years.
Collapse
|
13
|
Frantzias J, Sena ES, Macleod MR, Al-Shahi Salman R. Treatment of intracerebral hemorrhage in animal models: meta-analysis. Ann Neurol 2011; 69:389-99. [PMID: 21387381 DOI: 10.1002/ana.22243] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Interventions that improve functional outcome after acute intracerebral hemorrhage (ICH) in animals might benefit humans. Therefore, we systematically reviewed the literature to find studies of nonsurgical treatments tested in animal models of ICH. METHODS In July 2009 we searched Ovid Medline (from 1950), Embase (from 1980), and ISI Web of Knowledge (from 1969) for controlled animal studies of nonsurgical interventions given after the induction of ICH that reported neurobehavioral outcome. We assessed study quality and performed meta-analysis using a weighted mean difference random effects model. RESULTS Of 13,343 publications, 88 controlled studies described the effects of 64 different medical interventions (given a median of 2 hours after ICH induction) on 38 different neurobehavioral scales in 2,616 treated or control animals (median 14 rodents per study). Twenty-seven (31%) studies randomized treatment allocation, and 7 (8%) reported allocation concealment; these studies had significantly smaller effect sizes than those without these attributes (p < 0.001). Of 64 interventions stem cells, calcium channel blockers, anti-inflammatory drugs, iron chelators, and estrogens improved both structural outcomes and neurobehavioral scores in >1 study. Meta-regression revealed that together, structural outcome and the intervention used accounted for 65% of the observed heterogeneity in neurobehavioral score (p < 0.001, adjusted r(2) = 0.65). INTERPRETATION Further animal studies of the interventions that we found to improve both functional and structural outcomes in animals, using better experimental designs, could target efforts to translate effective treatments for ICH in animals into randomized controlled trials in humans.
Collapse
Affiliation(s)
- Joseph Frantzias
- Division of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom
| | | | | | | |
Collapse
|
14
|
Nagel S, Papadakis M, Hoyte L, Buchan AM. Therapeutic hypothermia in experimental models of focal and global cerebral ischemia and intracerebral hemorrhage. Expert Rev Neurother 2008; 8:1255-68. [PMID: 18671669 DOI: 10.1586/14737175.8.8.1255] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Experimental evidence shows that therapeutic hypothermia (TH) protects the brain from cerebral injury in multiple ways. In different models of focal and global cerebral ischemia, mild-to-moderate hypothermia reduces mortality and neuronal injury and improves neurological outcome. In models of experimental intracerebral hemorrhage (ICH), TH reduces edema formation but does not show consistent benefi cial effects on functional outcome parameters. However, the number of studies of hypothermia on ICH is still limited. TH is most effective when applied before or during the ischemic event, and its neuroprotective properties vary according to species, strains and the model of ischemia used. Intrinsic changes in body and brain temperature frequently occur in experimental models of focal and global cerebral ischemia, and may have infl uenced studies on other neuroprotectants. This might be one explanation for the failure of a large amount of translational clinical neuroprotective trials. Hypothermia is the only neuroprotective therapeutic agent for cerebral ischemia that has successfully managed the transfer from bench to bedside, and it is an approved therapy for patients after cardiac arrest and children with hypoxic-ischemic encephalopathy. However, the implementation of hypothermia in the treatment of stroke patients is still far from routine clinical practice. In this article, the authors describe the development of TH in different models of focal and global cerebral ischemia, point out why hypothermia is so efficient in experimental cerebral ischemia, explain why temperature regulation is essential for further neuroprotective studies and discuss why TH for acute ischemic stroke still remains a promising but controversial therapeutic option.
Collapse
Affiliation(s)
- Simon Nagel
- Acute Stroke Programme, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | | | | | | |
Collapse
|
15
|
Schubert GA, Poli S, Schilling L, Heiland S, Thomé C. Hypothermia Reduces Cytotoxic Edema and Metabolic Alterations during the Acute Phase of Massive SAH: A Diffusion-Weighted Imaging and Spectroscopy Study in Rats. J Neurotrauma 2008; 25:841-52. [DOI: 10.1089/neu.2007.0443] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Gerrit Alexander Schubert
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sven Poli
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lothar Schilling
- Department of Neurosurgical Research, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sabine Heiland
- Department of Neuroradiological Research, University of Heidelberg, Mannheim, Germany
| | - Claudius Thomé
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
16
|
Broderick J, Connolly S, Feldmann E, Hanley D, Kase C, Krieger D, Mayberg M, Morgenstern L, Ogilvy CS, Vespa P, Zuccarello M. REPRINT. Circulation 2007; 116:e391-413. [DOI: 10.1161/circulationaha.107.183689] [Citation(s) in RCA: 277] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose—
The aim of this statement is to present current and comprehensive recommendations for the diagnosis and treatment of acute spontaneous intracerebral hemorrhage.
Methods—
A formal literature search of Medline was performed through the end date of August 2006. The results of this search were complemented by additional articles on related issues known to the writing committee. Data were synthesized with the use of evidence tables. The American Heart Association Stroke Council’s Levels of Evidence grading algorithm was used to grade each recommendation. Prerelease review of the draft guideline was performed by 5 expert peer reviewers and by the members of the Stroke Council Leadership Committee. It is intended that this guideline be fully updated in 3 years’ time.
Results—
Evidence-based guidelines are presented for the diagnosis of intracerebral hemorrhage, the management of increased arterial blood pressure and intracranial pressure, the treatment of medical complications of intracerebral hemorrhage, and the prevention of recurrent intracerebral hemorrhage. Recent trials of recombinant factor VII to slow initial bleeding are discussed. Recommendations for various surgical approaches for treatment of spontaneous intracerebral hemorrhage are presented. Finally, withdrawal-of-care and end-of-life issues in patients with intracerebral hemorrhage are examined.
Collapse
|
17
|
Broderick J, Connolly S, Feldmann E, Hanley D, Kase C, Krieger D, Mayberg M, Morgenstern L, Ogilvy CS, Vespa P, Zuccarello M. Guidelines for the Management of Spontaneous Intracerebral Hemorrhage in Adults. Stroke 2007; 38:2001-23. [PMID: 17478736 DOI: 10.1161/strokeaha.107.183689] [Citation(s) in RCA: 768] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE The aim of this statement is to present current and comprehensive recommendations for the diagnosis and treatment of acute spontaneous intracerebral hemorrhage. METHODS A formal literature search of Medline was performed through the end date of August 2006. The results of this search were complemented by additional articles on related issues known to the writing committee. Data were synthesized with the use of evidence tables. The American Heart Association Stroke Council's Levels of Evidence grading algorithm was used to grade each recommendation. Prerelease review of the draft guideline was performed by 5 expert peer reviewers and by the members of the Stroke Council Leadership Committee. It is intended that this guideline be fully updated in 3 years' time. RESULTS Evidence-based guidelines are presented for the diagnosis of intracerebral hemorrhage, the management of increased arterial blood pressure and intracranial pressure, the treatment of medical complications of intracerebral hemorrhage, and the prevention of recurrent intracerebral hemorrhage. Recent trials of recombinant factor VII to slow initial bleeding are discussed. Recommendations for various surgical approaches for treatment of spontaneous intracerebral hemorrhage are presented. Finally, withdrawal-of-care and end-of-life issues in patients with intracerebral hemorrhage are examined.
Collapse
|
18
|
Felies M, Poppendieck S, Nave H. Perioperative normothermia depends on intraoperative warming procedure, extent of the surgical intervention and age of the experimental animal. Life Sci 2005; 77:3133-40. [PMID: 15979105 DOI: 10.1016/j.lfs.2005.03.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 03/22/2005] [Indexed: 11/20/2022]
Abstract
The maintenance of a physiological body temperature during and early after surgical interventions in experimental animals such as rodents is often neglected. Therefore the positive influence of an adequate use of warming blankets (WB) on the rectal body temperature in rats was investigated during two different surgical interventions, with a special focus on possible differences between young adult (2.5+/-0.14 months) and adult animals (9.3+/-0.13 months). Anesthesia was induced with isoflurane short inhalation and maintained with ketamine and domitor intramuscularly. Animals were divided into ten groups according to (a) the age of the animals, (b) the temperature of the WB and (c) the kind of surgical intervention (either an intravenous [i.v.] cannulation of the right external jugular vein or an intra-aortal implantation of a telemetric transmitter or both). Results clearly show that the surface temperature of the WB has a major impact on the perioperative thermoregulation. The rectal body temperature of animals operated on a cooler WB dramatically decreased depending on the age of the rat and also on the extent of the surgical intervention. The opening of the abdominal cavity in older rats resulted in a severe hypothermia: they lost 5.6 degrees C compared to 3.2 degrees C in the young adult rats. The implantation of the i.v. catheter had no serious effect on the thermoregulation. In conclusion, the results clearly show that an adequate perioperative warming system positively influences the postoperative outcome in young adult and most notably in adult rats and thus enables early postoperative experiments without effects on measured parameters.
Collapse
Affiliation(s)
- Melanie Felies
- Department of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | | | | |
Collapse
|
19
|
Starkey ML, Barritt AW, Yip PK, Davies M, Hamers FPT, McMahon SB, Bradbury EJ. Assessing behavioural function following a pyramidotomy lesion of the corticospinal tract in adult mice. Exp Neurol 2005; 195:524-39. [PMID: 16051217 DOI: 10.1016/j.expneurol.2005.06.017] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 05/27/2005] [Accepted: 06/27/2005] [Indexed: 11/25/2022]
Abstract
We have developed a pyramidotomy model in mice to lesion the corticospinal tract at the level of the brainstem pyramidal tract, and evaluated the resultant impairments in motor function in a series of behavioural tests. Adult C57BL/6 mice received a unilateral pyramidotomy and a control group of mice underwent sham surgery. We studied the effects of this lesion on forepaw function using five behavioural paradigms, some of which have been widely used in rat studies but have not been fully explored in mice. The tests used were: a rearing test, which assesses forepaw use for weight support during spontaneous vertical exploration of a cylinder; a grid walking test, which assesses the ability to accurately place the forepaws during exploration of an elevated grid; a tape-removal test, which measures both sensory and motor function of the forepaw; a CatWalk automated gait analysis, which provides a number of quantitative measures including stride length and stride width during locomotion; and a staircase reaching task, which assesses skilled independent forepaw use. All tests revealed lesion effects on forepaw function with the tape removal, grid walking, rearing and CatWalk tests demonstrating robust effects throughout the testing period. The development of a pyramidotomy lesion model in mice, together with behavioural tests which can reliably measure functional impairments, will provide a valuable tool for assessing therapeutic strategies to promote regeneration and plasticity.
Collapse
Affiliation(s)
- Michelle L Starkey
- Neurorestoration Group, CARD Wolfson Wing, Hodgkin Building, King's College London, Guy's Campus, London Bridge, London SE1 IUL, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Priorities for clinical research in intracerebral hemorrhage: report from a National Institute of Neurological Disorders and Stroke workshop. Stroke 2005; 36:e23-41. [PMID: 15692109 DOI: 10.1161/01.str.0000155685.77775.4c] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Spontaneous intracerebral hemorrhage (ICH) is one of the most lethal stroke types. In December 2003, a National Institute of Neurological Disorders and Stroke (NINDS) workshop was convened to develop a consensus for ICH research priorities. The focus was clinical research aimed at acute ICH in patients. METHODS Workshop participants were divided into 6 groups: (1) current state of ICH research; (2) basic science; and (3) imaging, (4) medical, (5) surgical, and (6) clinical methodology. Each group formulated research priorities before the workshop. At the workshop, these were discussed and refined. RESULTS Recent progress in management of hemorrhage growth, intraventricular hemorrhage, and limitations in the benefit of open craniotomy were noted. The workshop identified the importance of developing animal models to reflect human ICH, as well as the phenomena of rebleeding. More human ICH pathology is needed. Real-time, high-field magnets and 3-dimensional imaging, as well as high-resolution tissue probes, are ICH imaging priorities. Trials of acute blood pressure-lowering in ICH and coagulopathy reversal are medical priorities. The exact role of edema in human ICH pathology and its treatment requires intensive study. Trials of minimally invasive surgical techniques including mechanical and chemical surgical adjuncts are critically important. The methodologic challenges include establishing research networks and a multi-specialty approach. Waiver of consent issues and standardizing care in trials are important issues. Encouragement of young investigators from varied backgrounds to enter the ICH research field is critical. CONCLUSIONS Increasing ICH research is crucial. A collaborative approach is likely to yield therapies for this devastating form of brain injury.
Collapse
|
21
|
Tang J, Liu J, Zhou C, Alexander JS, Nanda A, Granger DN, Zhang JH. Mmp-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice. J Cereb Blood Flow Metab 2004; 24:1133-45. [PMID: 15529013 DOI: 10.1097/01.wcb.0000135593.05952.de] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) participates in the disregulation of blood-brain barrier during hemorrhagic transformation, and exacerbates brain injury after cerebral ischemia. However, the consequences of long-term inhibition or deficiency of MMP-9 activity (which might affect normal collagen or matrix homeostasis) remains to be determined. The authors investigated how MMP-9 gene deficiency enhances hemorrhage and increases mortality and neurologic deficits in a collagenase-induced intracerebral hemorrhage (ICH) model in MMP-9-knockout mice. MMP-9-knockout and corresponding wild-type mice at 20 to 35 weeks were used to model an aged population (because advanced age is a significant risk factor in human ICH). Collagenase VII-S (0.5 microL, 0.075 U) was injected into the right basal ganglia in mice and mortality, neurologic deficits, brain edema, and hemorrhage size measured. In addition, MMP-9 activity, brain collagen content, blood coagulation, cerebral arterial structure, and expressions of several MMPs were examined. Increased hemorrhage and brain edema that correlated with higher mortality and neurologic deficits were found in MMP-9-knockout mice. No apparent structural changes were observed in cerebral arteries, even though brain collagen content was reduced in MMP-9-knockout mice. MMP-9-knockout mice did exhibit an enhanced expression of MMP-2 and MMP-3 in response to ICH. The results indicate that a deficiency of MMP-9 gene in mutant mice increases collagenase-induced hemorrhage and the resulting brain injury. The intriguing relationship between MMP-9 deficiency and collagenase-induced ICH may reflect the reduction in collagen content and an enhanced expression of MMP-2 and MMP-3.
Collapse
Affiliation(s)
- Jiping Tang
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport 33932, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Cho NH, Lee JD, Cheong BS, Choi DY, Chang HK, Lee TH, Shin MC, Shin MS, Lee J, Kim CJ. Acupuncture suppresses intrastriatal hemorrhage-induced apoptotic neuronal cell death in rats. Neurosci Lett 2004; 362:141-5. [PMID: 15193772 DOI: 10.1016/j.neulet.2004.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 02/29/2004] [Accepted: 03/09/2004] [Indexed: 11/23/2022]
Abstract
Intracerebral hemorrhage is one of the most devastating types of stroke. In the present study, the effect of acupuncture on intrastriatal hemorrhage-induced neuronal cell death in rats was investigated via Nissl staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, and immunohistochemistry for caspase-3. The present results showed that lesion size and apoptotic neuronal cell death in the striatum were significantly increased following intrastriatal hemorrhage in rats and that acupunctural treatment at the Zusanli acupoint suppressed the hemorrhage-induced increase in lesion size and apoptotic neuronal cell death in the striatum. In the present study, it can be suggested that acupunctural treatment, especially at the Zusanli acupoint, may aid in the recovery following central nervous system sequellae following intracerebral hemorrhage.
Collapse
Affiliation(s)
- Nam-Hun Cho
- Department of Acupuncture and Moxibustion, College of Oriental Medicine, Kyung Hee University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
MacLellan CL, Girgis J, Colbourne F. Delayed onset of prolonged hypothermia improves outcome after intracerebral hemorrhage in rats. J Cereb Blood Flow Metab 2004; 24:432-40. [PMID: 15087712 DOI: 10.1097/00004647-200404000-00008] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Prolonged hypothermia reduces ischemic brain injury, but its efficacy after intracerebral hemorrhagic (ICH) stroke is unresolved. Rats were implanted with core temperature telemetry probes and subsequently subjected to an ICH, which was produced by infusing bacterial collagenase into the striatum. Animals were kept normothermic (NORMO), or were made mildly hypothermic (33-35 degrees C) for over 2 days starting 1 hour (HYP-1), 6 hours (HYP-6), or 12 hours (HYP-12) after collagenase infusion. Others were cooled for 7 hours beginning 1 hour after infusion (BRIEF). Skilled reaching, walking, and spontaneous forelimb use were assessed. Normothermic ICH rats sustained, on average, a 36.9-mm3 loss of tissue at 1 month. Only the HYP-12 group had a significantly smaller lesion (25.5 mm3). Some functional improvements were found with this and other hypothermia treatments. Cerebral edema was observed in NORMO rats, and was not lessened significantly by hypothermia (HYP-12). Blood pressure measurements, as determined by telemetry, in BRIEF rats showed that hypothermia increased blood pressure. This BRIEF treatment also resulted in significantly more bleeding at 12 hours after ICH (79.2 microL) versus NORMO-treated rats (58.4 microL) as determined by a spectrophotometric hemoglobin assay. Accordingly, these findings suggest that early hypothermia may fail to lessen lesion size owing to complications, such as elevated blood pressure, whereas much-delayed hypothermia is beneficial after ICH. Future experiments should assess whether counteracting the side effects of early hypothermia enhances protection.
Collapse
|
24
|
Lee HH, Kim H, Lee MH, Chang HK, Lee TH, Jang MH, Shin MC, Lim BV, Shin MS, Kim YP, Yoon JH, Jeong IG, Kim CJ. Treadmill exercise decreases intrastriatal hemorrhage-induced neuronal cell death via suppression on caspase-3 expression in rats. Neurosci Lett 2003; 352:33-6. [PMID: 14615043 DOI: 10.1016/j.neulet.2003.08.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intracerebral hemorrhage is one of the most devastating types of stroke. This disease is known to cause severe neurological damage and also has a very high mortality rate. In this study, the effect of treadmill exercise on intrastriatal hemorrhage-induced neuronal cell death was investigated. Intrastriatal hemorrhage was caused by injection of collagenase into the striatum using a stereotaxic instrument. Animals of the exercise group were made to run on a treadmill for 30 min once a day during 10 consecutive days. In the present results, treadmill exercise was shown to suppress the increase in the size of hemorrhage-induced lesions and the increase in caspase-3 expression in the striatum. Based on these results, it is possible that treadmill exercise aids in the recovery from central nervous system sequelae following intracerebral hemorrhage.
Collapse
Affiliation(s)
- Hee-Hyuk Lee
- Department of Physiology, College of Medicine, Kyung Hee University, # 1 Hoigi-dong, Dongdaemoon-gu, Seoul 130-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Feigin V, Anderson N, Gunn A, Rodgers A, Anderson C. The emerging role of therapeutic hypothermia in acute stroke. Lancet Neurol 2003; 2:529. [PMID: 12941573 DOI: 10.1016/s1474-4422(03)00500-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Valery Feigin
- Clinical Trials Research Unit, University of Auckland, Private Bag 92019, 3Ferncroft Street, Grafton, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
26
|
DeBow SB, Davies MLA, Clarke HL, Colbourne F. Constraint-induced movement therapy and rehabilitation exercises lessen motor deficits and volume of brain injury after striatal hemorrhagic stroke in rats. Stroke 2003; 34:1021-6. [PMID: 12649509 DOI: 10.1161/01.str.0000063374.89732.9f] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Constraint-induced movement therapy (CIMT) promotes motor recovery after occlusive stroke in humans, but its efficacy after intracerebral hemorrhage (ICH) has not been investigated clinically or in the laboratory. In this study we tested whether CIMT and a rehabilitation exercise program would lessen motor deficits after ICH in rats. METHODS Rats were subjected to striatal ICH (via infusion of collagenase) or sham stroke. Seven days later, treatment began with CIMT (8 h/d of ipsilateral forelimb restraint), rehabilitation exercises (eg, reaching, walking; 1 h/d), or both for 7 days. Some rats were not treated. Motor deficits were assessed up to the 60-day survival time, after which the volume of tissue lost was determined. RESULTS Untreated ICH rats made more limb slips traversing a horizontal ladder and showed an asymmetry toward less use of the contralateral paw in the cylinder test of limb use asymmetry (day 28). These rats were also significantly less successful in the Montoya staircase test (days 55 to 59) of skilled reaching. Neither therapy alone provided much benefit. However, the combination of daily exercises and CIMT substantially and persistently improved recovery. Unexpectedly, this group had a statistically smaller volume of tissue lost than untreated ICH rats. CONCLUSIONS The combination of focused rehabilitation exercises and CIMT effectively promotes functional recovery after ICH, while either therapy alone is less effective. This therapy may work in part by reducing the volume of tissue lost, likely through reducing atrophy while promoting remodeling.
Collapse
Affiliation(s)
- Suzanne B DeBow
- Department of Psychology, Center for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|