1
|
Monteiro ÁB, Alves AF, Ribeiro Portela AC, Oliveira Pires HF, Pessoa de Melo M, Medeiros Vilar Barbosa NM, Bezerra Felipe CF. Pentylenetetrazole: A review. Neurochem Int 2024; 180:105841. [PMID: 39214154 DOI: 10.1016/j.neuint.2024.105841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Pentylenetetrazole (PTZ), a tetrazole derivative, is commonly used as a chemical agent to induce neurological disorders and replicate the characteristics of human epileptic seizures in animal models. This review offers a comprehensive analysis of the behavioral, neurophysiological, and neurochemical changes induced by PTZ. The epileptogenic and neurotoxic mechanisms of PTZ are associated with an imbalance between the GABAergic and glutamatergic systems. At doses exceeding 60 mg/kg, PTZ exerts its epileptic effects by non-competitively antagonizing GABAA receptors and activating NMDA receptors, resulting in an increased influx of cations such as Na+ and Ca2+. Additionally, PTZ promotes oxidative stress, microglial activation, and the synthesis of pro-inflammatory mediators, all of which are features characteristic of glutamatergic excitotoxicity. These mechanisms ultimately lead to epileptic seizures and neuronal cell death, which depend on the dosage and method of administration. The behavioral, electroencephalographic, and histological changes associated with PTZ further establish it as a valuable preclinical model for the study of epileptic seizures, owing to its simplicity, cost-effectiveness, and reproducibility.
Collapse
Affiliation(s)
- Álefe Brito Monteiro
- Laboratory of Psychopharmacology, Institute of Drugs and Medicines Research, Federal University of Paraíba, Brazil
| | - Alan Ferreira Alves
- Laboratory of Psychopharmacology, Institute of Drugs and Medicines Research, Federal University of Paraíba, Brazil
| | | | | | - Mayara Pessoa de Melo
- Laboratory of Psychopharmacology, Institute of Drugs and Medicines Research, Federal University of Paraíba, Brazil
| | | | | |
Collapse
|
2
|
Kalati ZH, Gholami O, Amin B, Pejhan A, Sahab-Negah S, Gholami M, Azhdari-Zarmehri H, Mohammad-Zadeh M. The Role of 5-HT1A Receptors and Neuronal Nitric Oxide Synthase in a Seizur Induced Kindling Model in Rats. Neurochem Res 2022; 47:1934-1942. [PMID: 35305199 DOI: 10.1007/s11064-022-03577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Dentate gyrus (DG) has a high density of 5-HT1A receptors. It has neural nitric oxide synthase (nNOS), which is involved in neural excitability. The purpose of this study was to investigate the role of 5-HT1A receptors and nNOS of DG in perforant path kindling model of epilepsy. MATERIAL AND METHODS To achieve this purpose, a receptor antagonist (WAY100635, 0.1 mg/kg, intracerebroventricular, i.c.v) and neuronal nitric oxide synthase inhibitor (7-NI, 15 mg/kg, intraperitoneal, i.p.) were injected during kindling aquisition. Adult male Wistar rats (280 ± 20 g) were used in this study Animals were kindled through the daily administration of brief electrical stimulations (10 stimulations per day) to the perforant pathway. Field potential recordings were performed for 20 min in DG beforehand. Additionally, glial fibrillary acidic protein (GFAP) expression rate in the DG was determined using immunohistochemistry as a highly specific marker for glia. RESULTS WAY100635 (0.1 mg/kg) significantly attenuated the kindling threshold compared to the kindled + vehicle group (P < 0.001). The co-administration of WAY100635 with 7-NI, exerted a significant anticonvulsive effect. Furthermore, the slope of field Excitatory Post Synaptic Potentials (fEPSP) at the end of 10 days in the kindled + 7-NI + WAY100635 group was significantly lower than in the kindled + vehicle group (P < 0.001). Furthermore, immunohistochemistry showed that the density of GAFP+ cells in the kindled + 7-NI + WAY100635 group was significantly higher than in the kindled + vehicle group (P < 0.001). CONCLUSION Our data demonstrate that antagonists of 5-HT1A receptors have proconvulsive effects and that astrocyte cells are involved in this process, while nNOS has an inhibitory effect on neuronal excitability.
Collapse
Affiliation(s)
- Zinat Heydarnia Kalati
- Student Research Committee, Department of Physiology and Pharmacology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Omid Gholami
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Department of Physiology and Pharmacology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Bahareh Amin
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Department of Physiology and Pharmacology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Akbar Pejhan
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Department of Physiology and Pharmacology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Gholami
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hassan Azhdari-Zarmehri
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| | - Mohammad Mohammad-Zadeh
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Tang FL, Wang J, Itokazu Y, Yu RK. Enhanced Susceptibility to Chemoconvulsant-Induced Seizures in Ganglioside GM3 Synthase Knockout Mice. ASN Neuro 2020; 12:1759091420938175. [PMID: 32664815 PMCID: PMC7364800 DOI: 10.1177/1759091420938175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ganglioside GM3 synthase (α-2,3-sialyltransferase, ST3GAL5, GM3S) is a key enzyme involved in the biosynthesis of gangliosides. ST3GAL5 deficiency causes an absence of GM3 and all downstream biosynthetic derivatives. The affected individuals manifest deafness, severe irritability, intractable seizures, and profound intellectual disability. To investigate whether deficiency of GM3 is involved in seizure susceptibility, we induced seizures with different chemoconvulsants in ST3GAL5 knockout mice. We report here that ST3GAL5 knockout mice are hyperactive and more susceptible to seizures induced by chemoconvulsants, including kainate and pilocarpine, compared with normal controls. In the hippocampal dentate gyrus, loss of GM3 aggravates seizure-induced aberrant neurogenesis. These data indicate that GM3 and gangliosides derived from GM3 may serve as important regulators of epilepsy and may play an important role in aberrant neurogenesis associated with seizures.
Collapse
Affiliation(s)
- Fu-Lei Tang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, United States
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, United States
| | - Yukata Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, United States
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, United States
| |
Collapse
|
4
|
Kalinina A, Maletta T, Carr J, Lehmann H, Fournier NM. Spatial exploration induced expression of immediate early genes Fos and Zif268 in adult-born neurons Is reduced after pentylenetetrazole kindling. Brain Res Bull 2019; 152:74-84. [PMID: 31279580 DOI: 10.1016/j.brainresbull.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 01/05/2023]
Abstract
Seizure activity stimulates adult neurogenesis, the birth of new neurons, in the hippocampus. Many new neurons that develop in the presence of repeatedly induced seizures acquire abnormal morphological and functional characteristics that can promote network hyperexcitability and hippocampal dysfunction. However, the impact of seizure induced neurogenesis on behaviour remains poorly understood. In this study, we investigated whether adult-born neurons generated immediately before and during chronic seizures were capable of integration into behaviorally relevant hippocampal networks. Adult rats underwent pentylenetetrazole (PTZ) kindling for either 1 or 2 weeks. Proliferating cells were labelled with BrdU immediately before kindling commenced. Twenty-four hours after receiving their last kindling treatment, rats were placed in a novel environment and allowed to freely explore for 30 min. The rats were euthanized 90 min later to examine for behaviourally-induced immediate early gene expression (c-fos, Zif268). Using this approach, we found that PTZ kindled rats did not differ from control rats in regards to exploratory behaviour, but there was a marked attenuation in behaviour-induced expression of Fos and Zif268 for rats that received 2 weeks of PTZ kindling. Further examination revealed that PTZ kindled rats showed reduced colocalization of Fos and Zif268 in 2.5 week old BrdU + cells. The proportion of immature granule cells (doublecortin-positive) expressing behaviorally induced Zif268 was also significantly lower for PTZ kindled rats than control rats. These results suggest that chronic seizures can potentially disrupt the ability of adult-born cells to functionally integrate into hippocampal circuits important for the processing of spatial information.
Collapse
Affiliation(s)
- Alena Kalinina
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Teresa Maletta
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Joshua Carr
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Hugo Lehmann
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Neil M Fournier
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada.
| |
Collapse
|
5
|
Samokhina E, Samokhin A. Neuropathological profile of the pentylenetetrazol (PTZ) kindling model. Int J Neurosci 2018; 128:1086-1096. [DOI: 10.1080/00207454.2018.1481064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- E. Samokhina
- Russian Academy of Sciences, Institute of Theoretical and Experimental Biophysics, Pushchino, Russia
| | - Alexander Samokhin
- Russian Academy of Sciences, Institute of Cell Biophysics, Pushchino, Russia
| |
Collapse
|
6
|
Paiva DDS, Romariz SAA, Valente MF, Moraes LB, Covolan L, Calcagnotto ME, Monteiro Longo B. Transplantation of inhibitory precursor cells from medial ganglionic eminence produces distinct responses in two different models of acute seizure induction. Epilepsy Behav 2017; 70:125-130. [PMID: 28427019 DOI: 10.1016/j.yebeh.2017.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 11/19/2022]
Abstract
Medial ganglionic eminence (MGE) is one of the sources of inhibitory interneurons during development. Following transplantation in postnatal developing brain, MGE cells can increase local inhibition suggesting a possible protection to GABAergic dysfunction in brain disorders, such as epilepsy. Since it has been shown that MGE-derived cells harvested as neurospheres are able to suppress seizures, it might be important to investigate whether these protective effects would change in different seizure models. Here, we used pentylenetetrazole-(PTZ) and maximal electroshock (MES)-induced seizure models to test whether the transplantation of MGE cells would increase the threshold to trigger acute seizures. When transplanted into the neocortex (layers 3-4) of neonatal mice (postnatal days 3-4), MGE cells were able to survive and were mainly found in piriform cortex, fimbria, and ventricular wall regions. Additionally, the number of GFP+ cells found in the brains of mice induced with PTZ and MES differed significantly and suggests proliferation and larger survival rate of MGE-transplanted cells after PTZ, but not MES-induced seizures. Following transplantation, there was a reduction in the number of animals presenting mild and severe seizures induced by PTZ. Furthermore, MGE-cell transplantation was able to increase threshold to seizures induced by PTZ, but was not able to prevent seizure spread induced by MES.
Collapse
Affiliation(s)
- Daisyléa de Souza Paiva
- Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | | | - Maria Fernanda Valente
- Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Luiz Bruno Moraes
- Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Luciene Covolan
- Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | | | - Beatriz Monteiro Longo
- Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil.
| |
Collapse
|
7
|
|
8
|
Gao F, Song X, Zhu D, Wang X, Hao A, Nadler JV, Zhan RZ. Dendritic morphology, synaptic transmission, and activity of mature granule cells born following pilocarpine-induced status epilepticus in the rat. Front Cell Neurosci 2015; 9:384. [PMID: 26500490 PMCID: PMC4596052 DOI: 10.3389/fncel.2015.00384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 09/14/2015] [Indexed: 01/23/2023] Open
Abstract
To understand the potential role of enhanced hippocampal neurogenesis after pilocarpine-induced status epilepticus (SE) in the development of epilepsy, we quantitatively analyzed the geometry of apical dendrites, synaptic transmission, and activation levels of normotopically distributed mature newborn granule cells in the rat. SE in male Sprague-Dawley rats (between 6 and 7 weeks old) lasting for more than 2 h was induced by an intraperitoneal injection of pilocarpine. The complexity, spine density, miniature post-synaptic currents, and activity-regulated cytoskeleton-associated protein (Arc) expression of granule cells born 5 days after SE were studied between 10 and 17 weeks after CAG-GFP retroviral vector-mediated labeling. Mature granule cells born after SE had dendritic complexity similar to that of granule cells born naturally, but with denser mushroom-like spines in dendritic segments located in the outer molecular layer. Miniature inhibitory post-synaptic currents (mIPSCs) were similar between the controls and rats subjected to SE; however, smaller miniature excitatory post-synaptic current (mEPSC) amplitude with a trend toward less frequent was found in mature granule cells born after SE. After maturation, granule cells born after SE did not show denser Arc expression in the resting condition or 2 h after being activated by pentylenetetrazol-induced transient seizure activity than vicinal GFP-unlabeled granule cells. Thus our results suggest that normotopic granule cells born after pilocarpine-induced SE are no more active when mature than age-matched, naturally born granule cells.
Collapse
Affiliation(s)
- Fei Gao
- Department of Physiology, Shandong University School of Medicine Jinan, China
| | - Xueying Song
- Department of Physiology, Shandong University School of Medicine Jinan, China
| | - Dexiao Zhu
- Department of Physiology, Shandong University School of Medicine Jinan, China
| | - Xiaochen Wang
- Department of Physiology, Shandong University School of Medicine Jinan, China
| | - Aijun Hao
- Department of Histology and Embryology, Shandong University School of Medicine Jinan, China
| | - J Victor Nadler
- Departments of Pharmacology and Neurobiology, Duke University Medical Center Durham, NC, USA
| | - Ren-Zhi Zhan
- Department of Physiology, Shandong University School of Medicine Jinan, China
| |
Collapse
|
9
|
Ivanova-Dyatlova AY, Aniol VA, Gulyaeva NV. Ultra-low doses of tetrahydrocannabinol contribute to the survival of newly-born cells in the dentate gyrus of adult rats. NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415030046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Dentate gyrus expression of nestin-immunoreactivity in patients with drug-resistant temporal lobe epilepsy and hippocampal sclerosis. Seizure 2015; 27:75-9. [DOI: 10.1016/j.seizure.2015.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/03/2015] [Accepted: 02/12/2015] [Indexed: 01/02/2023] Open
|
11
|
Wei D, Yang F, Wang Y, Yang F, Wu C, Wu SX, Jiang W. Degeneration and regeneration of GABAergic interneurons in the dentate gyrus of adult mice in experimental models of epilepsy. CNS Neurosci Ther 2014; 21:52-60. [PMID: 25272022 DOI: 10.1111/cns.12330] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 12/15/2022] Open
Abstract
AIMS Mounting evidence showed that GABAergic interneurons play an important role in the generation of seizures by regulating excitatory/inhibitory balance in the hippocampus; however, there is a continuous debate regarding the alteration in the number of hippocampal GABAergic interneurons during epileptogenesis. Here, we investigated the degeneration and regeneration of GABAergic interneurons in the dentate gyrus during epileptogenesis using glutamic acid decarboxylase-green fluorescence protein (GAD67-GFP) knock-in mice. METHODS AND RESULTS Pentylenetetrazol (PTZ)-induced chronic kindling model and lithium-pilocarpine-induced status epilepticus (SE) model were used in this study. We found a progressive loss of GABAergic interneurons in the dentate gyrus during post-SE epileptogenesis rather than PTZ kindling. Both types of epileptogenic insults significantly promoted the proliferation of neural progenitor cells in the dentate gyrus; however, compared to 80% neuronal differentiation ratio in the control group, there was a remarkable decrease in PTZ kindling and pilocarpine models, that is 58% and 29%, respectively. Double/triple immunofluorescence labeling revealed no newborn neurons colabeled with GFP in both intact and epileptic dentate gyrus. In addition, valproate (a first-line antiepileptic drug) treatment prevented the loss of GABAergic interneurons but still failed to induce the regeneration of GAD67-positive interneurons in the dentate gyrus during post-SE epileptogenesis. CONCLUSIONS These results indicate that degeneration of GABAergic interneurons may depend on the type of epileptogenic insult and that no newborn GABAergic interneurons occur in the adult dentate gyrus during epileptogenesis.
Collapse
Affiliation(s)
- Dong Wei
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Jansson LC, Åkerman KE. The role of glutamate and its receptors in the proliferation, migration, differentiation and survival of neural progenitor cells. J Neural Transm (Vienna) 2014; 121:819-36. [DOI: 10.1007/s00702-014-1174-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/04/2014] [Indexed: 12/19/2022]
|
13
|
Erdogan H, Ekici F, Katar M, Kesici H, Aslan H. The protective effects of endothelin-A receptor antagonist BQ-123 in pentylenetetrazole-induced seizure in rats. Hum Exp Toxicol 2014; 33:1008-16. [DOI: 10.1177/0960327113520017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Endothelin-1 has been shown to increase neuronal activity and glutaminergic synaptic transmission by endothelin-A receptors (ETAR) in the nucleus tractus solitarius neurons that play an important role in epileptic seizures. Therefore, BQ-123 as an ETAR antagonist might attenuate neuronal excitability and glutaminergic synaptic transmission. The main purpose of the present study is to investigate the protective effect of acute BQ-123 treatment against pentylenetetrazole (PTZ)-induced tonic–clonic seizures. Wistar albino rats were divided into three groups: control, PTZ, and PTZ + BQ-123 groups. BQ-123 (3 mg/kg, intravenously) was administered for 15 min before injecting with PTZ (50 mg/kg, intraperitoneally). We determined a delay resulting from BQ-123 in “duration of the seizure onset.” “Number of rats with major seizure” also decreased according to scoring with video camera in PTZ + BQ-123 group. In BQ-123-treated group, there were eight rats without a major seizure, but only one rat had a delayed major seizure. The brain tissue glutathione peroxidase activity was significantly decreased in the PTZ and PTZ + BQ-123 groups. According to the results of the control group, there was a significant increase in the protein carbonyl levels of the PTZ group and a significant increase in the nitric oxide levels of the PTZ + BQ-123 group. Histological examination showed an increase in the number of neuronal hyperchromatic nucleus especially in hippocampal gyrus dentatus region of BQ-123-treated group. We concluded that BQ-123 impeded the formation and spread of seizure to a great degree. The beneficial effects of BQ-123 were comparatively supported with biochemical parameters and histological examinations.
Collapse
Affiliation(s)
- H Erdogan
- Department of Physiology, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - F Ekici
- Department of Physiology, Faculty of Medicine, Yildirım Beyazit University, Ankara, Turkey
| | - M Katar
- Department of Biochemistry, Tokat State Hospital, Tokat, Turkey
| | - H Kesici
- Department of Histology and Embryology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - H Aslan
- Department of Histology and Embryology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
14
|
Aniol VA, Ivanova-Dyatlova AY, Keren O, Guekht AB, Sarne Y, Gulyaeva NV. A single pentylenetetrazole-induced clonic-tonic seizure episode is accompanied by a slowly developing cognitive decline in rats. Epilepsy Behav 2013; 26:196-202. [PMID: 23318024 DOI: 10.1016/j.yebeh.2012.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/04/2012] [Accepted: 12/08/2012] [Indexed: 12/13/2022]
Abstract
According to different studies, between 5% and 10% of people suffer a single isolated seizure episode at some time in their life. However, little is known about the effects of a single seizure episode on cognitive function, and clinical investigations of this issue are not easy to perform. In this situation, animal models may be a reasonable choice. The aim of our study was to follow the time course of delayed effects of generalized clonic-tonic convulsions on learning and memory functions in rats. A clonic-tonic seizure episode was induced by a single i.p. injection of pentylenetetrazole (70 mg/kg). Different behavioral tests were performed between days 10 and 100 after the convulsant administration. A single seizure episode resulted in a gradual decline in short-term memory function as assessed by novel object recognition and social recognition tests. The seizure episode induced a quick increase in hippocampal cell proliferation; however, the excessive newly generated cells seemed to be eliminated by the time of obvious cognitive impairment. These observations are indicative of a slowly developing and long-lasting influence of a single seizure episode on cognitive function. A rather long time period between the seizure episode and the manifestations of cognitive decline provides a window for a possible therapeutic intervention, and an elaboration of such "post-conditioning" treatments may be a promising opportunity to prevent subsequent mental impairments in patients.
Collapse
Affiliation(s)
- Victor A Aniol
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, RAS, Butlerov Street 5A, Moscow 117485, Russia
| | | | | | | | | | | |
Collapse
|
15
|
Andres-Mach M, Fike JR, Łuszczki JJ. Neurogenesis in the epileptic brain: a brief overview from temporal lobe epilepsy. Pharmacol Rep 2012; 63:1316-23. [PMID: 22358080 DOI: 10.1016/s1734-1140(11)70696-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 08/02/2011] [Indexed: 01/03/2023]
Abstract
Dentate granule cell neurogenesis persists throughout life in the hippocampus of mammals. Alterations in this process occur in many neurological diseases, including epilepsy. Among the different types of epilepsy, the most frequent is temporal lobe epilepsy (TLE). Therefore, a number of laboratory studies use animal models of TLE to observe the fate of neuronal cells after seizures. Hippocampal neurogenesis is very sensitive to physiological and pathological stimuli. Seizures, as pathological stimuli, alter both the extent and the pattern of neurogenesis, which is associated with cognitive function. Various alterations in neurogenesis are observed depending on the amount of time that has elapsed after the seizures. In acute seizures, neurogenesis generally increases, whereas in chronic epilepsy, neurogenesis decreases. Moreover, several methods currently used for the treatment of brain disorders such as TLE can also have significant impacts on cognitive functions. This review is focused on the recent findings regarding neurogenesis in animal models of TLE.
Collapse
Affiliation(s)
- Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Agricultural Medicine, Lublin, Jaczewskiego 2, PL 20-090 Poland.
| | | | | |
Collapse
|
16
|
Mori T, Wakabayashi T, Hirahara Y, Takamori Y, Koike T, Kurokawa K, Yamada H. Differential responses of endogenous adult mouse neural precursors to excess neuronal excitation. Eur J Neurosci 2012; 36:3184-93. [PMID: 22845807 DOI: 10.1111/j.1460-9568.2012.08244.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Adult neurogenesis in the subgranular zone of the hippocampus (SGZ) is enhanced by excess as well as mild neuronal excitation, such as chemoconvulsant-induced brief seizures. Because most studies of neurogenesis after seizures have focused on the SGZ, the threshold of neuronal excitation required to enhance neurogenesis in the subventricular zone (SVZ) is not clear. Therefore, we examined the responses of SVZ precursors to brief generalized clonic seizures induced by a single administration of the chemoconvulsant pentylenetetrazole (PTZ). Cell cycle progression of precursors was analysed by systemic administration of thymidine analogues. We found that brief seizures immediately resulted in cell cycle retardation in the SVZ. However, the same effect was not seen in the SGZ. This initial cell cycle retardation in the SVZ was followed by enhanced cell cycle re-entry after the first round of mitosis, leading to precursor pool expansion, but the cell cycle retardation and expansion of the precursor pool were transient. Cell cycle progression in the PTZ-treated group returned to normal after one cell cycle. The numbers of precursors in the SVZ and new neurons in the olfactory bulb, which are descendants of SVZ precursors, were not significantly different from those in control mice more than 2 days after seizures. Because similar effects were observed following electroconvulsive seizures, these responses are likely to be general effects of brief seizures. These results suggest that neurogenesis in the SVZ is more tightly regulated and requires stronger stimuli to be modified than that in the SGZ.
Collapse
Affiliation(s)
- Tetsuji Mori
- Department of Anatomy & Cell Science, Kansai Medical University, Moriguchi, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Swijsen A, Brône B, Rigo JM, Hoogland G. Long-lasting enhancement of GABA(A) receptor expression in newborn dentate granule cells after early-life febrile seizures. Dev Neurobiol 2012; 72:1516-27. [PMID: 22378685 DOI: 10.1002/dneu.22016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/06/2012] [Accepted: 02/23/2012] [Indexed: 02/05/2023]
Abstract
Febrile seizures (FS) are the most common type of seizures in childhood and are suggested to play a role in the development of temporal lobe epilepsy (TLE). Animal studies demonstrated that experimental FS induce a long-lasting change in hippocampal excitability, resulting in enhanced seizure susceptibility. Hippocampal neurogenesis and altered ion channel expression have both been proposed as mechanisms underlying this decreased seizure threshold. The present study aimed to analyze whether dentate gyrus (DG) cells that were born after FS and matured for 8 weeks display an altered repertoire of ligand-gated ion channels. To this end, we applied an established model, in which FS are elicited in 10-day-old rat pups by hyperthermia (HT). Normothermia littermates served as controls. From postnatal day 11 (P11) to P16, rats were injected with bromodeoxyuridine (BrdU) to label dividing cells immediately following FS. At P66, we evaluated BrdU-labeled DG cells for coexpression with γ-aminobutyric acid-type A receptors (GABA(A)Rs) and N-methyl-D-aspartate receptors (NMDARs). In control animals, 40% of BrdU-labeled cells coexpressed GABA(A)R β2/3, whereas in rats that had experienced FS, 60% of BrdU-labeled cells also expressed GABA(A)R β2/3. The number of BrdU-NMDAR NR2A/B coexpressing cells was in both groups about 80% of BrdU-labeled cells. The results demonstrate that developmental seizures cause a long-term increase in GABA(A)R β2/3 expression in newborn DG cells. This may affect hippocampal physiology.
Collapse
Affiliation(s)
- Ann Swijsen
- Research Group Cell Physiology, BIOMED Research Institute, Hasselt University, Diepenbeek, Belgium
| | | | | | | |
Collapse
|
18
|
Liebetanz D, Gerber J, Schiffner C, Schütze S, Klinker F, Jarry H, Nau R, Tauber SC. Pre-infection physical exercise decreases mortality and stimulates neurogenesis in bacterial meningitis. J Neuroinflammation 2012; 9:168. [PMID: 22781194 PMCID: PMC3419614 DOI: 10.1186/1742-2094-9-168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 07/10/2012] [Indexed: 01/22/2023] Open
Abstract
Physical exercise has been shown to increase neurogenesis, to decrease neuronal injury and to improve memory in animal models of stroke and head trauma. Therefore, we investigated the effect of voluntary wheel running on survival, neuronal damage and cell proliferation in a mouse model of pneumococcal meningitis. Mice were housed in cages equipped with voluntary running wheels or in standard cages before induction of bacterial meningitis by a subarachnoid injection of a Streptococcus pneumoniae type 3 strain. 24 hours later antibiotic treatment was initiated with ceftriaxone (100 mg/kg twice daily). Experiments were terminated either 30 hours or 4 days (short-term) or 7 weeks (long-term) after infection, and the survival time, inflammatory cytokines and corticosterone levels, neurogenesis in the dentate gyrus of the hippocampal formation and the cognitive function were evaluated in surviving mice. Survival time was significantly increased in running mice compared to control animals (p = 0.0087 in short-term and p = 0.016 in long-term experiments, log-rank test). At the end of the long-term experiment, mortality was lower in trained than in sedentary animals (p = 0.031, Fisher's Exact test). Hippocampal neurogenesis--assessed by the density of doublecortin-, TUC-4- and BrdU + NeuN-colabeled cells--was significantly increased in running mice in comparison to the sedentary group after meningitis. However, Morris water maze performance of both groups 6 weeks after bacterial meningitis did not reveal differences in learning ability. In conclusion, physical exercise prior to infection increased survival in a mouse model of bacterial meningitis and stimulated neurogenesis in the dentate gyrus of the hippocampal formation.
Collapse
Affiliation(s)
- David Liebetanz
- Department of Clinical Neurophysiology, Georg-August-University, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ma L, Cui XL, Wang Y, Li XW, Yang F, Wei D, Jiang W. Aspirin attenuates spontaneous recurrent seizures and inhibits hippocampal neuronal loss, mossy fiber sprouting and aberrant neurogenesis following pilocarpine-induced status epilepticus in rats. Brain Res 2012; 1469:103-13. [PMID: 22765917 DOI: 10.1016/j.brainres.2012.05.058] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/01/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
Abstract
Accumulating data suggest that inflammation may contribute to epileptogenesis in experimental models as well as in humans. However, whether anti-inflammatory treatments can prevent epileptogenesis still remains controversial. Here, we examined the anti-epileptogenic effect and possible mechanisms of aspirin, a non-selective Cyclooxygenase (COX) inhibitor, in a rat model of lithium-pilocarpine-induced status epilepticus (SE). Epileptic rats were treated with aspirin (20mg/kg) at 0h, 3h, or 24h after the termination of SE, followed by once daily treatment for the subsequent 20 days. We found that aspirin treatment significantly reduced the frequency and duration of spontaneous recurrent seizures during the chronic epileptic phase. Hippocampal neuronal loss five weeks after SE was also attenuated in the CA1, CA3 and hilus following aspirin administration. Furthermore, the aberrant migration of newly generated granule cells and the formation of hilar basal dendrites were prevented by aspirin. Treatment with aspirin starting at 3h or 24h after SE also suppressed the development of mossy fiber sprouting. These findings suggest the possibility of a relative broad time-window for aspirin intervention in the epileptogenic process after injury. Aspirin may serve as a potential adjunctive therapy for individuals susceptible to chronic epilepsy.
Collapse
Affiliation(s)
- Lei Ma
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 17 Changle West Road, Xi'an 710032, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Feng SF, Shi TY, Wang WN, Chen YC, Tan QR. Long-lasting effects of chronic rTMS to treat chronic rodent model of depression. Behav Brain Res 2012; 232:245-51. [PMID: 22537774 DOI: 10.1016/j.bbr.2012.04.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/06/2012] [Accepted: 04/10/2012] [Indexed: 12/29/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been demonstrated in the pre-clinical and clinical settings to have an antidepressant effect. However, studies on the long-lasting effect of rTMS, especially when the effect is measured after treatment has ceased for a few weeks is lacking. We examined this question in a chronic unpredicted mild stress (CUMS) rat model of depression. We gave 3 weeks of high frequency (15 Hz) rTMS, venlafaxine, or these two treatments combined to a modified CUMS paradigm, and then investigated the prolonged effect of treatments. Behavioral testing (sucrose preference test, open field test, forced swimming test, novelty suppressed feeding test), plasma hormone level, hippocampal BrdU labeling, and amount of related neurotropic factors were used to assess the effects of stress and treatments. Long-term chronic rTMS significantly reversed andehonic-like behavior, increased hippocampus cell proliferation, BDNF protein level, phosphorylation of ERK1/2 compared with CUMS rats two weeks after the cessation of rTMS treatment. However, the changes in plasma hormone level were not sustained for that amount of time. Venlafaxine had no interaction with the physical stimulation. Our results suggest that high frequency rTMS has long-lasting effects, which may have some relationship with neuroplasticity.
Collapse
Affiliation(s)
- Shu-fang Feng
- Department of Psychosomatics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | |
Collapse
|
21
|
Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory. J Neurosci 2011; 31:13469-84. [PMID: 21940440 DOI: 10.1523/jneurosci.3100-11.2011] [Citation(s) in RCA: 302] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Deep brain stimulation (DBS) is an established therapeutic modality for the treatment of movement disorders and an emerging therapeutic approach for the treatment of disorders of mood and thought. For example, recently we have shown that DBS of the fornix may ameliorate cognitive decline associated with dementia. However, like other applications of DBS, the mechanisms mediating these clinical effects are unknown. As DBS modulates neurophysiological activity in targeted brain regions, DBS might influence cognitive function via activity-dependent regulation of hippocampal neurogenesis. Using stimulation parameters analogous to clinical high-frequency DBS, here we addressed this question in mice. We found that acute stimulation of the entorhinal cortex (EC) transiently promoted proliferation in the dentate gyrus (DG). Cells generated as a consequence of stimulation differentiated into neurons, survived for at least several weeks, and acquired normal dentate granule cell (DGC) morphology. Importantly, stimulation-induced promotion of neurogenesis was limited to the DG and not associated with changes in apoptotic cell death. Using immunohistochemical approaches, we found that, once sufficiently mature, these stimulation-induced neurons integrated into hippocampal circuits supporting water-maze memory. Finally, formation of water-maze memory was facilitated 6 weeks (but not 1 week) after bilateral stimulation of the EC. The delay-dependent nature of these effects matches the maturation-dependent integration of adult-generated DGCs into dentate circuits supporting water-maze memory. Furthermore, because the beneficial effects of EC stimulation were prevented by blocking neurogenesis, this suggests a causal relationship between stimulation-induced promotion of adult neurogenesis and enhanced spatial memory.
Collapse
|
22
|
Wang Y, Cui XL, Liu YF, Gao F, Wei D, Li XW, Wang HN, Tan QR, Jiang W. LPS inhibits the effects of fluoxetine on depression-like behavior and hippocampal neurogenesis in rats. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1831-5. [PMID: 21791234 DOI: 10.1016/j.pnpbp.2011.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 07/08/2011] [Accepted: 07/11/2011] [Indexed: 01/16/2023]
Abstract
Depressed patients with increased inflammatory cytokines in peripheral blood have been reported to be more likely to exhibit treatment resistance. However, it is unknown whether the inflammation influences the action of antidepressant drugs. Here, we investigated the influence of lipopolysaccharide (LPS) on the antidepressant action of fluoxetine in depressive rats induced by chronic unpredictable mild stress (CUMS). In this study, we first modified the CUMS paradigm by administration of LPS daily before the stressor, and then investigated the influence of inflammation on the antidepressant action of fluoxetine. The effects of stress exposure and antidepressant treatment were assessed by behavioral testing (sucrose preference test, forced swimming test, novelty suppressed feeding test) and hippocampal BrdU labeling. The CUMS-induced behavioral changes can be reversed by 4-week fluoxetine treatment. Fluoxetine also increased the hippocampal neurogenesis in the depressive rats. Pretreatment with LPS, to mimic inflammation, had no significant effect on depressive behavior but attenuated the antidepressant action of fluoxetine significantly. Thus, our results suggest that the inflammation might play a certain role in the pathophysiology of antidepressant treatment resistance.
Collapse
Affiliation(s)
- Ying Wang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Aniol VA, Stepanichev MY, Lazareva NA, Gulyaeva NV. An early decrease in cell proliferation after pentylenetetrazole-induced seizures. Epilepsy Behav 2011; 22:433-41. [PMID: 21907628 DOI: 10.1016/j.yebeh.2011.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 01/17/2023]
Abstract
There are increasing data on the influence of seizures on neurogenesis in the adult brain. However, data on cell proliferation and differentiation during the early stages of kindling are scarce. We have used pentylenetetrazole (PTZ)-induced kindling to investigate the temporal profile of cytogenesis in the germinative zones of adult rat brain. For comparison, we also used a single PTZ-induced generalized tonic-clonic seizure. During kindling development, the density of 5-bromo-2'-deoxyuridine-positive cells demonstrated similar changes in all germinative zones: a dramatic decrease after the first subthreshold PTZ injection, and a gradual increase to the control level following repeated PTZ administration. On the contrary, a single PTZ-induced generalized tonic-clonic seizure was followed by an increase in the number of proliferating cells in both the dentate gyrus and the subventricular zone. These results may indicate the existence of global mechanisms affecting cellular proliferation in adult brain during seizures. Different temporal profiles of neuronal damage and proliferation changes suggest that neurodegeneration is unlikely to be a global proliferation-regulating factor. The data may contribute to better understanding of the initial phase of kindling development and epileptogenesis.
Collapse
Affiliation(s)
- V A Aniol
- Department of Functional Biochemistry of Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | |
Collapse
|
24
|
Devesa P, Reimunde P, Gallego R, Devesa J, Arce VM. Growth hormone (GH) treatment may cooperate with locally-produced GH in increasing the proliferative response of hippocampal progenitors to kainate-induced injury. Brain Inj 2011; 25:503-10. [PMID: 21456999 DOI: 10.3109/02699052.2011.559611] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PRIMARY OBJECTIVE This study was designed to investigate the effect of growth hormone treatment on the proliferation of endogenous neural progenitor cells in the dentate gyrus (DG) of the brain stimulated by kainic acid (KA)-induced neurotoxicity. RESEARCH DESIGN Neurotoxicity was induced by intraperitoneal injection of KA. GH treatment lasted 4 days, starting either immediately or after 10 days of administration of the neurotoxic insult. METHODS AND PROCEDURE Proliferating cells were immunodetected after labelling by in vivo administration of 5-bromodeoxyuridine (BrdU). GH expression was detected by in situ hybridization and immunofluorescence. MAIN OUTCOMES AND RESULTS KA administration stimulated the proliferation of hippocampal precursors and this effect was significantly enhanced by GH treatment. Hippocampal GH expression was also up-regulated in response to KA administration. CONCLUSIONS The findings support the possibility that the proliferative response observed in the hippocampus of rats treated with KA and GH is a consequence of cooperation between the exogenous and the locally-produced hormone and their synergism with other mitogenic factors generated in response to the neurotoxic damage. Therefore, GH treatment could be used to cooperate with other physiological or pathological stimuli in order to promote cell proliferation.
Collapse
Affiliation(s)
- Pablo Devesa
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Rajabzadeh AA, Ebrahimzadeh Bideskan AR, Haghir H, Fazel AR. Morphometrical study of polysialylated neural cell adhesion molecule positive cells in rat pups hippocampus following induction of seizure during pregnancy. IRANIAN BIOMEDICAL JOURNAL 2011; 15:157-63. [PMID: 22395141 PMCID: PMC3614246 DOI: 10.6091/ibj.998.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 08/31/2011] [Accepted: 09/03/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND The polysialylated neural cell adhesion molecule (PSA-NCAM) is expressed in developing brain. Fetal brain damage is caused by different conditions such as seizure and hypoxia. The present study was designed to investigate the effect of maternal seizures on the number of PSA-NCAM positive cells in pup's hippocampus. METHODS Female Wistar rats were divided into four groups: (a) kindled rats which received PTZ (40 mg/kg, i.p.) during pregnancy from embryonic day 14-19 (E14-E19) every 48 h, (b) kindled rats which did not receive PTZ during pregnancy, (c) non-kindle, pregnant rats which received PTZ injection (40 mg/kg, i.p.) during pregnancy from E14 to E19 every 48 h, and (d) non-kindle, pregnant rats which received injection with an equal volume of normal saline as sham controls. At postnatal day 14 (PD14), rat pups were perfused, and their brain were fixed, embedded and coronal sections stained by immunohistochemistry method. The number of PSA-NCAM positive cells per unit area in the pup's hippocampus was counted. RESULTS The number of PSA-NCAM positive cells in the CA1, CA3, and DG fields of pup's hippocampus, which was obtained from mothers who experienced PTZ injection during pregnancy, was decreased approximately 2.6 (P = 0.001), 2 (P = 0.001), and 2.1 (P = 0.001) times compared with non-PTZ treated maternal groups, respectively. CONCLUSIONS Our study showed that maternal seizures reduced the number of neurons and also PSA-NCAM positive cells per unit area in the offspring hippocampus that it may cause impairment in hippocampal functions.
Collapse
|
27
|
|
28
|
Yang F, Liu ZR, Chen J, Zhang SJ, Quan QY, Huang YG, Jiang W. Roles of astrocytes and microglia in seizure-induced aberrant neurogenesis in the hippocampus of adult rats. J Neurosci Res 2010; 88:519-29. [PMID: 19774666 DOI: 10.1002/jnr.22224] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recent evidence showed that epileptic seizures increase hippocampal neurogenesis in the adult rat, but prolonged seizures result in the aberrant hippocampal neurogenesis that often leads to a recurrent excitatory circuitry and thus contributes to epileptogenesis. However, the mechanism underlying the aberrant neurogenesis after prolonged seizures remains largely unclear. In this study, we examined the role of activated astrocytes and microglia in the aberrant hippocampal neurogenesis induced by status epilepticus. Using a lithium-pilocarpine model to mimic human temporal lobe epilepsy, we found that status epilepticus induced a prominent activation of astrocytes and microglia in the dentate gyrus 3, 7, 14, and 20 days after the initial seizures. Then, we injected fluorocitrate stereotaxicly into the dentate hilus to inhibit astrocytic metabolism and found that fluorocitrate failed to prevent the seizure-induced formation of ectopic hilar basal dendrites but instead promoted the degeneration of dentate granule cells after seizures. In contrast, a selective inhibitor of microglia activation, minocycline, inhibited the aberrant migration of newborn neurons at 14 days after status epilepticus. Furthermore, with stereotaxic injection of lipopolysaccharide into the intact dentate hilus to activate local microglia, we found that lipopolysaccharide promoted the development of ectopic hilar basal dendrites in the hippocampus. These results indicate that the activated microglia in the epileptic hilus may guide the aberrant migration of newborn neurons and that minocycline could be a potential drug to impede seizure-induced aberrant migration of newborn neurons.
Collapse
Affiliation(s)
- Fang Yang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Chen J, Quan QY, Yang F, Wang Y, Wang JC, Zhao G, Jiang W. Effects of lamotrigine and topiramate on hippocampal neurogenesis in experimental temporal-lobe epilepsy. Brain Res 2009; 1313:270-82. [PMID: 20025852 DOI: 10.1016/j.brainres.2009.12.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 12/05/2009] [Accepted: 12/08/2009] [Indexed: 10/20/2022]
Abstract
Lamotrigine (LTG) and topiramate (TPM), two of the most commonly used new-generation antiepileptic drugs (AEDs), have been shown to produce no adverse and impaired cognitive effects in patients with epilepsy, respectively. As seizure-induced neurogenesis might contribute to cognitive deficits that are associated with status epilepticus (SE), we examined whether these two drugs produce differential effects on seizure-induced neurogenesis in the hippocampus of adult rats. Lithium pilocarpine model was used to mimic human temporal-lobe epilepsy. Five hours after SE, LTG and TPM were administered intragastrically twice daily throughout the entire length of the experiment with total daily dose of 20 and 80 mg/kg, respectively. The hippocampal neurogenesis was examined using 5-bromodeoxyuridine and doublecortin immunohistochemistry. Both LTG and TPM treatments significantly inhibited seizure-induced proliferation of neural progenitors in the hippocampus, but did not affect the neuronal differentiation of newborn cells. Long-term treatment with both AEDs decreased the number of spontaneous recurrent seizures after SE and alleviated chronic seizure-induced neuronal injury in the dentate hilus. Eventually, TPM significantly increased the number of newborn neurons in the dentate granular cell layer after seizures likely by promoting the survival of newborn neurons. In contrast, LTG treatment significantly reduced the number of ectopic hilar newborn neurons after seizures. Neither of them prevented the formation of hilar basal dendrites of newborn neurons in the epileptic hippocampus. These results indicate that TPM but not LTG promotes aberrant neuron regeneration in the hippocampus after SE, which might be partially related to their differential effects on cognitive function.
Collapse
Affiliation(s)
- Jing Chen
- Department of Neurology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Potential role for ligand-gated ion channels after seizure-induced neurogenesis. Biochem Soc Trans 2009; 37:1419-22. [DOI: 10.1042/bst0371419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epileptic seizures result in an increased generation of new neurons in the dentate gyrus of the adult mammalian hippocampus. The role of these seizure-induced newborn neurons in the process of epileptogenesis remains largely unknown. Recent work, however, suggests an aberrant incorporation of newborn cells into the existing hippocampal network in such a way that they promote hippocampal hyperexcitability. In the present review, we discuss current knowledge about the possible role of seizure-induced newly generated neurons and the putative involvement of ligand-gated ion channels in the process of epileptogenesis.
Collapse
|
31
|
Aniol VA, Yakovlev AA, Stepanichev MY, Lazareva NA, Gulyaeva NV. Development of pentylenetetrazole kindling in rats is associated with an increase in hippocampal doublecortin expression. NEUROCHEM J+ 2009. [DOI: 10.1134/s1819712409030040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Abstract
The mammalian brain contains a population of neurons that are continuously generated from late embryogenesis through adulthood-after the generation of almost all other neuronal types. This brain region-the hippocampal dentate gyrus-is in a sense, therefore, persistently immature. Postnatal and adult neurogenesis is likely an essential feature of the dentate, which is critical for learning and memory. Protracted neurogenesis after birth would allow the new cells to develop in conjunction with external events-but it may come with a price: while neurogenesis in utero occurs in a protected environment, children and adults are exposed to any number of hazards, such as toxins and infectious agents. Mature neurons might be resistant to such exposures, but new neurons may be vulnerable. Consistent with this prediction, in adult rodents seizures disrupt the integration of newly generated granule cells, whereas mature granule cells are comparatively unaffected. Significantly, abnormally interconnected cells may contribute to epileptogenesis and/or associated cognitive and memory deficits. Finally, studies increasingly indicate that new granule cells are extremely sensitive to a host of endogenous and exogenous factors, raising the possibility that disrupted granule cell integration may be a common feature of many neurological diseases.
Collapse
Affiliation(s)
- Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
33
|
Yang F, Wang JC, Han JL, Zhao G, Jiang W. Different effects of mild and severe seizures on hippocampal neurogenesis in adult rats. Hippocampus 2008; 18:460-8. [PMID: 18240317 DOI: 10.1002/hipo.20409] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent evidence shows that functional neurogenesis exists in the adult hippocampus and that epileptic seizures can increase neurogenesis in the dentate gyrus (DG). However, it is unknown whether different seizure severity has different effects on neurogenesis in the DG of adult rats. In this study, we examined hippocampal neurogenesis in the rat mild and severe seizure preparations characterized with frequent wet dog shakes and severe status epilepticus, respectively. Both mild and severe seizures promoted the mitotic activity in the DG, but severe seizures caused a stronger cell proliferative response than mild seizures. Less than 20% of newborn cells in the DG differentiated into neurons in rats suffering severe seizures, whereas more than 60% of newborn dentate cells differentiated into neurons in control and mild seizure groups. Most newborn neurons migrated into the granular cell layer in control and mild seizure groups, but severe seizures were associated with an aberrant migration of newborn neurons into the dentate hilus. Severe seizures induced astrocyte activation and the expression of nestin and the migration directional molecules netrin 1 and Sema-3A in the hilus, which were not present in the hilus of control and mild seizure-attacked rats, suggesting that these molecules are involved in the aberrant migration of newborn neurons.
Collapse
Affiliation(s)
- Fang Yang
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, China
| | | | | | | | | |
Collapse
|
34
|
Gray WP. Neuropeptide Y signalling on hippocampal stem cells in health and disease. Mol Cell Endocrinol 2008; 288:52-62. [PMID: 18403103 DOI: 10.1016/j.mce.2008.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 02/07/2008] [Accepted: 02/26/2008] [Indexed: 12/31/2022]
Abstract
Neuropeptides are emerging as key components in the hippocampal neurogenic niche in health and disease, regulating many aspects of neurogenesis and the synaptic integration of newly generated neurons. This review focuses on the role of neuropeptide Y in the control of stem/precursor cells in the postnatal and adult hippocampus. It is likely that neuropeptide Y releasing interneurons are key sensors of neural activity, modulating neurogenesis appropriately. This is likely to be a fruitful area of research for extending our understanding of the control of stem cells in the normal and diseased brain.
Collapse
Affiliation(s)
- William P Gray
- University Division of Clinical Neurosciences, Southampton Neurosciences Group, University of Southampton, South Academic Block, Southampton General Hospital, Southampton SO16 6YD, UK.
| |
Collapse
|
35
|
Spulber S, Oprica M, Bartfai T, Winblad B, Schultzberg M. Blunted neurogenesis and gliosis due to transgenic overexpression of human soluble IL-1ra in the mouse. Eur J Neurosci 2008; 27:549-58. [DOI: 10.1111/j.1460-9568.2008.06050.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
36
|
Murashima YL, Suzuki J, Yoshii M. Cell cycle reentry and cell proliferation as candidates for the seizure predispositions in the hippocampus of EL mouse brain. Epilepsia 2007; 48 Suppl 5:119-25. [PMID: 17910591 DOI: 10.1111/j.1528-1167.2007.01299.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have recently found that there was DNA fragmentation without cell loss in the hippocampus in EL mice, an epileptic mutant. Neurotrophic factors are also expressed at high levels during the early developmental stages. In the present study, we used EL mice to examine how altered cyclin and the corresponding cyclin dependent kinase (CDK) family are related to cell proliferation during development and during epileptogenesis. Developmental changes of cyclin family and corresponding CDK family (cyclin D/CDK-4, cyclin E/CDK-2, cyclin A/CDK-2, cyclin A/CDK-1, cyclin B/CDK-1) were examined by Western blotting in the hippocampus of EL mice and in nonepileptic control animals (DDY mice). In addition, we attempted to quantify cell proliferation during this period. The developmental changes in cell proliferation were determined by using systemic injections of Bromo-deoxyUridine (BrdU) to label dividing cells. As compared with the control DDY mice, EL mice show an upregulation of cell cycle specific Cyclins/CDKs during early developmental stages suggesting that reentry into the cell cycle is enhanced prior to the onset of seizure activity, possibly due to the abundance of neurotrophic factors. These results show that Cyclins/CDKs are activated during early stages of development in an epileptic animal, before the mouse exhibits seizures. These results suggest that reentry of cells into the cell cycle, with consequent cell proliferation in the hippocampus, contribute to the seizure predispositions of EL mice.
Collapse
|
37
|
Yin J, Ma Y, Yin Q, Xu H, An N, Liu S, Fan X, Yang H. Involvement of over-expressed BMP4 in pentylenetetrazol kindling-induced cell proliferation in the dentate gyrus of adult rats. Biochem Biophys Res Commun 2007; 355:54-60. [PMID: 17286956 DOI: 10.1016/j.bbrc.2007.01.107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Accepted: 01/17/2007] [Indexed: 11/29/2022]
Abstract
The dentate gyrus (DG) of the hippocampus is one of a few regions in the adult mammalian brain characterized by ongoing neurogenesis. Proliferation of neural precursors in the granule cell layer of the DG has been identified in pentylenetetrazol (PTZ) kindling epilepsy model, however, little is known about the molecular mechanism. We previously reported that the expression pattern of bone morphogenetic proteins-4 (BMP4) mRNA in the hippocampus was developmentally regulated and mainly localized in the DG of the adult. To explore the role of BMP4 in epileptic activity, we detected BMP4 expression in the DG during PTZ kindling process and explore its correlation with cell proliferation combined with bromodeoxyuridine (BrdU) labeling technique. We found that dynamic changes in BMP4 level and BrdU labeled cells dependent on the kindling stage of PTZ induced seizure-prone state. The number of BMP4 mRNA-positive cells and BrdU labeled cells reached the top level 1 day after PTZ kindled, then declined to base level 2 months later. Furthermore, there was a significant correlation between increased BMP4 mRNA expression and increased number of BrdU labeled cells. After effectively blocked expression of BMP4 with antisense oligodeoxynucleotides(ASODN), the BrdU labeled cells in the dentate gyrus subgranular zone(DG-SGZ) and hilus were significantly decreased 16d after the first PTZ injection and 1, 3, 7, 14d after kindled respectively. These findings suggest that increased proliferation in the DG of the hippocampus resulted from kindling epilepsy elicited by PTZ maybe be modulated by BMP4 over-expression.
Collapse
Affiliation(s)
- Jinbo Yin
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Scharfman HE, Gray WP. Relevance of seizure-induced neurogenesis in animal models of epilepsy to the etiology of temporal lobe epilepsy. Epilepsia 2007; 48 Suppl 2:33-41. [PMID: 17571351 PMCID: PMC2504501 DOI: 10.1111/j.1528-1167.2007.01065.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Seizure induction in laboratory animals is followed by many changes in structure and function, and one of these is an increase in neurogenesis-the birth of new neurons. This phenomenon may be relevant to temporal lobe epilepsy (TLE), because one of the regions of the brain where seizure-induced neurogenesis is most robust is the dentate gyrus-an area of the brain that has been implicated in the pathophysiology of TLE. Although initial studies predicted that neurogenesis in the dentate gyrus would be important to normal functions, such as learning and memory, the new neurons that are born after seizures may not necessarily promote normal function. There appears to be a complex functional and structural relationship between the new dentate gyrus neurons and preexisting cells, both in the animal models of TLE and in tissue resected from patients with intractable TLE. These studies provide new insights into the mechanisms of TLE, and suggest novel strategies for intervention that could be used to prevent or treat TLE.
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, New York State Department of Health, West Haverstraw, New York 10993-1195, USA.
| | | |
Collapse
|
39
|
Smith PD, McLean KJ, Murphy MA, Turnley AM, Cook MJ. Functional dentate gyrus neurogenesis in a rapid kindling seizure model. Eur J Neurosci 2006; 24:3195-203. [PMID: 17156380 DOI: 10.1111/j.1460-9568.2006.05205.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurogenesis in the adult mammalian hippocampus resulting in long-term persistence of new neurons with features of capacity for functional activation is recognized. Many stimuli are capable of increasing the rate of neurogenesis, including seizure activity. Whether these insults result in an increased number of new functionally active neurons over and above the baseline rate of neurogenesis is not known. The rapid electrical amygdala kindling (REAK) model of seizures isolates the effects of seizures alone in the absence of neuronal death and the resulting seizures induce expression of c-Fos in the vast majority of dentate gyrus (DG) granule cells. C57BL/6 mice were exposed to REAK then injected with bromodeoxyuridine (BrDU) to label dividing cells, then re-exposed to REAK after a delay period to allow detection of functional activation in new neurons by measurement c-Fos expression in response to seizures. Adult subgranular zone cells migrated into the DG granule cell layer (GCL), assumed a neuronal phenotype and demonstrated seizure-dependent responsiveness. Larger absolute numbers of new neurons demonstrating seizure-dependent activation were found in the GCL of previously kindled mice. Seizures are capable of increasing the number of new neurons with the capacity for functional activation laid down in the postseizure period and incorporated into seizure-activated circuitry.
Collapse
Affiliation(s)
- Paul D Smith
- Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital, University of Melbourne, VIC, Australia 3065.
| | | | | | | | | |
Collapse
|
40
|
Schauwecker PE. Genetic influence on neurogenesis in the dentate gyrus of two strains of adult mice. Brain Res 2006; 1120:83-92. [PMID: 16999941 DOI: 10.1016/j.brainres.2006.08.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 08/04/2006] [Accepted: 08/22/2006] [Indexed: 10/24/2022]
Abstract
Previous studies have suggested that there is a genetic influence on the regulation of cell proliferation and survival within the hippocampus. However, the links between perturbations in neurogenesis and genomic control remain unclear. Here, we examined the impact of mouse strain on four parameters of the neurogenic program, proliferation, migration, differentiation and survival in the dentate gyrus of the hippocampus as a means of determining whether allelic variation of two independently derived mouse strains, FVB/NJ and C57BL/6J, modulates basal adult murine dentate gyrus neurogenesis. New cells were labeled with the thymidine analogue 5-bromo-2'-deoxyuridine (BrdU) and their identity was determined immunocytochemically with various phenotypic markers. Consistent with previous studies in other strains of mice, we observed a strain-dependent difference in hippocampal proliferation. Hippocampal cell proliferation in FVB/NJ mice was reduced as compared to animals of the C57BL/6J strain. In contrast, the number of surviving cells in C57BL/6J mice was not significantly different from FVB/NJ mice. Regardless of mouse strain, the majority of surviving BrdU-labeled cells migrated into the granule cell layer and was of a neuronal phenotype. However, fewer surviving cells were located within the granule cell layer of FVB/NJ mice as compared to C57BL/6J mice. Overall, regardless of strain, no significant differences in the relative ratio of neurogenesis versus gliagenesis were observed. These results suggest that genetic background primarily influences newborn cell proliferation and migration, but not differentiation or survival.
Collapse
Affiliation(s)
- Paula Elyse Schauwecker
- Department of Cell and Neurobiology, University of Southern California, Keck School of Medicine, 1333 San Pablo Street, BMT 403, Los Angeles, CA 90089-9112, USA.
| |
Collapse
|
41
|
Pavlova TV, Yakovlev AA, Stepanichev MY, Gulyaeva NV. Pentylenetetrazol kindling in rats: Is neurodegeneration associated with manifestations of convulsive activity? ACTA ACUST UNITED AC 2006; 36:741-8. [PMID: 16841155 DOI: 10.1007/s11055-006-0082-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Indexed: 10/24/2022]
Abstract
Structural changes in neurons and measures of oxidative stress were studied in the hippocampus of rats tolerant (ST) and sensitive (SS) to developing clonic-tonic seizures in conditions of pentylenetetrazol kindling. Sequences of 11 injections of pentylenetetrazol significantly decreased the number of normal neurons in hippocampal field CA1 in SS rats, this effect being seen in both hippocampal field CA1 and the dentate fascia in ST rats. Decreases in the numbers of normal neurons were accompanied by increases in the numbers of damaged cells in field CA4 in rats of both groups. After 21 injections, decreases in the numbers of normal neurons were seen in field CA1 in both SS and ST rats, while the numbers of damaged neurons were significantly greater than control only in ST rats in fields CA1 and CA4. The glutathione level was significantly lower in the hippocampus in both groups of rats than in controls. Thus, rats " tolerant" to developing convulsions show signs of oxidative stress and neurodegenerative changes in the hippocampus. This suggests that oxidative neuron damage leading to neurodegeneration in the pentylenetetrazol kindling model is not directly associated with convulsive activity.
Collapse
Affiliation(s)
- T V Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerov Street, 117485 Moscow, Russia
| | | | | | | |
Collapse
|
42
|
Ernst C, Christie BR. Temporally specific proliferation events are induced in the hippocampus following acute focal injury. J Neurosci Res 2006; 83:349-61. [PMID: 16342206 DOI: 10.1002/jnr.20724] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In models of global brain injury, such as stroke or epilepsy, a large increase in neurogenesis occurs in the dentate gyrus (DG) days after the damage is induced. In contrast, more focal damage in the DG produces an increase in neurogenesis within 24 hr. To determine how cell proliferation and differentiation differs in the DG after acute injury in the DG, focal electrolytic lesions were made and mitotic activity was assessed at early (1 day) and late (5 day) time points. At the early time point, bromodeoxyuridine (BrdU)-positive cells were diffusely spread throughout the extent of the hippocampus that was ipsilateral to the lesion. No significant increase in the subgranular zone (SGZ) of the DG was observed. When BrdU was administered at the later time point, the number of BrdU+ cells in the SGZ of the DG was significantly increased. This fourfold increase in BrdU+ cells also resulted in a significant increase in neurogenesis, as measured 6 weeks following BrdU administration. This increase in neurogenesis was not observed when BrdU was administered at the early time point. These results indicate that focal injury in the DG activates two temporally specific proliferation events and that enhanced neurogenesis is observed only following a latent period after the lesion is made.
Collapse
Affiliation(s)
- Carl Ernst
- The Neuroscience Program, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
43
|
Park JH, Cho H, Kim H, Kim K. Repeated brief epileptic seizures by pentylenetetrazole cause neurodegeneration and promote neurogenesis in discrete brain regions of freely moving adult rats. Neuroscience 2006; 140:673-84. [PMID: 16616429 DOI: 10.1016/j.neuroscience.2006.02.076] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 02/09/2006] [Accepted: 02/24/2006] [Indexed: 11/20/2022]
Abstract
Recurrent epileptic seizures are known to provoke various forms of cellular reorganization in the brains of humans and experimental animals. However, little is known about the mechanism of neuronal cell death resulting from epileptic seizures elicited by GABA antagonists. In the present study, we explored the effect on the central nervous systems of freely moving adult rats, of repeated brief epileptic seizures induced by systemic injection of pentylenetetrazole, a GABA-A receptor antagonist. Starting with minor convulsions, repeated epileptic seizures elicited a progressive increase in seizure severity, culminating in the fully kindled state. Histological examination showed that the epileptic seizures caused overt neuronal cell death in the limbic system, including the hippocampus and amygdala, and its adjoining cortex. During the recurrent epileptic seizures, neurogenesis occurred in the subgranular zone of the hippocampus, the subventricular zone of the lateral ventricle, and the amygdala. This type of pentylenetetrazole-induced neurogenesis was seen at an early stage of epileptogenesis in some regions in which massive cell loss was not evident. This suggests that neurogenesis is not a secondary consequence of neuronal cell death, but rather an independent effect of recurrent epileptic seizures.
Collapse
Affiliation(s)
- J-H Park
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
44
|
Xu H, Chen Z, He J, Haimanot S, Li X, Dyck L, Li XM. Synergetic effects of quetiapine and venlafaxine in preventing the chronic restraint stress-induced decrease in cell proliferation and BDNF expression in rat hippocampus. Hippocampus 2006; 16:551-9. [PMID: 16652337 DOI: 10.1002/hipo.20184] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Clinical studies show better response rates of patients with depression and schizophrenia to combinations of atypical antipsychotics and antidepressants, compared to responses to either type of drugs alone. Animal studies demonstrate that some antipsychotics and antidepressants increase neurogenesis and BDNF expression in the hippocampus, which is reduced in volume in patients with depression or schizophrenia. We hypothesized that the better therapeutic effects of combined treatment seen in schizophrenia and depression patients are related to the additive or synergistic effects of combined treatment on hippocampal neurogenesis and BDNF expression. To test this hypothesis, we investigated the effects of chronic administration of quetiapine, venlafaxine, and their combination, on hippocampal cell proliferation and BDNF expression in rats, when subjected to chronic restraint stress (CRS) during the last 2 weeks of a 3-week drug administration period. We found (1) CRS decreased hippocampal cell proliferation and BDNF expression; (2) chronic administration of quetiapine or venlafaxine dose-dependently prevented these decreases in hippocampal cell proliferation and BDNF expression caused by CRS (6 h/day for 14 days); (3) the combination of lower doses of quetiapine (5 mg/kg) and venlafaxine (2.5 mg/kg) increased hippocampal cell proliferation and prevented BDNF decrease in stressed rats, whereas each of the drugs exerted mild or no effects; (4) individual higher doses of quetiapine (10 mg/kg) or venlafaxine (5 mg/kg) exerted effects comparable to those produced by their combination. These results support our hypothesis and can lead to future studies to develop new therapeutic approaches for treatment-resistant depression and the negative symptoms of schizophrenia.
Collapse
Affiliation(s)
- Haiyun Xu
- Neuropsychiatry Research Unit, Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Tang FR, Chia SC, Jiang FL, Ma DL, Chen PM, Tang YC. Calcium binding protein containing neurons in the gliotic mouse hippocampus with special reference to their afferents from the medial septum and the entorhinal cortex. Neuroscience 2006; 140:1467-79. [PMID: 16650619 DOI: 10.1016/j.neuroscience.2006.03.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 03/06/2006] [Accepted: 03/12/2006] [Indexed: 11/26/2022]
Abstract
In CA1 area and the hilus of the dentate gyrus of the mouse hippocampus, drastic reduction of NeuN, calbindin, calretinin, or parvalbumin immunopositive neurons was shown at 3, 7 and 60 days after pilocarpine-induced status epilepticus. In gliotic CA1 area at 60 days, few dendritic branches of calcium binding protein immunopositive neurons could be found suggesting reorganization of the afferents of surviving calcium binding protein immunopositive neurons. Calbindin, calretinin, or parvalbumin and 5-bromo-2'-deoxyuridine (BrdU) double labeling showed that calcium binding protein immunopositive neurons in gliotic CA1 area at 60 days were surviving instead of newly generated neurons. Iontophoretic injection of Phaseolus vulgaris leucoagglutinin into the medial septum and the nucleus of the diagonal band of Broca or the lateral entorhinal cortex showed contacts between Phaseolus vulgaris leucoagglutinin immunopositive en passant and terminal boutons and surviving calcium binding protein immunopositive neurons in the hippocampus. The presence in the gliotic hippocampus of enlarged and/or aggregated bouton-like structures 60 days after pilocarpine-induced status epilepticus is indicative for the reorganization of connections between the hippocampal afferents and surviving hippocampal neurons. This reconstruction could be a factor in the ongoing epileptic activity in this model of mesial temporal lobe epilepsy.
Collapse
Affiliation(s)
- F R Tang
- Epilepsy Research Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433.
| | | | | | | | | | | |
Collapse
|
46
|
Smith PD, McLean KJ, Murphy MA, Turnley AM, Cook MJ. Seizures, not hippocampal neuronal death, provoke neurogenesis in a mouse rapid electrical amygdala kindling model of seizures. Neuroscience 2005; 136:405-15. [PMID: 16226389 DOI: 10.1016/j.neuroscience.2005.07.055] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 06/01/2005] [Accepted: 07/21/2005] [Indexed: 11/15/2022]
Abstract
PURPOSE Proliferation of neural precursors adjacent to the granule cell layer of the dentate gyrus has been identified in previous epilepsy models. Convincingly demonstrating that seizure activity is the stimulant for neurogenesis, rather than neuronal death or other insults inherent to seizure models, is difficult. To address this we derived a rapid electrical amygdala kindling model in mice known to be resistant to seizure-induced neuronal death as an experimental model of focal seizures and to analyze subsequent neurogenesis. METHODS Mice were implanted with bipolar electrodes in the left amygdala and given electrical stimulation (3 s, 100 Hz, 1 ms monophasic square wave pulses every 5 min, 40 in total) while being observed and graded for the development of seizures. Neurogenesis in the hippocampus was assessed by counting bromodeoxyuridine-immunoreactive cells co-labeled for astrocyte (glial fibrillary acidic protein) and neuronal nuclear markers. RESULTS Bromodeoxyuridine-reactive cell numbers were three-fold higher in stimulated mice compared with controls at 1 week in the subgranular region and at three weeks extensive co-labeling with neuronal nuclear was noted in cells which had migrated into the body of the granule cell layer, while mice receiving stimulation but failing to kindle did not differ significantly from controls. No increase in neuronal death was detected by terminal deoxynucleotidyl transferase-mediated digoxigenin-11-dUTP nick end labeling, Fluorojade or fluorescent examination of hematoxylin and eosin-stained sections in any inter-group comparison. CONCLUSIONS We propose that this kindling paradigm, not previously applied to mice, demonstrates more convincingly than previously the surge in neurogenesis in response to seizures, and the effects of seizures alone in regard to neuronal injury and regeneration.
Collapse
Affiliation(s)
- P D Smith
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital, Melbourne, Victoria, Australia.
| | | | | | | | | |
Collapse
|
47
|
Tauber SC, Stadelmann C, Spreer A, Brück W, Nau R, Gerber J. Increased Expression of BDNF and Proliferation of Dentate Granule Cells After Bacterial Meningitis. J Neuropathol Exp Neurol 2005; 64:806-15. [PMID: 16141791 DOI: 10.1097/01.jnen.0000178853.21799.88] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proliferation and differentiation of neural progenitor cells is increased after bacterial meningitis. To identify endogenous factors involved in neurogenesis, expression of brain-derived neurotrophic factor (BDNF), TrkB, nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF) was investigated. C57BL/6 mice were infected by intracerebral injection of Streptococcus pneumoniae. Mice were killed 30 hours later or treated with ceftriaxone and killed 4 days after infection. Hippocampal BDNF mRNA levels were increased 2.4-fold 4 days after infection (p = 0.026). Similarly, BDNF protein levels in the hippocampal formation were higher in infected mice than in control animals (p = 0.0003). This was accompanied by an elevated proliferation of dentate granule cells (p = 0.0002). BDNF protein was located predominantly in the hippocampal CA3/4 area and the hilus of the dentate gyrus. The density of dentate granule cells expressing the BDNF receptor TrkB as well as mRNA levels of TrkB in the hippocampal formation were increased 4 days after infection (p = 0.027 and 0.0048, respectively). Conversely, NGF mRNA levels at 30 hours after infection were reduced by approximately 50% (p = 0.004). No significant changes in GDNF expression were observed. In conclusion, increased synthesis of BDNF and TrkB suggests a contribution of this neurotrophic factor to neurogenesis after bacterial meningitis.
Collapse
Affiliation(s)
- Simone C Tauber
- Department of Neurology, Georg-August-University, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Sun D, Colello RJ, Daugherty WP, Kwon TH, McGinn MJ, Harvey HB, Bullock MR. Cell proliferation and neuronal differentiation in the dentate gyrus in juvenile and adult rats following traumatic brain injury. J Neurotrauma 2005; 22:95-105. [PMID: 15665605 DOI: 10.1089/neu.2005.22.95] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It is well known that the cognitive functions of juveniles recover to a greater extent than adult patients following traumatic brain injury (TBI). The exact mechanisms underlying this age-related disparity are unknown; however, we speculate that this improved recovery in juveniles following TBI may be associated with an endogenous neurogenic response in the hippocampus. We, therefore, examined the effects of TBI on cellular proliferation and differentiation in the dentate gyrus (DG) of the hippocampus in juvenile and adult rats following lateral fluid percussion injury (FPI). The temporal profile of the injury-induced proliferative response was determined using BrdU labeling at varying survival times. The differentiation of these newly generated cells was investigated using cell-type specific markers. We found that, following injury, there was a significant increase in cell proliferation in the DG in both injured juveniles and adults at 2 days post injury when compared to shams. When comparing the extent of cell proliferation between juveniles and adults following TBI, the absolute number of cells generated in the subgranular zone (SGZ) was far greater in the juveniles. Moreover, the percentage of newly generated cells in the SGZ that differentiated into neurons was nearly two times higher in the juveniles as compared to adults. Conversely, more glial differentiation was observed in the DG of adult rats. These findings provide compelling evidence that age-related differences in the neurogenic response to injury may underlie the differences observed in cognitive recovery in juvenile mammals as compared to adults following TBI.
Collapse
Affiliation(s)
- Dong Sun
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia 23298-0631, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Jiang W, Xiao L, Wang JC, Huang YG, Zhang X. Effects of nitric oxide on dentate gyrus cell proliferation after seizures induced by pentylenetrazol in the adult rat brain. Neurosci Lett 2004; 367:344-8. [PMID: 15337263 DOI: 10.1016/j.neulet.2004.06.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 04/15/2004] [Accepted: 06/10/2004] [Indexed: 11/25/2022]
Abstract
Epileptic seizures have been shown to increase the proliferation of granule cell precursors in the adult brain, but the underlying mechanisms remain largely unknown. This study examined the effect of nitric oxide (NO) on the proliferation of granule cell precursors in adult rats after pentylenetrazol (PTZ)-induced generalized clonic seizures. Using systemic bromodeoxyuridine (BrdU) to label dividing cells, we found that injection of the neuronal nitric oxide synthase (nNOS) inhibitor 7-nitroindazole (50 mg/kg i.p.) 10 min before PTZ significantly reduced the number of BrdU labeled cells in the dentate gyrus 3, 7, and 14 days after seizures (P < 0.05). Administration of the inducible NOS (iNOS) inhibitor aminoguanidine (100 mg/kg i.p.) also significantly inhibited the proliferation rate of neural precursor cells in the dentate gyrus at various time points after PTZ-induced seizures. Our findings suggest that epileptic seizures lead to increased cell proliferation in the adult rat dentate gyrus through NO-dependent mechanisms. Both the NO originating from nNOS and iNOS may be involved in brain repair after seizures.
Collapse
Affiliation(s)
- Wen Jiang
- Neuropsychiatry Research Unit, A114 Medical Research Building, University of Saskatchewan, 103 Wiggins Road, Saskatoon, Canada S7N5E4.
| | | | | | | | | |
Collapse
|
50
|
Németh H, Robotka H, Kis Z, Rózsa E, Janáky T, Somlai C, Marosi M, Farkas T, Toldi J, Vécsei L. Kynurenine administered together with probenecid markedly inhibits pentylenetetrazol-induced seizures. An electrophysiological and behavioural study. Neuropharmacology 2004; 47:916-25. [PMID: 15527825 DOI: 10.1016/j.neuropharm.2004.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 05/21/2004] [Accepted: 06/18/2004] [Indexed: 10/26/2022]
Abstract
The kynurenine pathway converts tryptophan into various compounds, including l-kynurenine, which in turn can be converted to the excitatory amino acid receptor antagonist kynurenic acid, which may therefore serve as a protective agent in such neurological disorders as epileptic seizures. Kynurenic acid, however, has a very limited ability to cross the blood-brain barrier, whereas kynurenine passes the barrier easily. In this study, we tested the hypothesis that kynurenine administered systemically together with probenecid, which inhibits kynurenic acid excretion from the cerebrospinal fluid, results in an increased level of kynurenic acid in the brain that is sufficiently high to provide protection against the development of pentylentetrazol-induced epileptic seizures. CA3 stimulation-evoked population spike activity was recorded from the pyramidal layer of area CA1 of the rat hippocampus, and in another series of behavioural experiments, water maze and open-field studies were carried out to test the presumed protective effect of kynurenine + probenecid pre-treatment against pentylenetetrazol-induced seizures. This study has furnished the first electrophysiological proof that systemic kynurenine (300 mg/kg, i.p.) and probenecid (200 mg/kg, i.p.) administration protects against pentylenetetrazol-induced (60 mg/kg, i.p.) epileptic seizures.
Collapse
Affiliation(s)
- H Németh
- Department of Neurology, University of Szeged, POB 427, H-6701 Szeged, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|